blob: 9de945ed701648b71ca32a3d3fcd31bc86f02d57 [file] [log] [blame]
Chris Lattner965c7692008-06-02 01:18:21 +00001//===- ValueTracking.cpp - Walk computations to compute properties --------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains routines that help analyze properties that chains of
11// computations have.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/ValueTracking.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000016#include "llvm/ADT/SmallPtrSet.h"
Dan Gohman949ab782010-12-15 20:10:26 +000017#include "llvm/Analysis/InstructionSimplify.h"
Benjamin Kramerfd4777c2013-09-24 16:37:51 +000018#include "llvm/Analysis/MemoryBuiltins.h"
Nick Lewyckyec373542014-05-20 05:13:21 +000019#include "llvm/IR/CallSite.h"
Chandler Carruth8cd041e2014-03-04 12:24:34 +000020#include "llvm/IR/ConstantRange.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000021#include "llvm/IR/Constants.h"
22#include "llvm/IR/DataLayout.h"
Chandler Carruth03eb0de2014-03-04 10:40:04 +000023#include "llvm/IR/GetElementPtrTypeIterator.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000024#include "llvm/IR/GlobalAlias.h"
25#include "llvm/IR/GlobalVariable.h"
26#include "llvm/IR/Instructions.h"
27#include "llvm/IR/IntrinsicInst.h"
28#include "llvm/IR/LLVMContext.h"
29#include "llvm/IR/Metadata.h"
30#include "llvm/IR/Operator.h"
Chandler Carruth820a9082014-03-04 11:08:18 +000031#include "llvm/IR/PatternMatch.h"
Chris Lattner965c7692008-06-02 01:18:21 +000032#include "llvm/Support/MathExtras.h"
Chris Lattner64496902008-06-04 04:46:14 +000033#include <cstring>
Chris Lattner965c7692008-06-02 01:18:21 +000034using namespace llvm;
Duncan Sandsd3951082011-01-25 09:38:29 +000035using namespace llvm::PatternMatch;
36
37const unsigned MaxDepth = 6;
38
39/// getBitWidth - Returns the bitwidth of the given scalar or pointer type (if
40/// unknown returns 0). For vector types, returns the element type's bitwidth.
Micah Villmowcdfe20b2012-10-08 16:38:25 +000041static unsigned getBitWidth(Type *Ty, const DataLayout *TD) {
Duncan Sandsd3951082011-01-25 09:38:29 +000042 if (unsigned BitWidth = Ty->getScalarSizeInBits())
43 return BitWidth;
Matt Arsenaultf55e5e72013-08-10 17:34:08 +000044
45 return TD ? TD->getPointerTypeSizeInBits(Ty) : 0;
Duncan Sandsd3951082011-01-25 09:38:29 +000046}
Chris Lattner965c7692008-06-02 01:18:21 +000047
Jay Foada0653a32014-05-14 21:14:37 +000048static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
49 APInt &KnownZero, APInt &KnownOne,
50 APInt &KnownZero2, APInt &KnownOne2,
51 const DataLayout *TD, unsigned Depth) {
Nick Lewyckyfea3e002012-03-09 09:23:50 +000052 if (!Add) {
53 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) {
54 // We know that the top bits of C-X are clear if X contains less bits
55 // than C (i.e. no wrap-around can happen). For example, 20-X is
56 // positive if we can prove that X is >= 0 and < 16.
57 if (!CLHS->getValue().isNegative()) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +000058 unsigned BitWidth = KnownZero.getBitWidth();
Nick Lewyckyfea3e002012-03-09 09:23:50 +000059 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
60 // NLZ can't be BitWidth with no sign bit
61 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
Jay Foada0653a32014-05-14 21:14:37 +000062 llvm::computeKnownBits(Op1, KnownZero2, KnownOne2, TD, Depth+1);
Craig Topper1bef2c82012-12-22 19:15:35 +000063
Nick Lewyckyfea3e002012-03-09 09:23:50 +000064 // If all of the MaskV bits are known to be zero, then we know the
65 // output top bits are zero, because we now know that the output is
66 // from [0-C].
67 if ((KnownZero2 & MaskV) == MaskV) {
68 unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
69 // Top bits known zero.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +000070 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
Nick Lewyckyfea3e002012-03-09 09:23:50 +000071 }
72 }
73 }
74 }
75
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +000076 unsigned BitWidth = KnownZero.getBitWidth();
Nick Lewyckyfea3e002012-03-09 09:23:50 +000077
78 // If one of the operands has trailing zeros, then the bits that the
79 // other operand has in those bit positions will be preserved in the
80 // result. For an add, this works with either operand. For a subtract,
81 // this only works if the known zeros are in the right operand.
82 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
Jay Foada0653a32014-05-14 21:14:37 +000083 llvm::computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, TD, Depth+1);
Nick Lewyckyfea3e002012-03-09 09:23:50 +000084 unsigned LHSKnownZeroOut = LHSKnownZero.countTrailingOnes();
85
Jay Foada0653a32014-05-14 21:14:37 +000086 llvm::computeKnownBits(Op1, KnownZero2, KnownOne2, TD, Depth+1);
Nick Lewyckyfea3e002012-03-09 09:23:50 +000087 unsigned RHSKnownZeroOut = KnownZero2.countTrailingOnes();
88
89 // Determine which operand has more trailing zeros, and use that
90 // many bits from the other operand.
91 if (LHSKnownZeroOut > RHSKnownZeroOut) {
92 if (Add) {
93 APInt Mask = APInt::getLowBitsSet(BitWidth, LHSKnownZeroOut);
94 KnownZero |= KnownZero2 & Mask;
95 KnownOne |= KnownOne2 & Mask;
96 } else {
97 // If the known zeros are in the left operand for a subtract,
98 // fall back to the minimum known zeros in both operands.
99 KnownZero |= APInt::getLowBitsSet(BitWidth,
100 std::min(LHSKnownZeroOut,
101 RHSKnownZeroOut));
102 }
103 } else if (RHSKnownZeroOut >= LHSKnownZeroOut) {
104 APInt Mask = APInt::getLowBitsSet(BitWidth, RHSKnownZeroOut);
105 KnownZero |= LHSKnownZero & Mask;
106 KnownOne |= LHSKnownOne & Mask;
107 }
108
109 // Are we still trying to solve for the sign bit?
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000110 if (!KnownZero.isNegative() && !KnownOne.isNegative()) {
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000111 if (NSW) {
112 if (Add) {
113 // Adding two positive numbers can't wrap into negative
114 if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
115 KnownZero |= APInt::getSignBit(BitWidth);
116 // and adding two negative numbers can't wrap into positive.
117 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
118 KnownOne |= APInt::getSignBit(BitWidth);
119 } else {
120 // Subtracting a negative number from a positive one can't wrap
121 if (LHSKnownZero.isNegative() && KnownOne2.isNegative())
122 KnownZero |= APInt::getSignBit(BitWidth);
123 // neither can subtracting a positive number from a negative one.
124 else if (LHSKnownOne.isNegative() && KnownZero2.isNegative())
125 KnownOne |= APInt::getSignBit(BitWidth);
126 }
127 }
128 }
129}
130
Jay Foada0653a32014-05-14 21:14:37 +0000131static void computeKnownBitsMul(Value *Op0, Value *Op1, bool NSW,
132 APInt &KnownZero, APInt &KnownOne,
133 APInt &KnownZero2, APInt &KnownOne2,
134 const DataLayout *TD, unsigned Depth) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000135 unsigned BitWidth = KnownZero.getBitWidth();
Jay Foada0653a32014-05-14 21:14:37 +0000136 computeKnownBits(Op1, KnownZero, KnownOne, TD, Depth+1);
137 computeKnownBits(Op0, KnownZero2, KnownOne2, TD, Depth+1);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000138
139 bool isKnownNegative = false;
140 bool isKnownNonNegative = false;
141 // If the multiplication is known not to overflow, compute the sign bit.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000142 if (NSW) {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000143 if (Op0 == Op1) {
144 // The product of a number with itself is non-negative.
145 isKnownNonNegative = true;
146 } else {
147 bool isKnownNonNegativeOp1 = KnownZero.isNegative();
148 bool isKnownNonNegativeOp0 = KnownZero2.isNegative();
149 bool isKnownNegativeOp1 = KnownOne.isNegative();
150 bool isKnownNegativeOp0 = KnownOne2.isNegative();
151 // The product of two numbers with the same sign is non-negative.
152 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
153 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
154 // The product of a negative number and a non-negative number is either
155 // negative or zero.
156 if (!isKnownNonNegative)
157 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
158 isKnownNonZero(Op0, TD, Depth)) ||
159 (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
160 isKnownNonZero(Op1, TD, Depth));
161 }
162 }
163
164 // If low bits are zero in either operand, output low known-0 bits.
165 // Also compute a conserative estimate for high known-0 bits.
166 // More trickiness is possible, but this is sufficient for the
167 // interesting case of alignment computation.
168 KnownOne.clearAllBits();
169 unsigned TrailZ = KnownZero.countTrailingOnes() +
170 KnownZero2.countTrailingOnes();
171 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
172 KnownZero2.countLeadingOnes(),
173 BitWidth) - BitWidth;
174
175 TrailZ = std::min(TrailZ, BitWidth);
176 LeadZ = std::min(LeadZ, BitWidth);
177 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
178 APInt::getHighBitsSet(BitWidth, LeadZ);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000179
180 // Only make use of no-wrap flags if we failed to compute the sign bit
181 // directly. This matters if the multiplication always overflows, in
182 // which case we prefer to follow the result of the direct computation,
183 // though as the program is invoking undefined behaviour we can choose
184 // whatever we like here.
185 if (isKnownNonNegative && !KnownOne.isNegative())
186 KnownZero.setBit(BitWidth - 1);
187 else if (isKnownNegative && !KnownZero.isNegative())
188 KnownOne.setBit(BitWidth - 1);
189}
190
Jingyue Wu37fcb592014-06-19 16:50:16 +0000191void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
192 APInt &KnownZero) {
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000193 unsigned BitWidth = KnownZero.getBitWidth();
Rafael Espindola53190532012-03-30 15:52:11 +0000194 unsigned NumRanges = Ranges.getNumOperands() / 2;
195 assert(NumRanges >= 1);
196
197 // Use the high end of the ranges to find leading zeros.
198 unsigned MinLeadingZeros = BitWidth;
199 for (unsigned i = 0; i < NumRanges; ++i) {
200 ConstantInt *Lower = cast<ConstantInt>(Ranges.getOperand(2*i + 0));
201 ConstantInt *Upper = cast<ConstantInt>(Ranges.getOperand(2*i + 1));
202 ConstantRange Range(Lower->getValue(), Upper->getValue());
203 if (Range.isWrappedSet())
204 MinLeadingZeros = 0; // -1 has no zeros
205 unsigned LeadingZeros = (Upper->getValue() - 1).countLeadingZeros();
206 MinLeadingZeros = std::min(LeadingZeros, MinLeadingZeros);
207 }
208
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000209 KnownZero = APInt::getHighBitsSet(BitWidth, MinLeadingZeros);
Rafael Espindola53190532012-03-30 15:52:11 +0000210}
Jay Foad5a29c362014-05-15 12:12:55 +0000211
Jay Foada0653a32014-05-14 21:14:37 +0000212/// Determine which bits of V are known to be either zero or one and return
213/// them in the KnownZero/KnownOne bit sets.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000214///
Chris Lattner965c7692008-06-02 01:18:21 +0000215/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
216/// we cannot optimize based on the assumption that it is zero without changing
217/// it to be an explicit zero. If we don't change it to zero, other code could
218/// optimized based on the contradictory assumption that it is non-zero.
219/// Because instcombine aggressively folds operations with undef args anyway,
220/// this won't lose us code quality.
Chris Lattner4bc28252009-09-08 00:06:16 +0000221///
222/// This function is defined on values with integer type, values with pointer
223/// type (but only if TD is non-null), and vectors of integers. In the case
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000224/// where V is a vector, known zero, and known one values are the
Chris Lattner4bc28252009-09-08 00:06:16 +0000225/// same width as the vector element, and the bit is set only if it is true
226/// for all of the elements in the vector.
Jay Foada0653a32014-05-14 21:14:37 +0000227void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
228 const DataLayout *TD, unsigned Depth) {
Chris Lattner965c7692008-06-02 01:18:21 +0000229 assert(V && "No Value?");
Dan Gohmanbf0002e2009-05-21 02:28:33 +0000230 assert(Depth <= MaxDepth && "Limit Search Depth");
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000231 unsigned BitWidth = KnownZero.getBitWidth();
232
Nadav Rotem3924cb02011-12-05 06:29:09 +0000233 assert((V->getType()->isIntOrIntVectorTy() ||
234 V->getType()->getScalarType()->isPointerTy()) &&
235 "Not integer or pointer type!");
Dan Gohman7ccc52f2009-06-15 22:12:54 +0000236 assert((!TD ||
237 TD->getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
Duncan Sands9dff9be2010-02-15 16:12:20 +0000238 (!V->getType()->isIntOrIntVectorTy() ||
Dan Gohman7ccc52f2009-06-15 22:12:54 +0000239 V->getType()->getScalarSizeInBits() == BitWidth) &&
Nadav Rotem3924cb02011-12-05 06:29:09 +0000240 KnownZero.getBitWidth() == BitWidth &&
Chris Lattner965c7692008-06-02 01:18:21 +0000241 KnownOne.getBitWidth() == BitWidth &&
Jay Foade48d9e82014-05-14 08:00:07 +0000242 "V, KnownOne and KnownZero should have same BitWidth");
Chris Lattner965c7692008-06-02 01:18:21 +0000243
244 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
245 // We know all of the bits for a constant!
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000246 KnownOne = CI->getValue();
247 KnownZero = ~KnownOne;
Chris Lattner965c7692008-06-02 01:18:21 +0000248 return;
249 }
Dan Gohman7ccc52f2009-06-15 22:12:54 +0000250 // Null and aggregate-zero are all-zeros.
251 if (isa<ConstantPointerNull>(V) ||
252 isa<ConstantAggregateZero>(V)) {
Jay Foad25a5e4c2010-12-01 08:53:58 +0000253 KnownOne.clearAllBits();
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000254 KnownZero = APInt::getAllOnesValue(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +0000255 return;
256 }
Dan Gohman7ccc52f2009-06-15 22:12:54 +0000257 // Handle a constant vector by taking the intersection of the known bits of
Chris Lattner8213c8a2012-02-06 21:56:39 +0000258 // each element. There is no real need to handle ConstantVector here, because
259 // we don't handle undef in any particularly useful way.
Chris Lattnerf7eb5432012-01-24 07:54:10 +0000260 if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
261 // We know that CDS must be a vector of integers. Take the intersection of
262 // each element.
263 KnownZero.setAllBits(); KnownOne.setAllBits();
264 APInt Elt(KnownZero.getBitWidth(), 0);
Chris Lattner9be59592012-01-25 01:27:20 +0000265 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
Chris Lattnerf7eb5432012-01-24 07:54:10 +0000266 Elt = CDS->getElementAsInteger(i);
267 KnownZero &= ~Elt;
Craig Topper1bef2c82012-12-22 19:15:35 +0000268 KnownOne &= Elt;
Chris Lattnerf7eb5432012-01-24 07:54:10 +0000269 }
270 return;
271 }
Craig Topper1bef2c82012-12-22 19:15:35 +0000272
Chris Lattner965c7692008-06-02 01:18:21 +0000273 // The address of an aligned GlobalValue has trailing zeros.
274 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
275 unsigned Align = GV->getAlignment();
Nick Lewycky1d57ee32012-03-07 02:27:53 +0000276 if (Align == 0 && TD) {
Eli Friedmane7ab1a22011-11-28 22:48:22 +0000277 if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) {
278 Type *ObjectType = GVar->getType()->getElementType();
Nick Lewycky1d57ee32012-03-07 02:27:53 +0000279 if (ObjectType->isSized()) {
280 // If the object is defined in the current Module, we'll be giving
281 // it the preferred alignment. Otherwise, we have to assume that it
282 // may only have the minimum ABI alignment.
283 if (!GVar->isDeclaration() && !GVar->isWeakForLinker())
284 Align = TD->getPreferredAlignment(GVar);
285 else
286 Align = TD->getABITypeAlignment(ObjectType);
287 }
Eli Friedmane7ab1a22011-11-28 22:48:22 +0000288 }
Dan Gohmana72f8562009-08-11 15:50:03 +0000289 }
Chris Lattner965c7692008-06-02 01:18:21 +0000290 if (Align > 0)
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000291 KnownZero = APInt::getLowBitsSet(BitWidth,
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +0000292 countTrailingZeros(Align));
Chris Lattner965c7692008-06-02 01:18:21 +0000293 else
Jay Foad25a5e4c2010-12-01 08:53:58 +0000294 KnownZero.clearAllBits();
295 KnownOne.clearAllBits();
Chris Lattner965c7692008-06-02 01:18:21 +0000296 return;
297 }
Dan Gohman94262db2009-09-15 16:14:44 +0000298 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
299 // the bits of its aliasee.
300 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
301 if (GA->mayBeOverridden()) {
Jay Foad25a5e4c2010-12-01 08:53:58 +0000302 KnownZero.clearAllBits(); KnownOne.clearAllBits();
Dan Gohman94262db2009-09-15 16:14:44 +0000303 } else {
Jay Foada0653a32014-05-14 21:14:37 +0000304 computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, TD, Depth+1);
Dan Gohman94262db2009-09-15 16:14:44 +0000305 }
306 return;
307 }
Craig Topper1bef2c82012-12-22 19:15:35 +0000308
Chris Lattner83791ce2011-05-23 00:03:39 +0000309 if (Argument *A = dyn_cast<Argument>(V)) {
Duncan Sands271ea6c2012-10-04 13:36:31 +0000310 unsigned Align = 0;
311
Reid Kleckner26af2ca2014-01-28 02:38:36 +0000312 if (A->hasByValOrInAllocaAttr()) {
313 // Get alignment information off byval/inalloca arguments if specified in
314 // the IR.
Duncan Sands271ea6c2012-10-04 13:36:31 +0000315 Align = A->getParamAlignment();
316 } else if (TD && A->hasStructRetAttr()) {
317 // An sret parameter has at least the ABI alignment of the return type.
318 Type *EltTy = cast<PointerType>(A->getType())->getElementType();
319 if (EltTy->isSized())
320 Align = TD->getABITypeAlignment(EltTy);
321 }
322
323 if (Align)
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +0000324 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
Chris Lattner83791ce2011-05-23 00:03:39 +0000325 return;
326 }
Chris Lattner965c7692008-06-02 01:18:21 +0000327
Chris Lattner83791ce2011-05-23 00:03:39 +0000328 // Start out not knowing anything.
329 KnownZero.clearAllBits(); KnownOne.clearAllBits();
Chris Lattner965c7692008-06-02 01:18:21 +0000330
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000331 if (Depth == MaxDepth)
Chris Lattner965c7692008-06-02 01:18:21 +0000332 return; // Limit search depth.
333
Dan Gohman80ca01c2009-07-17 20:47:02 +0000334 Operator *I = dyn_cast<Operator>(V);
Chris Lattner965c7692008-06-02 01:18:21 +0000335 if (!I) return;
336
337 APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
Dan Gohman80ca01c2009-07-17 20:47:02 +0000338 switch (I->getOpcode()) {
Chris Lattner965c7692008-06-02 01:18:21 +0000339 default: break;
Rafael Espindola53190532012-03-30 15:52:11 +0000340 case Instruction::Load:
341 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
Jingyue Wu37fcb592014-06-19 16:50:16 +0000342 computeKnownBitsFromRangeMetadata(*MD, KnownZero);
Jay Foad5a29c362014-05-15 12:12:55 +0000343 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000344 case Instruction::And: {
345 // If either the LHS or the RHS are Zero, the result is zero.
Jay Foada0653a32014-05-14 21:14:37 +0000346 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
347 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
Craig Topper1bef2c82012-12-22 19:15:35 +0000348
Chris Lattner965c7692008-06-02 01:18:21 +0000349 // Output known-1 bits are only known if set in both the LHS & RHS.
350 KnownOne &= KnownOne2;
351 // Output known-0 are known to be clear if zero in either the LHS | RHS.
352 KnownZero |= KnownZero2;
Jay Foad5a29c362014-05-15 12:12:55 +0000353 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000354 }
355 case Instruction::Or: {
Jay Foada0653a32014-05-14 21:14:37 +0000356 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
357 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
Craig Topper1bef2c82012-12-22 19:15:35 +0000358
Chris Lattner965c7692008-06-02 01:18:21 +0000359 // Output known-0 bits are only known if clear in both the LHS & RHS.
360 KnownZero &= KnownZero2;
361 // Output known-1 are known to be set if set in either the LHS | RHS.
362 KnownOne |= KnownOne2;
Jay Foad5a29c362014-05-15 12:12:55 +0000363 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000364 }
365 case Instruction::Xor: {
Jay Foada0653a32014-05-14 21:14:37 +0000366 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
367 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
Craig Topper1bef2c82012-12-22 19:15:35 +0000368
Chris Lattner965c7692008-06-02 01:18:21 +0000369 // Output known-0 bits are known if clear or set in both the LHS & RHS.
370 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
371 // Output known-1 are known to be set if set in only one of the LHS, RHS.
372 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
373 KnownZero = KnownZeroOut;
Jay Foad5a29c362014-05-15 12:12:55 +0000374 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000375 }
376 case Instruction::Mul: {
Nick Lewyckyfa306072012-03-18 23:28:48 +0000377 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +0000378 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW,
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000379 KnownZero, KnownOne, KnownZero2, KnownOne2, TD, Depth);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000380 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000381 }
382 case Instruction::UDiv: {
383 // For the purposes of computing leading zeros we can conservatively
384 // treat a udiv as a logical right shift by the power of 2 known to
385 // be less than the denominator.
Jay Foada0653a32014-05-14 21:14:37 +0000386 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
Chris Lattner965c7692008-06-02 01:18:21 +0000387 unsigned LeadZ = KnownZero2.countLeadingOnes();
388
Jay Foad25a5e4c2010-12-01 08:53:58 +0000389 KnownOne2.clearAllBits();
390 KnownZero2.clearAllBits();
Jay Foada0653a32014-05-14 21:14:37 +0000391 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1);
Chris Lattner965c7692008-06-02 01:18:21 +0000392 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
393 if (RHSUnknownLeadingOnes != BitWidth)
394 LeadZ = std::min(BitWidth,
395 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
396
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000397 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
Jay Foad5a29c362014-05-15 12:12:55 +0000398 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000399 }
400 case Instruction::Select:
Jay Foada0653a32014-05-14 21:14:37 +0000401 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, TD, Depth+1);
402 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD,
Chris Lattner965c7692008-06-02 01:18:21 +0000403 Depth+1);
Chris Lattner965c7692008-06-02 01:18:21 +0000404
405 // Only known if known in both the LHS and RHS.
406 KnownOne &= KnownOne2;
407 KnownZero &= KnownZero2;
Jay Foad5a29c362014-05-15 12:12:55 +0000408 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000409 case Instruction::FPTrunc:
410 case Instruction::FPExt:
411 case Instruction::FPToUI:
412 case Instruction::FPToSI:
413 case Instruction::SIToFP:
414 case Instruction::UIToFP:
Jay Foad5a29c362014-05-15 12:12:55 +0000415 break; // Can't work with floating point.
Chris Lattner965c7692008-06-02 01:18:21 +0000416 case Instruction::PtrToInt:
417 case Instruction::IntToPtr:
418 // We can't handle these if we don't know the pointer size.
Jay Foad5a29c362014-05-15 12:12:55 +0000419 if (!TD) break;
Chris Lattner965c7692008-06-02 01:18:21 +0000420 // FALL THROUGH and handle them the same as zext/trunc.
421 case Instruction::ZExt:
422 case Instruction::Trunc: {
Chris Lattner229907c2011-07-18 04:54:35 +0000423 Type *SrcTy = I->getOperand(0)->getType();
Nadav Rotem15198e92012-10-26 17:17:05 +0000424
Chris Lattner0cdbc7a2009-09-08 00:13:52 +0000425 unsigned SrcBitWidth;
Chris Lattner965c7692008-06-02 01:18:21 +0000426 // Note that we handle pointer operands here because of inttoptr/ptrtoint
427 // which fall through here.
Nadav Rotem11350aa2012-12-19 20:47:04 +0000428 if(TD) {
429 SrcBitWidth = TD->getTypeSizeInBits(SrcTy->getScalarType());
430 } else {
431 SrcBitWidth = SrcTy->getScalarSizeInBits();
Jay Foad5a29c362014-05-15 12:12:55 +0000432 if (!SrcBitWidth) break;
Nadav Rotem11350aa2012-12-19 20:47:04 +0000433 }
Nadav Rotem15198e92012-10-26 17:17:05 +0000434
435 assert(SrcBitWidth && "SrcBitWidth can't be zero");
Jay Foad583abbc2010-12-07 08:25:19 +0000436 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
437 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
Jay Foada0653a32014-05-14 21:14:37 +0000438 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
Jay Foad583abbc2010-12-07 08:25:19 +0000439 KnownZero = KnownZero.zextOrTrunc(BitWidth);
440 KnownOne = KnownOne.zextOrTrunc(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +0000441 // Any top bits are known to be zero.
442 if (BitWidth > SrcBitWidth)
443 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +0000444 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000445 }
446 case Instruction::BitCast: {
Chris Lattner229907c2011-07-18 04:54:35 +0000447 Type *SrcTy = I->getOperand(0)->getType();
Duncan Sands19d0b472010-02-16 11:11:14 +0000448 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
Chris Lattneredb84072009-07-02 16:04:08 +0000449 // TODO: For now, not handling conversions like:
450 // (bitcast i64 %x to <2 x i32>)
Duncan Sands19d0b472010-02-16 11:11:14 +0000451 !I->getType()->isVectorTy()) {
Jay Foada0653a32014-05-14 21:14:37 +0000452 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
Jay Foad5a29c362014-05-15 12:12:55 +0000453 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000454 }
455 break;
456 }
457 case Instruction::SExt: {
458 // Compute the bits in the result that are not present in the input.
Chris Lattner0cdbc7a2009-09-08 00:13:52 +0000459 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
Craig Topper1bef2c82012-12-22 19:15:35 +0000460
Jay Foad583abbc2010-12-07 08:25:19 +0000461 KnownZero = KnownZero.trunc(SrcBitWidth);
462 KnownOne = KnownOne.trunc(SrcBitWidth);
Jay Foada0653a32014-05-14 21:14:37 +0000463 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
Jay Foad583abbc2010-12-07 08:25:19 +0000464 KnownZero = KnownZero.zext(BitWidth);
465 KnownOne = KnownOne.zext(BitWidth);
Chris Lattner965c7692008-06-02 01:18:21 +0000466
467 // If the sign bit of the input is known set or clear, then we know the
468 // top bits of the result.
469 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero
470 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
471 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set
472 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
Jay Foad5a29c362014-05-15 12:12:55 +0000473 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000474 }
475 case Instruction::Shl:
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +0000476 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
Chris Lattner965c7692008-06-02 01:18:21 +0000477 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
478 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
Jay Foada0653a32014-05-14 21:14:37 +0000479 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
Chris Lattner965c7692008-06-02 01:18:21 +0000480 KnownZero <<= ShiftAmt;
481 KnownOne <<= ShiftAmt;
482 KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0
Jay Foad5a29c362014-05-15 12:12:55 +0000483 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000484 }
485 break;
486 case Instruction::LShr:
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +0000487 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Chris Lattner965c7692008-06-02 01:18:21 +0000488 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
489 // Compute the new bits that are at the top now.
490 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
Craig Topper1bef2c82012-12-22 19:15:35 +0000491
Chris Lattner965c7692008-06-02 01:18:21 +0000492 // Unsigned shift right.
Jay Foada0653a32014-05-14 21:14:37 +0000493 computeKnownBits(I->getOperand(0), KnownZero,KnownOne, TD, Depth+1);
Chris Lattner965c7692008-06-02 01:18:21 +0000494 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
495 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
496 // high bits known zero.
497 KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
Jay Foad5a29c362014-05-15 12:12:55 +0000498 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000499 }
500 break;
501 case Instruction::AShr:
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +0000502 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
Chris Lattner965c7692008-06-02 01:18:21 +0000503 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
504 // Compute the new bits that are at the top now.
Chris Lattnerc86e67e2011-01-04 18:19:15 +0000505 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
Craig Topper1bef2c82012-12-22 19:15:35 +0000506
Chris Lattner965c7692008-06-02 01:18:21 +0000507 // Signed shift right.
Jay Foada0653a32014-05-14 21:14:37 +0000508 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
Chris Lattner965c7692008-06-02 01:18:21 +0000509 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
510 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
Craig Topper1bef2c82012-12-22 19:15:35 +0000511
Chris Lattner965c7692008-06-02 01:18:21 +0000512 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
513 if (KnownZero[BitWidth-ShiftAmt-1]) // New bits are known zero.
514 KnownZero |= HighBits;
515 else if (KnownOne[BitWidth-ShiftAmt-1]) // New bits are known one.
516 KnownOne |= HighBits;
Jay Foad5a29c362014-05-15 12:12:55 +0000517 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000518 }
519 break;
520 case Instruction::Sub: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000521 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +0000522 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000523 KnownZero, KnownOne, KnownZero2, KnownOne2, TD,
524 Depth);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000525 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000526 }
Chris Lattner965c7692008-06-02 01:18:21 +0000527 case Instruction::Add: {
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000528 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
Jay Foada0653a32014-05-14 21:14:37 +0000529 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000530 KnownZero, KnownOne, KnownZero2, KnownOne2, TD,
531 Depth);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000532 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000533 }
534 case Instruction::SRem:
535 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Duncan Sands26cd6bd2010-01-29 06:18:37 +0000536 APInt RA = Rem->getValue().abs();
537 if (RA.isPowerOf2()) {
538 APInt LowBits = RA - 1;
Jay Foada0653a32014-05-14 21:14:37 +0000539 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1);
Chris Lattner965c7692008-06-02 01:18:21 +0000540
Duncan Sands26cd6bd2010-01-29 06:18:37 +0000541 // The low bits of the first operand are unchanged by the srem.
542 KnownZero = KnownZero2 & LowBits;
543 KnownOne = KnownOne2 & LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +0000544
Duncan Sands26cd6bd2010-01-29 06:18:37 +0000545 // If the first operand is non-negative or has all low bits zero, then
546 // the upper bits are all zero.
547 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
548 KnownZero |= ~LowBits;
549
550 // If the first operand is negative and not all low bits are zero, then
551 // the upper bits are all one.
552 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
553 KnownOne |= ~LowBits;
554
Craig Topper1bef2c82012-12-22 19:15:35 +0000555 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +0000556 }
557 }
Nick Lewyckye4679792011-03-07 01:50:10 +0000558
559 // The sign bit is the LHS's sign bit, except when the result of the
560 // remainder is zero.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000561 if (KnownZero.isNonNegative()) {
Nick Lewyckye4679792011-03-07 01:50:10 +0000562 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
Jay Foada0653a32014-05-14 21:14:37 +0000563 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, TD,
564 Depth+1);
Nick Lewyckye4679792011-03-07 01:50:10 +0000565 // If it's known zero, our sign bit is also zero.
566 if (LHSKnownZero.isNegative())
Duncan Sands34c48692012-04-30 11:56:58 +0000567 KnownZero.setBit(BitWidth - 1);
Nick Lewyckye4679792011-03-07 01:50:10 +0000568 }
569
Chris Lattner965c7692008-06-02 01:18:21 +0000570 break;
571 case Instruction::URem: {
572 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
573 APInt RA = Rem->getValue();
574 if (RA.isPowerOf2()) {
575 APInt LowBits = (RA - 1);
Jay Foada0653a32014-05-14 21:14:37 +0000576 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD,
577 Depth+1);
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000578 KnownZero |= ~LowBits;
579 KnownOne &= LowBits;
Chris Lattner965c7692008-06-02 01:18:21 +0000580 break;
581 }
582 }
583
584 // Since the result is less than or equal to either operand, any leading
585 // zero bits in either operand must also exist in the result.
Jay Foada0653a32014-05-14 21:14:37 +0000586 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
587 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1);
Chris Lattner965c7692008-06-02 01:18:21 +0000588
Chris Lattner4612ae12009-01-20 18:22:57 +0000589 unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
Chris Lattner965c7692008-06-02 01:18:21 +0000590 KnownZero2.countLeadingOnes());
Jay Foad25a5e4c2010-12-01 08:53:58 +0000591 KnownOne.clearAllBits();
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000592 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
Chris Lattner965c7692008-06-02 01:18:21 +0000593 break;
594 }
595
Victor Hernandeza3aaf852009-10-17 01:18:07 +0000596 case Instruction::Alloca: {
Victor Hernandez8acf2952009-10-23 21:09:37 +0000597 AllocaInst *AI = cast<AllocaInst>(V);
Chris Lattner965c7692008-06-02 01:18:21 +0000598 unsigned Align = AI->getAlignment();
Victor Hernandeza3aaf852009-10-17 01:18:07 +0000599 if (Align == 0 && TD)
600 Align = TD->getABITypeAlignment(AI->getType()->getElementType());
Craig Topper1bef2c82012-12-22 19:15:35 +0000601
Chris Lattner965c7692008-06-02 01:18:21 +0000602 if (Align > 0)
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +0000603 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
Chris Lattner965c7692008-06-02 01:18:21 +0000604 break;
605 }
606 case Instruction::GetElementPtr: {
607 // Analyze all of the subscripts of this getelementptr instruction
608 // to determine if we can prove known low zero bits.
Chris Lattner965c7692008-06-02 01:18:21 +0000609 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
Jay Foada0653a32014-05-14 21:14:37 +0000610 computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, TD,
611 Depth+1);
Chris Lattner965c7692008-06-02 01:18:21 +0000612 unsigned TrailZ = LocalKnownZero.countTrailingOnes();
613
614 gep_type_iterator GTI = gep_type_begin(I);
615 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
616 Value *Index = I->getOperand(i);
Chris Lattner229907c2011-07-18 04:54:35 +0000617 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
Chris Lattner965c7692008-06-02 01:18:21 +0000618 // Handle struct member offset arithmetic.
Jay Foad5a29c362014-05-15 12:12:55 +0000619 if (!TD) {
620 TrailZ = 0;
621 break;
622 }
Matt Arsenault74742a12013-08-19 21:43:16 +0000623
624 // Handle case when index is vector zeroinitializer
625 Constant *CIndex = cast<Constant>(Index);
626 if (CIndex->isZeroValue())
627 continue;
628
629 if (CIndex->getType()->isVectorTy())
630 Index = CIndex->getSplatValue();
631
Chris Lattner965c7692008-06-02 01:18:21 +0000632 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
Matt Arsenault74742a12013-08-19 21:43:16 +0000633 const StructLayout *SL = TD->getStructLayout(STy);
Chris Lattner965c7692008-06-02 01:18:21 +0000634 uint64_t Offset = SL->getElementOffset(Idx);
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +0000635 TrailZ = std::min<unsigned>(TrailZ,
636 countTrailingZeros(Offset));
Chris Lattner965c7692008-06-02 01:18:21 +0000637 } else {
638 // Handle array index arithmetic.
Chris Lattner229907c2011-07-18 04:54:35 +0000639 Type *IndexedTy = GTI.getIndexedType();
Jay Foad5a29c362014-05-15 12:12:55 +0000640 if (!IndexedTy->isSized()) {
641 TrailZ = 0;
642 break;
643 }
Dan Gohman7ccc52f2009-06-15 22:12:54 +0000644 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
Duncan Sandsaf9eaa82009-05-09 07:06:46 +0000645 uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1;
Chris Lattner965c7692008-06-02 01:18:21 +0000646 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
Jay Foada0653a32014-05-14 21:14:37 +0000647 computeKnownBits(Index, LocalKnownZero, LocalKnownOne, TD, Depth+1);
Chris Lattner965c7692008-06-02 01:18:21 +0000648 TrailZ = std::min(TrailZ,
Michael J. Spencerdf1ecbd72013-05-24 22:23:49 +0000649 unsigned(countTrailingZeros(TypeSize) +
Chris Lattner4612ae12009-01-20 18:22:57 +0000650 LocalKnownZero.countTrailingOnes()));
Chris Lattner965c7692008-06-02 01:18:21 +0000651 }
652 }
Craig Topper1bef2c82012-12-22 19:15:35 +0000653
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000654 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ);
Chris Lattner965c7692008-06-02 01:18:21 +0000655 break;
656 }
657 case Instruction::PHI: {
658 PHINode *P = cast<PHINode>(I);
659 // Handle the case of a simple two-predecessor recurrence PHI.
660 // There's a lot more that could theoretically be done here, but
661 // this is sufficient to catch some interesting cases.
662 if (P->getNumIncomingValues() == 2) {
663 for (unsigned i = 0; i != 2; ++i) {
664 Value *L = P->getIncomingValue(i);
665 Value *R = P->getIncomingValue(!i);
Dan Gohman80ca01c2009-07-17 20:47:02 +0000666 Operator *LU = dyn_cast<Operator>(L);
Chris Lattner965c7692008-06-02 01:18:21 +0000667 if (!LU)
668 continue;
Dan Gohman80ca01c2009-07-17 20:47:02 +0000669 unsigned Opcode = LU->getOpcode();
Chris Lattner965c7692008-06-02 01:18:21 +0000670 // Check for operations that have the property that if
671 // both their operands have low zero bits, the result
672 // will have low zero bits.
673 if (Opcode == Instruction::Add ||
674 Opcode == Instruction::Sub ||
675 Opcode == Instruction::And ||
676 Opcode == Instruction::Or ||
677 Opcode == Instruction::Mul) {
678 Value *LL = LU->getOperand(0);
679 Value *LR = LU->getOperand(1);
680 // Find a recurrence.
681 if (LL == I)
682 L = LR;
683 else if (LR == I)
684 L = LL;
685 else
686 break;
687 // Ok, we have a PHI of the form L op= R. Check for low
688 // zero bits.
Jay Foada0653a32014-05-14 21:14:37 +0000689 computeKnownBits(R, KnownZero2, KnownOne2, TD, Depth+1);
David Greeneaebd9e02008-10-27 23:24:03 +0000690
691 // We need to take the minimum number of known bits
692 APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
Jay Foada0653a32014-05-14 21:14:37 +0000693 computeKnownBits(L, KnownZero3, KnownOne3, TD, Depth+1);
David Greeneaebd9e02008-10-27 23:24:03 +0000694
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000695 KnownZero = APInt::getLowBitsSet(BitWidth,
David Greeneaebd9e02008-10-27 23:24:03 +0000696 std::min(KnownZero2.countTrailingOnes(),
697 KnownZero3.countTrailingOnes()));
Chris Lattner965c7692008-06-02 01:18:21 +0000698 break;
699 }
700 }
701 }
Dan Gohmanbf0002e2009-05-21 02:28:33 +0000702
Nick Lewyckyac0b62c2011-02-10 23:54:10 +0000703 // Unreachable blocks may have zero-operand PHI nodes.
704 if (P->getNumIncomingValues() == 0)
Jay Foad5a29c362014-05-15 12:12:55 +0000705 break;
Nick Lewyckyac0b62c2011-02-10 23:54:10 +0000706
Dan Gohmanbf0002e2009-05-21 02:28:33 +0000707 // Otherwise take the unions of the known bit sets of the operands,
708 // taking conservative care to avoid excessive recursion.
709 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
Duncan Sands7dc3d472011-03-08 12:39:03 +0000710 // Skip if every incoming value references to ourself.
Nuno Lopes0d44a502012-07-03 21:15:40 +0000711 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
Duncan Sands7dc3d472011-03-08 12:39:03 +0000712 break;
713
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +0000714 KnownZero = APInt::getAllOnesValue(BitWidth);
715 KnownOne = APInt::getAllOnesValue(BitWidth);
Dan Gohmanbf0002e2009-05-21 02:28:33 +0000716 for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) {
717 // Skip direct self references.
718 if (P->getIncomingValue(i) == P) continue;
719
720 KnownZero2 = APInt(BitWidth, 0);
721 KnownOne2 = APInt(BitWidth, 0);
722 // Recurse, but cap the recursion to one level, because we don't
723 // want to waste time spinning around in loops.
Jay Foada0653a32014-05-14 21:14:37 +0000724 computeKnownBits(P->getIncomingValue(i), KnownZero2, KnownOne2, TD,
725 MaxDepth-1);
Dan Gohmanbf0002e2009-05-21 02:28:33 +0000726 KnownZero &= KnownZero2;
727 KnownOne &= KnownOne2;
728 // If all bits have been ruled out, there's no need to check
729 // more operands.
730 if (!KnownZero && !KnownOne)
731 break;
732 }
733 }
Chris Lattner965c7692008-06-02 01:18:21 +0000734 break;
735 }
736 case Instruction::Call:
Jingyue Wu37fcb592014-06-19 16:50:16 +0000737 case Instruction::Invoke:
738 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range))
739 computeKnownBitsFromRangeMetadata(*MD, KnownZero);
740 // If a range metadata is attached to this IntrinsicInst, intersect the
741 // explicit range specified by the metadata and the implicit range of
742 // the intrinsic.
Chris Lattner965c7692008-06-02 01:18:21 +0000743 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
744 switch (II->getIntrinsicID()) {
745 default: break;
Chris Lattner965c7692008-06-02 01:18:21 +0000746 case Intrinsic::ctlz:
747 case Intrinsic::cttz: {
748 unsigned LowBits = Log2_32(BitWidth)+1;
Benjamin Kramer4ee57472011-12-24 17:31:46 +0000749 // If this call is undefined for 0, the result will be less than 2^n.
750 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
751 LowBits -= 1;
Jingyue Wu37fcb592014-06-19 16:50:16 +0000752 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
Benjamin Kramer4ee57472011-12-24 17:31:46 +0000753 break;
754 }
755 case Intrinsic::ctpop: {
756 unsigned LowBits = Log2_32(BitWidth)+1;
Jingyue Wu37fcb592014-06-19 16:50:16 +0000757 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
Chris Lattner965c7692008-06-02 01:18:21 +0000758 break;
759 }
Chad Rosierb3628842011-05-26 23:13:19 +0000760 case Intrinsic::x86_sse42_crc32_64_64:
Jingyue Wu37fcb592014-06-19 16:50:16 +0000761 KnownZero |= APInt::getHighBitsSet(64, 32);
Evan Cheng2a746bf2011-05-22 18:25:30 +0000762 break;
Chris Lattner965c7692008-06-02 01:18:21 +0000763 }
764 }
765 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000766 case Instruction::ExtractValue:
767 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
768 ExtractValueInst *EVI = cast<ExtractValueInst>(I);
769 if (EVI->getNumIndices() != 1) break;
770 if (EVI->getIndices()[0] == 0) {
771 switch (II->getIntrinsicID()) {
772 default: break;
773 case Intrinsic::uadd_with_overflow:
774 case Intrinsic::sadd_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +0000775 computeKnownBitsAddSub(true, II->getArgOperand(0),
776 II->getArgOperand(1), false, KnownZero,
777 KnownOne, KnownZero2, KnownOne2, TD, Depth);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000778 break;
779 case Intrinsic::usub_with_overflow:
780 case Intrinsic::ssub_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +0000781 computeKnownBitsAddSub(false, II->getArgOperand(0),
782 II->getArgOperand(1), false, KnownZero,
783 KnownOne, KnownZero2, KnownOne2, TD, Depth);
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000784 break;
Nick Lewyckyfa306072012-03-18 23:28:48 +0000785 case Intrinsic::umul_with_overflow:
786 case Intrinsic::smul_with_overflow:
Jay Foada0653a32014-05-14 21:14:37 +0000787 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1),
788 false, KnownZero, KnownOne,
789 KnownZero2, KnownOne2, TD, Depth);
Nick Lewyckyfa306072012-03-18 23:28:48 +0000790 break;
Nick Lewyckyfea3e002012-03-09 09:23:50 +0000791 }
792 }
793 }
Chris Lattner965c7692008-06-02 01:18:21 +0000794 }
Jay Foad5a29c362014-05-15 12:12:55 +0000795
796 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner965c7692008-06-02 01:18:21 +0000797}
798
Duncan Sandsd3951082011-01-25 09:38:29 +0000799/// ComputeSignBit - Determine whether the sign bit is known to be zero or
Jay Foada0653a32014-05-14 21:14:37 +0000800/// one. Convenience wrapper around computeKnownBits.
Duncan Sandsd3951082011-01-25 09:38:29 +0000801void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
Micah Villmowcdfe20b2012-10-08 16:38:25 +0000802 const DataLayout *TD, unsigned Depth) {
Duncan Sandsd3951082011-01-25 09:38:29 +0000803 unsigned BitWidth = getBitWidth(V->getType(), TD);
804 if (!BitWidth) {
805 KnownZero = false;
806 KnownOne = false;
807 return;
808 }
809 APInt ZeroBits(BitWidth, 0);
810 APInt OneBits(BitWidth, 0);
Jay Foada0653a32014-05-14 21:14:37 +0000811 computeKnownBits(V, ZeroBits, OneBits, TD, Depth);
Duncan Sandsd3951082011-01-25 09:38:29 +0000812 KnownOne = OneBits[BitWidth - 1];
813 KnownZero = ZeroBits[BitWidth - 1];
814}
815
Rafael Espindola319f74c2012-12-13 03:37:24 +0000816/// isKnownToBeAPowerOfTwo - Return true if the given value is known to have exactly one
Duncan Sandsd3951082011-01-25 09:38:29 +0000817/// bit set when defined. For vectors return true if every element is known to
818/// be a power of two when defined. Supports values with integer or pointer
819/// types and vectors of integers.
Rafael Espindola319f74c2012-12-13 03:37:24 +0000820bool llvm::isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth) {
Duncan Sandsba286d72011-10-26 20:55:21 +0000821 if (Constant *C = dyn_cast<Constant>(V)) {
822 if (C->isNullValue())
823 return OrZero;
824 if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
825 return CI->getValue().isPowerOf2();
826 // TODO: Handle vector constants.
827 }
Duncan Sandsd3951082011-01-25 09:38:29 +0000828
829 // 1 << X is clearly a power of two if the one is not shifted off the end. If
830 // it is shifted off the end then the result is undefined.
831 if (match(V, m_Shl(m_One(), m_Value())))
832 return true;
833
834 // (signbit) >>l X is clearly a power of two if the one is not shifted off the
835 // bottom. If it is shifted off the bottom then the result is undefined.
Duncan Sands4b397fc2011-02-01 08:50:33 +0000836 if (match(V, m_LShr(m_SignBit(), m_Value())))
Duncan Sandsd3951082011-01-25 09:38:29 +0000837 return true;
838
839 // The remaining tests are all recursive, so bail out if we hit the limit.
840 if (Depth++ == MaxDepth)
841 return false;
842
Craig Topper9f008862014-04-15 04:59:12 +0000843 Value *X = nullptr, *Y = nullptr;
Duncan Sands985ba632011-10-28 18:30:05 +0000844 // A shift of a power of two is a power of two or zero.
845 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
846 match(V, m_Shr(m_Value(X), m_Value()))))
Rafael Espindola319f74c2012-12-13 03:37:24 +0000847 return isKnownToBeAPowerOfTwo(X, /*OrZero*/true, Depth);
Duncan Sands985ba632011-10-28 18:30:05 +0000848
Duncan Sandsd3951082011-01-25 09:38:29 +0000849 if (ZExtInst *ZI = dyn_cast<ZExtInst>(V))
Rafael Espindola319f74c2012-12-13 03:37:24 +0000850 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth);
Duncan Sandsd3951082011-01-25 09:38:29 +0000851
852 if (SelectInst *SI = dyn_cast<SelectInst>(V))
Rafael Espindola319f74c2012-12-13 03:37:24 +0000853 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth) &&
854 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth);
Duncan Sandsba286d72011-10-26 20:55:21 +0000855
Duncan Sandsba286d72011-10-26 20:55:21 +0000856 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
857 // A power of two and'd with anything is a power of two or zero.
Rafael Espindola319f74c2012-12-13 03:37:24 +0000858 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/true, Depth) ||
859 isKnownToBeAPowerOfTwo(Y, /*OrZero*/true, Depth))
Duncan Sandsba286d72011-10-26 20:55:21 +0000860 return true;
861 // X & (-X) is always a power of two or zero.
862 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
863 return true;
864 return false;
865 }
Duncan Sandsd3951082011-01-25 09:38:29 +0000866
David Majnemerb7d54092013-07-30 21:01:36 +0000867 // Adding a power-of-two or zero to the same power-of-two or zero yields
868 // either the original power-of-two, a larger power-of-two or zero.
869 if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
870 OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
871 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) {
872 if (match(X, m_And(m_Specific(Y), m_Value())) ||
873 match(X, m_And(m_Value(), m_Specific(Y))))
874 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth))
875 return true;
876 if (match(Y, m_And(m_Specific(X), m_Value())) ||
877 match(Y, m_And(m_Value(), m_Specific(X))))
878 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth))
879 return true;
880
881 unsigned BitWidth = V->getType()->getScalarSizeInBits();
882 APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0);
Jay Foada0653a32014-05-14 21:14:37 +0000883 computeKnownBits(X, LHSZeroBits, LHSOneBits, nullptr, Depth);
David Majnemerb7d54092013-07-30 21:01:36 +0000884
885 APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0);
Jay Foada0653a32014-05-14 21:14:37 +0000886 computeKnownBits(Y, RHSZeroBits, RHSOneBits, nullptr, Depth);
David Majnemerb7d54092013-07-30 21:01:36 +0000887 // If i8 V is a power of two or zero:
888 // ZeroBits: 1 1 1 0 1 1 1 1
889 // ~ZeroBits: 0 0 0 1 0 0 0 0
890 if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2())
891 // If OrZero isn't set, we cannot give back a zero result.
892 // Make sure either the LHS or RHS has a bit set.
893 if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue())
894 return true;
895 }
896 }
David Majnemerbeab5672013-05-18 19:30:37 +0000897
Nick Lewyckyc9aab852011-02-28 08:02:21 +0000898 // An exact divide or right shift can only shift off zero bits, so the result
Nick Lewyckyf0469af2011-03-21 21:40:32 +0000899 // is a power of two only if the first operand is a power of two and not
900 // copying a sign bit (sdiv int_min, 2).
Benjamin Kramer9442cd02012-01-01 17:55:30 +0000901 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
902 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
Rafael Espindola319f74c2012-12-13 03:37:24 +0000903 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, Depth);
Nick Lewyckyc9aab852011-02-28 08:02:21 +0000904 }
905
Duncan Sandsd3951082011-01-25 09:38:29 +0000906 return false;
907}
908
Chandler Carruth80d3e562012-12-07 02:08:58 +0000909/// \brief Test whether a GEP's result is known to be non-null.
910///
911/// Uses properties inherent in a GEP to try to determine whether it is known
912/// to be non-null.
913///
914/// Currently this routine does not support vector GEPs.
915static bool isGEPKnownNonNull(GEPOperator *GEP, const DataLayout *DL,
916 unsigned Depth) {
917 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
918 return false;
919
920 // FIXME: Support vector-GEPs.
921 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
922
923 // If the base pointer is non-null, we cannot walk to a null address with an
924 // inbounds GEP in address space zero.
925 if (isKnownNonZero(GEP->getPointerOperand(), DL, Depth))
926 return true;
927
928 // Past this, if we don't have DataLayout, we can't do much.
929 if (!DL)
930 return false;
931
932 // Walk the GEP operands and see if any operand introduces a non-zero offset.
933 // If so, then the GEP cannot produce a null pointer, as doing so would
934 // inherently violate the inbounds contract within address space zero.
935 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
936 GTI != GTE; ++GTI) {
937 // Struct types are easy -- they must always be indexed by a constant.
938 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
939 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
940 unsigned ElementIdx = OpC->getZExtValue();
941 const StructLayout *SL = DL->getStructLayout(STy);
942 uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
943 if (ElementOffset > 0)
944 return true;
945 continue;
946 }
947
948 // If we have a zero-sized type, the index doesn't matter. Keep looping.
949 if (DL->getTypeAllocSize(GTI.getIndexedType()) == 0)
950 continue;
951
952 // Fast path the constant operand case both for efficiency and so we don't
953 // increment Depth when just zipping down an all-constant GEP.
954 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
955 if (!OpC->isZero())
956 return true;
957 continue;
958 }
959
960 // We post-increment Depth here because while isKnownNonZero increments it
961 // as well, when we pop back up that increment won't persist. We don't want
962 // to recurse 10k times just because we have 10k GEP operands. We don't
963 // bail completely out because we want to handle constant GEPs regardless
964 // of depth.
965 if (Depth++ >= MaxDepth)
966 continue;
967
968 if (isKnownNonZero(GTI.getOperand(), DL, Depth))
969 return true;
970 }
971
972 return false;
973}
974
Duncan Sandsd3951082011-01-25 09:38:29 +0000975/// isKnownNonZero - Return true if the given value is known to be non-zero
976/// when defined. For vectors return true if every element is known to be
977/// non-zero when defined. Supports values with integer or pointer type and
978/// vectors of integers.
Micah Villmowcdfe20b2012-10-08 16:38:25 +0000979bool llvm::isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth) {
Duncan Sandsd3951082011-01-25 09:38:29 +0000980 if (Constant *C = dyn_cast<Constant>(V)) {
981 if (C->isNullValue())
982 return false;
983 if (isa<ConstantInt>(C))
984 // Must be non-zero due to null test above.
985 return true;
986 // TODO: Handle vectors
987 return false;
988 }
989
990 // The remaining tests are all recursive, so bail out if we hit the limit.
Duncan Sands7cb61e52011-10-27 19:16:21 +0000991 if (Depth++ >= MaxDepth)
Duncan Sandsd3951082011-01-25 09:38:29 +0000992 return false;
993
Chandler Carruth80d3e562012-12-07 02:08:58 +0000994 // Check for pointer simplifications.
995 if (V->getType()->isPointerTy()) {
Manman Ren12171122013-03-18 21:23:25 +0000996 if (isKnownNonNull(V))
997 return true;
Chandler Carruth80d3e562012-12-07 02:08:58 +0000998 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
999 if (isGEPKnownNonNull(GEP, TD, Depth))
1000 return true;
1001 }
1002
Nadav Rotemaa3e2a92012-12-14 20:43:49 +00001003 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), TD);
Duncan Sandsd3951082011-01-25 09:38:29 +00001004
1005 // X | Y != 0 if X != 0 or Y != 0.
Craig Topper9f008862014-04-15 04:59:12 +00001006 Value *X = nullptr, *Y = nullptr;
Duncan Sandsd3951082011-01-25 09:38:29 +00001007 if (match(V, m_Or(m_Value(X), m_Value(Y))))
1008 return isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth);
1009
1010 // ext X != 0 if X != 0.
1011 if (isa<SExtInst>(V) || isa<ZExtInst>(V))
1012 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), TD, Depth);
1013
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001014 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
Duncan Sandsd3951082011-01-25 09:38:29 +00001015 // if the lowest bit is shifted off the end.
1016 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001017 // shl nuw can't remove any non-zero bits.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001018 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001019 if (BO->hasNoUnsignedWrap())
1020 return isKnownNonZero(X, TD, Depth);
1021
Duncan Sandsd3951082011-01-25 09:38:29 +00001022 APInt KnownZero(BitWidth, 0);
1023 APInt KnownOne(BitWidth, 0);
Jay Foada0653a32014-05-14 21:14:37 +00001024 computeKnownBits(X, KnownZero, KnownOne, TD, Depth);
Duncan Sandsd3951082011-01-25 09:38:29 +00001025 if (KnownOne[0])
1026 return true;
1027 }
Duncan Sands2e9e4f12011-01-29 13:27:00 +00001028 // shr X, Y != 0 if X is negative. Note that the value of the shift is not
Duncan Sandsd3951082011-01-25 09:38:29 +00001029 // defined if the sign bit is shifted off the end.
1030 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001031 // shr exact can only shift out zero bits.
Duncan Sands7cb61e52011-10-27 19:16:21 +00001032 PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001033 if (BO->isExact())
1034 return isKnownNonZero(X, TD, Depth);
1035
Duncan Sandsd3951082011-01-25 09:38:29 +00001036 bool XKnownNonNegative, XKnownNegative;
1037 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth);
1038 if (XKnownNegative)
1039 return true;
1040 }
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001041 // div exact can only produce a zero if the dividend is zero.
Benjamin Kramer9442cd02012-01-01 17:55:30 +00001042 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
1043 return isKnownNonZero(X, TD, Depth);
Nick Lewyckyc9aab852011-02-28 08:02:21 +00001044 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001045 // X + Y.
1046 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1047 bool XKnownNonNegative, XKnownNegative;
1048 bool YKnownNonNegative, YKnownNegative;
1049 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth);
1050 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, TD, Depth);
1051
1052 // If X and Y are both non-negative (as signed values) then their sum is not
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001053 // zero unless both X and Y are zero.
Duncan Sandsd3951082011-01-25 09:38:29 +00001054 if (XKnownNonNegative && YKnownNonNegative)
Duncan Sands9e9d5b22011-01-25 15:14:15 +00001055 if (isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth))
1056 return true;
Duncan Sandsd3951082011-01-25 09:38:29 +00001057
1058 // If X and Y are both negative (as signed values) then their sum is not
1059 // zero unless both X and Y equal INT_MIN.
1060 if (BitWidth && XKnownNegative && YKnownNegative) {
1061 APInt KnownZero(BitWidth, 0);
1062 APInt KnownOne(BitWidth, 0);
1063 APInt Mask = APInt::getSignedMaxValue(BitWidth);
1064 // The sign bit of X is set. If some other bit is set then X is not equal
1065 // to INT_MIN.
Jay Foada0653a32014-05-14 21:14:37 +00001066 computeKnownBits(X, KnownZero, KnownOne, TD, Depth);
Duncan Sandsd3951082011-01-25 09:38:29 +00001067 if ((KnownOne & Mask) != 0)
1068 return true;
1069 // The sign bit of Y is set. If some other bit is set then Y is not equal
1070 // to INT_MIN.
Jay Foada0653a32014-05-14 21:14:37 +00001071 computeKnownBits(Y, KnownZero, KnownOne, TD, Depth);
Duncan Sandsd3951082011-01-25 09:38:29 +00001072 if ((KnownOne & Mask) != 0)
1073 return true;
1074 }
1075
1076 // The sum of a non-negative number and a power of two is not zero.
Rafael Espindola319f74c2012-12-13 03:37:24 +00001077 if (XKnownNonNegative && isKnownToBeAPowerOfTwo(Y, /*OrZero*/false, Depth))
Duncan Sandsd3951082011-01-25 09:38:29 +00001078 return true;
Rafael Espindola319f74c2012-12-13 03:37:24 +00001079 if (YKnownNonNegative && isKnownToBeAPowerOfTwo(X, /*OrZero*/false, Depth))
Duncan Sandsd3951082011-01-25 09:38:29 +00001080 return true;
1081 }
Duncan Sands7cb61e52011-10-27 19:16:21 +00001082 // X * Y.
1083 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
1084 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
1085 // If X and Y are non-zero then so is X * Y as long as the multiplication
1086 // does not overflow.
1087 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
1088 isKnownNonZero(X, TD, Depth) && isKnownNonZero(Y, TD, Depth))
1089 return true;
1090 }
Duncan Sandsd3951082011-01-25 09:38:29 +00001091 // (C ? X : Y) != 0 if X != 0 and Y != 0.
1092 else if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
1093 if (isKnownNonZero(SI->getTrueValue(), TD, Depth) &&
1094 isKnownNonZero(SI->getFalseValue(), TD, Depth))
1095 return true;
1096 }
1097
1098 if (!BitWidth) return false;
1099 APInt KnownZero(BitWidth, 0);
1100 APInt KnownOne(BitWidth, 0);
Jay Foada0653a32014-05-14 21:14:37 +00001101 computeKnownBits(V, KnownZero, KnownOne, TD, Depth);
Duncan Sandsd3951082011-01-25 09:38:29 +00001102 return KnownOne != 0;
1103}
1104
Chris Lattner965c7692008-06-02 01:18:21 +00001105/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
1106/// this predicate to simplify operations downstream. Mask is known to be zero
1107/// for bits that V cannot have.
Chris Lattner4bc28252009-09-08 00:06:16 +00001108///
1109/// This function is defined on values with integer type, values with pointer
1110/// type (but only if TD is non-null), and vectors of integers. In the case
1111/// where V is a vector, the mask, known zero, and known one values are the
1112/// same width as the vector element, and the bit is set only if it is true
1113/// for all of the elements in the vector.
Chris Lattner965c7692008-06-02 01:18:21 +00001114bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask,
Micah Villmowcdfe20b2012-10-08 16:38:25 +00001115 const DataLayout *TD, unsigned Depth) {
Chris Lattner965c7692008-06-02 01:18:21 +00001116 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
Jay Foada0653a32014-05-14 21:14:37 +00001117 computeKnownBits(V, KnownZero, KnownOne, TD, Depth);
Chris Lattner965c7692008-06-02 01:18:21 +00001118 return (KnownZero & Mask) == Mask;
1119}
1120
1121
1122
1123/// ComputeNumSignBits - Return the number of times the sign bit of the
1124/// register is replicated into the other bits. We know that at least 1 bit
1125/// is always equal to the sign bit (itself), but other cases can give us
1126/// information. For example, immediately after an "ashr X, 2", we know that
1127/// the top 3 bits are all equal to each other, so we return 3.
1128///
1129/// 'Op' must have a scalar integer type.
1130///
Micah Villmowcdfe20b2012-10-08 16:38:25 +00001131unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout *TD,
Dan Gohman05f11352009-08-27 17:51:25 +00001132 unsigned Depth) {
Duncan Sands9dff9be2010-02-15 16:12:20 +00001133 assert((TD || V->getType()->isIntOrIntVectorTy()) &&
Micah Villmowcdfe20b2012-10-08 16:38:25 +00001134 "ComputeNumSignBits requires a DataLayout object to operate "
Dan Gohman26366932009-06-22 22:02:32 +00001135 "on non-integer values!");
Chris Lattner229907c2011-07-18 04:54:35 +00001136 Type *Ty = V->getType();
Dan Gohman26366932009-06-22 22:02:32 +00001137 unsigned TyBits = TD ? TD->getTypeSizeInBits(V->getType()->getScalarType()) :
1138 Ty->getScalarSizeInBits();
Chris Lattner965c7692008-06-02 01:18:21 +00001139 unsigned Tmp, Tmp2;
1140 unsigned FirstAnswer = 1;
1141
Jay Foada0653a32014-05-14 21:14:37 +00001142 // Note that ConstantInt is handled by the general computeKnownBits case
Chris Lattner2e01a692008-06-02 18:39:07 +00001143 // below.
1144
Chris Lattner965c7692008-06-02 01:18:21 +00001145 if (Depth == 6)
1146 return 1; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00001147
Dan Gohman80ca01c2009-07-17 20:47:02 +00001148 Operator *U = dyn_cast<Operator>(V);
1149 switch (Operator::getOpcode(V)) {
Chris Lattner965c7692008-06-02 01:18:21 +00001150 default: break;
1151 case Instruction::SExt:
Mon P Wangbb3eac92009-12-02 04:59:58 +00001152 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
Chris Lattner965c7692008-06-02 01:18:21 +00001153 return ComputeNumSignBits(U->getOperand(0), TD, Depth+1) + Tmp;
Craig Topper1bef2c82012-12-22 19:15:35 +00001154
Chris Lattner61a1d6c2012-01-26 21:37:55 +00001155 case Instruction::AShr: {
Chris Lattner965c7692008-06-02 01:18:21 +00001156 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00001157 // ashr X, C -> adds C sign bits. Vectors too.
1158 const APInt *ShAmt;
1159 if (match(U->getOperand(1), m_APInt(ShAmt))) {
1160 Tmp += ShAmt->getZExtValue();
Chris Lattner965c7692008-06-02 01:18:21 +00001161 if (Tmp > TyBits) Tmp = TyBits;
1162 }
1163 return Tmp;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00001164 }
1165 case Instruction::Shl: {
1166 const APInt *ShAmt;
1167 if (match(U->getOperand(1), m_APInt(ShAmt))) {
Chris Lattner965c7692008-06-02 01:18:21 +00001168 // shl destroys sign bits.
1169 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
Chris Lattner61a1d6c2012-01-26 21:37:55 +00001170 Tmp2 = ShAmt->getZExtValue();
1171 if (Tmp2 >= TyBits || // Bad shift.
1172 Tmp2 >= Tmp) break; // Shifted all sign bits out.
1173 return Tmp - Tmp2;
Chris Lattner965c7692008-06-02 01:18:21 +00001174 }
1175 break;
Chris Lattner61a1d6c2012-01-26 21:37:55 +00001176 }
Chris Lattner965c7692008-06-02 01:18:21 +00001177 case Instruction::And:
1178 case Instruction::Or:
1179 case Instruction::Xor: // NOT is handled here.
1180 // Logical binary ops preserve the number of sign bits at the worst.
1181 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
1182 if (Tmp != 1) {
1183 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
1184 FirstAnswer = std::min(Tmp, Tmp2);
1185 // We computed what we know about the sign bits as our first
1186 // answer. Now proceed to the generic code that uses
Jay Foada0653a32014-05-14 21:14:37 +00001187 // computeKnownBits, and pick whichever answer is better.
Chris Lattner965c7692008-06-02 01:18:21 +00001188 }
1189 break;
1190
1191 case Instruction::Select:
1192 Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
1193 if (Tmp == 1) return 1; // Early out.
1194 Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1);
1195 return std::min(Tmp, Tmp2);
Craig Topper1bef2c82012-12-22 19:15:35 +00001196
Chris Lattner965c7692008-06-02 01:18:21 +00001197 case Instruction::Add:
1198 // Add can have at most one carry bit. Thus we know that the output
1199 // is, at worst, one more bit than the inputs.
1200 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
1201 if (Tmp == 1) return 1; // Early out.
Craig Topper1bef2c82012-12-22 19:15:35 +00001202
Chris Lattner965c7692008-06-02 01:18:21 +00001203 // Special case decrementing a value (ADD X, -1):
Dan Gohman4f356bb2009-02-24 02:00:40 +00001204 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(U->getOperand(1)))
Chris Lattner965c7692008-06-02 01:18:21 +00001205 if (CRHS->isAllOnesValue()) {
1206 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Jay Foada0653a32014-05-14 21:14:37 +00001207 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, TD, Depth+1);
Craig Topper1bef2c82012-12-22 19:15:35 +00001208
Chris Lattner965c7692008-06-02 01:18:21 +00001209 // If the input is known to be 0 or 1, the output is 0/-1, which is all
1210 // sign bits set.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001211 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00001212 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00001213
Chris Lattner965c7692008-06-02 01:18:21 +00001214 // If we are subtracting one from a positive number, there is no carry
1215 // out of the result.
1216 if (KnownZero.isNegative())
1217 return Tmp;
1218 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001219
Chris Lattner965c7692008-06-02 01:18:21 +00001220 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
1221 if (Tmp2 == 1) return 1;
Chris Lattner35d3b9d2010-01-07 23:44:37 +00001222 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00001223
Chris Lattner965c7692008-06-02 01:18:21 +00001224 case Instruction::Sub:
1225 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
1226 if (Tmp2 == 1) return 1;
Craig Topper1bef2c82012-12-22 19:15:35 +00001227
Chris Lattner965c7692008-06-02 01:18:21 +00001228 // Handle NEG.
1229 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(U->getOperand(0)))
1230 if (CLHS->isNullValue()) {
1231 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Jay Foada0653a32014-05-14 21:14:37 +00001232 computeKnownBits(U->getOperand(1), KnownZero, KnownOne, TD, Depth+1);
Chris Lattner965c7692008-06-02 01:18:21 +00001233 // If the input is known to be 0 or 1, the output is 0/-1, which is all
1234 // sign bits set.
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001235 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
Chris Lattner965c7692008-06-02 01:18:21 +00001236 return TyBits;
Craig Topper1bef2c82012-12-22 19:15:35 +00001237
Chris Lattner965c7692008-06-02 01:18:21 +00001238 // If the input is known to be positive (the sign bit is known clear),
1239 // the output of the NEG has the same number of sign bits as the input.
1240 if (KnownZero.isNegative())
1241 return Tmp2;
Craig Topper1bef2c82012-12-22 19:15:35 +00001242
Chris Lattner965c7692008-06-02 01:18:21 +00001243 // Otherwise, we treat this like a SUB.
1244 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001245
Chris Lattner965c7692008-06-02 01:18:21 +00001246 // Sub can have at most one carry bit. Thus we know that the output
1247 // is, at worst, one more bit than the inputs.
1248 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
1249 if (Tmp == 1) return 1; // Early out.
Chris Lattner35d3b9d2010-01-07 23:44:37 +00001250 return std::min(Tmp, Tmp2)-1;
Craig Topper1bef2c82012-12-22 19:15:35 +00001251
Chris Lattner35d3b9d2010-01-07 23:44:37 +00001252 case Instruction::PHI: {
1253 PHINode *PN = cast<PHINode>(U);
1254 // Don't analyze large in-degree PHIs.
1255 if (PN->getNumIncomingValues() > 4) break;
Craig Topper1bef2c82012-12-22 19:15:35 +00001256
Chris Lattner35d3b9d2010-01-07 23:44:37 +00001257 // Take the minimum of all incoming values. This can't infinitely loop
1258 // because of our depth threshold.
1259 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), TD, Depth+1);
1260 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
1261 if (Tmp == 1) return Tmp;
1262 Tmp = std::min(Tmp,
Evan Cheng2a654292010-03-13 02:20:29 +00001263 ComputeNumSignBits(PN->getIncomingValue(i), TD, Depth+1));
Chris Lattner35d3b9d2010-01-07 23:44:37 +00001264 }
1265 return Tmp;
1266 }
1267
Chris Lattner965c7692008-06-02 01:18:21 +00001268 case Instruction::Trunc:
1269 // FIXME: it's tricky to do anything useful for this, but it is an important
1270 // case for targets like X86.
1271 break;
1272 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001273
Chris Lattner965c7692008-06-02 01:18:21 +00001274 // Finally, if we can prove that the top bits of the result are 0's or 1's,
1275 // use this information.
1276 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
Rafael Espindolaba0a6ca2012-04-04 12:51:34 +00001277 APInt Mask;
Jay Foada0653a32014-05-14 21:14:37 +00001278 computeKnownBits(V, KnownZero, KnownOne, TD, Depth);
Craig Topper1bef2c82012-12-22 19:15:35 +00001279
Chris Lattner965c7692008-06-02 01:18:21 +00001280 if (KnownZero.isNegative()) { // sign bit is 0
1281 Mask = KnownZero;
1282 } else if (KnownOne.isNegative()) { // sign bit is 1;
1283 Mask = KnownOne;
1284 } else {
1285 // Nothing known.
1286 return FirstAnswer;
1287 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001288
Chris Lattner965c7692008-06-02 01:18:21 +00001289 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
1290 // the number of identical bits in the top of the input value.
1291 Mask = ~Mask;
1292 Mask <<= Mask.getBitWidth()-TyBits;
1293 // Return # leading zeros. We use 'min' here in case Val was zero before
1294 // shifting. We don't want to return '64' as for an i32 "0".
1295 return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros()));
1296}
Chris Lattnera12a6de2008-06-02 01:29:46 +00001297
Victor Hernandez47444882009-11-10 08:28:35 +00001298/// ComputeMultiple - This function computes the integer multiple of Base that
1299/// equals V. If successful, it returns true and returns the multiple in
Dan Gohman6a976bb2009-11-18 00:58:27 +00001300/// Multiple. If unsuccessful, it returns false. It looks
Victor Hernandez47444882009-11-10 08:28:35 +00001301/// through SExt instructions only if LookThroughSExt is true.
1302bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
Dan Gohman6a976bb2009-11-18 00:58:27 +00001303 bool LookThroughSExt, unsigned Depth) {
Victor Hernandez47444882009-11-10 08:28:35 +00001304 const unsigned MaxDepth = 6;
1305
Dan Gohman6a976bb2009-11-18 00:58:27 +00001306 assert(V && "No Value?");
Victor Hernandez47444882009-11-10 08:28:35 +00001307 assert(Depth <= MaxDepth && "Limit Search Depth");
Duncan Sands9dff9be2010-02-15 16:12:20 +00001308 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
Victor Hernandez47444882009-11-10 08:28:35 +00001309
Chris Lattner229907c2011-07-18 04:54:35 +00001310 Type *T = V->getType();
Victor Hernandez47444882009-11-10 08:28:35 +00001311
Dan Gohman6a976bb2009-11-18 00:58:27 +00001312 ConstantInt *CI = dyn_cast<ConstantInt>(V);
Victor Hernandez47444882009-11-10 08:28:35 +00001313
1314 if (Base == 0)
1315 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00001316
Victor Hernandez47444882009-11-10 08:28:35 +00001317 if (Base == 1) {
1318 Multiple = V;
1319 return true;
1320 }
1321
1322 ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
1323 Constant *BaseVal = ConstantInt::get(T, Base);
1324 if (CO && CO == BaseVal) {
1325 // Multiple is 1.
1326 Multiple = ConstantInt::get(T, 1);
1327 return true;
1328 }
1329
1330 if (CI && CI->getZExtValue() % Base == 0) {
1331 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
Craig Topper1bef2c82012-12-22 19:15:35 +00001332 return true;
Victor Hernandez47444882009-11-10 08:28:35 +00001333 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001334
Victor Hernandez47444882009-11-10 08:28:35 +00001335 if (Depth == MaxDepth) return false; // Limit search depth.
Craig Topper1bef2c82012-12-22 19:15:35 +00001336
Victor Hernandez47444882009-11-10 08:28:35 +00001337 Operator *I = dyn_cast<Operator>(V);
1338 if (!I) return false;
1339
1340 switch (I->getOpcode()) {
1341 default: break;
Chris Lattner4f0b47d2009-11-26 01:50:12 +00001342 case Instruction::SExt:
Victor Hernandez47444882009-11-10 08:28:35 +00001343 if (!LookThroughSExt) return false;
1344 // otherwise fall through to ZExt
Chris Lattner4f0b47d2009-11-26 01:50:12 +00001345 case Instruction::ZExt:
Dan Gohman6a976bb2009-11-18 00:58:27 +00001346 return ComputeMultiple(I->getOperand(0), Base, Multiple,
1347 LookThroughSExt, Depth+1);
Victor Hernandez47444882009-11-10 08:28:35 +00001348 case Instruction::Shl:
1349 case Instruction::Mul: {
1350 Value *Op0 = I->getOperand(0);
1351 Value *Op1 = I->getOperand(1);
1352
1353 if (I->getOpcode() == Instruction::Shl) {
1354 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
1355 if (!Op1CI) return false;
1356 // Turn Op0 << Op1 into Op0 * 2^Op1
1357 APInt Op1Int = Op1CI->getValue();
1358 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
Jay Foad15084f02010-11-30 09:02:01 +00001359 APInt API(Op1Int.getBitWidth(), 0);
Jay Foad25a5e4c2010-12-01 08:53:58 +00001360 API.setBit(BitToSet);
Jay Foad15084f02010-11-30 09:02:01 +00001361 Op1 = ConstantInt::get(V->getContext(), API);
Victor Hernandez47444882009-11-10 08:28:35 +00001362 }
1363
Craig Topper9f008862014-04-15 04:59:12 +00001364 Value *Mul0 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00001365 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
1366 if (Constant *Op1C = dyn_cast<Constant>(Op1))
1367 if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00001368 if (Op1C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00001369 MulC->getType()->getPrimitiveSizeInBits())
1370 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00001371 if (Op1C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00001372 MulC->getType()->getPrimitiveSizeInBits())
1373 MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00001374
Chris Lattner72d283c2010-09-05 17:20:46 +00001375 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
1376 Multiple = ConstantExpr::getMul(MulC, Op1C);
1377 return true;
1378 }
Victor Hernandez47444882009-11-10 08:28:35 +00001379
1380 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
1381 if (Mul0CI->getValue() == 1) {
1382 // V == Base * Op1, so return Op1
1383 Multiple = Op1;
1384 return true;
1385 }
1386 }
1387
Craig Topper9f008862014-04-15 04:59:12 +00001388 Value *Mul1 = nullptr;
Chris Lattner72d283c2010-09-05 17:20:46 +00001389 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
1390 if (Constant *Op0C = dyn_cast<Constant>(Op0))
1391 if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
Craig Topper1bef2c82012-12-22 19:15:35 +00001392 if (Op0C->getType()->getPrimitiveSizeInBits() <
Chris Lattner72d283c2010-09-05 17:20:46 +00001393 MulC->getType()->getPrimitiveSizeInBits())
1394 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00001395 if (Op0C->getType()->getPrimitiveSizeInBits() >
Chris Lattner72d283c2010-09-05 17:20:46 +00001396 MulC->getType()->getPrimitiveSizeInBits())
1397 MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
Craig Topper1bef2c82012-12-22 19:15:35 +00001398
Chris Lattner72d283c2010-09-05 17:20:46 +00001399 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
1400 Multiple = ConstantExpr::getMul(MulC, Op0C);
1401 return true;
1402 }
Victor Hernandez47444882009-11-10 08:28:35 +00001403
1404 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
1405 if (Mul1CI->getValue() == 1) {
1406 // V == Base * Op0, so return Op0
1407 Multiple = Op0;
1408 return true;
1409 }
1410 }
Victor Hernandez47444882009-11-10 08:28:35 +00001411 }
1412 }
1413
1414 // We could not determine if V is a multiple of Base.
1415 return false;
1416}
1417
Craig Topper1bef2c82012-12-22 19:15:35 +00001418/// CannotBeNegativeZero - Return true if we can prove that the specified FP
Chris Lattnera12a6de2008-06-02 01:29:46 +00001419/// value is never equal to -0.0.
1420///
1421/// NOTE: this function will need to be revisited when we support non-default
1422/// rounding modes!
1423///
1424bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
1425 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
1426 return !CFP->getValueAPF().isNegZero();
Craig Topper1bef2c82012-12-22 19:15:35 +00001427
Chris Lattnera12a6de2008-06-02 01:29:46 +00001428 if (Depth == 6)
1429 return 1; // Limit search depth.
1430
Dan Gohman80ca01c2009-07-17 20:47:02 +00001431 const Operator *I = dyn_cast<Operator>(V);
Craig Topper9f008862014-04-15 04:59:12 +00001432 if (!I) return false;
Michael Ilseman0f128372012-12-06 00:07:09 +00001433
1434 // Check if the nsz fast-math flag is set
1435 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I))
1436 if (FPO->hasNoSignedZeros())
1437 return true;
1438
Chris Lattnera12a6de2008-06-02 01:29:46 +00001439 // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
Jakub Staszakb7129f22013-03-06 00:16:16 +00001440 if (I->getOpcode() == Instruction::FAdd)
1441 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1)))
1442 if (CFP->isNullValue())
1443 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00001444
Chris Lattnera12a6de2008-06-02 01:29:46 +00001445 // sitofp and uitofp turn into +0.0 for zero.
1446 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
1447 return true;
Craig Topper1bef2c82012-12-22 19:15:35 +00001448
Chris Lattnera12a6de2008-06-02 01:29:46 +00001449 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
1450 // sqrt(-0.0) = -0.0, no other negative results are possible.
1451 if (II->getIntrinsicID() == Intrinsic::sqrt)
Gabor Greif1abbde32010-06-23 23:38:07 +00001452 return CannotBeNegativeZero(II->getArgOperand(0), Depth+1);
Craig Topper1bef2c82012-12-22 19:15:35 +00001453
Chris Lattnera12a6de2008-06-02 01:29:46 +00001454 if (const CallInst *CI = dyn_cast<CallInst>(I))
1455 if (const Function *F = CI->getCalledFunction()) {
1456 if (F->isDeclaration()) {
Daniel Dunbarca414c72009-07-26 08:34:35 +00001457 // abs(x) != -0.0
1458 if (F->getName() == "abs") return true;
Dale Johannesenf6a987b2009-09-25 20:54:50 +00001459 // fabs[lf](x) != -0.0
1460 if (F->getName() == "fabs") return true;
1461 if (F->getName() == "fabsf") return true;
1462 if (F->getName() == "fabsl") return true;
1463 if (F->getName() == "sqrt" || F->getName() == "sqrtf" ||
1464 F->getName() == "sqrtl")
Gabor Greif1abbde32010-06-23 23:38:07 +00001465 return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1);
Chris Lattnera12a6de2008-06-02 01:29:46 +00001466 }
1467 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001468
Chris Lattnera12a6de2008-06-02 01:29:46 +00001469 return false;
1470}
1471
Chris Lattner9cb10352010-12-26 20:15:01 +00001472/// isBytewiseValue - If the specified value can be set by repeating the same
1473/// byte in memory, return the i8 value that it is represented with. This is
1474/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
1475/// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
1476/// byte store (e.g. i16 0x1234), return null.
1477Value *llvm::isBytewiseValue(Value *V) {
1478 // All byte-wide stores are splatable, even of arbitrary variables.
1479 if (V->getType()->isIntegerTy(8)) return V;
Chris Lattneracf6b072011-02-19 19:35:49 +00001480
1481 // Handle 'null' ConstantArrayZero etc.
1482 if (Constant *C = dyn_cast<Constant>(V))
1483 if (C->isNullValue())
1484 return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
Craig Topper1bef2c82012-12-22 19:15:35 +00001485
Chris Lattner9cb10352010-12-26 20:15:01 +00001486 // Constant float and double values can be handled as integer values if the
Craig Topper1bef2c82012-12-22 19:15:35 +00001487 // corresponding integer value is "byteable". An important case is 0.0.
Chris Lattner9cb10352010-12-26 20:15:01 +00001488 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
1489 if (CFP->getType()->isFloatTy())
1490 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
1491 if (CFP->getType()->isDoubleTy())
1492 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
1493 // Don't handle long double formats, which have strange constraints.
1494 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001495
1496 // We can handle constant integers that are power of two in size and a
Chris Lattner9cb10352010-12-26 20:15:01 +00001497 // multiple of 8 bits.
1498 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1499 unsigned Width = CI->getBitWidth();
1500 if (isPowerOf2_32(Width) && Width > 8) {
1501 // We can handle this value if the recursive binary decomposition is the
1502 // same at all levels.
1503 APInt Val = CI->getValue();
1504 APInt Val2;
1505 while (Val.getBitWidth() != 8) {
1506 unsigned NextWidth = Val.getBitWidth()/2;
1507 Val2 = Val.lshr(NextWidth);
1508 Val2 = Val2.trunc(Val.getBitWidth()/2);
1509 Val = Val.trunc(Val.getBitWidth()/2);
Craig Topper1bef2c82012-12-22 19:15:35 +00001510
Chris Lattner9cb10352010-12-26 20:15:01 +00001511 // If the top/bottom halves aren't the same, reject it.
1512 if (Val != Val2)
Craig Topper9f008862014-04-15 04:59:12 +00001513 return nullptr;
Chris Lattner9cb10352010-12-26 20:15:01 +00001514 }
1515 return ConstantInt::get(V->getContext(), Val);
1516 }
1517 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001518
Chris Lattnercf9e8f62012-02-05 02:29:43 +00001519 // A ConstantDataArray/Vector is splatable if all its members are equal and
1520 // also splatable.
1521 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
1522 Value *Elt = CA->getElementAsConstant(0);
1523 Value *Val = isBytewiseValue(Elt);
Chris Lattner9cb10352010-12-26 20:15:01 +00001524 if (!Val)
Craig Topper9f008862014-04-15 04:59:12 +00001525 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00001526
Chris Lattnercf9e8f62012-02-05 02:29:43 +00001527 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
1528 if (CA->getElementAsConstant(I) != Elt)
Craig Topper9f008862014-04-15 04:59:12 +00001529 return nullptr;
Craig Topper1bef2c82012-12-22 19:15:35 +00001530
Chris Lattner9cb10352010-12-26 20:15:01 +00001531 return Val;
1532 }
Chad Rosier8abf65a2011-12-06 00:19:08 +00001533
Chris Lattner9cb10352010-12-26 20:15:01 +00001534 // Conceptually, we could handle things like:
1535 // %a = zext i8 %X to i16
1536 // %b = shl i16 %a, 8
1537 // %c = or i16 %a, %b
1538 // but until there is an example that actually needs this, it doesn't seem
1539 // worth worrying about.
Craig Topper9f008862014-04-15 04:59:12 +00001540 return nullptr;
Chris Lattner9cb10352010-12-26 20:15:01 +00001541}
1542
1543
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00001544// This is the recursive version of BuildSubAggregate. It takes a few different
1545// arguments. Idxs is the index within the nested struct From that we are
1546// looking at now (which is of type IndexedType). IdxSkip is the number of
1547// indices from Idxs that should be left out when inserting into the resulting
1548// struct. To is the result struct built so far, new insertvalue instructions
1549// build on that.
Chris Lattner229907c2011-07-18 04:54:35 +00001550static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
Craig Topper2cd5ff82013-07-11 16:22:38 +00001551 SmallVectorImpl<unsigned> &Idxs,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00001552 unsigned IdxSkip,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00001553 Instruction *InsertBefore) {
Dmitri Gribenko226fea52013-01-13 16:01:15 +00001554 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00001555 if (STy) {
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00001556 // Save the original To argument so we can modify it
1557 Value *OrigTo = To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00001558 // General case, the type indexed by Idxs is a struct
1559 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1560 // Process each struct element recursively
1561 Idxs.push_back(i);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00001562 Value *PrevTo = To;
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00001563 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00001564 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00001565 Idxs.pop_back();
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00001566 if (!To) {
1567 // Couldn't find any inserted value for this index? Cleanup
1568 while (PrevTo != OrigTo) {
1569 InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
1570 PrevTo = Del->getAggregateOperand();
1571 Del->eraseFromParent();
1572 }
1573 // Stop processing elements
1574 break;
1575 }
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00001576 }
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00001577 // If we successfully found a value for each of our subaggregates
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00001578 if (To)
1579 return To;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00001580 }
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00001581 // Base case, the type indexed by SourceIdxs is not a struct, or not all of
1582 // the struct's elements had a value that was inserted directly. In the latter
1583 // case, perhaps we can't determine each of the subelements individually, but
1584 // we might be able to find the complete struct somewhere.
Craig Topper1bef2c82012-12-22 19:15:35 +00001585
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00001586 // Find the value that is at that particular spot
Jay Foad57aa6362011-07-13 10:26:04 +00001587 Value *V = FindInsertedValue(From, Idxs);
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00001588
1589 if (!V)
Craig Topper9f008862014-04-15 04:59:12 +00001590 return nullptr;
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00001591
1592 // Insert the value in the new (sub) aggregrate
Frits van Bommel717d7ed2011-07-18 12:00:32 +00001593 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
Jay Foad57aa6362011-07-13 10:26:04 +00001594 "tmp", InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00001595}
1596
1597// This helper takes a nested struct and extracts a part of it (which is again a
1598// struct) into a new value. For example, given the struct:
1599// { a, { b, { c, d }, e } }
1600// and the indices "1, 1" this returns
1601// { c, d }.
1602//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00001603// It does this by inserting an insertvalue for each element in the resulting
1604// struct, as opposed to just inserting a single struct. This will only work if
1605// each of the elements of the substruct are known (ie, inserted into From by an
1606// insertvalue instruction somewhere).
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00001607//
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00001608// All inserted insertvalue instructions are inserted before InsertBefore
Jay Foad57aa6362011-07-13 10:26:04 +00001609static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
Dan Gohmana6d0afc2009-08-07 01:32:21 +00001610 Instruction *InsertBefore) {
Matthijs Kooijman69801d42008-06-16 13:28:31 +00001611 assert(InsertBefore && "Must have someplace to insert!");
Chris Lattner229907c2011-07-18 04:54:35 +00001612 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
Jay Foad57aa6362011-07-13 10:26:04 +00001613 idx_range);
Owen Andersonb292b8c2009-07-30 23:03:37 +00001614 Value *To = UndefValue::get(IndexedType);
Jay Foad57aa6362011-07-13 10:26:04 +00001615 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00001616 unsigned IdxSkip = Idxs.size();
1617
Nick Lewycky39dbfd32009-11-23 03:29:18 +00001618 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00001619}
1620
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00001621/// FindInsertedValue - Given an aggregrate and an sequence of indices, see if
1622/// the scalar value indexed is already around as a register, for example if it
1623/// were inserted directly into the aggregrate.
Matthijs Kooijmanfa4d0b82008-06-16 14:13:46 +00001624///
1625/// If InsertBefore is not null, this function will duplicate (modified)
1626/// insertvalues when a part of a nested struct is extracted.
Jay Foad57aa6362011-07-13 10:26:04 +00001627Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
1628 Instruction *InsertBefore) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00001629 // Nothing to index? Just return V then (this is useful at the end of our
Chris Lattnerf7eb5432012-01-24 07:54:10 +00001630 // recursion).
Jay Foad57aa6362011-07-13 10:26:04 +00001631 if (idx_range.empty())
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00001632 return V;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00001633 // We have indices, so V should have an indexable type.
1634 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
1635 "Not looking at a struct or array?");
1636 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
1637 "Invalid indices for type?");
Owen Andersonf1f17432009-07-06 22:37:39 +00001638
Chris Lattner67058832012-01-25 06:48:06 +00001639 if (Constant *C = dyn_cast<Constant>(V)) {
1640 C = C->getAggregateElement(idx_range[0]);
Craig Topper9f008862014-04-15 04:59:12 +00001641 if (!C) return nullptr;
Chris Lattner67058832012-01-25 06:48:06 +00001642 return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
1643 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001644
Chris Lattnerf7eb5432012-01-24 07:54:10 +00001645 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00001646 // Loop the indices for the insertvalue instruction in parallel with the
1647 // requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00001648 const unsigned *req_idx = idx_range.begin();
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00001649 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
1650 i != e; ++i, ++req_idx) {
Jay Foad57aa6362011-07-13 10:26:04 +00001651 if (req_idx == idx_range.end()) {
Chris Lattnerf7eb5432012-01-24 07:54:10 +00001652 // We can't handle this without inserting insertvalues
1653 if (!InsertBefore)
Craig Topper9f008862014-04-15 04:59:12 +00001654 return nullptr;
Chris Lattnerf7eb5432012-01-24 07:54:10 +00001655
1656 // The requested index identifies a part of a nested aggregate. Handle
1657 // this specially. For example,
1658 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
1659 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
1660 // %C = extractvalue {i32, { i32, i32 } } %B, 1
1661 // This can be changed into
1662 // %A = insertvalue {i32, i32 } undef, i32 10, 0
1663 // %C = insertvalue {i32, i32 } %A, i32 11, 1
1664 // which allows the unused 0,0 element from the nested struct to be
1665 // removed.
1666 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
1667 InsertBefore);
Duncan Sandsdb356ee2008-06-19 08:47:31 +00001668 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001669
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00001670 // This insert value inserts something else than what we are looking for.
1671 // See if the (aggregrate) value inserted into has the value we are
1672 // looking for, then.
1673 if (*req_idx != *i)
Jay Foad57aa6362011-07-13 10:26:04 +00001674 return FindInsertedValue(I->getAggregateOperand(), idx_range,
Nick Lewycky39dbfd32009-11-23 03:29:18 +00001675 InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00001676 }
1677 // If we end up here, the indices of the insertvalue match with those
1678 // requested (though possibly only partially). Now we recursively look at
1679 // the inserted value, passing any remaining indices.
Jay Foad57aa6362011-07-13 10:26:04 +00001680 return FindInsertedValue(I->getInsertedValueOperand(),
Frits van Bommel717d7ed2011-07-18 12:00:32 +00001681 makeArrayRef(req_idx, idx_range.end()),
Nick Lewycky39dbfd32009-11-23 03:29:18 +00001682 InsertBefore);
Chris Lattnerf7eb5432012-01-24 07:54:10 +00001683 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001684
Chris Lattnerf7eb5432012-01-24 07:54:10 +00001685 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00001686 // If we're extracting a value from an aggregrate that was extracted from
1687 // something else, we can extract from that something else directly instead.
1688 // However, we will need to chain I's indices with the requested indices.
Craig Topper1bef2c82012-12-22 19:15:35 +00001689
1690 // Calculate the number of indices required
Jay Foad57aa6362011-07-13 10:26:04 +00001691 unsigned size = I->getNumIndices() + idx_range.size();
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00001692 // Allocate some space to put the new indices in
Matthijs Kooijman8369c672008-06-17 08:24:37 +00001693 SmallVector<unsigned, 5> Idxs;
1694 Idxs.reserve(size);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00001695 // Add indices from the extract value instruction
Jay Foad57aa6362011-07-13 10:26:04 +00001696 Idxs.append(I->idx_begin(), I->idx_end());
Craig Topper1bef2c82012-12-22 19:15:35 +00001697
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00001698 // Add requested indices
Jay Foad57aa6362011-07-13 10:26:04 +00001699 Idxs.append(idx_range.begin(), idx_range.end());
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00001700
Craig Topper1bef2c82012-12-22 19:15:35 +00001701 assert(Idxs.size() == size
Matthijs Kooijman5cb38772008-06-16 12:57:37 +00001702 && "Number of indices added not correct?");
Craig Topper1bef2c82012-12-22 19:15:35 +00001703
Jay Foad57aa6362011-07-13 10:26:04 +00001704 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00001705 }
1706 // Otherwise, we don't know (such as, extracting from a function return value
1707 // or load instruction)
Craig Topper9f008862014-04-15 04:59:12 +00001708 return nullptr;
Matthijs Kooijmane92e18b2008-06-16 12:48:21 +00001709}
Evan Chengda3db112008-06-30 07:31:25 +00001710
Chris Lattnere28618d2010-11-30 22:25:26 +00001711/// GetPointerBaseWithConstantOffset - Analyze the specified pointer to see if
1712/// it can be expressed as a base pointer plus a constant offset. Return the
1713/// base and offset to the caller.
1714Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00001715 const DataLayout *DL) {
Dan Gohman20a2ae92013-01-31 02:00:45 +00001716 // Without DataLayout, conservatively assume 64-bit offsets, which is
1717 // the widest we support.
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00001718 unsigned BitWidth = DL ? DL->getPointerTypeSizeInBits(Ptr->getType()) : 64;
Nuno Lopes368c4d02012-12-31 20:48:35 +00001719 APInt ByteOffset(BitWidth, 0);
1720 while (1) {
1721 if (Ptr->getType()->isVectorTy())
1722 break;
Craig Topper1bef2c82012-12-22 19:15:35 +00001723
Nuno Lopes368c4d02012-12-31 20:48:35 +00001724 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
Matt Arsenaultf55e5e72013-08-10 17:34:08 +00001725 if (DL) {
1726 APInt GEPOffset(BitWidth, 0);
1727 if (!GEP->accumulateConstantOffset(*DL, GEPOffset))
1728 break;
1729
1730 ByteOffset += GEPOffset;
1731 }
1732
Nuno Lopes368c4d02012-12-31 20:48:35 +00001733 Ptr = GEP->getPointerOperand();
1734 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast) {
1735 Ptr = cast<Operator>(Ptr)->getOperand(0);
1736 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
1737 if (GA->mayBeOverridden())
1738 break;
1739 Ptr = GA->getAliasee();
Chris Lattnere28618d2010-11-30 22:25:26 +00001740 } else {
Nuno Lopes368c4d02012-12-31 20:48:35 +00001741 break;
Chris Lattnere28618d2010-11-30 22:25:26 +00001742 }
1743 }
Nuno Lopes368c4d02012-12-31 20:48:35 +00001744 Offset = ByteOffset.getSExtValue();
1745 return Ptr;
Chris Lattnere28618d2010-11-30 22:25:26 +00001746}
1747
1748
Chris Lattnercf9e8f62012-02-05 02:29:43 +00001749/// getConstantStringInfo - This function computes the length of a
Evan Chengda3db112008-06-30 07:31:25 +00001750/// null-terminated C string pointed to by V. If successful, it returns true
1751/// and returns the string in Str. If unsuccessful, it returns false.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00001752bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
1753 uint64_t Offset, bool TrimAtNul) {
1754 assert(V);
Evan Chengda3db112008-06-30 07:31:25 +00001755
Chris Lattnercf9e8f62012-02-05 02:29:43 +00001756 // Look through bitcast instructions and geps.
1757 V = V->stripPointerCasts();
Craig Topper1bef2c82012-12-22 19:15:35 +00001758
Chris Lattnercf9e8f62012-02-05 02:29:43 +00001759 // If the value is a GEP instructionor constant expression, treat it as an
1760 // offset.
1761 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
Evan Chengda3db112008-06-30 07:31:25 +00001762 // Make sure the GEP has exactly three arguments.
Bill Wendlingfa54bc22009-03-13 04:39:26 +00001763 if (GEP->getNumOperands() != 3)
1764 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00001765
Evan Chengda3db112008-06-30 07:31:25 +00001766 // Make sure the index-ee is a pointer to array of i8.
Chris Lattner229907c2011-07-18 04:54:35 +00001767 PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType());
1768 ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType());
Craig Topper9f008862014-04-15 04:59:12 +00001769 if (!AT || !AT->getElementType()->isIntegerTy(8))
Bill Wendlingfa54bc22009-03-13 04:39:26 +00001770 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00001771
Evan Chengda3db112008-06-30 07:31:25 +00001772 // Check to make sure that the first operand of the GEP is an integer and
1773 // has value 0 so that we are sure we're indexing into the initializer.
Dan Gohman0b4df042010-04-14 22:20:45 +00001774 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
Craig Topper9f008862014-04-15 04:59:12 +00001775 if (!FirstIdx || !FirstIdx->isZero())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00001776 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00001777
Evan Chengda3db112008-06-30 07:31:25 +00001778 // If the second index isn't a ConstantInt, then this is a variable index
1779 // into the array. If this occurs, we can't say anything meaningful about
1780 // the string.
1781 uint64_t StartIdx = 0;
Dan Gohman0b4df042010-04-14 22:20:45 +00001782 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
Evan Chengda3db112008-06-30 07:31:25 +00001783 StartIdx = CI->getZExtValue();
Bill Wendlingfa54bc22009-03-13 04:39:26 +00001784 else
1785 return false;
Chris Lattnercf9e8f62012-02-05 02:29:43 +00001786 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset);
Evan Chengda3db112008-06-30 07:31:25 +00001787 }
Nick Lewycky46209882011-10-20 00:34:35 +00001788
Evan Chengda3db112008-06-30 07:31:25 +00001789 // The GEP instruction, constant or instruction, must reference a global
1790 // variable that is a constant and is initialized. The referenced constant
1791 // initializer is the array that we'll use for optimization.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00001792 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
Dan Gohman5d5bc6d2009-08-19 18:20:44 +00001793 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00001794 return false;
Chris Lattnercf9e8f62012-02-05 02:29:43 +00001795
Nick Lewycky46209882011-10-20 00:34:35 +00001796 // Handle the all-zeros case
Chris Lattnercf9e8f62012-02-05 02:29:43 +00001797 if (GV->getInitializer()->isNullValue()) {
Evan Chengda3db112008-06-30 07:31:25 +00001798 // This is a degenerate case. The initializer is constant zero so the
1799 // length of the string must be zero.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00001800 Str = "";
Bill Wendlingfa54bc22009-03-13 04:39:26 +00001801 return true;
1802 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001803
Evan Chengda3db112008-06-30 07:31:25 +00001804 // Must be a Constant Array
Chris Lattnercf9e8f62012-02-05 02:29:43 +00001805 const ConstantDataArray *Array =
1806 dyn_cast<ConstantDataArray>(GV->getInitializer());
Craig Topper9f008862014-04-15 04:59:12 +00001807 if (!Array || !Array->isString())
Bill Wendlingfa54bc22009-03-13 04:39:26 +00001808 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00001809
Evan Chengda3db112008-06-30 07:31:25 +00001810 // Get the number of elements in the array
Chris Lattnercf9e8f62012-02-05 02:29:43 +00001811 uint64_t NumElts = Array->getType()->getArrayNumElements();
1812
1813 // Start out with the entire array in the StringRef.
1814 Str = Array->getAsString();
1815
Bill Wendlingfa54bc22009-03-13 04:39:26 +00001816 if (Offset > NumElts)
1817 return false;
Craig Topper1bef2c82012-12-22 19:15:35 +00001818
Chris Lattnercf9e8f62012-02-05 02:29:43 +00001819 // Skip over 'offset' bytes.
1820 Str = Str.substr(Offset);
Craig Topper1bef2c82012-12-22 19:15:35 +00001821
Chris Lattnercf9e8f62012-02-05 02:29:43 +00001822 if (TrimAtNul) {
1823 // Trim off the \0 and anything after it. If the array is not nul
1824 // terminated, we just return the whole end of string. The client may know
1825 // some other way that the string is length-bound.
1826 Str = Str.substr(0, Str.find('\0'));
1827 }
Bill Wendlingfa54bc22009-03-13 04:39:26 +00001828 return true;
Evan Chengda3db112008-06-30 07:31:25 +00001829}
Eric Christopher4899cbc2010-03-05 06:58:57 +00001830
1831// These next two are very similar to the above, but also look through PHI
1832// nodes.
1833// TODO: See if we can integrate these two together.
1834
1835/// GetStringLengthH - If we can compute the length of the string pointed to by
1836/// the specified pointer, return 'len+1'. If we can't, return 0.
1837static uint64_t GetStringLengthH(Value *V, SmallPtrSet<PHINode*, 32> &PHIs) {
1838 // Look through noop bitcast instructions.
Chris Lattnercf9e8f62012-02-05 02:29:43 +00001839 V = V->stripPointerCasts();
Eric Christopher4899cbc2010-03-05 06:58:57 +00001840
1841 // If this is a PHI node, there are two cases: either we have already seen it
1842 // or we haven't.
1843 if (PHINode *PN = dyn_cast<PHINode>(V)) {
1844 if (!PHIs.insert(PN))
1845 return ~0ULL; // already in the set.
1846
1847 // If it was new, see if all the input strings are the same length.
1848 uint64_t LenSoFar = ~0ULL;
1849 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1850 uint64_t Len = GetStringLengthH(PN->getIncomingValue(i), PHIs);
1851 if (Len == 0) return 0; // Unknown length -> unknown.
1852
1853 if (Len == ~0ULL) continue;
1854
1855 if (Len != LenSoFar && LenSoFar != ~0ULL)
1856 return 0; // Disagree -> unknown.
1857 LenSoFar = Len;
1858 }
1859
1860 // Success, all agree.
1861 return LenSoFar;
1862 }
1863
1864 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
1865 if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
1866 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
1867 if (Len1 == 0) return 0;
1868 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
1869 if (Len2 == 0) return 0;
1870 if (Len1 == ~0ULL) return Len2;
1871 if (Len2 == ~0ULL) return Len1;
1872 if (Len1 != Len2) return 0;
1873 return Len1;
1874 }
Craig Topper1bef2c82012-12-22 19:15:35 +00001875
Chris Lattnercf9e8f62012-02-05 02:29:43 +00001876 // Otherwise, see if we can read the string.
1877 StringRef StrData;
1878 if (!getConstantStringInfo(V, StrData))
Eric Christopher4899cbc2010-03-05 06:58:57 +00001879 return 0;
1880
Chris Lattnercf9e8f62012-02-05 02:29:43 +00001881 return StrData.size()+1;
Eric Christopher4899cbc2010-03-05 06:58:57 +00001882}
1883
1884/// GetStringLength - If we can compute the length of the string pointed to by
1885/// the specified pointer, return 'len+1'. If we can't, return 0.
1886uint64_t llvm::GetStringLength(Value *V) {
1887 if (!V->getType()->isPointerTy()) return 0;
1888
1889 SmallPtrSet<PHINode*, 32> PHIs;
1890 uint64_t Len = GetStringLengthH(V, PHIs);
1891 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
1892 // an empty string as a length.
1893 return Len == ~0ULL ? 1 : Len;
1894}
Dan Gohmana4fcd242010-12-15 20:02:24 +00001895
Dan Gohman0f124e12011-01-24 18:53:32 +00001896Value *
Micah Villmowcdfe20b2012-10-08 16:38:25 +00001897llvm::GetUnderlyingObject(Value *V, const DataLayout *TD, unsigned MaxLookup) {
Dan Gohmana4fcd242010-12-15 20:02:24 +00001898 if (!V->getType()->isPointerTy())
1899 return V;
1900 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
1901 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
1902 V = GEP->getPointerOperand();
1903 } else if (Operator::getOpcode(V) == Instruction::BitCast) {
1904 V = cast<Operator>(V)->getOperand(0);
1905 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
1906 if (GA->mayBeOverridden())
1907 return V;
1908 V = GA->getAliasee();
1909 } else {
Dan Gohman05b18f12010-12-15 20:49:55 +00001910 // See if InstructionSimplify knows any relevant tricks.
1911 if (Instruction *I = dyn_cast<Instruction>(V))
Chris Lattner0ab5e2c2011-04-15 05:18:47 +00001912 // TODO: Acquire a DominatorTree and use it.
Craig Topper9f008862014-04-15 04:59:12 +00001913 if (Value *Simplified = SimplifyInstruction(I, TD, nullptr)) {
Dan Gohman05b18f12010-12-15 20:49:55 +00001914 V = Simplified;
1915 continue;
1916 }
1917
Dan Gohmana4fcd242010-12-15 20:02:24 +00001918 return V;
1919 }
1920 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
1921 }
1922 return V;
1923}
Nick Lewycky3e334a42011-06-27 04:20:45 +00001924
Dan Gohmaned7c24e22012-05-10 18:57:38 +00001925void
1926llvm::GetUnderlyingObjects(Value *V,
1927 SmallVectorImpl<Value *> &Objects,
Micah Villmowcdfe20b2012-10-08 16:38:25 +00001928 const DataLayout *TD,
Dan Gohmaned7c24e22012-05-10 18:57:38 +00001929 unsigned MaxLookup) {
1930 SmallPtrSet<Value *, 4> Visited;
1931 SmallVector<Value *, 4> Worklist;
1932 Worklist.push_back(V);
1933 do {
1934 Value *P = Worklist.pop_back_val();
1935 P = GetUnderlyingObject(P, TD, MaxLookup);
1936
1937 if (!Visited.insert(P))
1938 continue;
1939
1940 if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
1941 Worklist.push_back(SI->getTrueValue());
1942 Worklist.push_back(SI->getFalseValue());
1943 continue;
1944 }
1945
1946 if (PHINode *PN = dyn_cast<PHINode>(P)) {
1947 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1948 Worklist.push_back(PN->getIncomingValue(i));
1949 continue;
1950 }
1951
1952 Objects.push_back(P);
1953 } while (!Worklist.empty());
1954}
1955
Nick Lewycky3e334a42011-06-27 04:20:45 +00001956/// onlyUsedByLifetimeMarkers - Return true if the only users of this pointer
1957/// are lifetime markers.
1958///
1959bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
Chandler Carruthcdf47882014-03-09 03:16:01 +00001960 for (const User *U : V->users()) {
1961 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
Nick Lewycky3e334a42011-06-27 04:20:45 +00001962 if (!II) return false;
1963
1964 if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
1965 II->getIntrinsicID() != Intrinsic::lifetime_end)
1966 return false;
1967 }
1968 return true;
1969}
Dan Gohman75d7d5e2011-12-14 23:49:11 +00001970
Dan Gohman7ac046a2012-01-04 23:01:09 +00001971bool llvm::isSafeToSpeculativelyExecute(const Value *V,
Micah Villmowcdfe20b2012-10-08 16:38:25 +00001972 const DataLayout *TD) {
Dan Gohman7ac046a2012-01-04 23:01:09 +00001973 const Operator *Inst = dyn_cast<Operator>(V);
1974 if (!Inst)
1975 return false;
1976
Dan Gohman75d7d5e2011-12-14 23:49:11 +00001977 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
1978 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
1979 if (C->canTrap())
1980 return false;
1981
1982 switch (Inst->getOpcode()) {
1983 default:
1984 return true;
1985 case Instruction::UDiv:
1986 case Instruction::URem:
1987 // x / y is undefined if y == 0, but calcuations like x / 3 are safe.
1988 return isKnownNonZero(Inst->getOperand(1), TD);
1989 case Instruction::SDiv:
1990 case Instruction::SRem: {
1991 Value *Op = Inst->getOperand(1);
1992 // x / y is undefined if y == 0
1993 if (!isKnownNonZero(Op, TD))
1994 return false;
1995 // x / y might be undefined if y == -1
1996 unsigned BitWidth = getBitWidth(Op->getType(), TD);
1997 if (BitWidth == 0)
1998 return false;
1999 APInt KnownZero(BitWidth, 0);
2000 APInt KnownOne(BitWidth, 0);
Jay Foada0653a32014-05-14 21:14:37 +00002001 computeKnownBits(Op, KnownZero, KnownOne, TD);
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002002 return !!KnownZero;
2003 }
2004 case Instruction::Load: {
2005 const LoadInst *LI = cast<LoadInst>(Inst);
Kostya Serebryany0b458282013-11-21 07:29:28 +00002006 if (!LI->isUnordered() ||
2007 // Speculative load may create a race that did not exist in the source.
2008 LI->getParent()->getParent()->hasFnAttribute(Attribute::SanitizeThread))
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002009 return false;
2010 return LI->getPointerOperand()->isDereferenceablePointer();
2011 }
Nick Lewyckyb4039f62011-12-21 05:52:02 +00002012 case Instruction::Call: {
2013 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
2014 switch (II->getIntrinsicID()) {
Chandler Carruth28192c92012-04-07 19:22:18 +00002015 // These synthetic intrinsics have no side-effects, and just mark
2016 // information about their operands.
2017 // FIXME: There are other no-op synthetic instructions that potentially
2018 // should be considered at least *safe* to speculate...
2019 case Intrinsic::dbg_declare:
2020 case Intrinsic::dbg_value:
2021 return true;
2022
Nick Lewyckyb4039f62011-12-21 05:52:02 +00002023 case Intrinsic::bswap:
2024 case Intrinsic::ctlz:
2025 case Intrinsic::ctpop:
2026 case Intrinsic::cttz:
2027 case Intrinsic::objectsize:
2028 case Intrinsic::sadd_with_overflow:
2029 case Intrinsic::smul_with_overflow:
2030 case Intrinsic::ssub_with_overflow:
2031 case Intrinsic::uadd_with_overflow:
2032 case Intrinsic::umul_with_overflow:
2033 case Intrinsic::usub_with_overflow:
2034 return true;
Matt Arsenaultee364ee2014-01-31 00:09:00 +00002035 // Sqrt should be OK, since the llvm sqrt intrinsic isn't defined to set
2036 // errno like libm sqrt would.
2037 case Intrinsic::sqrt:
2038 case Intrinsic::fma:
2039 case Intrinsic::fmuladd:
2040 return true;
Nick Lewyckyb4039f62011-12-21 05:52:02 +00002041 // TODO: some fp intrinsics are marked as having the same error handling
2042 // as libm. They're safe to speculate when they won't error.
2043 // TODO: are convert_{from,to}_fp16 safe?
2044 // TODO: can we list target-specific intrinsics here?
2045 default: break;
2046 }
2047 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002048 return false; // The called function could have undefined behavior or
Nick Lewyckyb4039f62011-12-21 05:52:02 +00002049 // side-effects, even if marked readnone nounwind.
2050 }
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002051 case Instruction::VAArg:
2052 case Instruction::Alloca:
2053 case Instruction::Invoke:
2054 case Instruction::PHI:
2055 case Instruction::Store:
2056 case Instruction::Ret:
2057 case Instruction::Br:
2058 case Instruction::IndirectBr:
2059 case Instruction::Switch:
Dan Gohman75d7d5e2011-12-14 23:49:11 +00002060 case Instruction::Unreachable:
2061 case Instruction::Fence:
2062 case Instruction::LandingPad:
2063 case Instruction::AtomicRMW:
2064 case Instruction::AtomicCmpXchg:
2065 case Instruction::Resume:
2066 return false; // Misc instructions which have effects
2067 }
2068}
Dan Gohman1b0f79d2013-01-31 02:40:59 +00002069
2070/// isKnownNonNull - Return true if we know that the specified value is never
2071/// null.
Benjamin Kramerfd4777c2013-09-24 16:37:51 +00002072bool llvm::isKnownNonNull(const Value *V, const TargetLibraryInfo *TLI) {
Dan Gohman1b0f79d2013-01-31 02:40:59 +00002073 // Alloca never returns null, malloc might.
2074 if (isa<AllocaInst>(V)) return true;
2075
Nick Lewyckyd52b1522014-05-20 01:23:40 +00002076 // A byval, inalloca, or nonnull argument is never null.
Dan Gohman1b0f79d2013-01-31 02:40:59 +00002077 if (const Argument *A = dyn_cast<Argument>(V))
Nick Lewyckyd52b1522014-05-20 01:23:40 +00002078 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr();
Dan Gohman1b0f79d2013-01-31 02:40:59 +00002079
2080 // Global values are not null unless extern weak.
2081 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
2082 return !GV->hasExternalWeakLinkage();
Benjamin Kramerfd4777c2013-09-24 16:37:51 +00002083
Nick Lewyckyec373542014-05-20 05:13:21 +00002084 if (ImmutableCallSite CS = V)
2085 if (CS.paramHasAttr(0, Attribute::NonNull))
2086 return true;
2087
Benjamin Kramerfd4777c2013-09-24 16:37:51 +00002088 // operator new never returns null.
2089 if (isOperatorNewLikeFn(V, TLI, /*LookThroughBitCast=*/true))
2090 return true;
2091
Dan Gohman1b0f79d2013-01-31 02:40:59 +00002092 return false;
2093}