blob: 4b805048226fd66ff9fe9cf1b58a6055933edbf2 [file] [log] [blame]
Alexey Samsonov3b2f9f42012-06-04 13:55:19 +00001//===-- tsan_rtl.cc -------------------------------------------------------===//
Kostya Serebryany4ad375f2012-05-10 13:48:04 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file is a part of ThreadSanitizer (TSan), a race detector.
11//
12// Main file (entry points) for the TSan run-time.
13//===----------------------------------------------------------------------===//
14
Kostya Serebryanyc5bea202012-05-31 13:42:53 +000015#include "sanitizer_common/sanitizer_libc.h"
Kostya Serebryany4ad375f2012-05-10 13:48:04 +000016#include "tsan_defs.h"
17#include "tsan_platform.h"
18#include "tsan_rtl.h"
19#include "tsan_interface.h"
20#include "tsan_atomic.h"
21#include "tsan_mman.h"
22#include "tsan_placement_new.h"
23#include "tsan_suppressions.h"
24
Dmitry Vyukov302cebb2012-05-22 18:07:45 +000025volatile int __tsan_resumed = 0;
Kostya Serebryany4ad375f2012-05-10 13:48:04 +000026
27extern "C" void __tsan_resume() {
Dmitry Vyukov302cebb2012-05-22 18:07:45 +000028 __tsan_resumed = 1;
Kostya Serebryany4ad375f2012-05-10 13:48:04 +000029}
30
31namespace __tsan {
Kostya Serebryany458b4002012-05-29 12:18:18 +000032using namespace __sanitizer;
Kostya Serebryany4ad375f2012-05-10 13:48:04 +000033
34THREADLOCAL char cur_thread_placeholder[sizeof(ThreadState)] ALIGN(64);
35static char ctx_placeholder[sizeof(Context)] ALIGN(64);
36
37static Context *ctx;
38Context *CTX() {
39 return ctx;
40}
41
42Context::Context()
43 : initialized()
44 , report_mtx(MutexTypeReport, StatMtxReport)
45 , nreported()
46 , nmissed_expected()
47 , thread_mtx(MutexTypeThreads, StatMtxThreads)
48 , racy_stacks(MBlockRacyStacks)
49 , racy_addresses(MBlockRacyAddresses) {
50}
51
52// The objects are allocated in TLS, so one may rely on zero-initialization.
53ThreadState::ThreadState(Context *ctx, int tid, u64 epoch,
54 uptr stk_addr, uptr stk_size,
55 uptr tls_addr, uptr tls_size)
56 : fast_state(tid, epoch)
57 // Do not touch these, rely on zero initialization,
58 // they may be accessed before the ctor.
59 // , fast_ignore_reads()
60 // , fast_ignore_writes()
61 // , in_rtl()
62 , shadow_stack_pos(&shadow_stack[0])
63 , tid(tid)
Kostya Serebryany4ad375f2012-05-10 13:48:04 +000064 , stk_addr(stk_addr)
65 , stk_size(stk_size)
66 , tls_addr(tls_addr)
67 , tls_size(tls_size) {
68}
69
70ThreadContext::ThreadContext(int tid)
71 : tid(tid)
72 , unique_id()
73 , user_id()
74 , thr()
75 , status(ThreadStatusInvalid)
76 , detached()
77 , reuse_count()
78 , epoch0()
79 , epoch1()
Dmitry Vyukovf6985e32012-05-22 14:34:43 +000080 , dead_info()
Kostya Serebryany4ad375f2012-05-10 13:48:04 +000081 , dead_next() {
82}
83
Dmitry Vyukov15710c92012-05-22 11:33:03 +000084static void WriteMemoryProfile(char *buf, uptr buf_size, int num) {
85 uptr shadow = GetShadowMemoryConsumption();
86
87 int nthread = 0;
88 int nlivethread = 0;
89 uptr threadmem = 0;
90 {
91 Lock l(&ctx->thread_mtx);
92 for (unsigned i = 0; i < kMaxTid; i++) {
93 ThreadContext *tctx = ctx->threads[i];
94 if (tctx == 0)
95 continue;
96 nthread += 1;
97 threadmem += sizeof(ThreadContext);
98 if (tctx->status != ThreadStatusRunning)
99 continue;
100 nlivethread += 1;
101 threadmem += sizeof(ThreadState);
102 }
103 }
104
105 uptr nsync = 0;
106 uptr syncmem = CTX()->synctab.GetMemoryConsumption(&nsync);
107
108 Snprintf(buf, buf_size, "%d: shadow=%luMB"
109 " thread=%luMB(total=%d/live=%d)"
110 " sync=%luMB(cnt=%lu)\n",
111 num,
112 shadow >> 20,
113 threadmem >> 20, nthread, nlivethread,
114 syncmem >> 20, nsync);
115}
116
117static void MemoryProfileThread(void *arg) {
118 ScopedInRtl in_rtl;
119 fd_t fd = (fd_t)(uptr)arg;
120 for (int i = 0; ; i++) {
121 InternalScopedBuf<char> buf(4096);
122 WriteMemoryProfile(buf.Ptr(), buf.Size(), i);
123 internal_write(fd, buf.Ptr(), internal_strlen(buf.Ptr()));
124 internal_sleep_ms(1000);
125 }
126}
127
128static void InitializeMemoryProfile() {
129 if (flags()->profile_memory == 0 || flags()->profile_memory[0] == 0)
130 return;
131 InternalScopedBuf<char> filename(4096);
132 Snprintf(filename.Ptr(), filename.Size(), "%s.%d",
133 flags()->profile_memory, GetPid());
134 fd_t fd = internal_open(filename.Ptr(), true);
135 if (fd == kInvalidFd) {
136 Printf("Failed to open memory profile file '%s'\n", &filename[0]);
137 Die();
138 }
139 internal_start_thread(&MemoryProfileThread, (void*)(uptr)fd);
140}
141
Dmitry Vyukov302cebb2012-05-22 18:07:45 +0000142static void MemoryFlushThread(void *arg) {
143 ScopedInRtl in_rtl;
144 for (int i = 0; ; i++) {
145 internal_sleep_ms(flags()->flush_memory_ms);
146 FlushShadowMemory();
147 }
148}
149
150static void InitializeMemoryFlush() {
151 if (flags()->flush_memory_ms == 0)
152 return;
153 if (flags()->flush_memory_ms < 100)
154 flags()->flush_memory_ms = 100;
155 internal_start_thread(&MemoryFlushThread, 0);
156}
157
Kostya Serebryany4ad375f2012-05-10 13:48:04 +0000158void Initialize(ThreadState *thr) {
Kostya Serebryany458b4002012-05-29 12:18:18 +0000159 MiniLibcStub();
Kostya Serebryany4ad375f2012-05-10 13:48:04 +0000160 // Thread safe because done before all threads exist.
161 static bool is_initialized = false;
162 if (is_initialized)
163 return;
164 is_initialized = true;
165 ScopedInRtl in_rtl;
166 InitializeInterceptors();
167 const char *env = InitializePlatform();
168 InitializeMutex();
169 InitializeDynamicAnnotations();
170 ctx = new(ctx_placeholder) Context;
171 InitializeShadowMemory();
172 ctx->dead_list_size = 0;
173 ctx->dead_list_head = 0;
174 ctx->dead_list_tail = 0;
175 InitializeFlags(&ctx->flags, env);
176 InitializeSuppressions();
Dmitry Vyukov15710c92012-05-22 11:33:03 +0000177 InitializeMemoryProfile();
Dmitry Vyukov302cebb2012-05-22 18:07:45 +0000178 InitializeMemoryFlush();
Kostya Serebryany4ad375f2012-05-10 13:48:04 +0000179
180 if (ctx->flags.verbosity)
Dmitry Vyukov302cebb2012-05-22 18:07:45 +0000181 Printf("***** Running under ThreadSanitizer v2 (pid %d) *****\n", GetPid());
Kostya Serebryany4ad375f2012-05-10 13:48:04 +0000182
183 // Initialize thread 0.
184 ctx->thread_seq = 0;
185 int tid = ThreadCreate(thr, 0, 0, true);
186 CHECK_EQ(tid, 0);
187 ThreadStart(thr, tid);
188 CHECK_EQ(thr->in_rtl, 1);
189 ctx->initialized = true;
190
Dmitry Vyukov302cebb2012-05-22 18:07:45 +0000191 if (flags()->stop_on_start) {
192 Printf("ThreadSanitizer is suspended at startup (pid %d)."
193 " Call __tsan_resume().\n",
194 GetPid());
195 while (__tsan_resumed == 0);
Kostya Serebryany4ad375f2012-05-10 13:48:04 +0000196 }
197}
198
199int Finalize(ThreadState *thr) {
200 ScopedInRtl in_rtl;
201 Context *ctx = __tsan::ctx;
202 bool failed = false;
203
Kostya Serebryany4ad375f2012-05-10 13:48:04 +0000204 ThreadFinalize(thr);
Kostya Serebryany4ad375f2012-05-10 13:48:04 +0000205
206 if (ctx->nreported) {
207 failed = true;
208 Printf("ThreadSanitizer: reported %d warnings\n", ctx->nreported);
209 }
210
211 if (ctx->nmissed_expected) {
212 failed = true;
213 Printf("ThreadSanitizer: missed %d expected races\n",
214 ctx->nmissed_expected);
215 }
216
217 StatOutput(ctx->stat);
Dmitry Vyukov19b855f2012-05-17 15:00:27 +0000218 return failed ? flags()->exitcode : 0;
Kostya Serebryany4ad375f2012-05-10 13:48:04 +0000219}
220
221static void TraceSwitch(ThreadState *thr) {
222 ScopedInRtl in_rtl;
223 Lock l(&thr->trace.mtx);
224 unsigned trace = (thr->fast_state.epoch() / kTracePartSize) % kTraceParts;
225 TraceHeader *hdr = &thr->trace.headers[trace];
226 hdr->epoch0 = thr->fast_state.epoch();
227 hdr->stack0.ObtainCurrent(thr, 0);
228}
229
230extern "C" void __tsan_trace_switch() {
231 TraceSwitch(cur_thread());
232}
233
234extern "C" void __tsan_report_race() {
235 ReportRace(cur_thread());
236}
237
238ALWAYS_INLINE
239static Shadow LoadShadow(u64 *p) {
240 u64 raw = atomic_load((atomic_uint64_t*)p, memory_order_relaxed);
241 return Shadow(raw);
242}
243
244ALWAYS_INLINE
245static void StoreShadow(u64 *sp, u64 s) {
246 atomic_store((atomic_uint64_t*)sp, s, memory_order_relaxed);
247}
248
249ALWAYS_INLINE
250static void StoreIfNotYetStored(u64 *sp, u64 *s) {
251 StoreShadow(sp, *s);
252 *s = 0;
253}
254
255static inline void HandleRace(ThreadState *thr, u64 *shadow_mem,
256 Shadow cur, Shadow old) {
257 thr->racy_state[0] = cur.raw();
258 thr->racy_state[1] = old.raw();
259 thr->racy_shadow_addr = shadow_mem;
260 HACKY_CALL(__tsan_report_race);
261}
262
263static inline bool BothReads(Shadow s, int kAccessIsWrite) {
264 return !kAccessIsWrite && !s.is_write();
265}
266
267static inline bool OldIsRWStronger(Shadow old, int kAccessIsWrite) {
268 return old.is_write() || !kAccessIsWrite;
269}
270
271static inline bool OldIsRWWeaker(Shadow old, int kAccessIsWrite) {
272 return !old.is_write() || kAccessIsWrite;
273}
274
275static inline bool OldIsInSameSynchEpoch(Shadow old, ThreadState *thr) {
276 return old.epoch() >= thr->fast_synch_epoch;
277}
278
279static inline bool HappensBefore(Shadow old, ThreadState *thr) {
280 return thr->clock.get(old.tid()) >= old.epoch();
281}
282
283ALWAYS_INLINE
284void MemoryAccessImpl(ThreadState *thr, uptr addr,
285 int kAccessSizeLog, bool kAccessIsWrite, FastState fast_state,
286 u64 *shadow_mem, Shadow cur) {
287 StatInc(thr, StatMop);
288 StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead);
289 StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog));
290
291 // This potentially can live in an MMX/SSE scratch register.
292 // The required intrinsics are:
293 // __m128i _mm_move_epi64(__m128i*);
294 // _mm_storel_epi64(u64*, __m128i);
295 u64 store_word = cur.raw();
296
297 // scan all the shadow values and dispatch to 4 categories:
298 // same, replace, candidate and race (see comments below).
299 // we consider only 3 cases regarding access sizes:
300 // equal, intersect and not intersect. initially I considered
301 // larger and smaller as well, it allowed to replace some
302 // 'candidates' with 'same' or 'replace', but I think
303 // it's just not worth it (performance- and complexity-wise).
304
305 Shadow old(0);
306 if (kShadowCnt == 1) {
307 int idx = 0;
308#include "tsan_update_shadow_word_inl.h"
309 } else if (kShadowCnt == 2) {
310 int idx = 0;
311#include "tsan_update_shadow_word_inl.h"
312 idx = 1;
313#include "tsan_update_shadow_word_inl.h"
314 } else if (kShadowCnt == 4) {
315 int idx = 0;
316#include "tsan_update_shadow_word_inl.h"
317 idx = 1;
318#include "tsan_update_shadow_word_inl.h"
319 idx = 2;
320#include "tsan_update_shadow_word_inl.h"
321 idx = 3;
322#include "tsan_update_shadow_word_inl.h"
323 } else if (kShadowCnt == 8) {
324 int idx = 0;
325#include "tsan_update_shadow_word_inl.h"
326 idx = 1;
327#include "tsan_update_shadow_word_inl.h"
328 idx = 2;
329#include "tsan_update_shadow_word_inl.h"
330 idx = 3;
331#include "tsan_update_shadow_word_inl.h"
332 idx = 4;
333#include "tsan_update_shadow_word_inl.h"
334 idx = 5;
335#include "tsan_update_shadow_word_inl.h"
336 idx = 6;
337#include "tsan_update_shadow_word_inl.h"
338 idx = 7;
339#include "tsan_update_shadow_word_inl.h"
340 } else {
341 CHECK(false);
342 }
343
344 // we did not find any races and had already stored
345 // the current access info, so we are done
346 if (LIKELY(store_word == 0))
347 return;
348 // choose a random candidate slot and replace it
349 StoreShadow(shadow_mem + (cur.epoch() % kShadowCnt), store_word);
350 StatInc(thr, StatShadowReplace);
351 return;
352 RACE:
353 HandleRace(thr, shadow_mem, cur, old);
354 return;
355}
356
357ALWAYS_INLINE
358void MemoryAccess(ThreadState *thr, uptr pc, uptr addr,
359 int kAccessSizeLog, bool kAccessIsWrite) {
360 u64 *shadow_mem = (u64*)MemToShadow(addr);
361 DPrintf2("#%d: tsan::OnMemoryAccess: @%p %p size=%d"
362 " is_write=%d shadow_mem=%p {%llx, %llx, %llx, %llx}\n",
363 (int)thr->fast_state.tid(), (void*)pc, (void*)addr,
364 (int)(1 << kAccessSizeLog), kAccessIsWrite, shadow_mem,
365 shadow_mem[0], shadow_mem[1], shadow_mem[2], shadow_mem[3]);
366#if TSAN_DEBUG
367 if (!IsAppMem(addr)) {
368 Printf("Access to non app mem %lx\n", addr);
369 DCHECK(IsAppMem(addr));
370 }
371 if (!IsShadowMem((uptr)shadow_mem)) {
372 Printf("Bad shadow addr %p (%lx)\n", shadow_mem, addr);
373 DCHECK(IsShadowMem((uptr)shadow_mem));
374 }
375#endif
376
377 FastState fast_state = thr->fast_state;
378 if (fast_state.GetIgnoreBit())
379 return;
380 fast_state.IncrementEpoch();
381 thr->fast_state = fast_state;
382 Shadow cur(fast_state);
383 cur.SetAddr0AndSizeLog(addr & 7, kAccessSizeLog);
384 cur.SetWrite(kAccessIsWrite);
385
386 // We must not store to the trace if we do not store to the shadow.
387 // That is, this call must be moved somewhere below.
388 TraceAddEvent(thr, fast_state.epoch(), EventTypeMop, pc);
389
390 MemoryAccessImpl(thr, addr, kAccessSizeLog, kAccessIsWrite, fast_state,
391 shadow_mem, cur);
392}
393
394static void MemoryRangeSet(ThreadState *thr, uptr pc, uptr addr, uptr size,
395 u64 val) {
396 if (size == 0)
397 return;
398 // FIXME: fix me.
399 uptr offset = addr % kShadowCell;
400 if (offset) {
401 offset = kShadowCell - offset;
402 if (size <= offset)
403 return;
404 addr += offset;
405 size -= offset;
406 }
407 CHECK_EQ(addr % 8, 0);
408 CHECK(IsAppMem(addr));
409 CHECK(IsAppMem(addr + size - 1));
410 (void)thr;
411 (void)pc;
412 // Some programs mmap like hundreds of GBs but actually used a small part.
413 // So, it's better to report a false positive on the memory
414 // then to hang here senselessly.
415 const uptr kMaxResetSize = 1024*1024*1024;
416 if (size > kMaxResetSize)
417 size = kMaxResetSize;
418 size = (size + 7) & ~7;
419 u64 *p = (u64*)MemToShadow(addr);
420 CHECK(IsShadowMem((uptr)p));
421 CHECK(IsShadowMem((uptr)(p + size * kShadowCnt / kShadowCell - 1)));
422 // FIXME: may overwrite a part outside the region
423 for (uptr i = 0; i < size * kShadowCnt / kShadowCell; i++)
424 p[i] = val;
425}
426
427void MemoryResetRange(ThreadState *thr, uptr pc, uptr addr, uptr size) {
428 MemoryRangeSet(thr, pc, addr, size, 0);
429}
430
431void MemoryRangeFreed(ThreadState *thr, uptr pc, uptr addr, uptr size) {
432 MemoryAccessRange(thr, pc, addr, size, true);
Dmitry Vyukovfee5b7d2012-05-17 14:17:51 +0000433 Shadow s(thr->fast_state);
434 s.MarkAsFreed();
435 s.SetWrite(true);
436 s.SetAddr0AndSizeLog(0, 3);
437 MemoryRangeSet(thr, pc, addr, size, s.raw());
Kostya Serebryany4ad375f2012-05-10 13:48:04 +0000438}
439
440void FuncEntry(ThreadState *thr, uptr pc) {
441 DCHECK_EQ(thr->in_rtl, 0);
442 StatInc(thr, StatFuncEnter);
443 DPrintf2("#%d: tsan::FuncEntry %p\n", (int)thr->fast_state.tid(), (void*)pc);
444 thr->fast_state.IncrementEpoch();
445 TraceAddEvent(thr, thr->fast_state.epoch(), EventTypeFuncEnter, pc);
446
447 // Shadow stack maintenance can be replaced with
448 // stack unwinding during trace switch (which presumably must be faster).
Dmitry Vyukov3de9ca02012-05-28 07:45:35 +0000449 DCHECK_GE(thr->shadow_stack_pos, &thr->shadow_stack[0]);
450 DCHECK_LT(thr->shadow_stack_pos, &thr->shadow_stack[kShadowStackSize]);
Kostya Serebryany4ad375f2012-05-10 13:48:04 +0000451 thr->shadow_stack_pos[0] = pc;
452 thr->shadow_stack_pos++;
Kostya Serebryany4ad375f2012-05-10 13:48:04 +0000453}
454
455void FuncExit(ThreadState *thr) {
456 DCHECK_EQ(thr->in_rtl, 0);
457 StatInc(thr, StatFuncExit);
458 DPrintf2("#%d: tsan::FuncExit\n", (int)thr->fast_state.tid());
459 thr->fast_state.IncrementEpoch();
460 TraceAddEvent(thr, thr->fast_state.epoch(), EventTypeFuncExit, 0);
461
Dmitry Vyukov3de9ca02012-05-28 07:45:35 +0000462 DCHECK_GT(thr->shadow_stack_pos, &thr->shadow_stack[0]);
463 DCHECK_LT(thr->shadow_stack_pos, &thr->shadow_stack[kShadowStackSize]);
Kostya Serebryany4ad375f2012-05-10 13:48:04 +0000464 thr->shadow_stack_pos--;
465}
466
467void IgnoreCtl(ThreadState *thr, bool write, bool begin) {
468 DPrintf("#%d: IgnoreCtl(%d, %d)\n", thr->tid, write, begin);
469 thr->ignore_reads_and_writes += begin ? 1 : -1;
470 CHECK_GE(thr->ignore_reads_and_writes, 0);
471 if (thr->ignore_reads_and_writes)
472 thr->fast_state.SetIgnoreBit();
473 else
474 thr->fast_state.ClearIgnoreBit();
475}
476
Kostya Serebryany4ad375f2012-05-10 13:48:04 +0000477#if TSAN_DEBUG
478void build_consistency_debug() {}
479#else
480void build_consistency_release() {}
481#endif
482
483#if TSAN_COLLECT_STATS
484void build_consistency_stats() {}
485#else
486void build_consistency_nostats() {}
487#endif
488
489#if TSAN_SHADOW_COUNT == 1
490void build_consistency_shadow1() {}
491#elif TSAN_SHADOW_COUNT == 2
492void build_consistency_shadow2() {}
493#elif TSAN_SHADOW_COUNT == 4
494void build_consistency_shadow4() {}
495#else
496void build_consistency_shadow8() {}
497#endif
498
499} // namespace __tsan
500
501// Must be included in this file to make sure everything is inlined.
502#include "tsan_interface_inl.h"