blob: afe0c9d2fc4cf68ab0ae02277e46f9f72e2ad182 [file] [log] [blame]
Jingyue Wud7966ff2015-02-03 19:37:06 +00001//===-- StraightLineStrengthReduce.cpp - ------------------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements straight-line strength reduction (SLSR). Unlike loop
11// strength reduction, this algorithm is designed to reduce arithmetic
12// redundancy in straight-line code instead of loops. It has proven to be
13// effective in simplifying arithmetic statements derived from an unrolled loop.
14// It can also simplify the logic of SeparateConstOffsetFromGEP.
15//
16// There are many optimizations we can perform in the domain of SLSR. This file
17// for now contains only an initial step. Specifically, we look for strength
Jingyue Wu43885eb2015-04-15 16:46:13 +000018// reduction candidates in the following forms:
Jingyue Wud7966ff2015-02-03 19:37:06 +000019//
Jingyue Wu43885eb2015-04-15 16:46:13 +000020// Form 1: B + i * S
21// Form 2: (B + i) * S
22// Form 3: &B[i * S]
Jingyue Wud7966ff2015-02-03 19:37:06 +000023//
Jingyue Wu177a8152015-03-26 16:49:24 +000024// where S is an integer variable, and i is a constant integer. If we found two
Jingyue Wu43885eb2015-04-15 16:46:13 +000025// candidates S1 and S2 in the same form and S1 dominates S2, we may rewrite S2
26// in a simpler way with respect to S1. For example,
27//
28// S1: X = B + i * S
29// S2: Y = B + i' * S => X + (i' - i) * S
Jingyue Wud7966ff2015-02-03 19:37:06 +000030//
Jingyue Wu177a8152015-03-26 16:49:24 +000031// S1: X = (B + i) * S
Jingyue Wu43885eb2015-04-15 16:46:13 +000032// S2: Y = (B + i') * S => X + (i' - i) * S
Jingyue Wu177a8152015-03-26 16:49:24 +000033//
34// S1: X = &B[i * S]
Jingyue Wu43885eb2015-04-15 16:46:13 +000035// S2: Y = &B[i' * S] => &X[(i' - i) * S]
Jingyue Wud7966ff2015-02-03 19:37:06 +000036//
Jingyue Wu43885eb2015-04-15 16:46:13 +000037// Note: (i' - i) * S is folded to the extent possible.
Jingyue Wud7966ff2015-02-03 19:37:06 +000038//
Jingyue Wu43885eb2015-04-15 16:46:13 +000039// This rewriting is in general a good idea. The code patterns we focus on
40// usually come from loop unrolling, so (i' - i) * S is likely the same
41// across iterations and can be reused. When that happens, the optimized form
42// takes only one add starting from the second iteration.
Jingyue Wud7966ff2015-02-03 19:37:06 +000043//
Jingyue Wu43885eb2015-04-15 16:46:13 +000044// When such rewriting is possible, we call S1 a "basis" of S2. When S2 has
45// multiple bases, we choose to rewrite S2 with respect to its "immediate"
46// basis, the basis that is the closest ancestor in the dominator tree.
Jingyue Wud7966ff2015-02-03 19:37:06 +000047//
48// TODO:
49//
Jingyue Wud7966ff2015-02-03 19:37:06 +000050// - Floating point arithmetics when fast math is enabled.
51//
52// - SLSR may decrease ILP at the architecture level. Targets that are very
53// sensitive to ILP may want to disable it. Having SLSR to consider ILP is
54// left as future work.
Jingyue Wu43885eb2015-04-15 16:46:13 +000055//
56// - When (i' - i) is constant but i and i' are not, we could still perform
57// SLSR.
Jingyue Wud7966ff2015-02-03 19:37:06 +000058#include <vector>
59
60#include "llvm/ADT/DenseSet.h"
Jingyue Wu177a8152015-03-26 16:49:24 +000061#include "llvm/ADT/FoldingSet.h"
62#include "llvm/Analysis/ScalarEvolution.h"
63#include "llvm/Analysis/TargetTransformInfo.h"
64#include "llvm/IR/DataLayout.h"
Jingyue Wud7966ff2015-02-03 19:37:06 +000065#include "llvm/IR/Dominators.h"
66#include "llvm/IR/IRBuilder.h"
67#include "llvm/IR/Module.h"
68#include "llvm/IR/PatternMatch.h"
69#include "llvm/Support/raw_ostream.h"
70#include "llvm/Transforms/Scalar.h"
Jingyue Wuf1edf3e2015-04-21 19:56:18 +000071#include "llvm/Transforms/Utils/Local.h"
Jingyue Wud7966ff2015-02-03 19:37:06 +000072
73using namespace llvm;
74using namespace PatternMatch;
75
76namespace {
77
78class StraightLineStrengthReduce : public FunctionPass {
Jingyue Wu177a8152015-03-26 16:49:24 +000079public:
Jingyue Wu43885eb2015-04-15 16:46:13 +000080 // SLSR candidate. Such a candidate must be in one of the forms described in
81 // the header comments.
Jingyue Wud7966ff2015-02-03 19:37:06 +000082 struct Candidate : public ilist_node<Candidate> {
Jingyue Wu177a8152015-03-26 16:49:24 +000083 enum Kind {
84 Invalid, // reserved for the default constructor
Jingyue Wu43885eb2015-04-15 16:46:13 +000085 Add, // B + i * S
Jingyue Wu177a8152015-03-26 16:49:24 +000086 Mul, // (B + i) * S
87 GEP, // &B[..][i * S][..]
88 };
89
90 Candidate()
91 : CandidateKind(Invalid), Base(nullptr), Index(nullptr),
92 Stride(nullptr), Ins(nullptr), Basis(nullptr) {}
93 Candidate(Kind CT, const SCEV *B, ConstantInt *Idx, Value *S,
94 Instruction *I)
95 : CandidateKind(CT), Base(B), Index(Idx), Stride(S), Ins(I),
96 Basis(nullptr) {}
97 Kind CandidateKind;
98 const SCEV *Base;
Jingyue Wu43885eb2015-04-15 16:46:13 +000099 // Note that Index and Stride of a GEP candidate do not necessarily have the
100 // same integer type. In that case, during rewriting, Stride will be
Jingyue Wu177a8152015-03-26 16:49:24 +0000101 // sign-extended or truncated to Index's type.
Jingyue Wud7966ff2015-02-03 19:37:06 +0000102 ConstantInt *Index;
103 Value *Stride;
104 // The instruction this candidate corresponds to. It helps us to rewrite a
105 // candidate with respect to its immediate basis. Note that one instruction
Jingyue Wu43885eb2015-04-15 16:46:13 +0000106 // can correspond to multiple candidates depending on how you associate the
Jingyue Wud7966ff2015-02-03 19:37:06 +0000107 // expression. For instance,
108 //
109 // (a + 1) * (b + 2)
110 //
111 // can be treated as
112 //
113 // <Base: a, Index: 1, Stride: b + 2>
114 //
115 // or
116 //
117 // <Base: b, Index: 2, Stride: a + 1>
118 Instruction *Ins;
119 // Points to the immediate basis of this candidate, or nullptr if we cannot
120 // find any basis for this candidate.
121 Candidate *Basis;
122 };
123
124 static char ID;
125
Jingyue Wu177a8152015-03-26 16:49:24 +0000126 StraightLineStrengthReduce()
127 : FunctionPass(ID), DL(nullptr), DT(nullptr), TTI(nullptr) {
Jingyue Wud7966ff2015-02-03 19:37:06 +0000128 initializeStraightLineStrengthReducePass(*PassRegistry::getPassRegistry());
129 }
130
131 void getAnalysisUsage(AnalysisUsage &AU) const override {
132 AU.addRequired<DominatorTreeWrapperPass>();
Jingyue Wu177a8152015-03-26 16:49:24 +0000133 AU.addRequired<ScalarEvolution>();
134 AU.addRequired<TargetTransformInfoWrapperPass>();
Jingyue Wud7966ff2015-02-03 19:37:06 +0000135 // We do not modify the shape of the CFG.
136 AU.setPreservesCFG();
137 }
138
Jingyue Wu177a8152015-03-26 16:49:24 +0000139 bool doInitialization(Module &M) override {
140 DL = &M.getDataLayout();
141 return false;
142 }
143
Jingyue Wud7966ff2015-02-03 19:37:06 +0000144 bool runOnFunction(Function &F) override;
145
Jingyue Wu177a8152015-03-26 16:49:24 +0000146private:
Jingyue Wud7966ff2015-02-03 19:37:06 +0000147 // Returns true if Basis is a basis for C, i.e., Basis dominates C and they
148 // share the same base and stride.
149 bool isBasisFor(const Candidate &Basis, const Candidate &C);
Jingyue Wu43885eb2015-04-15 16:46:13 +0000150 // Returns whether the candidate can be folded into an addressing mode.
151 bool isFoldable(const Candidate &C, TargetTransformInfo *TTI,
152 const DataLayout *DL);
153 // Returns true if C is already in a simplest form and not worth being
154 // rewritten.
155 bool isSimplestForm(const Candidate &C);
Jingyue Wud7966ff2015-02-03 19:37:06 +0000156 // Checks whether I is in a candidate form. If so, adds all the matching forms
157 // to Candidates, and tries to find the immediate basis for each of them.
Jingyue Wu43885eb2015-04-15 16:46:13 +0000158 void allocateCandidatesAndFindBasis(Instruction *I);
159 // Allocate candidates and find bases for Add instructions.
160 void allocateCandidatesAndFindBasisForAdd(Instruction *I);
161 // Given I = LHS + RHS, factors RHS into i * S and makes (LHS + i * S) a
162 // candidate.
163 void allocateCandidatesAndFindBasisForAdd(Value *LHS, Value *RHS,
164 Instruction *I);
Jingyue Wu177a8152015-03-26 16:49:24 +0000165 // Allocate candidates and find bases for Mul instructions.
Jingyue Wu43885eb2015-04-15 16:46:13 +0000166 void allocateCandidatesAndFindBasisForMul(Instruction *I);
Jingyue Wu177a8152015-03-26 16:49:24 +0000167 // Splits LHS into Base + Index and, if succeeds, calls
Jingyue Wu43885eb2015-04-15 16:46:13 +0000168 // allocateCandidatesAndFindBasis.
169 void allocateCandidatesAndFindBasisForMul(Value *LHS, Value *RHS,
170 Instruction *I);
Jingyue Wu177a8152015-03-26 16:49:24 +0000171 // Allocate candidates and find bases for GetElementPtr instructions.
Jingyue Wu43885eb2015-04-15 16:46:13 +0000172 void allocateCandidatesAndFindBasisForGEP(GetElementPtrInst *GEP);
Jingyue Wu177a8152015-03-26 16:49:24 +0000173 // A helper function that scales Idx with ElementSize before invoking
Jingyue Wu43885eb2015-04-15 16:46:13 +0000174 // allocateCandidatesAndFindBasis.
175 void allocateCandidatesAndFindBasisForGEP(const SCEV *B, ConstantInt *Idx,
176 Value *S, uint64_t ElementSize,
177 Instruction *I);
Jingyue Wu177a8152015-03-26 16:49:24 +0000178 // Adds the given form <CT, B, Idx, S> to Candidates, and finds its immediate
179 // basis.
Jingyue Wu43885eb2015-04-15 16:46:13 +0000180 void allocateCandidatesAndFindBasis(Candidate::Kind CT, const SCEV *B,
181 ConstantInt *Idx, Value *S,
182 Instruction *I);
Jingyue Wud7966ff2015-02-03 19:37:06 +0000183 // Rewrites candidate C with respect to Basis.
184 void rewriteCandidateWithBasis(const Candidate &C, const Candidate &Basis);
Jingyue Wu177a8152015-03-26 16:49:24 +0000185 // A helper function that factors ArrayIdx to a product of a stride and a
Jingyue Wu43885eb2015-04-15 16:46:13 +0000186 // constant index, and invokes allocateCandidatesAndFindBasis with the
Jingyue Wu177a8152015-03-26 16:49:24 +0000187 // factorings.
188 void factorArrayIndex(Value *ArrayIdx, const SCEV *Base, uint64_t ElementSize,
189 GetElementPtrInst *GEP);
190 // Emit code that computes the "bump" from Basis to C. If the candidate is a
191 // GEP and the bump is not divisible by the element size of the GEP, this
192 // function sets the BumpWithUglyGEP flag to notify its caller to bump the
193 // basis using an ugly GEP.
194 static Value *emitBump(const Candidate &Basis, const Candidate &C,
195 IRBuilder<> &Builder, const DataLayout *DL,
196 bool &BumpWithUglyGEP);
Jingyue Wud7966ff2015-02-03 19:37:06 +0000197
Jingyue Wu177a8152015-03-26 16:49:24 +0000198 const DataLayout *DL;
Jingyue Wud7966ff2015-02-03 19:37:06 +0000199 DominatorTree *DT;
Jingyue Wu177a8152015-03-26 16:49:24 +0000200 ScalarEvolution *SE;
201 TargetTransformInfo *TTI;
Jingyue Wud7966ff2015-02-03 19:37:06 +0000202 ilist<Candidate> Candidates;
203 // Temporarily holds all instructions that are unlinked (but not deleted) by
204 // rewriteCandidateWithBasis. These instructions will be actually removed
205 // after all rewriting finishes.
Jingyue Wu43885eb2015-04-15 16:46:13 +0000206 std::vector<Instruction *> UnlinkedInstructions;
Jingyue Wud7966ff2015-02-03 19:37:06 +0000207};
208} // anonymous namespace
209
210char StraightLineStrengthReduce::ID = 0;
211INITIALIZE_PASS_BEGIN(StraightLineStrengthReduce, "slsr",
212 "Straight line strength reduction", false, false)
213INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
Jingyue Wu177a8152015-03-26 16:49:24 +0000214INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
215INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
Jingyue Wud7966ff2015-02-03 19:37:06 +0000216INITIALIZE_PASS_END(StraightLineStrengthReduce, "slsr",
217 "Straight line strength reduction", false, false)
218
219FunctionPass *llvm::createStraightLineStrengthReducePass() {
220 return new StraightLineStrengthReduce();
221}
222
223bool StraightLineStrengthReduce::isBasisFor(const Candidate &Basis,
224 const Candidate &C) {
225 return (Basis.Ins != C.Ins && // skip the same instruction
226 // Basis must dominate C in order to rewrite C with respect to Basis.
227 DT->dominates(Basis.Ins->getParent(), C.Ins->getParent()) &&
Jingyue Wu177a8152015-03-26 16:49:24 +0000228 // They share the same base, stride, and candidate kind.
Jingyue Wud7966ff2015-02-03 19:37:06 +0000229 Basis.Base == C.Base &&
Jingyue Wu177a8152015-03-26 16:49:24 +0000230 Basis.Stride == C.Stride &&
231 Basis.CandidateKind == C.CandidateKind);
232}
233
Jingyue Wu43885eb2015-04-15 16:46:13 +0000234static bool isGEPFoldable(GetElementPtrInst *GEP,
235 const TargetTransformInfo *TTI,
236 const DataLayout *DL) {
Jingyue Wu177a8152015-03-26 16:49:24 +0000237 GlobalVariable *BaseGV = nullptr;
238 int64_t BaseOffset = 0;
239 bool HasBaseReg = false;
240 int64_t Scale = 0;
241
242 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getPointerOperand()))
243 BaseGV = GV;
244 else
245 HasBaseReg = true;
246
247 gep_type_iterator GTI = gep_type_begin(GEP);
248 for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I, ++GTI) {
249 if (isa<SequentialType>(*GTI)) {
250 int64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());
251 if (ConstantInt *ConstIdx = dyn_cast<ConstantInt>(*I)) {
252 BaseOffset += ConstIdx->getSExtValue() * ElementSize;
253 } else {
254 // Needs scale register.
255 if (Scale != 0) {
256 // No addressing mode takes two scale registers.
257 return false;
258 }
259 Scale = ElementSize;
260 }
261 } else {
262 StructType *STy = cast<StructType>(*GTI);
263 uint64_t Field = cast<ConstantInt>(*I)->getZExtValue();
264 BaseOffset += DL->getStructLayout(STy)->getElementOffset(Field);
265 }
266 }
267 return TTI->isLegalAddressingMode(GEP->getType()->getElementType(), BaseGV,
268 BaseOffset, HasBaseReg, Scale);
Jingyue Wud7966ff2015-02-03 19:37:06 +0000269}
270
Jingyue Wu43885eb2015-04-15 16:46:13 +0000271// Returns whether (Base + Index * Stride) can be folded to an addressing mode.
272static bool isAddFoldable(const SCEV *Base, ConstantInt *Index, Value *Stride,
273 TargetTransformInfo *TTI) {
274 return TTI->isLegalAddressingMode(Base->getType(), nullptr, 0, true,
275 Index->getSExtValue());
276}
277
278bool StraightLineStrengthReduce::isFoldable(const Candidate &C,
279 TargetTransformInfo *TTI,
280 const DataLayout *DL) {
281 if (C.CandidateKind == Candidate::Add)
282 return isAddFoldable(C.Base, C.Index, C.Stride, TTI);
283 if (C.CandidateKind == Candidate::GEP)
284 return isGEPFoldable(cast<GetElementPtrInst>(C.Ins), TTI, DL);
285 return false;
286}
287
288// Returns true if GEP has zero or one non-zero index.
289static bool hasOnlyOneNonZeroIndex(GetElementPtrInst *GEP) {
290 unsigned NumNonZeroIndices = 0;
291 for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I) {
292 ConstantInt *ConstIdx = dyn_cast<ConstantInt>(*I);
293 if (ConstIdx == nullptr || !ConstIdx->isZero())
294 ++NumNonZeroIndices;
295 }
296 return NumNonZeroIndices <= 1;
297}
298
299bool StraightLineStrengthReduce::isSimplestForm(const Candidate &C) {
300 if (C.CandidateKind == Candidate::Add) {
301 // B + 1 * S or B + (-1) * S
302 return C.Index->isOne() || C.Index->isMinusOne();
303 }
304 if (C.CandidateKind == Candidate::Mul) {
305 // (B + 0) * S
306 return C.Index->isZero();
307 }
308 if (C.CandidateKind == Candidate::GEP) {
309 // (char*)B + S or (char*)B - S
310 return ((C.Index->isOne() || C.Index->isMinusOne()) &&
311 hasOnlyOneNonZeroIndex(cast<GetElementPtrInst>(C.Ins)));
312 }
313 return false;
314}
315
316// TODO: We currently implement an algorithm whose time complexity is linear in
317// the number of existing candidates. However, we could do better by using
318// ScopedHashTable. Specifically, while traversing the dominator tree, we could
319// maintain all the candidates that dominate the basic block being traversed in
320// a ScopedHashTable. This hash table is indexed by the base and the stride of
321// a candidate. Therefore, finding the immediate basis of a candidate boils down
322// to one hash-table look up.
323void StraightLineStrengthReduce::allocateCandidatesAndFindBasis(
Jingyue Wu177a8152015-03-26 16:49:24 +0000324 Candidate::Kind CT, const SCEV *B, ConstantInt *Idx, Value *S,
325 Instruction *I) {
Jingyue Wu177a8152015-03-26 16:49:24 +0000326 Candidate C(CT, B, Idx, S, I);
Jingyue Wu43885eb2015-04-15 16:46:13 +0000327 // SLSR can complicate an instruction in two cases:
328 //
329 // 1. If we can fold I into an addressing mode, computing I is likely free or
330 // takes only one instruction.
331 //
332 // 2. I is already in a simplest form. For example, when
333 // X = B + 8 * S
334 // Y = B + S,
335 // rewriting Y to X - 7 * S is probably a bad idea.
336 //
337 // In the above cases, we still add I to the candidate list so that I can be
338 // the basis of other candidates, but we leave I's basis blank so that I
339 // won't be rewritten.
340 if (!isFoldable(C, TTI, DL) && !isSimplestForm(C)) {
341 // Try to compute the immediate basis of C.
342 unsigned NumIterations = 0;
343 // Limit the scan radius to avoid running in quadratice time.
344 static const unsigned MaxNumIterations = 50;
345 for (auto Basis = Candidates.rbegin();
346 Basis != Candidates.rend() && NumIterations < MaxNumIterations;
347 ++Basis, ++NumIterations) {
348 if (isBasisFor(*Basis, C)) {
349 C.Basis = &(*Basis);
350 break;
351 }
Jingyue Wud7966ff2015-02-03 19:37:06 +0000352 }
353 }
354 // Regardless of whether we find a basis for C, we need to push C to the
Jingyue Wu43885eb2015-04-15 16:46:13 +0000355 // candidate list so that it can be the basis of other candidates.
Jingyue Wud7966ff2015-02-03 19:37:06 +0000356 Candidates.push_back(C);
357}
358
Jingyue Wu43885eb2015-04-15 16:46:13 +0000359void StraightLineStrengthReduce::allocateCandidatesAndFindBasis(
360 Instruction *I) {
Jingyue Wu177a8152015-03-26 16:49:24 +0000361 switch (I->getOpcode()) {
Jingyue Wu43885eb2015-04-15 16:46:13 +0000362 case Instruction::Add:
363 allocateCandidatesAndFindBasisForAdd(I);
364 break;
Jingyue Wu177a8152015-03-26 16:49:24 +0000365 case Instruction::Mul:
Jingyue Wu43885eb2015-04-15 16:46:13 +0000366 allocateCandidatesAndFindBasisForMul(I);
Jingyue Wu177a8152015-03-26 16:49:24 +0000367 break;
368 case Instruction::GetElementPtr:
Jingyue Wu43885eb2015-04-15 16:46:13 +0000369 allocateCandidatesAndFindBasisForGEP(cast<GetElementPtrInst>(I));
Jingyue Wu177a8152015-03-26 16:49:24 +0000370 break;
371 }
372}
373
Jingyue Wu43885eb2015-04-15 16:46:13 +0000374void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForAdd(
375 Instruction *I) {
376 // Try matching B + i * S.
377 if (!isa<IntegerType>(I->getType()))
378 return;
379
380 assert(I->getNumOperands() == 2 && "isn't I an add?");
381 Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
382 allocateCandidatesAndFindBasisForAdd(LHS, RHS, I);
383 if (LHS != RHS)
384 allocateCandidatesAndFindBasisForAdd(RHS, LHS, I);
385}
386
387void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForAdd(
388 Value *LHS, Value *RHS, Instruction *I) {
389 Value *S = nullptr;
390 ConstantInt *Idx = nullptr;
391 if (match(RHS, m_Mul(m_Value(S), m_ConstantInt(Idx)))) {
392 // I = LHS + RHS = LHS + Idx * S
393 allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), Idx, S, I);
394 } else if (match(RHS, m_Shl(m_Value(S), m_ConstantInt(Idx)))) {
395 // I = LHS + RHS = LHS + (S << Idx) = LHS + S * (1 << Idx)
396 APInt One(Idx->getBitWidth(), 1);
397 Idx = ConstantInt::get(Idx->getContext(), One << Idx->getValue());
398 allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), Idx, S, I);
399 } else {
400 // At least, I = LHS + 1 * RHS
401 ConstantInt *One = ConstantInt::get(cast<IntegerType>(I->getType()), 1);
402 allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), One, RHS,
403 I);
404 }
405}
406
407void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForMul(
Jingyue Wu177a8152015-03-26 16:49:24 +0000408 Value *LHS, Value *RHS, Instruction *I) {
Jingyue Wud7966ff2015-02-03 19:37:06 +0000409 Value *B = nullptr;
410 ConstantInt *Idx = nullptr;
Jingyue Wu177a8152015-03-26 16:49:24 +0000411 // Only handle the canonical operand ordering.
412 if (match(LHS, m_Add(m_Value(B), m_ConstantInt(Idx)))) {
413 // If LHS is in the form of "Base + Index", then I is in the form of
414 // "(Base + Index) * RHS".
Jingyue Wu43885eb2015-04-15 16:46:13 +0000415 allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(B), Idx, RHS, I);
Jingyue Wu177a8152015-03-26 16:49:24 +0000416 } else {
417 // Otherwise, at least try the form (LHS + 0) * RHS.
418 ConstantInt *Zero = ConstantInt::get(cast<IntegerType>(I->getType()), 0);
Jingyue Wu43885eb2015-04-15 16:46:13 +0000419 allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(LHS), Zero, RHS,
Jingyue Wu177a8152015-03-26 16:49:24 +0000420 I);
Jingyue Wud7966ff2015-02-03 19:37:06 +0000421 }
422}
423
Jingyue Wu43885eb2015-04-15 16:46:13 +0000424void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForMul(
Jingyue Wu177a8152015-03-26 16:49:24 +0000425 Instruction *I) {
426 // Try matching (B + i) * S.
427 // TODO: we could extend SLSR to float and vector types.
428 if (!isa<IntegerType>(I->getType()))
429 return;
430
Jingyue Wu43885eb2015-04-15 16:46:13 +0000431 assert(I->getNumOperands() == 2 && "isn't I a mul?");
Jingyue Wu177a8152015-03-26 16:49:24 +0000432 Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
Jingyue Wu43885eb2015-04-15 16:46:13 +0000433 allocateCandidatesAndFindBasisForMul(LHS, RHS, I);
Jingyue Wu177a8152015-03-26 16:49:24 +0000434 if (LHS != RHS) {
435 // Symmetrically, try to split RHS to Base + Index.
Jingyue Wu43885eb2015-04-15 16:46:13 +0000436 allocateCandidatesAndFindBasisForMul(RHS, LHS, I);
Jingyue Wu177a8152015-03-26 16:49:24 +0000437 }
438}
439
Jingyue Wu43885eb2015-04-15 16:46:13 +0000440void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForGEP(
Jingyue Wu177a8152015-03-26 16:49:24 +0000441 const SCEV *B, ConstantInt *Idx, Value *S, uint64_t ElementSize,
442 Instruction *I) {
Jingyue Wu99a6bed2015-04-02 21:18:32 +0000443 // I = B + sext(Idx *nsw S) * ElementSize
444 // = B + (sext(Idx) * sext(S)) * ElementSize
Jingyue Wu177a8152015-03-26 16:49:24 +0000445 // = B + (sext(Idx) * ElementSize) * sext(S)
446 // Casting to IntegerType is safe because we skipped vector GEPs.
447 IntegerType *IntPtrTy = cast<IntegerType>(DL->getIntPtrType(I->getType()));
448 ConstantInt *ScaledIdx = ConstantInt::get(
449 IntPtrTy, Idx->getSExtValue() * (int64_t)ElementSize, true);
Jingyue Wu43885eb2015-04-15 16:46:13 +0000450 allocateCandidatesAndFindBasis(Candidate::GEP, B, ScaledIdx, S, I);
Jingyue Wu177a8152015-03-26 16:49:24 +0000451}
452
453void StraightLineStrengthReduce::factorArrayIndex(Value *ArrayIdx,
454 const SCEV *Base,
455 uint64_t ElementSize,
456 GetElementPtrInst *GEP) {
Jingyue Wu43885eb2015-04-15 16:46:13 +0000457 // At least, ArrayIdx = ArrayIdx *nsw 1.
458 allocateCandidatesAndFindBasisForGEP(
Jingyue Wu177a8152015-03-26 16:49:24 +0000459 Base, ConstantInt::get(cast<IntegerType>(ArrayIdx->getType()), 1),
460 ArrayIdx, ElementSize, GEP);
461 Value *LHS = nullptr;
462 ConstantInt *RHS = nullptr;
Jingyue Wu177a8152015-03-26 16:49:24 +0000463 // One alternative is matching the SCEV of ArrayIdx instead of ArrayIdx
464 // itself. This would allow us to handle the shl case for free. However,
465 // matching SCEVs has two issues:
466 //
467 // 1. this would complicate rewriting because the rewriting procedure
468 // would have to translate SCEVs back to IR instructions. This translation
469 // is difficult when LHS is further evaluated to a composite SCEV.
470 //
471 // 2. ScalarEvolution is designed to be control-flow oblivious. It tends
472 // to strip nsw/nuw flags which are critical for SLSR to trace into
473 // sext'ed multiplication.
474 if (match(ArrayIdx, m_NSWMul(m_Value(LHS), m_ConstantInt(RHS)))) {
475 // SLSR is currently unsafe if i * S may overflow.
Jingyue Wu99a6bed2015-04-02 21:18:32 +0000476 // GEP = Base + sext(LHS *nsw RHS) * ElementSize
Jingyue Wu43885eb2015-04-15 16:46:13 +0000477 allocateCandidatesAndFindBasisForGEP(Base, RHS, LHS, ElementSize, GEP);
Jingyue Wu96d74002015-04-06 17:15:48 +0000478 } else if (match(ArrayIdx, m_NSWShl(m_Value(LHS), m_ConstantInt(RHS)))) {
479 // GEP = Base + sext(LHS <<nsw RHS) * ElementSize
480 // = Base + sext(LHS *nsw (1 << RHS)) * ElementSize
481 APInt One(RHS->getBitWidth(), 1);
482 ConstantInt *PowerOf2 =
483 ConstantInt::get(RHS->getContext(), One << RHS->getValue());
Jingyue Wu43885eb2015-04-15 16:46:13 +0000484 allocateCandidatesAndFindBasisForGEP(Base, PowerOf2, LHS, ElementSize, GEP);
Jingyue Wu177a8152015-03-26 16:49:24 +0000485 }
486}
487
Jingyue Wu43885eb2015-04-15 16:46:13 +0000488void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForGEP(
Jingyue Wu177a8152015-03-26 16:49:24 +0000489 GetElementPtrInst *GEP) {
490 // TODO: handle vector GEPs
491 if (GEP->getType()->isVectorTy())
492 return;
493
494 const SCEV *GEPExpr = SE->getSCEV(GEP);
495 Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
496
497 gep_type_iterator GTI = gep_type_begin(GEP);
498 for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I) {
499 if (!isa<SequentialType>(*GTI++))
500 continue;
501 Value *ArrayIdx = *I;
502 // Compute the byte offset of this index.
503 uint64_t ElementSize = DL->getTypeAllocSize(*GTI);
504 const SCEV *ElementSizeExpr = SE->getSizeOfExpr(IntPtrTy, *GTI);
505 const SCEV *ArrayIdxExpr = SE->getSCEV(ArrayIdx);
506 ArrayIdxExpr = SE->getTruncateOrSignExtend(ArrayIdxExpr, IntPtrTy);
507 const SCEV *LocalOffset =
508 SE->getMulExpr(ArrayIdxExpr, ElementSizeExpr, SCEV::FlagNSW);
509 // The base of this candidate equals GEPExpr less the byte offset of this
510 // index.
511 const SCEV *Base = SE->getMinusSCEV(GEPExpr, LocalOffset);
512 factorArrayIndex(ArrayIdx, Base, ElementSize, GEP);
513 // When ArrayIdx is the sext of a value, we try to factor that value as
514 // well. Handling this case is important because array indices are
515 // typically sign-extended to the pointer size.
516 Value *TruncatedArrayIdx = nullptr;
517 if (match(ArrayIdx, m_SExt(m_Value(TruncatedArrayIdx))))
518 factorArrayIndex(TruncatedArrayIdx, Base, ElementSize, GEP);
519 }
520}
521
522// A helper function that unifies the bitwidth of A and B.
523static void unifyBitWidth(APInt &A, APInt &B) {
524 if (A.getBitWidth() < B.getBitWidth())
525 A = A.sext(B.getBitWidth());
526 else if (A.getBitWidth() > B.getBitWidth())
527 B = B.sext(A.getBitWidth());
528}
529
530Value *StraightLineStrengthReduce::emitBump(const Candidate &Basis,
531 const Candidate &C,
532 IRBuilder<> &Builder,
533 const DataLayout *DL,
534 bool &BumpWithUglyGEP) {
535 APInt Idx = C.Index->getValue(), BasisIdx = Basis.Index->getValue();
536 unifyBitWidth(Idx, BasisIdx);
537 APInt IndexOffset = Idx - BasisIdx;
538
539 BumpWithUglyGEP = false;
540 if (Basis.CandidateKind == Candidate::GEP) {
541 APInt ElementSize(
542 IndexOffset.getBitWidth(),
543 DL->getTypeAllocSize(
544 cast<GetElementPtrInst>(Basis.Ins)->getType()->getElementType()));
545 APInt Q, R;
546 APInt::sdivrem(IndexOffset, ElementSize, Q, R);
547 if (R.getSExtValue() == 0)
548 IndexOffset = Q;
549 else
550 BumpWithUglyGEP = true;
551 }
Jingyue Wu43885eb2015-04-15 16:46:13 +0000552
Jingyue Wu177a8152015-03-26 16:49:24 +0000553 // Compute Bump = C - Basis = (i' - i) * S.
554 // Common case 1: if (i' - i) is 1, Bump = S.
555 if (IndexOffset.getSExtValue() == 1)
556 return C.Stride;
557 // Common case 2: if (i' - i) is -1, Bump = -S.
558 if (IndexOffset.getSExtValue() == -1)
559 return Builder.CreateNeg(C.Stride);
Jingyue Wu43885eb2015-04-15 16:46:13 +0000560
561 // Otherwise, Bump = (i' - i) * sext/trunc(S). Note that (i' - i) and S may
562 // have different bit widths.
563 IntegerType *DeltaType =
564 IntegerType::get(Basis.Ins->getContext(), IndexOffset.getBitWidth());
565 Value *ExtendedStride = Builder.CreateSExtOrTrunc(C.Stride, DeltaType);
566 if (IndexOffset.isPowerOf2()) {
567 // If (i' - i) is a power of 2, Bump = sext/trunc(S) << log(i' - i).
568 ConstantInt *Exponent = ConstantInt::get(DeltaType, IndexOffset.logBase2());
569 return Builder.CreateShl(ExtendedStride, Exponent);
570 }
571 if ((-IndexOffset).isPowerOf2()) {
572 // If (i - i') is a power of 2, Bump = -sext/trunc(S) << log(i' - i).
573 ConstantInt *Exponent =
574 ConstantInt::get(DeltaType, (-IndexOffset).logBase2());
575 return Builder.CreateNeg(Builder.CreateShl(ExtendedStride, Exponent));
576 }
577 Constant *Delta = ConstantInt::get(DeltaType, IndexOffset);
Jingyue Wu177a8152015-03-26 16:49:24 +0000578 return Builder.CreateMul(ExtendedStride, Delta);
579}
580
Jingyue Wud7966ff2015-02-03 19:37:06 +0000581void StraightLineStrengthReduce::rewriteCandidateWithBasis(
582 const Candidate &C, const Candidate &Basis) {
Jingyue Wu177a8152015-03-26 16:49:24 +0000583 assert(C.CandidateKind == Basis.CandidateKind && C.Base == Basis.Base &&
584 C.Stride == Basis.Stride);
Jingyue Wu43885eb2015-04-15 16:46:13 +0000585 // We run rewriteCandidateWithBasis on all candidates in a post-order, so the
586 // basis of a candidate cannot be unlinked before the candidate.
587 assert(Basis.Ins->getParent() != nullptr && "the basis is unlinked");
Jingyue Wu177a8152015-03-26 16:49:24 +0000588
Jingyue Wud7966ff2015-02-03 19:37:06 +0000589 // An instruction can correspond to multiple candidates. Therefore, instead of
590 // simply deleting an instruction when we rewrite it, we mark its parent as
591 // nullptr (i.e. unlink it) so that we can skip the candidates whose
592 // instruction is already rewritten.
593 if (!C.Ins->getParent())
594 return;
Jingyue Wu177a8152015-03-26 16:49:24 +0000595
Jingyue Wud7966ff2015-02-03 19:37:06 +0000596 IRBuilder<> Builder(C.Ins);
Jingyue Wu177a8152015-03-26 16:49:24 +0000597 bool BumpWithUglyGEP;
598 Value *Bump = emitBump(Basis, C, Builder, DL, BumpWithUglyGEP);
599 Value *Reduced = nullptr; // equivalent to but weaker than C.Ins
600 switch (C.CandidateKind) {
Jingyue Wu43885eb2015-04-15 16:46:13 +0000601 case Candidate::Add:
Jingyue Wu177a8152015-03-26 16:49:24 +0000602 case Candidate::Mul:
Jingyue Wuf1edf3e2015-04-21 19:56:18 +0000603 // C = Basis + Bump
Jingyue Wu43885eb2015-04-15 16:46:13 +0000604 if (BinaryOperator::isNeg(Bump)) {
Jingyue Wuf1edf3e2015-04-21 19:56:18 +0000605 // If Bump is a neg instruction, emit C = Basis - (-Bump).
Jingyue Wu43885eb2015-04-15 16:46:13 +0000606 Reduced =
607 Builder.CreateSub(Basis.Ins, BinaryOperator::getNegArgument(Bump));
Jingyue Wuf1edf3e2015-04-21 19:56:18 +0000608 // We only use the negative argument of Bump, and Bump itself may be
609 // trivially dead.
610 RecursivelyDeleteTriviallyDeadInstructions(Bump);
Jingyue Wu43885eb2015-04-15 16:46:13 +0000611 } else {
612 Reduced = Builder.CreateAdd(Basis.Ins, Bump);
613 }
Jingyue Wu177a8152015-03-26 16:49:24 +0000614 break;
615 case Candidate::GEP:
616 {
617 Type *IntPtrTy = DL->getIntPtrType(C.Ins->getType());
Jingyue Wu99a6bed2015-04-02 21:18:32 +0000618 bool InBounds = cast<GetElementPtrInst>(C.Ins)->isInBounds();
Jingyue Wu177a8152015-03-26 16:49:24 +0000619 if (BumpWithUglyGEP) {
620 // C = (char *)Basis + Bump
621 unsigned AS = Basis.Ins->getType()->getPointerAddressSpace();
622 Type *CharTy = Type::getInt8PtrTy(Basis.Ins->getContext(), AS);
623 Reduced = Builder.CreateBitCast(Basis.Ins, CharTy);
Jingyue Wu99a6bed2015-04-02 21:18:32 +0000624 if (InBounds)
David Blaikieaa41cd52015-04-03 21:33:42 +0000625 Reduced =
626 Builder.CreateInBoundsGEP(Builder.getInt8Ty(), Reduced, Bump);
Jingyue Wu99a6bed2015-04-02 21:18:32 +0000627 else
David Blaikie93c54442015-04-03 19:41:44 +0000628 Reduced = Builder.CreateGEP(Builder.getInt8Ty(), Reduced, Bump);
Jingyue Wu177a8152015-03-26 16:49:24 +0000629 Reduced = Builder.CreateBitCast(Reduced, C.Ins->getType());
630 } else {
631 // C = gep Basis, Bump
632 // Canonicalize bump to pointer size.
633 Bump = Builder.CreateSExtOrTrunc(Bump, IntPtrTy);
Jingyue Wu99a6bed2015-04-02 21:18:32 +0000634 if (InBounds)
David Blaikieaa41cd52015-04-03 21:33:42 +0000635 Reduced = Builder.CreateInBoundsGEP(nullptr, Basis.Ins, Bump);
Jingyue Wu99a6bed2015-04-02 21:18:32 +0000636 else
David Blaikie93c54442015-04-03 19:41:44 +0000637 Reduced = Builder.CreateGEP(nullptr, Basis.Ins, Bump);
Jingyue Wu177a8152015-03-26 16:49:24 +0000638 }
639 }
640 break;
641 default:
642 llvm_unreachable("C.CandidateKind is invalid");
643 };
Jingyue Wud7966ff2015-02-03 19:37:06 +0000644 Reduced->takeName(C.Ins);
645 C.Ins->replaceAllUsesWith(Reduced);
Jingyue Wud7966ff2015-02-03 19:37:06 +0000646 // Unlink C.Ins so that we can skip other candidates also corresponding to
647 // C.Ins. The actual deletion is postponed to the end of runOnFunction.
648 C.Ins->removeFromParent();
Jingyue Wu43885eb2015-04-15 16:46:13 +0000649 UnlinkedInstructions.push_back(C.Ins);
Jingyue Wud7966ff2015-02-03 19:37:06 +0000650}
651
652bool StraightLineStrengthReduce::runOnFunction(Function &F) {
653 if (skipOptnoneFunction(F))
654 return false;
655
Jingyue Wu177a8152015-03-26 16:49:24 +0000656 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
Jingyue Wud7966ff2015-02-03 19:37:06 +0000657 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
Jingyue Wu177a8152015-03-26 16:49:24 +0000658 SE = &getAnalysis<ScalarEvolution>();
Jingyue Wud7966ff2015-02-03 19:37:06 +0000659 // Traverse the dominator tree in the depth-first order. This order makes sure
660 // all bases of a candidate are in Candidates when we process it.
661 for (auto node = GraphTraits<DominatorTree *>::nodes_begin(DT);
662 node != GraphTraits<DominatorTree *>::nodes_end(DT); ++node) {
Jingyue Wu177a8152015-03-26 16:49:24 +0000663 for (auto &I : *node->getBlock())
Jingyue Wu43885eb2015-04-15 16:46:13 +0000664 allocateCandidatesAndFindBasis(&I);
Jingyue Wud7966ff2015-02-03 19:37:06 +0000665 }
666
667 // Rewrite candidates in the reverse depth-first order. This order makes sure
668 // a candidate being rewritten is not a basis for any other candidate.
669 while (!Candidates.empty()) {
670 const Candidate &C = Candidates.back();
671 if (C.Basis != nullptr) {
672 rewriteCandidateWithBasis(C, *C.Basis);
673 }
674 Candidates.pop_back();
675 }
676
677 // Delete all unlink instructions.
Jingyue Wuf1edf3e2015-04-21 19:56:18 +0000678 for (auto *UnlinkedInst : UnlinkedInstructions) {
679 for (unsigned I = 0, E = UnlinkedInst->getNumOperands(); I != E; ++I) {
680 Value *Op = UnlinkedInst->getOperand(I);
681 UnlinkedInst->setOperand(I, nullptr);
682 RecursivelyDeleteTriviallyDeadInstructions(Op);
683 }
684 delete UnlinkedInst;
Jingyue Wud7966ff2015-02-03 19:37:06 +0000685 }
686 bool Ret = !UnlinkedInstructions.empty();
687 UnlinkedInstructions.clear();
688 return Ret;
689}