George Burgess IV | bfa401e | 2016-07-06 00:26:41 +0000 | [diff] [blame] | 1 | //- CFLAndersAliasAnalysis.cpp - Unification-based Alias Analysis ---*- C++-*-// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file implements a CFL-based, summary-based alias analysis algorithm. It |
| 11 | // differs from CFLSteensAliasAnalysis in its inclusion-based nature while |
| 12 | // CFLSteensAliasAnalysis is unification-based. This pass has worse performance |
| 13 | // than CFLSteensAliasAnalysis (the worst case complexity of |
| 14 | // CFLAndersAliasAnalysis is cubic, while the worst case complexity of |
| 15 | // CFLSteensAliasAnalysis is almost linear), but it is able to yield more |
| 16 | // precise analysis result. The precision of this analysis is roughly the same |
| 17 | // as that of an one level context-sensitive Andersen's algorithm. |
| 18 | // |
George Burgess IV | 6d30aa0 | 2016-07-15 19:53:25 +0000 | [diff] [blame] | 19 | // The algorithm used here is based on recursive state machine matching scheme |
| 20 | // proposed in "Demand-driven alias analysis for C" by Xin Zheng and Radu |
| 21 | // Rugina. The general idea is to extend the tranditional transitive closure |
| 22 | // algorithm to perform CFL matching along the way: instead of recording |
| 23 | // "whether X is reachable from Y", we keep track of "whether X is reachable |
| 24 | // from Y at state Z", where the "state" field indicates where we are in the CFL |
| 25 | // matching process. To understand the matching better, it is advisable to have |
| 26 | // the state machine shown in Figure 3 of the paper available when reading the |
| 27 | // codes: all we do here is to selectively expand the transitive closure by |
| 28 | // discarding edges that are not recognized by the state machine. |
| 29 | // |
George Burgess IV | c01b42f | 2016-07-19 20:38:21 +0000 | [diff] [blame] | 30 | // There are two differences between our current implementation and the one |
| 31 | // described in the paper: |
| 32 | // - Our algorithm eagerly computes all alias pairs after the CFLGraph is built, |
| 33 | // while in the paper the authors did the computation in a demand-driven |
| 34 | // fashion. We did not implement the demand-driven algorithm due to the |
| 35 | // additional coding complexity and higher memory profile, but if we found it |
| 36 | // necessary we may switch to it eventually. |
| 37 | // - In the paper the authors use a state machine that does not distinguish |
| 38 | // value reads from value writes. For example, if Y is reachable from X at state |
| 39 | // S3, it may be the case that X is written into Y, or it may be the case that |
| 40 | // there's a third value Z that writes into both X and Y. To make that |
| 41 | // distinction (which is crucial in building function summary as well as |
| 42 | // retrieving mod-ref info), we choose to duplicate some of the states in the |
| 43 | // paper's proposed state machine. The duplication does not change the set the |
| 44 | // machine accepts. Given a pair of reachable values, it only provides more |
| 45 | // detailed information on which value is being written into and which is being |
| 46 | // read from. |
George Burgess IV | 6d30aa0 | 2016-07-15 19:53:25 +0000 | [diff] [blame] | 47 | // |
George Burgess IV | bfa401e | 2016-07-06 00:26:41 +0000 | [diff] [blame] | 48 | //===----------------------------------------------------------------------===// |
| 49 | |
| 50 | // N.B. AliasAnalysis as a whole is phrased as a FunctionPass at the moment, and |
| 51 | // CFLAndersAA is interprocedural. This is *technically* A Bad Thing, because |
| 52 | // FunctionPasses are only allowed to inspect the Function that they're being |
| 53 | // run on. Realistically, this likely isn't a problem until we allow |
| 54 | // FunctionPasses to run concurrently. |
| 55 | |
| 56 | #include "llvm/Analysis/CFLAndersAliasAnalysis.h" |
George Burgess IV | 1ca8aff | 2016-07-06 00:36:12 +0000 | [diff] [blame] | 57 | #include "CFLGraph.h" |
George Burgess IV | 6d30aa0 | 2016-07-15 19:53:25 +0000 | [diff] [blame] | 58 | #include "llvm/ADT/DenseSet.h" |
George Burgess IV | bfa401e | 2016-07-06 00:26:41 +0000 | [diff] [blame] | 59 | #include "llvm/Pass.h" |
| 60 | |
| 61 | using namespace llvm; |
George Burgess IV | 1ca8aff | 2016-07-06 00:36:12 +0000 | [diff] [blame] | 62 | using namespace llvm::cflaa; |
George Burgess IV | bfa401e | 2016-07-06 00:26:41 +0000 | [diff] [blame] | 63 | |
| 64 | #define DEBUG_TYPE "cfl-anders-aa" |
| 65 | |
George Burgess IV | 6d30aa0 | 2016-07-15 19:53:25 +0000 | [diff] [blame] | 66 | CFLAndersAAResult::CFLAndersAAResult(const TargetLibraryInfo &TLI) : TLI(TLI) {} |
| 67 | CFLAndersAAResult::CFLAndersAAResult(CFLAndersAAResult &&RHS) |
| 68 | : AAResultBase(std::move(RHS)), TLI(RHS.TLI) {} |
| 69 | CFLAndersAAResult::~CFLAndersAAResult() {} |
| 70 | |
| 71 | static const Function *parentFunctionOfValue(const Value *Val) { |
| 72 | if (auto *Inst = dyn_cast<Instruction>(Val)) { |
| 73 | auto *Bb = Inst->getParent(); |
| 74 | return Bb->getParent(); |
| 75 | } |
| 76 | |
| 77 | if (auto *Arg = dyn_cast<Argument>(Val)) |
| 78 | return Arg->getParent(); |
| 79 | return nullptr; |
| 80 | } |
| 81 | |
| 82 | namespace { |
| 83 | |
| 84 | enum class MatchState : uint8_t { |
George Burgess IV | c01b42f | 2016-07-19 20:38:21 +0000 | [diff] [blame] | 85 | // The following state represents S1 in the paper. |
| 86 | FlowFromReadOnly = 0, |
| 87 | // The following two states together represent S2 in the paper. |
| 88 | // The 'NoReadWrite' suffix indicates that there exists an alias path that |
| 89 | // does not contain assignment and reverse assignment edges. |
| 90 | // The 'ReadOnly' suffix indicates that there exists an alias path that |
| 91 | // contains reverse assignment edges only. |
| 92 | FlowFromMemAliasNoReadWrite, |
| 93 | FlowFromMemAliasReadOnly, |
| 94 | // The following two states together represent S3 in the paper. |
| 95 | // The 'WriteOnly' suffix indicates that there exists an alias path that |
| 96 | // contains assignment edges only. |
| 97 | // The 'ReadWrite' suffix indicates that there exists an alias path that |
| 98 | // contains both assignment and reverse assignment edges. Note that if X and Y |
| 99 | // are reachable at 'ReadWrite' state, it does NOT mean X is both read from |
| 100 | // and written to Y. Instead, it means that a third value Z is written to both |
| 101 | // X and Y. |
| 102 | FlowToWriteOnly, |
| 103 | FlowToReadWrite, |
| 104 | // The following two states together represent S4 in the paper. |
| 105 | FlowToMemAliasWriteOnly, |
| 106 | FlowToMemAliasReadWrite, |
George Burgess IV | 6d30aa0 | 2016-07-15 19:53:25 +0000 | [diff] [blame] | 107 | }; |
| 108 | |
| 109 | // We use ReachabilitySet to keep track of value aliases (The nonterminal "V" in |
| 110 | // the paper) during the analysis. |
| 111 | class ReachabilitySet { |
George Burgess IV | c01b42f | 2016-07-19 20:38:21 +0000 | [diff] [blame] | 112 | typedef std::bitset<7> StateSet; |
George Burgess IV | 6d30aa0 | 2016-07-15 19:53:25 +0000 | [diff] [blame] | 113 | typedef DenseMap<InstantiatedValue, StateSet> ValueStateMap; |
| 114 | typedef DenseMap<InstantiatedValue, ValueStateMap> ValueReachMap; |
| 115 | ValueReachMap ReachMap; |
| 116 | |
| 117 | public: |
| 118 | typedef ValueStateMap::const_iterator const_valuestate_iterator; |
| 119 | typedef ValueReachMap::const_iterator const_value_iterator; |
| 120 | |
| 121 | // Insert edge 'From->To' at state 'State' |
| 122 | bool insert(InstantiatedValue From, InstantiatedValue To, MatchState State) { |
| 123 | auto &States = ReachMap[To][From]; |
| 124 | auto Idx = static_cast<size_t>(State); |
| 125 | if (!States.test(Idx)) { |
| 126 | States.set(Idx); |
| 127 | return true; |
| 128 | } |
| 129 | return false; |
| 130 | } |
| 131 | |
| 132 | // Return the set of all ('From', 'State') pair for a given node 'To' |
| 133 | iterator_range<const_valuestate_iterator> |
| 134 | reachableValueAliases(InstantiatedValue V) const { |
| 135 | auto Itr = ReachMap.find(V); |
| 136 | if (Itr == ReachMap.end()) |
| 137 | return make_range<const_valuestate_iterator>(const_valuestate_iterator(), |
| 138 | const_valuestate_iterator()); |
| 139 | return make_range<const_valuestate_iterator>(Itr->second.begin(), |
| 140 | Itr->second.end()); |
| 141 | } |
| 142 | |
| 143 | iterator_range<const_value_iterator> value_mappings() const { |
| 144 | return make_range<const_value_iterator>(ReachMap.begin(), ReachMap.end()); |
| 145 | } |
| 146 | }; |
| 147 | |
| 148 | // We use AliasMemSet to keep track of all memory aliases (the nonterminal "M" |
| 149 | // in the paper) during the analysis. |
| 150 | class AliasMemSet { |
| 151 | typedef DenseSet<InstantiatedValue> MemSet; |
| 152 | typedef DenseMap<InstantiatedValue, MemSet> MemMapType; |
| 153 | MemMapType MemMap; |
| 154 | |
| 155 | public: |
| 156 | typedef MemSet::const_iterator const_mem_iterator; |
| 157 | |
| 158 | bool insert(InstantiatedValue LHS, InstantiatedValue RHS) { |
| 159 | // Top-level values can never be memory aliases because one cannot take the |
| 160 | // addresses of them |
| 161 | assert(LHS.DerefLevel > 0 && RHS.DerefLevel > 0); |
| 162 | return MemMap[LHS].insert(RHS).second; |
| 163 | } |
| 164 | |
| 165 | const MemSet *getMemoryAliases(InstantiatedValue V) const { |
| 166 | auto Itr = MemMap.find(V); |
| 167 | if (Itr == MemMap.end()) |
| 168 | return nullptr; |
| 169 | return &Itr->second; |
| 170 | } |
| 171 | }; |
| 172 | |
George Burgess IV | 22682e2 | 2016-07-15 20:02:49 +0000 | [diff] [blame] | 173 | // We use AliasAttrMap to keep track of the AliasAttr of each node. |
| 174 | class AliasAttrMap { |
| 175 | typedef DenseMap<InstantiatedValue, AliasAttrs> MapType; |
| 176 | MapType AttrMap; |
| 177 | |
| 178 | public: |
| 179 | typedef MapType::const_iterator const_iterator; |
| 180 | |
| 181 | bool add(InstantiatedValue V, AliasAttrs Attr) { |
| 182 | if (Attr.none()) |
| 183 | return false; |
| 184 | auto &OldAttr = AttrMap[V]; |
| 185 | auto NewAttr = OldAttr | Attr; |
| 186 | if (OldAttr == NewAttr) |
| 187 | return false; |
| 188 | OldAttr = NewAttr; |
| 189 | return true; |
| 190 | } |
| 191 | |
| 192 | AliasAttrs getAttrs(InstantiatedValue V) const { |
| 193 | AliasAttrs Attr; |
| 194 | auto Itr = AttrMap.find(V); |
| 195 | if (Itr != AttrMap.end()) |
| 196 | Attr = Itr->second; |
| 197 | return Attr; |
| 198 | } |
| 199 | |
| 200 | iterator_range<const_iterator> mappings() const { |
| 201 | return make_range<const_iterator>(AttrMap.begin(), AttrMap.end()); |
| 202 | } |
| 203 | }; |
| 204 | |
George Burgess IV | 6d30aa0 | 2016-07-15 19:53:25 +0000 | [diff] [blame] | 205 | struct WorkListItem { |
| 206 | InstantiatedValue From; |
| 207 | InstantiatedValue To; |
| 208 | MatchState State; |
| 209 | }; |
| 210 | } |
| 211 | |
| 212 | class CFLAndersAAResult::FunctionInfo { |
| 213 | /// Map a value to other values that may alias it |
| 214 | /// Since the alias relation is symmetric, to save some space we assume values |
| 215 | /// are properly ordered: if a and b alias each other, and a < b, then b is in |
| 216 | /// AliasMap[a] but not vice versa. |
| 217 | DenseMap<const Value *, std::vector<const Value *>> AliasMap; |
| 218 | |
George Burgess IV | 22682e2 | 2016-07-15 20:02:49 +0000 | [diff] [blame] | 219 | /// Map a value to its corresponding AliasAttrs |
| 220 | DenseMap<const Value *, AliasAttrs> AttrMap; |
| 221 | |
George Burgess IV | 6d30aa0 | 2016-07-15 19:53:25 +0000 | [diff] [blame] | 222 | /// Summary of externally visible effects. |
| 223 | AliasSummary Summary; |
| 224 | |
George Burgess IV | 22682e2 | 2016-07-15 20:02:49 +0000 | [diff] [blame] | 225 | AliasAttrs getAttrs(const Value *) const; |
| 226 | |
George Burgess IV | 6d30aa0 | 2016-07-15 19:53:25 +0000 | [diff] [blame] | 227 | public: |
George Burgess IV | 22682e2 | 2016-07-15 20:02:49 +0000 | [diff] [blame] | 228 | FunctionInfo(const ReachabilitySet &, AliasAttrMap); |
George Burgess IV | 6d30aa0 | 2016-07-15 19:53:25 +0000 | [diff] [blame] | 229 | |
| 230 | bool mayAlias(const Value *LHS, const Value *RHS) const; |
| 231 | const AliasSummary &getAliasSummary() const { return Summary; } |
| 232 | }; |
| 233 | |
George Burgess IV | 22682e2 | 2016-07-15 20:02:49 +0000 | [diff] [blame] | 234 | CFLAndersAAResult::FunctionInfo::FunctionInfo(const ReachabilitySet &ReachSet, |
| 235 | AliasAttrMap AMap) { |
| 236 | // Populate AttrMap |
| 237 | for (const auto &Mapping : AMap.mappings()) { |
| 238 | auto IVal = Mapping.first; |
| 239 | |
| 240 | // AttrMap only cares about top-level values |
| 241 | if (IVal.DerefLevel == 0) |
| 242 | AttrMap[IVal.Val] = Mapping.second; |
| 243 | } |
| 244 | |
| 245 | // Populate AliasMap |
George Burgess IV | 6d30aa0 | 2016-07-15 19:53:25 +0000 | [diff] [blame] | 246 | for (const auto &OuterMapping : ReachSet.value_mappings()) { |
| 247 | // AliasMap only cares about top-level values |
| 248 | if (OuterMapping.first.DerefLevel > 0) |
| 249 | continue; |
| 250 | |
| 251 | auto Val = OuterMapping.first.Val; |
| 252 | auto &AliasList = AliasMap[Val]; |
| 253 | for (const auto &InnerMapping : OuterMapping.second) { |
| 254 | // Again, AliasMap only cares about top-level values |
| 255 | if (InnerMapping.first.DerefLevel == 0) |
| 256 | AliasList.push_back(InnerMapping.first.Val); |
| 257 | } |
| 258 | |
| 259 | // Sort AliasList for faster lookup |
| 260 | std::sort(AliasList.begin(), AliasList.end(), std::less<const Value *>()); |
| 261 | } |
| 262 | |
| 263 | // TODO: Populate function summary here |
| 264 | } |
| 265 | |
George Burgess IV | 22682e2 | 2016-07-15 20:02:49 +0000 | [diff] [blame] | 266 | AliasAttrs CFLAndersAAResult::FunctionInfo::getAttrs(const Value *V) const { |
| 267 | assert(V != nullptr); |
| 268 | |
| 269 | AliasAttrs Attr; |
| 270 | auto Itr = AttrMap.find(V); |
| 271 | if (Itr != AttrMap.end()) |
| 272 | Attr = Itr->second; |
| 273 | return Attr; |
| 274 | } |
| 275 | |
George Burgess IV | 6d30aa0 | 2016-07-15 19:53:25 +0000 | [diff] [blame] | 276 | bool CFLAndersAAResult::FunctionInfo::mayAlias(const Value *LHS, |
| 277 | const Value *RHS) const { |
| 278 | assert(LHS && RHS); |
| 279 | |
| 280 | auto Itr = AliasMap.find(LHS); |
George Burgess IV | 22682e2 | 2016-07-15 20:02:49 +0000 | [diff] [blame] | 281 | if (Itr != AliasMap.end()) { |
| 282 | if (std::binary_search(Itr->second.begin(), Itr->second.end(), RHS, |
| 283 | std::less<const Value *>())) |
| 284 | return true; |
| 285 | } |
| 286 | |
| 287 | // Even if LHS and RHS are not reachable, they may still alias due to their |
| 288 | // AliasAttrs |
| 289 | auto AttrsA = getAttrs(LHS); |
| 290 | auto AttrsB = getAttrs(RHS); |
| 291 | |
| 292 | if (AttrsA.none() || AttrsB.none()) |
George Burgess IV | 6d30aa0 | 2016-07-15 19:53:25 +0000 | [diff] [blame] | 293 | return false; |
George Burgess IV | 22682e2 | 2016-07-15 20:02:49 +0000 | [diff] [blame] | 294 | if (hasUnknownOrCallerAttr(AttrsA) || hasUnknownOrCallerAttr(AttrsB)) |
| 295 | return true; |
| 296 | if (isGlobalOrArgAttr(AttrsA) && isGlobalOrArgAttr(AttrsB)) |
| 297 | return true; |
| 298 | return false; |
George Burgess IV | 6d30aa0 | 2016-07-15 19:53:25 +0000 | [diff] [blame] | 299 | } |
| 300 | |
| 301 | static void propagate(InstantiatedValue From, InstantiatedValue To, |
| 302 | MatchState State, ReachabilitySet &ReachSet, |
| 303 | std::vector<WorkListItem> &WorkList) { |
| 304 | if (From == To) |
| 305 | return; |
| 306 | if (ReachSet.insert(From, To, State)) |
| 307 | WorkList.push_back(WorkListItem{From, To, State}); |
| 308 | } |
| 309 | |
| 310 | static void initializeWorkList(std::vector<WorkListItem> &WorkList, |
| 311 | ReachabilitySet &ReachSet, |
| 312 | const CFLGraph &Graph) { |
| 313 | for (const auto &Mapping : Graph.value_mappings()) { |
| 314 | auto Val = Mapping.first; |
| 315 | auto &ValueInfo = Mapping.second; |
| 316 | assert(ValueInfo.getNumLevels() > 0); |
| 317 | |
| 318 | // Insert all immediate assignment neighbors to the worklist |
| 319 | for (unsigned I = 0, E = ValueInfo.getNumLevels(); I < E; ++I) { |
| 320 | auto Src = InstantiatedValue{Val, I}; |
| 321 | // If there's an assignment edge from X to Y, it means Y is reachable from |
| 322 | // X at S2 and X is reachable from Y at S1 |
| 323 | for (auto &Edge : ValueInfo.getNodeInfoAtLevel(I).Edges) { |
George Burgess IV | c01b42f | 2016-07-19 20:38:21 +0000 | [diff] [blame] | 324 | propagate(Edge.Other, Src, MatchState::FlowFromReadOnly, ReachSet, |
| 325 | WorkList); |
| 326 | propagate(Src, Edge.Other, MatchState::FlowToWriteOnly, ReachSet, |
| 327 | WorkList); |
George Burgess IV | 6d30aa0 | 2016-07-15 19:53:25 +0000 | [diff] [blame] | 328 | } |
| 329 | } |
| 330 | } |
| 331 | } |
| 332 | |
| 333 | static Optional<InstantiatedValue> getNodeBelow(const CFLGraph &Graph, |
| 334 | InstantiatedValue V) { |
| 335 | auto NodeBelow = InstantiatedValue{V.Val, V.DerefLevel + 1}; |
| 336 | if (Graph.getNode(NodeBelow)) |
| 337 | return NodeBelow; |
| 338 | return None; |
| 339 | } |
| 340 | |
| 341 | static void processWorkListItem(const WorkListItem &Item, const CFLGraph &Graph, |
| 342 | ReachabilitySet &ReachSet, AliasMemSet &MemSet, |
| 343 | std::vector<WorkListItem> &WorkList) { |
| 344 | auto FromNode = Item.From; |
| 345 | auto ToNode = Item.To; |
| 346 | |
| 347 | auto NodeInfo = Graph.getNode(ToNode); |
| 348 | assert(NodeInfo != nullptr); |
| 349 | |
George Burgess IV | 6d30aa0 | 2016-07-15 19:53:25 +0000 | [diff] [blame] | 350 | // TODO: propagate field offsets |
| 351 | |
| 352 | // FIXME: Here is a neat trick we can do: since both ReachSet and MemSet holds |
| 353 | // relations that are symmetric, we could actually cut the storage by half by |
| 354 | // sorting FromNode and ToNode before insertion happens. |
| 355 | |
| 356 | // The newly added value alias pair may pontentially generate more memory |
| 357 | // alias pairs. Check for them here. |
| 358 | auto FromNodeBelow = getNodeBelow(Graph, FromNode); |
| 359 | auto ToNodeBelow = getNodeBelow(Graph, ToNode); |
| 360 | if (FromNodeBelow && ToNodeBelow && |
| 361 | MemSet.insert(*FromNodeBelow, *ToNodeBelow)) { |
George Burgess IV | c01b42f | 2016-07-19 20:38:21 +0000 | [diff] [blame] | 362 | propagate(*FromNodeBelow, *ToNodeBelow, |
| 363 | MatchState::FlowFromMemAliasNoReadWrite, ReachSet, WorkList); |
George Burgess IV | 6d30aa0 | 2016-07-15 19:53:25 +0000 | [diff] [blame] | 364 | for (const auto &Mapping : ReachSet.reachableValueAliases(*FromNodeBelow)) { |
| 365 | auto Src = Mapping.first; |
George Burgess IV | c01b42f | 2016-07-19 20:38:21 +0000 | [diff] [blame] | 366 | auto MemAliasPropagate = [&](MatchState FromState, MatchState ToState) { |
| 367 | if (Mapping.second.test(static_cast<size_t>(FromState))) |
| 368 | propagate(Src, *ToNodeBelow, ToState, ReachSet, WorkList); |
| 369 | }; |
| 370 | |
| 371 | MemAliasPropagate(MatchState::FlowFromReadOnly, |
| 372 | MatchState::FlowFromMemAliasReadOnly); |
| 373 | MemAliasPropagate(MatchState::FlowToWriteOnly, |
| 374 | MatchState::FlowToMemAliasWriteOnly); |
| 375 | MemAliasPropagate(MatchState::FlowToReadWrite, |
| 376 | MatchState::FlowToMemAliasReadWrite); |
George Burgess IV | 6d30aa0 | 2016-07-15 19:53:25 +0000 | [diff] [blame] | 377 | } |
| 378 | } |
| 379 | |
| 380 | // This is the core of the state machine walking algorithm. We expand ReachSet |
| 381 | // based on which state we are at (which in turn dictates what edges we |
| 382 | // should examine) |
| 383 | // From a high-level point of view, the state machine here guarantees two |
| 384 | // properties: |
| 385 | // - If *X and *Y are memory aliases, then X and Y are value aliases |
| 386 | // - If Y is an alias of X, then reverse assignment edges (if there is any) |
| 387 | // should precede any assignment edges on the path from X to Y. |
George Burgess IV | c01b42f | 2016-07-19 20:38:21 +0000 | [diff] [blame] | 388 | auto NextAssignState = [&](MatchState State) { |
| 389 | for (const auto &AssignEdge : NodeInfo->Edges) |
| 390 | propagate(FromNode, AssignEdge.Other, State, ReachSet, WorkList); |
| 391 | }; |
| 392 | auto NextRevAssignState = [&](MatchState State) { |
| 393 | for (const auto &RevAssignEdge : NodeInfo->ReverseEdges) |
| 394 | propagate(FromNode, RevAssignEdge.Other, State, ReachSet, WorkList); |
| 395 | }; |
| 396 | auto NextMemState = [&](MatchState State) { |
| 397 | if (auto AliasSet = MemSet.getMemoryAliases(ToNode)) { |
| 398 | for (const auto &MemAlias : *AliasSet) |
| 399 | propagate(FromNode, MemAlias, State, ReachSet, WorkList); |
| 400 | } |
| 401 | }; |
| 402 | |
George Burgess IV | 6d30aa0 | 2016-07-15 19:53:25 +0000 | [diff] [blame] | 403 | switch (Item.State) { |
George Burgess IV | c01b42f | 2016-07-19 20:38:21 +0000 | [diff] [blame] | 404 | case MatchState::FlowFromReadOnly: { |
| 405 | NextRevAssignState(MatchState::FlowFromReadOnly); |
| 406 | NextAssignState(MatchState::FlowToReadWrite); |
| 407 | NextMemState(MatchState::FlowFromMemAliasReadOnly); |
George Burgess IV | 6d30aa0 | 2016-07-15 19:53:25 +0000 | [diff] [blame] | 408 | break; |
| 409 | } |
George Burgess IV | c01b42f | 2016-07-19 20:38:21 +0000 | [diff] [blame] | 410 | case MatchState::FlowFromMemAliasNoReadWrite: { |
| 411 | NextRevAssignState(MatchState::FlowFromReadOnly); |
| 412 | NextAssignState(MatchState::FlowToWriteOnly); |
George Burgess IV | 6d30aa0 | 2016-07-15 19:53:25 +0000 | [diff] [blame] | 413 | break; |
| 414 | } |
George Burgess IV | c01b42f | 2016-07-19 20:38:21 +0000 | [diff] [blame] | 415 | case MatchState::FlowFromMemAliasReadOnly: { |
| 416 | NextRevAssignState(MatchState::FlowFromReadOnly); |
| 417 | NextAssignState(MatchState::FlowToReadWrite); |
George Burgess IV | 6d30aa0 | 2016-07-15 19:53:25 +0000 | [diff] [blame] | 418 | break; |
| 419 | } |
George Burgess IV | c01b42f | 2016-07-19 20:38:21 +0000 | [diff] [blame] | 420 | case MatchState::FlowToWriteOnly: { |
| 421 | NextAssignState(MatchState::FlowToWriteOnly); |
| 422 | NextMemState(MatchState::FlowToMemAliasWriteOnly); |
| 423 | break; |
| 424 | } |
| 425 | case MatchState::FlowToReadWrite: { |
| 426 | NextAssignState(MatchState::FlowToReadWrite); |
| 427 | NextMemState(MatchState::FlowToMemAliasReadWrite); |
| 428 | break; |
| 429 | } |
| 430 | case MatchState::FlowToMemAliasWriteOnly: { |
| 431 | NextAssignState(MatchState::FlowToWriteOnly); |
| 432 | break; |
| 433 | } |
| 434 | case MatchState::FlowToMemAliasReadWrite: { |
| 435 | NextAssignState(MatchState::FlowToReadWrite); |
George Burgess IV | 6d30aa0 | 2016-07-15 19:53:25 +0000 | [diff] [blame] | 436 | break; |
| 437 | } |
| 438 | } |
| 439 | } |
| 440 | |
George Burgess IV | 22682e2 | 2016-07-15 20:02:49 +0000 | [diff] [blame] | 441 | static AliasAttrMap buildAttrMap(const CFLGraph &Graph, |
| 442 | const ReachabilitySet &ReachSet) { |
| 443 | AliasAttrMap AttrMap; |
| 444 | std::vector<InstantiatedValue> WorkList, NextList; |
| 445 | |
| 446 | // Initialize each node with its original AliasAttrs in CFLGraph |
| 447 | for (const auto &Mapping : Graph.value_mappings()) { |
| 448 | auto Val = Mapping.first; |
| 449 | auto &ValueInfo = Mapping.second; |
| 450 | for (unsigned I = 0, E = ValueInfo.getNumLevels(); I < E; ++I) { |
| 451 | auto Node = InstantiatedValue{Val, I}; |
| 452 | AttrMap.add(Node, ValueInfo.getNodeInfoAtLevel(I).Attr); |
| 453 | WorkList.push_back(Node); |
| 454 | } |
| 455 | } |
| 456 | |
| 457 | while (!WorkList.empty()) { |
| 458 | for (const auto &Dst : WorkList) { |
| 459 | auto DstAttr = AttrMap.getAttrs(Dst); |
| 460 | if (DstAttr.none()) |
| 461 | continue; |
| 462 | |
| 463 | // Propagate attr on the same level |
| 464 | for (const auto &Mapping : ReachSet.reachableValueAliases(Dst)) { |
| 465 | auto Src = Mapping.first; |
| 466 | if (AttrMap.add(Src, DstAttr)) |
| 467 | NextList.push_back(Src); |
| 468 | } |
| 469 | |
| 470 | // Propagate attr to the levels below |
| 471 | auto DstBelow = getNodeBelow(Graph, Dst); |
| 472 | while (DstBelow) { |
| 473 | if (AttrMap.add(*DstBelow, DstAttr)) { |
| 474 | NextList.push_back(*DstBelow); |
| 475 | break; |
| 476 | } |
| 477 | DstBelow = getNodeBelow(Graph, *DstBelow); |
| 478 | } |
| 479 | } |
| 480 | WorkList.swap(NextList); |
| 481 | NextList.clear(); |
| 482 | } |
| 483 | |
| 484 | return AttrMap; |
| 485 | } |
| 486 | |
George Burgess IV | 6d30aa0 | 2016-07-15 19:53:25 +0000 | [diff] [blame] | 487 | CFLAndersAAResult::FunctionInfo |
| 488 | CFLAndersAAResult::buildInfoFrom(const Function &Fn) { |
| 489 | CFLGraphBuilder<CFLAndersAAResult> GraphBuilder( |
| 490 | *this, TLI, |
| 491 | // Cast away the constness here due to GraphBuilder's API requirement |
| 492 | const_cast<Function &>(Fn)); |
| 493 | auto &Graph = GraphBuilder.getCFLGraph(); |
| 494 | |
| 495 | ReachabilitySet ReachSet; |
| 496 | AliasMemSet MemSet; |
| 497 | |
| 498 | std::vector<WorkListItem> WorkList, NextList; |
| 499 | initializeWorkList(WorkList, ReachSet, Graph); |
| 500 | // TODO: make sure we don't stop before the fix point is reached |
| 501 | while (!WorkList.empty()) { |
| 502 | for (const auto &Item : WorkList) |
| 503 | processWorkListItem(Item, Graph, ReachSet, MemSet, NextList); |
| 504 | |
| 505 | NextList.swap(WorkList); |
| 506 | NextList.clear(); |
| 507 | } |
| 508 | |
George Burgess IV | 22682e2 | 2016-07-15 20:02:49 +0000 | [diff] [blame] | 509 | // Now that we have all the reachability info, propagate AliasAttrs according |
| 510 | // to it |
| 511 | auto IValueAttrMap = buildAttrMap(Graph, ReachSet); |
| 512 | |
| 513 | return FunctionInfo(ReachSet, std::move(IValueAttrMap)); |
George Burgess IV | 6d30aa0 | 2016-07-15 19:53:25 +0000 | [diff] [blame] | 514 | } |
| 515 | |
| 516 | void CFLAndersAAResult::scan(const Function &Fn) { |
| 517 | auto InsertPair = Cache.insert(std::make_pair(&Fn, Optional<FunctionInfo>())); |
| 518 | (void)InsertPair; |
| 519 | assert(InsertPair.second && |
| 520 | "Trying to scan a function that has already been cached"); |
| 521 | |
| 522 | // Note that we can't do Cache[Fn] = buildSetsFrom(Fn) here: the function call |
| 523 | // may get evaluated after operator[], potentially triggering a DenseMap |
| 524 | // resize and invalidating the reference returned by operator[] |
| 525 | auto FunInfo = buildInfoFrom(Fn); |
| 526 | Cache[&Fn] = std::move(FunInfo); |
| 527 | Handles.push_front(FunctionHandle(const_cast<Function *>(&Fn), this)); |
| 528 | } |
| 529 | |
| 530 | void CFLAndersAAResult::evict(const Function &Fn) { Cache.erase(&Fn); } |
| 531 | |
| 532 | const Optional<CFLAndersAAResult::FunctionInfo> & |
| 533 | CFLAndersAAResult::ensureCached(const Function &Fn) { |
| 534 | auto Iter = Cache.find(&Fn); |
| 535 | if (Iter == Cache.end()) { |
| 536 | scan(Fn); |
| 537 | Iter = Cache.find(&Fn); |
| 538 | assert(Iter != Cache.end()); |
| 539 | assert(Iter->second.hasValue()); |
| 540 | } |
| 541 | return Iter->second; |
| 542 | } |
| 543 | |
| 544 | const AliasSummary *CFLAndersAAResult::getAliasSummary(const Function &Fn) { |
| 545 | auto &FunInfo = ensureCached(Fn); |
| 546 | if (FunInfo.hasValue()) |
| 547 | return &FunInfo->getAliasSummary(); |
| 548 | else |
| 549 | return nullptr; |
| 550 | } |
| 551 | |
| 552 | AliasResult CFLAndersAAResult::query(const MemoryLocation &LocA, |
| 553 | const MemoryLocation &LocB) { |
| 554 | auto *ValA = LocA.Ptr; |
| 555 | auto *ValB = LocB.Ptr; |
| 556 | |
| 557 | if (!ValA->getType()->isPointerTy() || !ValB->getType()->isPointerTy()) |
| 558 | return NoAlias; |
| 559 | |
| 560 | auto *Fn = parentFunctionOfValue(ValA); |
| 561 | if (!Fn) { |
| 562 | Fn = parentFunctionOfValue(ValB); |
| 563 | if (!Fn) { |
| 564 | // The only times this is known to happen are when globals + InlineAsm are |
| 565 | // involved |
| 566 | DEBUG(dbgs() |
| 567 | << "CFLAndersAA: could not extract parent function information.\n"); |
| 568 | return MayAlias; |
| 569 | } |
| 570 | } else { |
| 571 | assert(!parentFunctionOfValue(ValB) || parentFunctionOfValue(ValB) == Fn); |
| 572 | } |
| 573 | |
| 574 | assert(Fn != nullptr); |
| 575 | auto &FunInfo = ensureCached(*Fn); |
| 576 | |
| 577 | // AliasMap lookup |
| 578 | if (FunInfo->mayAlias(ValA, ValB)) |
| 579 | return MayAlias; |
| 580 | return NoAlias; |
| 581 | } |
| 582 | |
| 583 | AliasResult CFLAndersAAResult::alias(const MemoryLocation &LocA, |
| 584 | const MemoryLocation &LocB) { |
| 585 | if (LocA.Ptr == LocB.Ptr) |
| 586 | return LocA.Size == LocB.Size ? MustAlias : PartialAlias; |
| 587 | |
| 588 | // Comparisons between global variables and other constants should be |
| 589 | // handled by BasicAA. |
| 590 | // CFLAndersAA may report NoAlias when comparing a GlobalValue and |
| 591 | // ConstantExpr, but every query needs to have at least one Value tied to a |
| 592 | // Function, and neither GlobalValues nor ConstantExprs are. |
| 593 | if (isa<Constant>(LocA.Ptr) && isa<Constant>(LocB.Ptr)) |
| 594 | return AAResultBase::alias(LocA, LocB); |
| 595 | |
| 596 | AliasResult QueryResult = query(LocA, LocB); |
| 597 | if (QueryResult == MayAlias) |
| 598 | return AAResultBase::alias(LocA, LocB); |
| 599 | |
| 600 | return QueryResult; |
| 601 | } |
George Burgess IV | bfa401e | 2016-07-06 00:26:41 +0000 | [diff] [blame] | 602 | |
| 603 | char CFLAndersAA::PassID; |
| 604 | |
| 605 | CFLAndersAAResult CFLAndersAA::run(Function &F, AnalysisManager<Function> &AM) { |
George Burgess IV | 6d30aa0 | 2016-07-15 19:53:25 +0000 | [diff] [blame] | 606 | return CFLAndersAAResult(AM.getResult<TargetLibraryAnalysis>(F)); |
George Burgess IV | bfa401e | 2016-07-06 00:26:41 +0000 | [diff] [blame] | 607 | } |
| 608 | |
| 609 | char CFLAndersAAWrapperPass::ID = 0; |
| 610 | INITIALIZE_PASS(CFLAndersAAWrapperPass, "cfl-anders-aa", |
| 611 | "Inclusion-Based CFL Alias Analysis", false, true) |
| 612 | |
| 613 | ImmutablePass *llvm::createCFLAndersAAWrapperPass() { |
| 614 | return new CFLAndersAAWrapperPass(); |
| 615 | } |
| 616 | |
| 617 | CFLAndersAAWrapperPass::CFLAndersAAWrapperPass() : ImmutablePass(ID) { |
| 618 | initializeCFLAndersAAWrapperPassPass(*PassRegistry::getPassRegistry()); |
| 619 | } |
| 620 | |
George Burgess IV | 6d30aa0 | 2016-07-15 19:53:25 +0000 | [diff] [blame] | 621 | void CFLAndersAAWrapperPass::initializePass() { |
| 622 | auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>(); |
| 623 | Result.reset(new CFLAndersAAResult(TLIWP.getTLI())); |
| 624 | } |
George Burgess IV | bfa401e | 2016-07-06 00:26:41 +0000 | [diff] [blame] | 625 | |
| 626 | void CFLAndersAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { |
| 627 | AU.setPreservesAll(); |
George Burgess IV | 6d30aa0 | 2016-07-15 19:53:25 +0000 | [diff] [blame] | 628 | AU.addRequired<TargetLibraryInfoWrapperPass>(); |
George Burgess IV | bfa401e | 2016-07-06 00:26:41 +0000 | [diff] [blame] | 629 | } |