blob: f32769c241101ab41eab5a77b02ef96cf9c34d15 [file] [log] [blame]
Jingyue Wud7966ff2015-02-03 19:37:06 +00001//===-- StraightLineStrengthReduce.cpp - ------------------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements straight-line strength reduction (SLSR). Unlike loop
11// strength reduction, this algorithm is designed to reduce arithmetic
12// redundancy in straight-line code instead of loops. It has proven to be
13// effective in simplifying arithmetic statements derived from an unrolled loop.
14// It can also simplify the logic of SeparateConstOffsetFromGEP.
15//
16// There are many optimizations we can perform in the domain of SLSR. This file
17// for now contains only an initial step. Specifically, we look for strength
Jingyue Wu43885eb2015-04-15 16:46:13 +000018// reduction candidates in the following forms:
Jingyue Wud7966ff2015-02-03 19:37:06 +000019//
Jingyue Wu43885eb2015-04-15 16:46:13 +000020// Form 1: B + i * S
21// Form 2: (B + i) * S
22// Form 3: &B[i * S]
Jingyue Wud7966ff2015-02-03 19:37:06 +000023//
Jingyue Wu177a8152015-03-26 16:49:24 +000024// where S is an integer variable, and i is a constant integer. If we found two
Jingyue Wu43885eb2015-04-15 16:46:13 +000025// candidates S1 and S2 in the same form and S1 dominates S2, we may rewrite S2
26// in a simpler way with respect to S1. For example,
27//
28// S1: X = B + i * S
29// S2: Y = B + i' * S => X + (i' - i) * S
Jingyue Wud7966ff2015-02-03 19:37:06 +000030//
Jingyue Wu177a8152015-03-26 16:49:24 +000031// S1: X = (B + i) * S
Jingyue Wu43885eb2015-04-15 16:46:13 +000032// S2: Y = (B + i') * S => X + (i' - i) * S
Jingyue Wu177a8152015-03-26 16:49:24 +000033//
34// S1: X = &B[i * S]
Jingyue Wu43885eb2015-04-15 16:46:13 +000035// S2: Y = &B[i' * S] => &X[(i' - i) * S]
Jingyue Wud7966ff2015-02-03 19:37:06 +000036//
Jingyue Wu43885eb2015-04-15 16:46:13 +000037// Note: (i' - i) * S is folded to the extent possible.
Jingyue Wud7966ff2015-02-03 19:37:06 +000038//
Jingyue Wu43885eb2015-04-15 16:46:13 +000039// This rewriting is in general a good idea. The code patterns we focus on
40// usually come from loop unrolling, so (i' - i) * S is likely the same
41// across iterations and can be reused. When that happens, the optimized form
42// takes only one add starting from the second iteration.
Jingyue Wud7966ff2015-02-03 19:37:06 +000043//
Jingyue Wu43885eb2015-04-15 16:46:13 +000044// When such rewriting is possible, we call S1 a "basis" of S2. When S2 has
45// multiple bases, we choose to rewrite S2 with respect to its "immediate"
46// basis, the basis that is the closest ancestor in the dominator tree.
Jingyue Wud7966ff2015-02-03 19:37:06 +000047//
48// TODO:
49//
Jingyue Wud7966ff2015-02-03 19:37:06 +000050// - Floating point arithmetics when fast math is enabled.
51//
52// - SLSR may decrease ILP at the architecture level. Targets that are very
53// sensitive to ILP may want to disable it. Having SLSR to consider ILP is
54// left as future work.
Jingyue Wu43885eb2015-04-15 16:46:13 +000055//
56// - When (i' - i) is constant but i and i' are not, we could still perform
57// SLSR.
Jingyue Wud7966ff2015-02-03 19:37:06 +000058#include <vector>
59
60#include "llvm/ADT/DenseSet.h"
Jingyue Wu177a8152015-03-26 16:49:24 +000061#include "llvm/ADT/FoldingSet.h"
62#include "llvm/Analysis/ScalarEvolution.h"
63#include "llvm/Analysis/TargetTransformInfo.h"
Jingyue Wu80a96d292015-05-15 17:07:48 +000064#include "llvm/Analysis/ValueTracking.h"
Jingyue Wu177a8152015-03-26 16:49:24 +000065#include "llvm/IR/DataLayout.h"
Jingyue Wud7966ff2015-02-03 19:37:06 +000066#include "llvm/IR/Dominators.h"
67#include "llvm/IR/IRBuilder.h"
68#include "llvm/IR/Module.h"
69#include "llvm/IR/PatternMatch.h"
70#include "llvm/Support/raw_ostream.h"
71#include "llvm/Transforms/Scalar.h"
Jingyue Wuf1edf3e2015-04-21 19:56:18 +000072#include "llvm/Transforms/Utils/Local.h"
Jingyue Wud7966ff2015-02-03 19:37:06 +000073
74using namespace llvm;
75using namespace PatternMatch;
76
77namespace {
78
79class StraightLineStrengthReduce : public FunctionPass {
Jingyue Wu177a8152015-03-26 16:49:24 +000080public:
Jingyue Wu43885eb2015-04-15 16:46:13 +000081 // SLSR candidate. Such a candidate must be in one of the forms described in
82 // the header comments.
Jingyue Wud7966ff2015-02-03 19:37:06 +000083 struct Candidate : public ilist_node<Candidate> {
Jingyue Wu177a8152015-03-26 16:49:24 +000084 enum Kind {
85 Invalid, // reserved for the default constructor
Jingyue Wu43885eb2015-04-15 16:46:13 +000086 Add, // B + i * S
Jingyue Wu177a8152015-03-26 16:49:24 +000087 Mul, // (B + i) * S
88 GEP, // &B[..][i * S][..]
89 };
90
91 Candidate()
92 : CandidateKind(Invalid), Base(nullptr), Index(nullptr),
93 Stride(nullptr), Ins(nullptr), Basis(nullptr) {}
94 Candidate(Kind CT, const SCEV *B, ConstantInt *Idx, Value *S,
95 Instruction *I)
96 : CandidateKind(CT), Base(B), Index(Idx), Stride(S), Ins(I),
97 Basis(nullptr) {}
98 Kind CandidateKind;
99 const SCEV *Base;
Jingyue Wu43885eb2015-04-15 16:46:13 +0000100 // Note that Index and Stride of a GEP candidate do not necessarily have the
101 // same integer type. In that case, during rewriting, Stride will be
Jingyue Wu177a8152015-03-26 16:49:24 +0000102 // sign-extended or truncated to Index's type.
Jingyue Wud7966ff2015-02-03 19:37:06 +0000103 ConstantInt *Index;
104 Value *Stride;
105 // The instruction this candidate corresponds to. It helps us to rewrite a
106 // candidate with respect to its immediate basis. Note that one instruction
Jingyue Wu43885eb2015-04-15 16:46:13 +0000107 // can correspond to multiple candidates depending on how you associate the
Jingyue Wud7966ff2015-02-03 19:37:06 +0000108 // expression. For instance,
109 //
110 // (a + 1) * (b + 2)
111 //
112 // can be treated as
113 //
114 // <Base: a, Index: 1, Stride: b + 2>
115 //
116 // or
117 //
118 // <Base: b, Index: 2, Stride: a + 1>
119 Instruction *Ins;
120 // Points to the immediate basis of this candidate, or nullptr if we cannot
121 // find any basis for this candidate.
122 Candidate *Basis;
123 };
124
125 static char ID;
126
Jingyue Wu177a8152015-03-26 16:49:24 +0000127 StraightLineStrengthReduce()
128 : FunctionPass(ID), DL(nullptr), DT(nullptr), TTI(nullptr) {
Jingyue Wud7966ff2015-02-03 19:37:06 +0000129 initializeStraightLineStrengthReducePass(*PassRegistry::getPassRegistry());
130 }
131
132 void getAnalysisUsage(AnalysisUsage &AU) const override {
133 AU.addRequired<DominatorTreeWrapperPass>();
Jingyue Wu177a8152015-03-26 16:49:24 +0000134 AU.addRequired<ScalarEvolution>();
135 AU.addRequired<TargetTransformInfoWrapperPass>();
Jingyue Wud7966ff2015-02-03 19:37:06 +0000136 // We do not modify the shape of the CFG.
137 AU.setPreservesCFG();
138 }
139
Jingyue Wu177a8152015-03-26 16:49:24 +0000140 bool doInitialization(Module &M) override {
141 DL = &M.getDataLayout();
142 return false;
143 }
144
Jingyue Wud7966ff2015-02-03 19:37:06 +0000145 bool runOnFunction(Function &F) override;
146
Jingyue Wu177a8152015-03-26 16:49:24 +0000147private:
Jingyue Wud7966ff2015-02-03 19:37:06 +0000148 // Returns true if Basis is a basis for C, i.e., Basis dominates C and they
149 // share the same base and stride.
150 bool isBasisFor(const Candidate &Basis, const Candidate &C);
Jingyue Wu43885eb2015-04-15 16:46:13 +0000151 // Returns whether the candidate can be folded into an addressing mode.
152 bool isFoldable(const Candidate &C, TargetTransformInfo *TTI,
153 const DataLayout *DL);
154 // Returns true if C is already in a simplest form and not worth being
155 // rewritten.
156 bool isSimplestForm(const Candidate &C);
Jingyue Wud7966ff2015-02-03 19:37:06 +0000157 // Checks whether I is in a candidate form. If so, adds all the matching forms
158 // to Candidates, and tries to find the immediate basis for each of them.
Jingyue Wu43885eb2015-04-15 16:46:13 +0000159 void allocateCandidatesAndFindBasis(Instruction *I);
160 // Allocate candidates and find bases for Add instructions.
161 void allocateCandidatesAndFindBasisForAdd(Instruction *I);
162 // Given I = LHS + RHS, factors RHS into i * S and makes (LHS + i * S) a
163 // candidate.
164 void allocateCandidatesAndFindBasisForAdd(Value *LHS, Value *RHS,
165 Instruction *I);
Jingyue Wu177a8152015-03-26 16:49:24 +0000166 // Allocate candidates and find bases for Mul instructions.
Jingyue Wu43885eb2015-04-15 16:46:13 +0000167 void allocateCandidatesAndFindBasisForMul(Instruction *I);
Jingyue Wu177a8152015-03-26 16:49:24 +0000168 // Splits LHS into Base + Index and, if succeeds, calls
Jingyue Wu43885eb2015-04-15 16:46:13 +0000169 // allocateCandidatesAndFindBasis.
170 void allocateCandidatesAndFindBasisForMul(Value *LHS, Value *RHS,
171 Instruction *I);
Jingyue Wu177a8152015-03-26 16:49:24 +0000172 // Allocate candidates and find bases for GetElementPtr instructions.
Jingyue Wu43885eb2015-04-15 16:46:13 +0000173 void allocateCandidatesAndFindBasisForGEP(GetElementPtrInst *GEP);
Jingyue Wu177a8152015-03-26 16:49:24 +0000174 // A helper function that scales Idx with ElementSize before invoking
Jingyue Wu43885eb2015-04-15 16:46:13 +0000175 // allocateCandidatesAndFindBasis.
176 void allocateCandidatesAndFindBasisForGEP(const SCEV *B, ConstantInt *Idx,
177 Value *S, uint64_t ElementSize,
178 Instruction *I);
Jingyue Wu177a8152015-03-26 16:49:24 +0000179 // Adds the given form <CT, B, Idx, S> to Candidates, and finds its immediate
180 // basis.
Jingyue Wu43885eb2015-04-15 16:46:13 +0000181 void allocateCandidatesAndFindBasis(Candidate::Kind CT, const SCEV *B,
182 ConstantInt *Idx, Value *S,
183 Instruction *I);
Jingyue Wud7966ff2015-02-03 19:37:06 +0000184 // Rewrites candidate C with respect to Basis.
185 void rewriteCandidateWithBasis(const Candidate &C, const Candidate &Basis);
Jingyue Wu177a8152015-03-26 16:49:24 +0000186 // A helper function that factors ArrayIdx to a product of a stride and a
Jingyue Wu43885eb2015-04-15 16:46:13 +0000187 // constant index, and invokes allocateCandidatesAndFindBasis with the
Jingyue Wu177a8152015-03-26 16:49:24 +0000188 // factorings.
189 void factorArrayIndex(Value *ArrayIdx, const SCEV *Base, uint64_t ElementSize,
190 GetElementPtrInst *GEP);
191 // Emit code that computes the "bump" from Basis to C. If the candidate is a
192 // GEP and the bump is not divisible by the element size of the GEP, this
193 // function sets the BumpWithUglyGEP flag to notify its caller to bump the
194 // basis using an ugly GEP.
195 static Value *emitBump(const Candidate &Basis, const Candidate &C,
196 IRBuilder<> &Builder, const DataLayout *DL,
197 bool &BumpWithUglyGEP);
Jingyue Wud7966ff2015-02-03 19:37:06 +0000198
Jingyue Wu177a8152015-03-26 16:49:24 +0000199 const DataLayout *DL;
Jingyue Wud7966ff2015-02-03 19:37:06 +0000200 DominatorTree *DT;
Jingyue Wu177a8152015-03-26 16:49:24 +0000201 ScalarEvolution *SE;
202 TargetTransformInfo *TTI;
Jingyue Wud7966ff2015-02-03 19:37:06 +0000203 ilist<Candidate> Candidates;
204 // Temporarily holds all instructions that are unlinked (but not deleted) by
205 // rewriteCandidateWithBasis. These instructions will be actually removed
206 // after all rewriting finishes.
Jingyue Wu43885eb2015-04-15 16:46:13 +0000207 std::vector<Instruction *> UnlinkedInstructions;
Jingyue Wud7966ff2015-02-03 19:37:06 +0000208};
209} // anonymous namespace
210
211char StraightLineStrengthReduce::ID = 0;
212INITIALIZE_PASS_BEGIN(StraightLineStrengthReduce, "slsr",
213 "Straight line strength reduction", false, false)
214INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
Jingyue Wu177a8152015-03-26 16:49:24 +0000215INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
216INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
Jingyue Wud7966ff2015-02-03 19:37:06 +0000217INITIALIZE_PASS_END(StraightLineStrengthReduce, "slsr",
218 "Straight line strength reduction", false, false)
219
220FunctionPass *llvm::createStraightLineStrengthReducePass() {
221 return new StraightLineStrengthReduce();
222}
223
224bool StraightLineStrengthReduce::isBasisFor(const Candidate &Basis,
225 const Candidate &C) {
226 return (Basis.Ins != C.Ins && // skip the same instruction
227 // Basis must dominate C in order to rewrite C with respect to Basis.
228 DT->dominates(Basis.Ins->getParent(), C.Ins->getParent()) &&
Jingyue Wu177a8152015-03-26 16:49:24 +0000229 // They share the same base, stride, and candidate kind.
Jingyue Wud7966ff2015-02-03 19:37:06 +0000230 Basis.Base == C.Base &&
Jingyue Wu177a8152015-03-26 16:49:24 +0000231 Basis.Stride == C.Stride &&
232 Basis.CandidateKind == C.CandidateKind);
233}
234
Jingyue Wu43885eb2015-04-15 16:46:13 +0000235static bool isGEPFoldable(GetElementPtrInst *GEP,
236 const TargetTransformInfo *TTI,
237 const DataLayout *DL) {
Jingyue Wu177a8152015-03-26 16:49:24 +0000238 GlobalVariable *BaseGV = nullptr;
239 int64_t BaseOffset = 0;
240 bool HasBaseReg = false;
241 int64_t Scale = 0;
242
243 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getPointerOperand()))
244 BaseGV = GV;
245 else
246 HasBaseReg = true;
247
248 gep_type_iterator GTI = gep_type_begin(GEP);
249 for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I, ++GTI) {
250 if (isa<SequentialType>(*GTI)) {
251 int64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());
252 if (ConstantInt *ConstIdx = dyn_cast<ConstantInt>(*I)) {
253 BaseOffset += ConstIdx->getSExtValue() * ElementSize;
254 } else {
255 // Needs scale register.
256 if (Scale != 0) {
257 // No addressing mode takes two scale registers.
258 return false;
259 }
260 Scale = ElementSize;
261 }
262 } else {
263 StructType *STy = cast<StructType>(*GTI);
264 uint64_t Field = cast<ConstantInt>(*I)->getZExtValue();
265 BaseOffset += DL->getStructLayout(STy)->getElementOffset(Field);
266 }
267 }
Matt Arsenault91f90e62015-06-11 16:13:39 +0000268
269 unsigned AddrSpace = GEP->getPointerAddressSpace();
Jingyue Wu177a8152015-03-26 16:49:24 +0000270 return TTI->isLegalAddressingMode(GEP->getType()->getElementType(), BaseGV,
Matt Arsenault91f90e62015-06-11 16:13:39 +0000271 BaseOffset, HasBaseReg, Scale, AddrSpace);
Jingyue Wud7966ff2015-02-03 19:37:06 +0000272}
273
Jingyue Wu43885eb2015-04-15 16:46:13 +0000274// Returns whether (Base + Index * Stride) can be folded to an addressing mode.
275static bool isAddFoldable(const SCEV *Base, ConstantInt *Index, Value *Stride,
276 TargetTransformInfo *TTI) {
277 return TTI->isLegalAddressingMode(Base->getType(), nullptr, 0, true,
278 Index->getSExtValue());
279}
280
281bool StraightLineStrengthReduce::isFoldable(const Candidate &C,
282 TargetTransformInfo *TTI,
283 const DataLayout *DL) {
284 if (C.CandidateKind == Candidate::Add)
285 return isAddFoldable(C.Base, C.Index, C.Stride, TTI);
286 if (C.CandidateKind == Candidate::GEP)
287 return isGEPFoldable(cast<GetElementPtrInst>(C.Ins), TTI, DL);
288 return false;
289}
290
291// Returns true if GEP has zero or one non-zero index.
292static bool hasOnlyOneNonZeroIndex(GetElementPtrInst *GEP) {
293 unsigned NumNonZeroIndices = 0;
294 for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I) {
295 ConstantInt *ConstIdx = dyn_cast<ConstantInt>(*I);
296 if (ConstIdx == nullptr || !ConstIdx->isZero())
297 ++NumNonZeroIndices;
298 }
299 return NumNonZeroIndices <= 1;
300}
301
302bool StraightLineStrengthReduce::isSimplestForm(const Candidate &C) {
303 if (C.CandidateKind == Candidate::Add) {
304 // B + 1 * S or B + (-1) * S
305 return C.Index->isOne() || C.Index->isMinusOne();
306 }
307 if (C.CandidateKind == Candidate::Mul) {
308 // (B + 0) * S
309 return C.Index->isZero();
310 }
311 if (C.CandidateKind == Candidate::GEP) {
312 // (char*)B + S or (char*)B - S
313 return ((C.Index->isOne() || C.Index->isMinusOne()) &&
314 hasOnlyOneNonZeroIndex(cast<GetElementPtrInst>(C.Ins)));
315 }
316 return false;
317}
318
319// TODO: We currently implement an algorithm whose time complexity is linear in
320// the number of existing candidates. However, we could do better by using
321// ScopedHashTable. Specifically, while traversing the dominator tree, we could
322// maintain all the candidates that dominate the basic block being traversed in
323// a ScopedHashTable. This hash table is indexed by the base and the stride of
324// a candidate. Therefore, finding the immediate basis of a candidate boils down
325// to one hash-table look up.
326void StraightLineStrengthReduce::allocateCandidatesAndFindBasis(
Jingyue Wu177a8152015-03-26 16:49:24 +0000327 Candidate::Kind CT, const SCEV *B, ConstantInt *Idx, Value *S,
328 Instruction *I) {
Jingyue Wu177a8152015-03-26 16:49:24 +0000329 Candidate C(CT, B, Idx, S, I);
Jingyue Wu43885eb2015-04-15 16:46:13 +0000330 // SLSR can complicate an instruction in two cases:
331 //
332 // 1. If we can fold I into an addressing mode, computing I is likely free or
333 // takes only one instruction.
334 //
335 // 2. I is already in a simplest form. For example, when
336 // X = B + 8 * S
337 // Y = B + S,
338 // rewriting Y to X - 7 * S is probably a bad idea.
339 //
340 // In the above cases, we still add I to the candidate list so that I can be
341 // the basis of other candidates, but we leave I's basis blank so that I
342 // won't be rewritten.
343 if (!isFoldable(C, TTI, DL) && !isSimplestForm(C)) {
344 // Try to compute the immediate basis of C.
345 unsigned NumIterations = 0;
346 // Limit the scan radius to avoid running in quadratice time.
347 static const unsigned MaxNumIterations = 50;
348 for (auto Basis = Candidates.rbegin();
349 Basis != Candidates.rend() && NumIterations < MaxNumIterations;
350 ++Basis, ++NumIterations) {
351 if (isBasisFor(*Basis, C)) {
352 C.Basis = &(*Basis);
353 break;
354 }
Jingyue Wud7966ff2015-02-03 19:37:06 +0000355 }
356 }
357 // Regardless of whether we find a basis for C, we need to push C to the
Jingyue Wu43885eb2015-04-15 16:46:13 +0000358 // candidate list so that it can be the basis of other candidates.
Jingyue Wud7966ff2015-02-03 19:37:06 +0000359 Candidates.push_back(C);
360}
361
Jingyue Wu43885eb2015-04-15 16:46:13 +0000362void StraightLineStrengthReduce::allocateCandidatesAndFindBasis(
363 Instruction *I) {
Jingyue Wu177a8152015-03-26 16:49:24 +0000364 switch (I->getOpcode()) {
Jingyue Wu43885eb2015-04-15 16:46:13 +0000365 case Instruction::Add:
366 allocateCandidatesAndFindBasisForAdd(I);
367 break;
Jingyue Wu177a8152015-03-26 16:49:24 +0000368 case Instruction::Mul:
Jingyue Wu43885eb2015-04-15 16:46:13 +0000369 allocateCandidatesAndFindBasisForMul(I);
Jingyue Wu177a8152015-03-26 16:49:24 +0000370 break;
371 case Instruction::GetElementPtr:
Jingyue Wu43885eb2015-04-15 16:46:13 +0000372 allocateCandidatesAndFindBasisForGEP(cast<GetElementPtrInst>(I));
Jingyue Wu177a8152015-03-26 16:49:24 +0000373 break;
374 }
375}
376
Jingyue Wu43885eb2015-04-15 16:46:13 +0000377void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForAdd(
378 Instruction *I) {
379 // Try matching B + i * S.
380 if (!isa<IntegerType>(I->getType()))
381 return;
382
383 assert(I->getNumOperands() == 2 && "isn't I an add?");
384 Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
385 allocateCandidatesAndFindBasisForAdd(LHS, RHS, I);
386 if (LHS != RHS)
387 allocateCandidatesAndFindBasisForAdd(RHS, LHS, I);
388}
389
390void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForAdd(
391 Value *LHS, Value *RHS, Instruction *I) {
392 Value *S = nullptr;
393 ConstantInt *Idx = nullptr;
394 if (match(RHS, m_Mul(m_Value(S), m_ConstantInt(Idx)))) {
395 // I = LHS + RHS = LHS + Idx * S
396 allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), Idx, S, I);
397 } else if (match(RHS, m_Shl(m_Value(S), m_ConstantInt(Idx)))) {
398 // I = LHS + RHS = LHS + (S << Idx) = LHS + S * (1 << Idx)
399 APInt One(Idx->getBitWidth(), 1);
400 Idx = ConstantInt::get(Idx->getContext(), One << Idx->getValue());
401 allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), Idx, S, I);
402 } else {
403 // At least, I = LHS + 1 * RHS
404 ConstantInt *One = ConstantInt::get(cast<IntegerType>(I->getType()), 1);
405 allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), One, RHS,
406 I);
407 }
408}
409
Jingyue Wu80a96d292015-05-15 17:07:48 +0000410// Returns true if A matches B + C where C is constant.
411static bool matchesAdd(Value *A, Value *&B, ConstantInt *&C) {
412 return (match(A, m_Add(m_Value(B), m_ConstantInt(C))) ||
413 match(A, m_Add(m_ConstantInt(C), m_Value(B))));
414}
415
416// Returns true if A matches B | C where C is constant.
417static bool matchesOr(Value *A, Value *&B, ConstantInt *&C) {
418 return (match(A, m_Or(m_Value(B), m_ConstantInt(C))) ||
419 match(A, m_Or(m_ConstantInt(C), m_Value(B))));
420}
421
Jingyue Wu43885eb2015-04-15 16:46:13 +0000422void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForMul(
Jingyue Wu177a8152015-03-26 16:49:24 +0000423 Value *LHS, Value *RHS, Instruction *I) {
Jingyue Wud7966ff2015-02-03 19:37:06 +0000424 Value *B = nullptr;
425 ConstantInt *Idx = nullptr;
Jingyue Wu80a96d292015-05-15 17:07:48 +0000426 if (matchesAdd(LHS, B, Idx)) {
Jingyue Wu177a8152015-03-26 16:49:24 +0000427 // If LHS is in the form of "Base + Index", then I is in the form of
428 // "(Base + Index) * RHS".
Jingyue Wu43885eb2015-04-15 16:46:13 +0000429 allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(B), Idx, RHS, I);
Jingyue Wu80a96d292015-05-15 17:07:48 +0000430 } else if (matchesOr(LHS, B, Idx) && haveNoCommonBitsSet(B, Idx, *DL)) {
431 // If LHS is in the form of "Base | Index" and Base and Index have no common
432 // bits set, then
433 // Base | Index = Base + Index
434 // and I is thus in the form of "(Base + Index) * RHS".
435 allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(B), Idx, RHS, I);
Jingyue Wu177a8152015-03-26 16:49:24 +0000436 } else {
437 // Otherwise, at least try the form (LHS + 0) * RHS.
438 ConstantInt *Zero = ConstantInt::get(cast<IntegerType>(I->getType()), 0);
Jingyue Wu43885eb2015-04-15 16:46:13 +0000439 allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(LHS), Zero, RHS,
Jingyue Wu80a96d292015-05-15 17:07:48 +0000440 I);
Jingyue Wud7966ff2015-02-03 19:37:06 +0000441 }
442}
443
Jingyue Wu43885eb2015-04-15 16:46:13 +0000444void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForMul(
Jingyue Wu177a8152015-03-26 16:49:24 +0000445 Instruction *I) {
446 // Try matching (B + i) * S.
447 // TODO: we could extend SLSR to float and vector types.
448 if (!isa<IntegerType>(I->getType()))
449 return;
450
Jingyue Wu43885eb2015-04-15 16:46:13 +0000451 assert(I->getNumOperands() == 2 && "isn't I a mul?");
Jingyue Wu177a8152015-03-26 16:49:24 +0000452 Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
Jingyue Wu43885eb2015-04-15 16:46:13 +0000453 allocateCandidatesAndFindBasisForMul(LHS, RHS, I);
Jingyue Wu177a8152015-03-26 16:49:24 +0000454 if (LHS != RHS) {
455 // Symmetrically, try to split RHS to Base + Index.
Jingyue Wu43885eb2015-04-15 16:46:13 +0000456 allocateCandidatesAndFindBasisForMul(RHS, LHS, I);
Jingyue Wu177a8152015-03-26 16:49:24 +0000457 }
458}
459
Jingyue Wu43885eb2015-04-15 16:46:13 +0000460void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForGEP(
Jingyue Wu177a8152015-03-26 16:49:24 +0000461 const SCEV *B, ConstantInt *Idx, Value *S, uint64_t ElementSize,
462 Instruction *I) {
Jingyue Wu99a6bed2015-04-02 21:18:32 +0000463 // I = B + sext(Idx *nsw S) * ElementSize
464 // = B + (sext(Idx) * sext(S)) * ElementSize
Jingyue Wu177a8152015-03-26 16:49:24 +0000465 // = B + (sext(Idx) * ElementSize) * sext(S)
466 // Casting to IntegerType is safe because we skipped vector GEPs.
467 IntegerType *IntPtrTy = cast<IntegerType>(DL->getIntPtrType(I->getType()));
468 ConstantInt *ScaledIdx = ConstantInt::get(
469 IntPtrTy, Idx->getSExtValue() * (int64_t)ElementSize, true);
Jingyue Wu43885eb2015-04-15 16:46:13 +0000470 allocateCandidatesAndFindBasis(Candidate::GEP, B, ScaledIdx, S, I);
Jingyue Wu177a8152015-03-26 16:49:24 +0000471}
472
473void StraightLineStrengthReduce::factorArrayIndex(Value *ArrayIdx,
474 const SCEV *Base,
475 uint64_t ElementSize,
476 GetElementPtrInst *GEP) {
Jingyue Wu43885eb2015-04-15 16:46:13 +0000477 // At least, ArrayIdx = ArrayIdx *nsw 1.
478 allocateCandidatesAndFindBasisForGEP(
Jingyue Wu177a8152015-03-26 16:49:24 +0000479 Base, ConstantInt::get(cast<IntegerType>(ArrayIdx->getType()), 1),
480 ArrayIdx, ElementSize, GEP);
481 Value *LHS = nullptr;
482 ConstantInt *RHS = nullptr;
Jingyue Wu177a8152015-03-26 16:49:24 +0000483 // One alternative is matching the SCEV of ArrayIdx instead of ArrayIdx
484 // itself. This would allow us to handle the shl case for free. However,
485 // matching SCEVs has two issues:
486 //
487 // 1. this would complicate rewriting because the rewriting procedure
488 // would have to translate SCEVs back to IR instructions. This translation
489 // is difficult when LHS is further evaluated to a composite SCEV.
490 //
491 // 2. ScalarEvolution is designed to be control-flow oblivious. It tends
492 // to strip nsw/nuw flags which are critical for SLSR to trace into
493 // sext'ed multiplication.
494 if (match(ArrayIdx, m_NSWMul(m_Value(LHS), m_ConstantInt(RHS)))) {
495 // SLSR is currently unsafe if i * S may overflow.
Jingyue Wu99a6bed2015-04-02 21:18:32 +0000496 // GEP = Base + sext(LHS *nsw RHS) * ElementSize
Jingyue Wu43885eb2015-04-15 16:46:13 +0000497 allocateCandidatesAndFindBasisForGEP(Base, RHS, LHS, ElementSize, GEP);
Jingyue Wu96d74002015-04-06 17:15:48 +0000498 } else if (match(ArrayIdx, m_NSWShl(m_Value(LHS), m_ConstantInt(RHS)))) {
499 // GEP = Base + sext(LHS <<nsw RHS) * ElementSize
500 // = Base + sext(LHS *nsw (1 << RHS)) * ElementSize
501 APInt One(RHS->getBitWidth(), 1);
502 ConstantInt *PowerOf2 =
503 ConstantInt::get(RHS->getContext(), One << RHS->getValue());
Jingyue Wu43885eb2015-04-15 16:46:13 +0000504 allocateCandidatesAndFindBasisForGEP(Base, PowerOf2, LHS, ElementSize, GEP);
Jingyue Wu177a8152015-03-26 16:49:24 +0000505 }
506}
507
Jingyue Wu43885eb2015-04-15 16:46:13 +0000508void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForGEP(
Jingyue Wu177a8152015-03-26 16:49:24 +0000509 GetElementPtrInst *GEP) {
510 // TODO: handle vector GEPs
511 if (GEP->getType()->isVectorTy())
512 return;
513
Jingyue Wu2982d4d2015-05-18 17:03:25 +0000514 SmallVector<const SCEV *, 4> IndexExprs;
515 for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I)
516 IndexExprs.push_back(SE->getSCEV(*I));
Jingyue Wu177a8152015-03-26 16:49:24 +0000517
518 gep_type_iterator GTI = gep_type_begin(GEP);
Jingyue Wu2982d4d2015-05-18 17:03:25 +0000519 for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I) {
Jingyue Wu177a8152015-03-26 16:49:24 +0000520 if (!isa<SequentialType>(*GTI++))
521 continue;
Jingyue Wu2982d4d2015-05-18 17:03:25 +0000522
523 const SCEV *OrigIndexExpr = IndexExprs[I - 1];
524 IndexExprs[I - 1] = SE->getConstant(OrigIndexExpr->getType(), 0);
525
526 // The base of this candidate is GEP's base plus the offsets of all
527 // indices except this current one.
528 const SCEV *BaseExpr = SE->getGEPExpr(GEP->getSourceElementType(),
529 SE->getSCEV(GEP->getPointerOperand()),
530 IndexExprs, GEP->isInBounds());
531 Value *ArrayIdx = GEP->getOperand(I);
Jingyue Wu177a8152015-03-26 16:49:24 +0000532 uint64_t ElementSize = DL->getTypeAllocSize(*GTI);
Jingyue Wu2982d4d2015-05-18 17:03:25 +0000533 factorArrayIndex(ArrayIdx, BaseExpr, ElementSize, GEP);
Jingyue Wu177a8152015-03-26 16:49:24 +0000534 // When ArrayIdx is the sext of a value, we try to factor that value as
535 // well. Handling this case is important because array indices are
536 // typically sign-extended to the pointer size.
537 Value *TruncatedArrayIdx = nullptr;
538 if (match(ArrayIdx, m_SExt(m_Value(TruncatedArrayIdx))))
Jingyue Wu2982d4d2015-05-18 17:03:25 +0000539 factorArrayIndex(TruncatedArrayIdx, BaseExpr, ElementSize, GEP);
540
541 IndexExprs[I - 1] = OrigIndexExpr;
Jingyue Wu177a8152015-03-26 16:49:24 +0000542 }
543}
544
545// A helper function that unifies the bitwidth of A and B.
546static void unifyBitWidth(APInt &A, APInt &B) {
547 if (A.getBitWidth() < B.getBitWidth())
548 A = A.sext(B.getBitWidth());
549 else if (A.getBitWidth() > B.getBitWidth())
550 B = B.sext(A.getBitWidth());
551}
552
553Value *StraightLineStrengthReduce::emitBump(const Candidate &Basis,
554 const Candidate &C,
555 IRBuilder<> &Builder,
556 const DataLayout *DL,
557 bool &BumpWithUglyGEP) {
558 APInt Idx = C.Index->getValue(), BasisIdx = Basis.Index->getValue();
559 unifyBitWidth(Idx, BasisIdx);
560 APInt IndexOffset = Idx - BasisIdx;
561
562 BumpWithUglyGEP = false;
563 if (Basis.CandidateKind == Candidate::GEP) {
564 APInt ElementSize(
565 IndexOffset.getBitWidth(),
566 DL->getTypeAllocSize(
567 cast<GetElementPtrInst>(Basis.Ins)->getType()->getElementType()));
568 APInt Q, R;
569 APInt::sdivrem(IndexOffset, ElementSize, Q, R);
570 if (R.getSExtValue() == 0)
571 IndexOffset = Q;
572 else
573 BumpWithUglyGEP = true;
574 }
Jingyue Wu43885eb2015-04-15 16:46:13 +0000575
Jingyue Wu177a8152015-03-26 16:49:24 +0000576 // Compute Bump = C - Basis = (i' - i) * S.
577 // Common case 1: if (i' - i) is 1, Bump = S.
578 if (IndexOffset.getSExtValue() == 1)
579 return C.Stride;
580 // Common case 2: if (i' - i) is -1, Bump = -S.
581 if (IndexOffset.getSExtValue() == -1)
582 return Builder.CreateNeg(C.Stride);
Jingyue Wu43885eb2015-04-15 16:46:13 +0000583
584 // Otherwise, Bump = (i' - i) * sext/trunc(S). Note that (i' - i) and S may
585 // have different bit widths.
586 IntegerType *DeltaType =
587 IntegerType::get(Basis.Ins->getContext(), IndexOffset.getBitWidth());
588 Value *ExtendedStride = Builder.CreateSExtOrTrunc(C.Stride, DeltaType);
589 if (IndexOffset.isPowerOf2()) {
590 // If (i' - i) is a power of 2, Bump = sext/trunc(S) << log(i' - i).
591 ConstantInt *Exponent = ConstantInt::get(DeltaType, IndexOffset.logBase2());
592 return Builder.CreateShl(ExtendedStride, Exponent);
593 }
594 if ((-IndexOffset).isPowerOf2()) {
595 // If (i - i') is a power of 2, Bump = -sext/trunc(S) << log(i' - i).
596 ConstantInt *Exponent =
597 ConstantInt::get(DeltaType, (-IndexOffset).logBase2());
598 return Builder.CreateNeg(Builder.CreateShl(ExtendedStride, Exponent));
599 }
600 Constant *Delta = ConstantInt::get(DeltaType, IndexOffset);
Jingyue Wu177a8152015-03-26 16:49:24 +0000601 return Builder.CreateMul(ExtendedStride, Delta);
602}
603
Jingyue Wud7966ff2015-02-03 19:37:06 +0000604void StraightLineStrengthReduce::rewriteCandidateWithBasis(
605 const Candidate &C, const Candidate &Basis) {
Jingyue Wu177a8152015-03-26 16:49:24 +0000606 assert(C.CandidateKind == Basis.CandidateKind && C.Base == Basis.Base &&
607 C.Stride == Basis.Stride);
Jingyue Wu43885eb2015-04-15 16:46:13 +0000608 // We run rewriteCandidateWithBasis on all candidates in a post-order, so the
609 // basis of a candidate cannot be unlinked before the candidate.
610 assert(Basis.Ins->getParent() != nullptr && "the basis is unlinked");
Jingyue Wu177a8152015-03-26 16:49:24 +0000611
Jingyue Wud7966ff2015-02-03 19:37:06 +0000612 // An instruction can correspond to multiple candidates. Therefore, instead of
613 // simply deleting an instruction when we rewrite it, we mark its parent as
614 // nullptr (i.e. unlink it) so that we can skip the candidates whose
615 // instruction is already rewritten.
616 if (!C.Ins->getParent())
617 return;
Jingyue Wu177a8152015-03-26 16:49:24 +0000618
Jingyue Wud7966ff2015-02-03 19:37:06 +0000619 IRBuilder<> Builder(C.Ins);
Jingyue Wu177a8152015-03-26 16:49:24 +0000620 bool BumpWithUglyGEP;
621 Value *Bump = emitBump(Basis, C, Builder, DL, BumpWithUglyGEP);
622 Value *Reduced = nullptr; // equivalent to but weaker than C.Ins
623 switch (C.CandidateKind) {
Jingyue Wu43885eb2015-04-15 16:46:13 +0000624 case Candidate::Add:
Jingyue Wu177a8152015-03-26 16:49:24 +0000625 case Candidate::Mul:
Jingyue Wuf1edf3e2015-04-21 19:56:18 +0000626 // C = Basis + Bump
Jingyue Wu43885eb2015-04-15 16:46:13 +0000627 if (BinaryOperator::isNeg(Bump)) {
Jingyue Wuf1edf3e2015-04-21 19:56:18 +0000628 // If Bump is a neg instruction, emit C = Basis - (-Bump).
Jingyue Wu43885eb2015-04-15 16:46:13 +0000629 Reduced =
630 Builder.CreateSub(Basis.Ins, BinaryOperator::getNegArgument(Bump));
Jingyue Wuf1edf3e2015-04-21 19:56:18 +0000631 // We only use the negative argument of Bump, and Bump itself may be
632 // trivially dead.
633 RecursivelyDeleteTriviallyDeadInstructions(Bump);
Jingyue Wu43885eb2015-04-15 16:46:13 +0000634 } else {
Jingyue Wua9411292015-06-18 03:35:57 +0000635 // It's tempting to preserve nsw on Bump and/or Reduced. However, it's
636 // usually unsound, e.g.,
637 //
638 // X = (-2 +nsw 1) *nsw INT_MAX
639 // Y = (-2 +nsw 3) *nsw INT_MAX
640 // =>
641 // Y = X + 2 * INT_MAX
642 //
643 // Neither + and * in the resultant expression are nsw.
Jingyue Wu43885eb2015-04-15 16:46:13 +0000644 Reduced = Builder.CreateAdd(Basis.Ins, Bump);
645 }
Jingyue Wu177a8152015-03-26 16:49:24 +0000646 break;
647 case Candidate::GEP:
648 {
649 Type *IntPtrTy = DL->getIntPtrType(C.Ins->getType());
Jingyue Wu99a6bed2015-04-02 21:18:32 +0000650 bool InBounds = cast<GetElementPtrInst>(C.Ins)->isInBounds();
Jingyue Wu177a8152015-03-26 16:49:24 +0000651 if (BumpWithUglyGEP) {
652 // C = (char *)Basis + Bump
653 unsigned AS = Basis.Ins->getType()->getPointerAddressSpace();
654 Type *CharTy = Type::getInt8PtrTy(Basis.Ins->getContext(), AS);
655 Reduced = Builder.CreateBitCast(Basis.Ins, CharTy);
Jingyue Wu99a6bed2015-04-02 21:18:32 +0000656 if (InBounds)
David Blaikieaa41cd52015-04-03 21:33:42 +0000657 Reduced =
658 Builder.CreateInBoundsGEP(Builder.getInt8Ty(), Reduced, Bump);
Jingyue Wu99a6bed2015-04-02 21:18:32 +0000659 else
David Blaikie93c54442015-04-03 19:41:44 +0000660 Reduced = Builder.CreateGEP(Builder.getInt8Ty(), Reduced, Bump);
Jingyue Wu177a8152015-03-26 16:49:24 +0000661 Reduced = Builder.CreateBitCast(Reduced, C.Ins->getType());
662 } else {
663 // C = gep Basis, Bump
664 // Canonicalize bump to pointer size.
665 Bump = Builder.CreateSExtOrTrunc(Bump, IntPtrTy);
Jingyue Wu99a6bed2015-04-02 21:18:32 +0000666 if (InBounds)
David Blaikieaa41cd52015-04-03 21:33:42 +0000667 Reduced = Builder.CreateInBoundsGEP(nullptr, Basis.Ins, Bump);
Jingyue Wu99a6bed2015-04-02 21:18:32 +0000668 else
David Blaikie93c54442015-04-03 19:41:44 +0000669 Reduced = Builder.CreateGEP(nullptr, Basis.Ins, Bump);
Jingyue Wu177a8152015-03-26 16:49:24 +0000670 }
671 }
672 break;
673 default:
674 llvm_unreachable("C.CandidateKind is invalid");
675 };
Jingyue Wud7966ff2015-02-03 19:37:06 +0000676 Reduced->takeName(C.Ins);
677 C.Ins->replaceAllUsesWith(Reduced);
Jingyue Wud7966ff2015-02-03 19:37:06 +0000678 // Unlink C.Ins so that we can skip other candidates also corresponding to
679 // C.Ins. The actual deletion is postponed to the end of runOnFunction.
680 C.Ins->removeFromParent();
Jingyue Wu43885eb2015-04-15 16:46:13 +0000681 UnlinkedInstructions.push_back(C.Ins);
Jingyue Wud7966ff2015-02-03 19:37:06 +0000682}
683
684bool StraightLineStrengthReduce::runOnFunction(Function &F) {
685 if (skipOptnoneFunction(F))
686 return false;
687
Jingyue Wu177a8152015-03-26 16:49:24 +0000688 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
Jingyue Wud7966ff2015-02-03 19:37:06 +0000689 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
Jingyue Wu177a8152015-03-26 16:49:24 +0000690 SE = &getAnalysis<ScalarEvolution>();
Jingyue Wud7966ff2015-02-03 19:37:06 +0000691 // Traverse the dominator tree in the depth-first order. This order makes sure
692 // all bases of a candidate are in Candidates when we process it.
693 for (auto node = GraphTraits<DominatorTree *>::nodes_begin(DT);
694 node != GraphTraits<DominatorTree *>::nodes_end(DT); ++node) {
Jingyue Wu177a8152015-03-26 16:49:24 +0000695 for (auto &I : *node->getBlock())
Jingyue Wu43885eb2015-04-15 16:46:13 +0000696 allocateCandidatesAndFindBasis(&I);
Jingyue Wud7966ff2015-02-03 19:37:06 +0000697 }
698
699 // Rewrite candidates in the reverse depth-first order. This order makes sure
700 // a candidate being rewritten is not a basis for any other candidate.
701 while (!Candidates.empty()) {
702 const Candidate &C = Candidates.back();
703 if (C.Basis != nullptr) {
704 rewriteCandidateWithBasis(C, *C.Basis);
705 }
706 Candidates.pop_back();
707 }
708
709 // Delete all unlink instructions.
Jingyue Wuf1edf3e2015-04-21 19:56:18 +0000710 for (auto *UnlinkedInst : UnlinkedInstructions) {
711 for (unsigned I = 0, E = UnlinkedInst->getNumOperands(); I != E; ++I) {
712 Value *Op = UnlinkedInst->getOperand(I);
713 UnlinkedInst->setOperand(I, nullptr);
714 RecursivelyDeleteTriviallyDeadInstructions(Op);
715 }
716 delete UnlinkedInst;
Jingyue Wud7966ff2015-02-03 19:37:06 +0000717 }
718 bool Ret = !UnlinkedInstructions.empty();
719 UnlinkedInstructions.clear();
720 return Ret;
721}