Eli Friedman | 2345733 | 2017-01-30 22:04:23 +0000 | [diff] [blame] | 1 | //=== X86CallingConv.cpp - X86 Custom Calling Convention Impl -*- C++ -*-===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file contains the implementation of custom routines for the X86 |
| 11 | // Calling Convention that aren't done by tablegen. |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
Reid Kleckner | 38f9900 | 2019-01-19 00:33:02 +0000 | [diff] [blame^] | 15 | #include "X86CallingConv.h" |
Eli Friedman | 2345733 | 2017-01-30 22:04:23 +0000 | [diff] [blame] | 16 | #include "X86Subtarget.h" |
Reid Kleckner | 38f9900 | 2019-01-19 00:33:02 +0000 | [diff] [blame^] | 17 | #include "llvm/ADT/SmallVector.h" |
Eli Friedman | 2345733 | 2017-01-30 22:04:23 +0000 | [diff] [blame] | 18 | #include "llvm/CodeGen/CallingConvLower.h" |
| 19 | #include "llvm/IR/CallingConv.h" |
| 20 | |
Reid Kleckner | 38f9900 | 2019-01-19 00:33:02 +0000 | [diff] [blame^] | 21 | using namespace llvm; |
Eli Friedman | 2345733 | 2017-01-30 22:04:23 +0000 | [diff] [blame] | 22 | |
Reid Kleckner | 38f9900 | 2019-01-19 00:33:02 +0000 | [diff] [blame^] | 23 | /// When regcall calling convention compiled to 32 bit arch, special treatment |
| 24 | /// is required for 64 bit masks. |
| 25 | /// The value should be assigned to two GPRs. |
| 26 | /// \return true if registers were allocated and false otherwise. |
| 27 | static bool CC_X86_32_RegCall_Assign2Regs(unsigned &ValNo, MVT &ValVT, |
| 28 | MVT &LocVT, |
| 29 | CCValAssign::LocInfo &LocInfo, |
| 30 | ISD::ArgFlagsTy &ArgFlags, |
| 31 | CCState &State) { |
Eli Friedman | 2345733 | 2017-01-30 22:04:23 +0000 | [diff] [blame] | 32 | // List of GPR registers that are available to store values in regcall |
| 33 | // calling convention. |
| 34 | static const MCPhysReg RegList[] = {X86::EAX, X86::ECX, X86::EDX, X86::EDI, |
| 35 | X86::ESI}; |
| 36 | |
| 37 | // The vector will save all the available registers for allocation. |
| 38 | SmallVector<unsigned, 5> AvailableRegs; |
| 39 | |
| 40 | // searching for the available registers. |
| 41 | for (auto Reg : RegList) { |
| 42 | if (!State.isAllocated(Reg)) |
| 43 | AvailableRegs.push_back(Reg); |
| 44 | } |
| 45 | |
| 46 | const size_t RequiredGprsUponSplit = 2; |
| 47 | if (AvailableRegs.size() < RequiredGprsUponSplit) |
| 48 | return false; // Not enough free registers - continue the search. |
| 49 | |
| 50 | // Allocating the available registers. |
| 51 | for (unsigned I = 0; I < RequiredGprsUponSplit; I++) { |
| 52 | |
| 53 | // Marking the register as located. |
| 54 | unsigned Reg = State.AllocateReg(AvailableRegs[I]); |
| 55 | |
| 56 | // Since we previously made sure that 2 registers are available |
| 57 | // we expect that a real register number will be returned. |
| 58 | assert(Reg && "Expecting a register will be available"); |
| 59 | |
| 60 | // Assign the value to the allocated register |
| 61 | State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo)); |
| 62 | } |
| 63 | |
| 64 | // Successful in allocating regsiters - stop scanning next rules. |
| 65 | return true; |
| 66 | } |
| 67 | |
| 68 | static ArrayRef<MCPhysReg> CC_X86_VectorCallGetSSEs(const MVT &ValVT) { |
| 69 | if (ValVT.is512BitVector()) { |
| 70 | static const MCPhysReg RegListZMM[] = {X86::ZMM0, X86::ZMM1, X86::ZMM2, |
| 71 | X86::ZMM3, X86::ZMM4, X86::ZMM5}; |
| 72 | return makeArrayRef(std::begin(RegListZMM), std::end(RegListZMM)); |
| 73 | } |
| 74 | |
| 75 | if (ValVT.is256BitVector()) { |
| 76 | static const MCPhysReg RegListYMM[] = {X86::YMM0, X86::YMM1, X86::YMM2, |
| 77 | X86::YMM3, X86::YMM4, X86::YMM5}; |
| 78 | return makeArrayRef(std::begin(RegListYMM), std::end(RegListYMM)); |
| 79 | } |
| 80 | |
| 81 | static const MCPhysReg RegListXMM[] = {X86::XMM0, X86::XMM1, X86::XMM2, |
| 82 | X86::XMM3, X86::XMM4, X86::XMM5}; |
| 83 | return makeArrayRef(std::begin(RegListXMM), std::end(RegListXMM)); |
| 84 | } |
| 85 | |
| 86 | static ArrayRef<MCPhysReg> CC_X86_64_VectorCallGetGPRs() { |
| 87 | static const MCPhysReg RegListGPR[] = {X86::RCX, X86::RDX, X86::R8, X86::R9}; |
| 88 | return makeArrayRef(std::begin(RegListGPR), std::end(RegListGPR)); |
| 89 | } |
| 90 | |
| 91 | static bool CC_X86_VectorCallAssignRegister(unsigned &ValNo, MVT &ValVT, |
| 92 | MVT &LocVT, |
| 93 | CCValAssign::LocInfo &LocInfo, |
| 94 | ISD::ArgFlagsTy &ArgFlags, |
| 95 | CCState &State) { |
| 96 | |
| 97 | ArrayRef<MCPhysReg> RegList = CC_X86_VectorCallGetSSEs(ValVT); |
| 98 | bool Is64bit = static_cast<const X86Subtarget &>( |
| 99 | State.getMachineFunction().getSubtarget()) |
| 100 | .is64Bit(); |
| 101 | |
| 102 | for (auto Reg : RegList) { |
| 103 | // If the register is not marked as allocated - assign to it. |
| 104 | if (!State.isAllocated(Reg)) { |
| 105 | unsigned AssigedReg = State.AllocateReg(Reg); |
| 106 | assert(AssigedReg == Reg && "Expecting a valid register allocation"); |
| 107 | State.addLoc( |
| 108 | CCValAssign::getReg(ValNo, ValVT, AssigedReg, LocVT, LocInfo)); |
| 109 | return true; |
| 110 | } |
| 111 | // If the register is marked as shadow allocated - assign to it. |
| 112 | if (Is64bit && State.IsShadowAllocatedReg(Reg)) { |
| 113 | State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); |
| 114 | return true; |
| 115 | } |
| 116 | } |
| 117 | |
| 118 | llvm_unreachable("Clang should ensure that hva marked vectors will have " |
| 119 | "an available register."); |
| 120 | return false; |
| 121 | } |
| 122 | |
Reid Kleckner | 38f9900 | 2019-01-19 00:33:02 +0000 | [diff] [blame^] | 123 | /// Vectorcall calling convention has special handling for vector types or |
| 124 | /// HVA for 64 bit arch. |
| 125 | /// For HVAs shadow registers might be allocated on the first pass |
| 126 | /// and actual XMM registers are allocated on the second pass. |
| 127 | /// For vector types, actual XMM registers are allocated on the first pass. |
| 128 | /// \return true if registers were allocated and false otherwise. |
| 129 | static bool CC_X86_64_VectorCall(unsigned &ValNo, MVT &ValVT, MVT &LocVT, |
| 130 | CCValAssign::LocInfo &LocInfo, |
| 131 | ISD::ArgFlagsTy &ArgFlags, CCState &State) { |
Eli Friedman | 2345733 | 2017-01-30 22:04:23 +0000 | [diff] [blame] | 132 | // On the second pass, go through the HVAs only. |
| 133 | if (ArgFlags.isSecArgPass()) { |
| 134 | if (ArgFlags.isHva()) |
| 135 | return CC_X86_VectorCallAssignRegister(ValNo, ValVT, LocVT, LocInfo, |
| 136 | ArgFlags, State); |
| 137 | return true; |
| 138 | } |
| 139 | |
| 140 | // Process only vector types as defined by vectorcall spec: |
| 141 | // "A vector type is either a floating-point type, for example, |
| 142 | // a float or double, or an SIMD vector type, for example, __m128 or __m256". |
| 143 | if (!(ValVT.isFloatingPoint() || |
| 144 | (ValVT.isVector() && ValVT.getSizeInBits() >= 128))) { |
| 145 | // If R9 was already assigned it means that we are after the fourth element |
| 146 | // and because this is not an HVA / Vector type, we need to allocate |
| 147 | // shadow XMM register. |
| 148 | if (State.isAllocated(X86::R9)) { |
| 149 | // Assign shadow XMM register. |
| 150 | (void)State.AllocateReg(CC_X86_VectorCallGetSSEs(ValVT)); |
| 151 | } |
| 152 | |
| 153 | return false; |
| 154 | } |
| 155 | |
| 156 | if (!ArgFlags.isHva() || ArgFlags.isHvaStart()) { |
| 157 | // Assign shadow GPR register. |
| 158 | (void)State.AllocateReg(CC_X86_64_VectorCallGetGPRs()); |
| 159 | |
| 160 | // Assign XMM register - (shadow for HVA and non-shadow for non HVA). |
| 161 | if (unsigned Reg = State.AllocateReg(CC_X86_VectorCallGetSSEs(ValVT))) { |
| 162 | // In Vectorcall Calling convention, additional shadow stack can be |
| 163 | // created on top of the basic 32 bytes of win64. |
| 164 | // It can happen if the fifth or sixth argument is vector type or HVA. |
| 165 | // At that case for each argument a shadow stack of 8 bytes is allocated. |
| 166 | if (Reg == X86::XMM4 || Reg == X86::XMM5) |
| 167 | State.AllocateStack(8, 8); |
| 168 | |
| 169 | if (!ArgFlags.isHva()) { |
| 170 | State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); |
| 171 | return true; // Allocated a register - Stop the search. |
| 172 | } |
| 173 | } |
| 174 | } |
| 175 | |
| 176 | // If this is an HVA - Stop the search, |
| 177 | // otherwise continue the search. |
| 178 | return ArgFlags.isHva(); |
| 179 | } |
| 180 | |
Reid Kleckner | 38f9900 | 2019-01-19 00:33:02 +0000 | [diff] [blame^] | 181 | /// Vectorcall calling convention has special handling for vector types or |
| 182 | /// HVA for 32 bit arch. |
| 183 | /// For HVAs actual XMM registers are allocated on the second pass. |
| 184 | /// For vector types, actual XMM registers are allocated on the first pass. |
| 185 | /// \return true if registers were allocated and false otherwise. |
| 186 | static bool CC_X86_32_VectorCall(unsigned &ValNo, MVT &ValVT, MVT &LocVT, |
| 187 | CCValAssign::LocInfo &LocInfo, |
| 188 | ISD::ArgFlagsTy &ArgFlags, CCState &State) { |
Eli Friedman | 2345733 | 2017-01-30 22:04:23 +0000 | [diff] [blame] | 189 | // On the second pass, go through the HVAs only. |
| 190 | if (ArgFlags.isSecArgPass()) { |
| 191 | if (ArgFlags.isHva()) |
| 192 | return CC_X86_VectorCallAssignRegister(ValNo, ValVT, LocVT, LocInfo, |
| 193 | ArgFlags, State); |
| 194 | return true; |
| 195 | } |
| 196 | |
| 197 | // Process only vector types as defined by vectorcall spec: |
| 198 | // "A vector type is either a floating point type, for example, |
| 199 | // a float or double, or an SIMD vector type, for example, __m128 or __m256". |
| 200 | if (!(ValVT.isFloatingPoint() || |
| 201 | (ValVT.isVector() && ValVT.getSizeInBits() >= 128))) { |
| 202 | return false; |
| 203 | } |
| 204 | |
| 205 | if (ArgFlags.isHva()) |
| 206 | return true; // If this is an HVA - Stop the search. |
| 207 | |
| 208 | // Assign XMM register. |
| 209 | if (unsigned Reg = State.AllocateReg(CC_X86_VectorCallGetSSEs(ValVT))) { |
| 210 | State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); |
| 211 | return true; |
| 212 | } |
| 213 | |
| 214 | // In case we did not find an available XMM register for a vector - |
| 215 | // pass it indirectly. |
| 216 | // It is similar to CCPassIndirect, with the addition of inreg. |
| 217 | if (!ValVT.isFloatingPoint()) { |
| 218 | LocVT = MVT::i32; |
| 219 | LocInfo = CCValAssign::Indirect; |
| 220 | ArgFlags.setInReg(); |
| 221 | } |
| 222 | |
| 223 | return false; // No register was assigned - Continue the search. |
| 224 | } |
| 225 | |
Reid Kleckner | 38f9900 | 2019-01-19 00:33:02 +0000 | [diff] [blame^] | 226 | static bool CC_X86_AnyReg_Error(unsigned &, MVT &, MVT &, |
| 227 | CCValAssign::LocInfo &, ISD::ArgFlagsTy &, |
| 228 | CCState &) { |
| 229 | llvm_unreachable("The AnyReg calling convention is only supported by the " |
| 230 | "stackmap and patchpoint intrinsics."); |
| 231 | // gracefully fallback to X86 C calling convention on Release builds. |
| 232 | return false; |
| 233 | } |
| 234 | |
| 235 | static bool CC_X86_32_MCUInReg(unsigned &ValNo, MVT &ValVT, MVT &LocVT, |
| 236 | CCValAssign::LocInfo &LocInfo, |
| 237 | ISD::ArgFlagsTy &ArgFlags, CCState &State) { |
Reid Kleckner | ca16e9d | 2019-01-16 22:05:36 +0000 | [diff] [blame] | 238 | // This is similar to CCAssignToReg<[EAX, EDX, ECX]>, but makes sure |
| 239 | // not to split i64 and double between a register and stack |
| 240 | static const MCPhysReg RegList[] = {X86::EAX, X86::EDX, X86::ECX}; |
| 241 | static const unsigned NumRegs = sizeof(RegList) / sizeof(RegList[0]); |
| 242 | |
| 243 | SmallVectorImpl<CCValAssign> &PendingMembers = State.getPendingLocs(); |
| 244 | |
| 245 | // If this is the first part of an double/i64/i128, or if we're already |
| 246 | // in the middle of a split, add to the pending list. If this is not |
| 247 | // the end of the split, return, otherwise go on to process the pending |
| 248 | // list |
| 249 | if (ArgFlags.isSplit() || !PendingMembers.empty()) { |
| 250 | PendingMembers.push_back( |
| 251 | CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo)); |
| 252 | if (!ArgFlags.isSplitEnd()) |
| 253 | return true; |
| 254 | } |
| 255 | |
| 256 | // If there are no pending members, we are not in the middle of a split, |
| 257 | // so do the usual inreg stuff. |
| 258 | if (PendingMembers.empty()) { |
| 259 | if (unsigned Reg = State.AllocateReg(RegList)) { |
| 260 | State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); |
| 261 | return true; |
| 262 | } |
| 263 | return false; |
| 264 | } |
| 265 | |
| 266 | assert(ArgFlags.isSplitEnd()); |
| 267 | |
| 268 | // We now have the entire original argument in PendingMembers, so decide |
| 269 | // whether to use registers or the stack. |
| 270 | // Per the MCU ABI: |
| 271 | // a) To use registers, we need to have enough of them free to contain |
| 272 | // the entire argument. |
| 273 | // b) We never want to use more than 2 registers for a single argument. |
| 274 | |
| 275 | unsigned FirstFree = State.getFirstUnallocated(RegList); |
| 276 | bool UseRegs = PendingMembers.size() <= std::min(2U, NumRegs - FirstFree); |
| 277 | |
| 278 | for (auto &It : PendingMembers) { |
| 279 | if (UseRegs) |
| 280 | It.convertToReg(State.AllocateReg(RegList[FirstFree++])); |
| 281 | else |
| 282 | It.convertToMem(State.AllocateStack(4, 4)); |
| 283 | State.addLoc(It); |
| 284 | } |
| 285 | |
| 286 | PendingMembers.clear(); |
| 287 | |
| 288 | return true; |
| 289 | } |
| 290 | |
Reid Kleckner | 38f9900 | 2019-01-19 00:33:02 +0000 | [diff] [blame^] | 291 | // Provides entry points of CC_X86 and RetCC_X86. |
| 292 | #include "X86GenCallingConv.inc" |