George Burgess IV | bfa401e | 2016-07-06 00:26:41 +0000 | [diff] [blame] | 1 | //- CFLAndersAliasAnalysis.cpp - Unification-based Alias Analysis ---*- C++-*-// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file implements a CFL-based, summary-based alias analysis algorithm. It |
| 11 | // differs from CFLSteensAliasAnalysis in its inclusion-based nature while |
| 12 | // CFLSteensAliasAnalysis is unification-based. This pass has worse performance |
| 13 | // than CFLSteensAliasAnalysis (the worst case complexity of |
| 14 | // CFLAndersAliasAnalysis is cubic, while the worst case complexity of |
| 15 | // CFLSteensAliasAnalysis is almost linear), but it is able to yield more |
| 16 | // precise analysis result. The precision of this analysis is roughly the same |
| 17 | // as that of an one level context-sensitive Andersen's algorithm. |
| 18 | // |
George Burgess IV | 6d30aa0 | 2016-07-15 19:53:25 +0000 | [diff] [blame^] | 19 | // The algorithm used here is based on recursive state machine matching scheme |
| 20 | // proposed in "Demand-driven alias analysis for C" by Xin Zheng and Radu |
| 21 | // Rugina. The general idea is to extend the tranditional transitive closure |
| 22 | // algorithm to perform CFL matching along the way: instead of recording |
| 23 | // "whether X is reachable from Y", we keep track of "whether X is reachable |
| 24 | // from Y at state Z", where the "state" field indicates where we are in the CFL |
| 25 | // matching process. To understand the matching better, it is advisable to have |
| 26 | // the state machine shown in Figure 3 of the paper available when reading the |
| 27 | // codes: all we do here is to selectively expand the transitive closure by |
| 28 | // discarding edges that are not recognized by the state machine. |
| 29 | // |
| 30 | // There is one difference between our current implementation and the one |
| 31 | // described in the paper: out algorithm eagerly computes all alias pairs after |
| 32 | // the CFLGraph is built, while in the paper the authors did the computation in |
| 33 | // a demand-driven fashion. We did not implement the demand-driven algorithm due |
| 34 | // to the additional coding complexity and higher memory profile, but if we |
| 35 | // found it necessary we may switch to it eventually. |
| 36 | // |
George Burgess IV | bfa401e | 2016-07-06 00:26:41 +0000 | [diff] [blame] | 37 | //===----------------------------------------------------------------------===// |
| 38 | |
| 39 | // N.B. AliasAnalysis as a whole is phrased as a FunctionPass at the moment, and |
| 40 | // CFLAndersAA is interprocedural. This is *technically* A Bad Thing, because |
| 41 | // FunctionPasses are only allowed to inspect the Function that they're being |
| 42 | // run on. Realistically, this likely isn't a problem until we allow |
| 43 | // FunctionPasses to run concurrently. |
| 44 | |
| 45 | #include "llvm/Analysis/CFLAndersAliasAnalysis.h" |
George Burgess IV | 1ca8aff | 2016-07-06 00:36:12 +0000 | [diff] [blame] | 46 | #include "CFLGraph.h" |
George Burgess IV | 6d30aa0 | 2016-07-15 19:53:25 +0000 | [diff] [blame^] | 47 | #include "llvm/ADT/DenseSet.h" |
George Burgess IV | bfa401e | 2016-07-06 00:26:41 +0000 | [diff] [blame] | 48 | #include "llvm/Pass.h" |
| 49 | |
| 50 | using namespace llvm; |
George Burgess IV | 1ca8aff | 2016-07-06 00:36:12 +0000 | [diff] [blame] | 51 | using namespace llvm::cflaa; |
George Burgess IV | bfa401e | 2016-07-06 00:26:41 +0000 | [diff] [blame] | 52 | |
| 53 | #define DEBUG_TYPE "cfl-anders-aa" |
| 54 | |
George Burgess IV | 6d30aa0 | 2016-07-15 19:53:25 +0000 | [diff] [blame^] | 55 | CFLAndersAAResult::CFLAndersAAResult(const TargetLibraryInfo &TLI) : TLI(TLI) {} |
| 56 | CFLAndersAAResult::CFLAndersAAResult(CFLAndersAAResult &&RHS) |
| 57 | : AAResultBase(std::move(RHS)), TLI(RHS.TLI) {} |
| 58 | CFLAndersAAResult::~CFLAndersAAResult() {} |
| 59 | |
| 60 | static const Function *parentFunctionOfValue(const Value *Val) { |
| 61 | if (auto *Inst = dyn_cast<Instruction>(Val)) { |
| 62 | auto *Bb = Inst->getParent(); |
| 63 | return Bb->getParent(); |
| 64 | } |
| 65 | |
| 66 | if (auto *Arg = dyn_cast<Argument>(Val)) |
| 67 | return Arg->getParent(); |
| 68 | return nullptr; |
| 69 | } |
| 70 | |
| 71 | namespace { |
| 72 | |
| 73 | enum class MatchState : uint8_t { |
| 74 | FlowFrom = 0, // S1 in the paper |
| 75 | FlowFromMemAlias, // S2 in the paper |
| 76 | FlowTo, // S3 in the paper |
| 77 | FlowToMemAlias // S4 in the paper |
| 78 | }; |
| 79 | |
| 80 | // We use ReachabilitySet to keep track of value aliases (The nonterminal "V" in |
| 81 | // the paper) during the analysis. |
| 82 | class ReachabilitySet { |
| 83 | typedef std::bitset<4> StateSet; |
| 84 | typedef DenseMap<InstantiatedValue, StateSet> ValueStateMap; |
| 85 | typedef DenseMap<InstantiatedValue, ValueStateMap> ValueReachMap; |
| 86 | ValueReachMap ReachMap; |
| 87 | |
| 88 | public: |
| 89 | typedef ValueStateMap::const_iterator const_valuestate_iterator; |
| 90 | typedef ValueReachMap::const_iterator const_value_iterator; |
| 91 | |
| 92 | // Insert edge 'From->To' at state 'State' |
| 93 | bool insert(InstantiatedValue From, InstantiatedValue To, MatchState State) { |
| 94 | auto &States = ReachMap[To][From]; |
| 95 | auto Idx = static_cast<size_t>(State); |
| 96 | if (!States.test(Idx)) { |
| 97 | States.set(Idx); |
| 98 | return true; |
| 99 | } |
| 100 | return false; |
| 101 | } |
| 102 | |
| 103 | // Return the set of all ('From', 'State') pair for a given node 'To' |
| 104 | iterator_range<const_valuestate_iterator> |
| 105 | reachableValueAliases(InstantiatedValue V) const { |
| 106 | auto Itr = ReachMap.find(V); |
| 107 | if (Itr == ReachMap.end()) |
| 108 | return make_range<const_valuestate_iterator>(const_valuestate_iterator(), |
| 109 | const_valuestate_iterator()); |
| 110 | return make_range<const_valuestate_iterator>(Itr->second.begin(), |
| 111 | Itr->second.end()); |
| 112 | } |
| 113 | |
| 114 | iterator_range<const_value_iterator> value_mappings() const { |
| 115 | return make_range<const_value_iterator>(ReachMap.begin(), ReachMap.end()); |
| 116 | } |
| 117 | }; |
| 118 | |
| 119 | // We use AliasMemSet to keep track of all memory aliases (the nonterminal "M" |
| 120 | // in the paper) during the analysis. |
| 121 | class AliasMemSet { |
| 122 | typedef DenseSet<InstantiatedValue> MemSet; |
| 123 | typedef DenseMap<InstantiatedValue, MemSet> MemMapType; |
| 124 | MemMapType MemMap; |
| 125 | |
| 126 | public: |
| 127 | typedef MemSet::const_iterator const_mem_iterator; |
| 128 | |
| 129 | bool insert(InstantiatedValue LHS, InstantiatedValue RHS) { |
| 130 | // Top-level values can never be memory aliases because one cannot take the |
| 131 | // addresses of them |
| 132 | assert(LHS.DerefLevel > 0 && RHS.DerefLevel > 0); |
| 133 | return MemMap[LHS].insert(RHS).second; |
| 134 | } |
| 135 | |
| 136 | const MemSet *getMemoryAliases(InstantiatedValue V) const { |
| 137 | auto Itr = MemMap.find(V); |
| 138 | if (Itr == MemMap.end()) |
| 139 | return nullptr; |
| 140 | return &Itr->second; |
| 141 | } |
| 142 | }; |
| 143 | |
| 144 | struct WorkListItem { |
| 145 | InstantiatedValue From; |
| 146 | InstantiatedValue To; |
| 147 | MatchState State; |
| 148 | }; |
| 149 | } |
| 150 | |
| 151 | class CFLAndersAAResult::FunctionInfo { |
| 152 | /// Map a value to other values that may alias it |
| 153 | /// Since the alias relation is symmetric, to save some space we assume values |
| 154 | /// are properly ordered: if a and b alias each other, and a < b, then b is in |
| 155 | /// AliasMap[a] but not vice versa. |
| 156 | DenseMap<const Value *, std::vector<const Value *>> AliasMap; |
| 157 | |
| 158 | /// Summary of externally visible effects. |
| 159 | AliasSummary Summary; |
| 160 | |
| 161 | public: |
| 162 | FunctionInfo(const ReachabilitySet &); |
| 163 | |
| 164 | bool mayAlias(const Value *LHS, const Value *RHS) const; |
| 165 | const AliasSummary &getAliasSummary() const { return Summary; } |
| 166 | }; |
| 167 | |
| 168 | CFLAndersAAResult::FunctionInfo::FunctionInfo(const ReachabilitySet &ReachSet) { |
| 169 | for (const auto &OuterMapping : ReachSet.value_mappings()) { |
| 170 | // AliasMap only cares about top-level values |
| 171 | if (OuterMapping.first.DerefLevel > 0) |
| 172 | continue; |
| 173 | |
| 174 | auto Val = OuterMapping.first.Val; |
| 175 | auto &AliasList = AliasMap[Val]; |
| 176 | for (const auto &InnerMapping : OuterMapping.second) { |
| 177 | // Again, AliasMap only cares about top-level values |
| 178 | if (InnerMapping.first.DerefLevel == 0) |
| 179 | AliasList.push_back(InnerMapping.first.Val); |
| 180 | } |
| 181 | |
| 182 | // Sort AliasList for faster lookup |
| 183 | std::sort(AliasList.begin(), AliasList.end(), std::less<const Value *>()); |
| 184 | } |
| 185 | |
| 186 | // TODO: Populate function summary here |
| 187 | } |
| 188 | |
| 189 | bool CFLAndersAAResult::FunctionInfo::mayAlias(const Value *LHS, |
| 190 | const Value *RHS) const { |
| 191 | assert(LHS && RHS); |
| 192 | |
| 193 | auto Itr = AliasMap.find(LHS); |
| 194 | if (Itr == AliasMap.end()) |
| 195 | return false; |
| 196 | |
| 197 | // TODO: Check AliasAttrs before drawing any conclusions |
| 198 | |
| 199 | return std::binary_search(Itr->second.begin(), Itr->second.end(), RHS, |
| 200 | std::less<const Value *>()); |
| 201 | } |
| 202 | |
| 203 | static void propagate(InstantiatedValue From, InstantiatedValue To, |
| 204 | MatchState State, ReachabilitySet &ReachSet, |
| 205 | std::vector<WorkListItem> &WorkList) { |
| 206 | if (From == To) |
| 207 | return; |
| 208 | if (ReachSet.insert(From, To, State)) |
| 209 | WorkList.push_back(WorkListItem{From, To, State}); |
| 210 | } |
| 211 | |
| 212 | static void initializeWorkList(std::vector<WorkListItem> &WorkList, |
| 213 | ReachabilitySet &ReachSet, |
| 214 | const CFLGraph &Graph) { |
| 215 | for (const auto &Mapping : Graph.value_mappings()) { |
| 216 | auto Val = Mapping.first; |
| 217 | auto &ValueInfo = Mapping.second; |
| 218 | assert(ValueInfo.getNumLevels() > 0); |
| 219 | |
| 220 | // Insert all immediate assignment neighbors to the worklist |
| 221 | for (unsigned I = 0, E = ValueInfo.getNumLevels(); I < E; ++I) { |
| 222 | auto Src = InstantiatedValue{Val, I}; |
| 223 | // If there's an assignment edge from X to Y, it means Y is reachable from |
| 224 | // X at S2 and X is reachable from Y at S1 |
| 225 | for (auto &Edge : ValueInfo.getNodeInfoAtLevel(I).Edges) { |
| 226 | propagate(Edge.Other, Src, MatchState::FlowFrom, ReachSet, WorkList); |
| 227 | propagate(Src, Edge.Other, MatchState::FlowTo, ReachSet, WorkList); |
| 228 | } |
| 229 | } |
| 230 | } |
| 231 | } |
| 232 | |
| 233 | static Optional<InstantiatedValue> getNodeBelow(const CFLGraph &Graph, |
| 234 | InstantiatedValue V) { |
| 235 | auto NodeBelow = InstantiatedValue{V.Val, V.DerefLevel + 1}; |
| 236 | if (Graph.getNode(NodeBelow)) |
| 237 | return NodeBelow; |
| 238 | return None; |
| 239 | } |
| 240 | |
| 241 | static void processWorkListItem(const WorkListItem &Item, const CFLGraph &Graph, |
| 242 | ReachabilitySet &ReachSet, AliasMemSet &MemSet, |
| 243 | std::vector<WorkListItem> &WorkList) { |
| 244 | auto FromNode = Item.From; |
| 245 | auto ToNode = Item.To; |
| 246 | |
| 247 | auto NodeInfo = Graph.getNode(ToNode); |
| 248 | assert(NodeInfo != nullptr); |
| 249 | |
| 250 | // TODO: propagate AliasAttr as well |
| 251 | // TODO: propagate field offsets |
| 252 | |
| 253 | // FIXME: Here is a neat trick we can do: since both ReachSet and MemSet holds |
| 254 | // relations that are symmetric, we could actually cut the storage by half by |
| 255 | // sorting FromNode and ToNode before insertion happens. |
| 256 | |
| 257 | // The newly added value alias pair may pontentially generate more memory |
| 258 | // alias pairs. Check for them here. |
| 259 | auto FromNodeBelow = getNodeBelow(Graph, FromNode); |
| 260 | auto ToNodeBelow = getNodeBelow(Graph, ToNode); |
| 261 | if (FromNodeBelow && ToNodeBelow && |
| 262 | MemSet.insert(*FromNodeBelow, *ToNodeBelow)) { |
| 263 | propagate(*FromNodeBelow, *ToNodeBelow, MatchState::FlowFromMemAlias, |
| 264 | ReachSet, WorkList); |
| 265 | for (const auto &Mapping : ReachSet.reachableValueAliases(*FromNodeBelow)) { |
| 266 | auto Src = Mapping.first; |
| 267 | if (Mapping.second.test(static_cast<size_t>(MatchState::FlowFrom))) |
| 268 | propagate(Src, *ToNodeBelow, MatchState::FlowFromMemAlias, ReachSet, |
| 269 | WorkList); |
| 270 | if (Mapping.second.test(static_cast<size_t>(MatchState::FlowTo))) |
| 271 | propagate(Src, *ToNodeBelow, MatchState::FlowToMemAlias, ReachSet, |
| 272 | WorkList); |
| 273 | } |
| 274 | } |
| 275 | |
| 276 | // This is the core of the state machine walking algorithm. We expand ReachSet |
| 277 | // based on which state we are at (which in turn dictates what edges we |
| 278 | // should examine) |
| 279 | // From a high-level point of view, the state machine here guarantees two |
| 280 | // properties: |
| 281 | // - If *X and *Y are memory aliases, then X and Y are value aliases |
| 282 | // - If Y is an alias of X, then reverse assignment edges (if there is any) |
| 283 | // should precede any assignment edges on the path from X to Y. |
| 284 | switch (Item.State) { |
| 285 | case MatchState::FlowFrom: { |
| 286 | for (const auto &RevAssignEdge : NodeInfo->ReverseEdges) |
| 287 | propagate(FromNode, RevAssignEdge.Other, MatchState::FlowFrom, ReachSet, |
| 288 | WorkList); |
| 289 | for (const auto &AssignEdge : NodeInfo->Edges) |
| 290 | propagate(FromNode, AssignEdge.Other, MatchState::FlowTo, ReachSet, |
| 291 | WorkList); |
| 292 | if (auto AliasSet = MemSet.getMemoryAliases(ToNode)) { |
| 293 | for (const auto &MemAlias : *AliasSet) |
| 294 | propagate(FromNode, MemAlias, MatchState::FlowFromMemAlias, ReachSet, |
| 295 | WorkList); |
| 296 | } |
| 297 | break; |
| 298 | } |
| 299 | case MatchState::FlowFromMemAlias: { |
| 300 | for (const auto &RevAssignEdge : NodeInfo->ReverseEdges) |
| 301 | propagate(FromNode, RevAssignEdge.Other, MatchState::FlowFrom, ReachSet, |
| 302 | WorkList); |
| 303 | for (const auto &AssignEdge : NodeInfo->Edges) |
| 304 | propagate(FromNode, AssignEdge.Other, MatchState::FlowTo, ReachSet, |
| 305 | WorkList); |
| 306 | break; |
| 307 | } |
| 308 | case MatchState::FlowTo: { |
| 309 | for (const auto &AssignEdge : NodeInfo->Edges) |
| 310 | propagate(FromNode, AssignEdge.Other, MatchState::FlowTo, ReachSet, |
| 311 | WorkList); |
| 312 | if (auto AliasSet = MemSet.getMemoryAliases(ToNode)) { |
| 313 | for (const auto &MemAlias : *AliasSet) |
| 314 | propagate(FromNode, MemAlias, MatchState::FlowToMemAlias, ReachSet, |
| 315 | WorkList); |
| 316 | } |
| 317 | break; |
| 318 | } |
| 319 | case MatchState::FlowToMemAlias: { |
| 320 | for (const auto &AssignEdge : NodeInfo->Edges) |
| 321 | propagate(FromNode, AssignEdge.Other, MatchState::FlowTo, ReachSet, |
| 322 | WorkList); |
| 323 | break; |
| 324 | } |
| 325 | } |
| 326 | } |
| 327 | |
| 328 | CFLAndersAAResult::FunctionInfo |
| 329 | CFLAndersAAResult::buildInfoFrom(const Function &Fn) { |
| 330 | CFLGraphBuilder<CFLAndersAAResult> GraphBuilder( |
| 331 | *this, TLI, |
| 332 | // Cast away the constness here due to GraphBuilder's API requirement |
| 333 | const_cast<Function &>(Fn)); |
| 334 | auto &Graph = GraphBuilder.getCFLGraph(); |
| 335 | |
| 336 | ReachabilitySet ReachSet; |
| 337 | AliasMemSet MemSet; |
| 338 | |
| 339 | std::vector<WorkListItem> WorkList, NextList; |
| 340 | initializeWorkList(WorkList, ReachSet, Graph); |
| 341 | // TODO: make sure we don't stop before the fix point is reached |
| 342 | while (!WorkList.empty()) { |
| 343 | for (const auto &Item : WorkList) |
| 344 | processWorkListItem(Item, Graph, ReachSet, MemSet, NextList); |
| 345 | |
| 346 | NextList.swap(WorkList); |
| 347 | NextList.clear(); |
| 348 | } |
| 349 | |
| 350 | return FunctionInfo(ReachSet); |
| 351 | } |
| 352 | |
| 353 | void CFLAndersAAResult::scan(const Function &Fn) { |
| 354 | auto InsertPair = Cache.insert(std::make_pair(&Fn, Optional<FunctionInfo>())); |
| 355 | (void)InsertPair; |
| 356 | assert(InsertPair.second && |
| 357 | "Trying to scan a function that has already been cached"); |
| 358 | |
| 359 | // Note that we can't do Cache[Fn] = buildSetsFrom(Fn) here: the function call |
| 360 | // may get evaluated after operator[], potentially triggering a DenseMap |
| 361 | // resize and invalidating the reference returned by operator[] |
| 362 | auto FunInfo = buildInfoFrom(Fn); |
| 363 | Cache[&Fn] = std::move(FunInfo); |
| 364 | Handles.push_front(FunctionHandle(const_cast<Function *>(&Fn), this)); |
| 365 | } |
| 366 | |
| 367 | void CFLAndersAAResult::evict(const Function &Fn) { Cache.erase(&Fn); } |
| 368 | |
| 369 | const Optional<CFLAndersAAResult::FunctionInfo> & |
| 370 | CFLAndersAAResult::ensureCached(const Function &Fn) { |
| 371 | auto Iter = Cache.find(&Fn); |
| 372 | if (Iter == Cache.end()) { |
| 373 | scan(Fn); |
| 374 | Iter = Cache.find(&Fn); |
| 375 | assert(Iter != Cache.end()); |
| 376 | assert(Iter->second.hasValue()); |
| 377 | } |
| 378 | return Iter->second; |
| 379 | } |
| 380 | |
| 381 | const AliasSummary *CFLAndersAAResult::getAliasSummary(const Function &Fn) { |
| 382 | auto &FunInfo = ensureCached(Fn); |
| 383 | if (FunInfo.hasValue()) |
| 384 | return &FunInfo->getAliasSummary(); |
| 385 | else |
| 386 | return nullptr; |
| 387 | } |
| 388 | |
| 389 | AliasResult CFLAndersAAResult::query(const MemoryLocation &LocA, |
| 390 | const MemoryLocation &LocB) { |
| 391 | auto *ValA = LocA.Ptr; |
| 392 | auto *ValB = LocB.Ptr; |
| 393 | |
| 394 | if (!ValA->getType()->isPointerTy() || !ValB->getType()->isPointerTy()) |
| 395 | return NoAlias; |
| 396 | |
| 397 | auto *Fn = parentFunctionOfValue(ValA); |
| 398 | if (!Fn) { |
| 399 | Fn = parentFunctionOfValue(ValB); |
| 400 | if (!Fn) { |
| 401 | // The only times this is known to happen are when globals + InlineAsm are |
| 402 | // involved |
| 403 | DEBUG(dbgs() |
| 404 | << "CFLAndersAA: could not extract parent function information.\n"); |
| 405 | return MayAlias; |
| 406 | } |
| 407 | } else { |
| 408 | assert(!parentFunctionOfValue(ValB) || parentFunctionOfValue(ValB) == Fn); |
| 409 | } |
| 410 | |
| 411 | assert(Fn != nullptr); |
| 412 | auto &FunInfo = ensureCached(*Fn); |
| 413 | |
| 414 | // AliasMap lookup |
| 415 | if (FunInfo->mayAlias(ValA, ValB)) |
| 416 | return MayAlias; |
| 417 | return NoAlias; |
| 418 | } |
| 419 | |
| 420 | AliasResult CFLAndersAAResult::alias(const MemoryLocation &LocA, |
| 421 | const MemoryLocation &LocB) { |
| 422 | if (LocA.Ptr == LocB.Ptr) |
| 423 | return LocA.Size == LocB.Size ? MustAlias : PartialAlias; |
| 424 | |
| 425 | // Comparisons between global variables and other constants should be |
| 426 | // handled by BasicAA. |
| 427 | // CFLAndersAA may report NoAlias when comparing a GlobalValue and |
| 428 | // ConstantExpr, but every query needs to have at least one Value tied to a |
| 429 | // Function, and neither GlobalValues nor ConstantExprs are. |
| 430 | if (isa<Constant>(LocA.Ptr) && isa<Constant>(LocB.Ptr)) |
| 431 | return AAResultBase::alias(LocA, LocB); |
| 432 | |
| 433 | AliasResult QueryResult = query(LocA, LocB); |
| 434 | if (QueryResult == MayAlias) |
| 435 | return AAResultBase::alias(LocA, LocB); |
| 436 | |
| 437 | return QueryResult; |
| 438 | } |
George Burgess IV | bfa401e | 2016-07-06 00:26:41 +0000 | [diff] [blame] | 439 | |
| 440 | char CFLAndersAA::PassID; |
| 441 | |
| 442 | CFLAndersAAResult CFLAndersAA::run(Function &F, AnalysisManager<Function> &AM) { |
George Burgess IV | 6d30aa0 | 2016-07-15 19:53:25 +0000 | [diff] [blame^] | 443 | return CFLAndersAAResult(AM.getResult<TargetLibraryAnalysis>(F)); |
George Burgess IV | bfa401e | 2016-07-06 00:26:41 +0000 | [diff] [blame] | 444 | } |
| 445 | |
| 446 | char CFLAndersAAWrapperPass::ID = 0; |
| 447 | INITIALIZE_PASS(CFLAndersAAWrapperPass, "cfl-anders-aa", |
| 448 | "Inclusion-Based CFL Alias Analysis", false, true) |
| 449 | |
| 450 | ImmutablePass *llvm::createCFLAndersAAWrapperPass() { |
| 451 | return new CFLAndersAAWrapperPass(); |
| 452 | } |
| 453 | |
| 454 | CFLAndersAAWrapperPass::CFLAndersAAWrapperPass() : ImmutablePass(ID) { |
| 455 | initializeCFLAndersAAWrapperPassPass(*PassRegistry::getPassRegistry()); |
| 456 | } |
| 457 | |
George Burgess IV | 6d30aa0 | 2016-07-15 19:53:25 +0000 | [diff] [blame^] | 458 | void CFLAndersAAWrapperPass::initializePass() { |
| 459 | auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>(); |
| 460 | Result.reset(new CFLAndersAAResult(TLIWP.getTLI())); |
| 461 | } |
George Burgess IV | bfa401e | 2016-07-06 00:26:41 +0000 | [diff] [blame] | 462 | |
| 463 | void CFLAndersAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { |
| 464 | AU.setPreservesAll(); |
George Burgess IV | 6d30aa0 | 2016-07-15 19:53:25 +0000 | [diff] [blame^] | 465 | AU.addRequired<TargetLibraryInfoWrapperPass>(); |
George Burgess IV | bfa401e | 2016-07-06 00:26:41 +0000 | [diff] [blame] | 466 | } |