| Matthew Simpson | cb58558 | 2017-10-25 13:40:08 +0000 | [diff] [blame] | 1 | //===- CalledValuePropagation.cpp - Propagate called values -----*- C++ -*-===// |
| 2 | // |
| Chandler Carruth | 2946cd7 | 2019-01-19 08:50:56 +0000 | [diff] [blame] | 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| Matthew Simpson | cb58558 | 2017-10-25 13:40:08 +0000 | [diff] [blame] | 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements a transformation that attaches !callees metadata to |
| 10 | // indirect call sites. For a given call site, the metadata, if present, |
| 11 | // indicates the set of functions the call site could possibly target at |
| 12 | // run-time. This metadata is added to indirect call sites when the set of |
| 13 | // possible targets can be determined by analysis and is known to be small. The |
| 14 | // analysis driving the transformation is similar to constant propagation and |
| 15 | // makes uses of the generic sparse propagation solver. |
| 16 | // |
| 17 | //===----------------------------------------------------------------------===// |
| 18 | |
| 19 | #include "llvm/Transforms/IPO/CalledValuePropagation.h" |
| 20 | #include "llvm/Analysis/SparsePropagation.h" |
| 21 | #include "llvm/Analysis/ValueLatticeUtils.h" |
| 22 | #include "llvm/IR/InstVisitor.h" |
| 23 | #include "llvm/IR/MDBuilder.h" |
| Reid Kleckner | 05da2fe | 2019-11-13 13:15:01 -0800 | [diff] [blame] | 24 | #include "llvm/InitializePasses.h" |
| Reid Kleckner | 4c1a1d3 | 2019-11-14 15:15:48 -0800 | [diff] [blame] | 25 | #include "llvm/Support/CommandLine.h" |
| Matthew Simpson | cb58558 | 2017-10-25 13:40:08 +0000 | [diff] [blame] | 26 | #include "llvm/Transforms/IPO.h" |
| 27 | using namespace llvm; |
| 28 | |
| 29 | #define DEBUG_TYPE "called-value-propagation" |
| 30 | |
| 31 | /// The maximum number of functions to track per lattice value. Once the number |
| 32 | /// of functions a call site can possibly target exceeds this threshold, it's |
| 33 | /// lattice value becomes overdefined. The number of possible lattice values is |
| 34 | /// bounded by Ch(F, M), where F is the number of functions in the module and M |
| 35 | /// is MaxFunctionsPerValue. As such, this value should be kept very small. We |
| 36 | /// likely can't do anything useful for call sites with a large number of |
| 37 | /// possible targets, anyway. |
| 38 | static cl::opt<unsigned> MaxFunctionsPerValue( |
| 39 | "cvp-max-functions-per-value", cl::Hidden, cl::init(4), |
| 40 | cl::desc("The maximum number of functions to track per lattice value")); |
| 41 | |
| 42 | namespace { |
| 43 | /// To enable interprocedural analysis, we assign LLVM values to the following |
| 44 | /// groups. The register group represents SSA registers, the return group |
| 45 | /// represents the return values of functions, and the memory group represents |
| 46 | /// in-memory values. An LLVM Value can technically be in more than one group. |
| 47 | /// It's necessary to distinguish these groups so we can, for example, track a |
| 48 | /// global variable separately from the value stored at its location. |
| 49 | enum class IPOGrouping { Register, Return, Memory }; |
| 50 | |
| 51 | /// Our LatticeKeys are PointerIntPairs composed of LLVM values and groupings. |
| 52 | using CVPLatticeKey = PointerIntPair<Value *, 2, IPOGrouping>; |
| 53 | |
| 54 | /// The lattice value type used by our custom lattice function. It holds the |
| 55 | /// lattice state, and a set of functions. |
| 56 | class CVPLatticeVal { |
| 57 | public: |
| 58 | /// The states of the lattice values. Only the FunctionSet state is |
| 59 | /// interesting. It indicates the set of functions to which an LLVM value may |
| 60 | /// refer. |
| 61 | enum CVPLatticeStateTy { Undefined, FunctionSet, Overdefined, Untracked }; |
| 62 | |
| 63 | /// Comparator for sorting the functions set. We want to keep the order |
| 64 | /// deterministic for testing, etc. |
| 65 | struct Compare { |
| 66 | bool operator()(const Function *LHS, const Function *RHS) const { |
| 67 | return LHS->getName() < RHS->getName(); |
| 68 | } |
| 69 | }; |
| 70 | |
| 71 | CVPLatticeVal() : LatticeState(Undefined) {} |
| 72 | CVPLatticeVal(CVPLatticeStateTy LatticeState) : LatticeState(LatticeState) {} |
| Benjamin Kramer | c8bd544 | 2018-05-30 19:31:11 +0000 | [diff] [blame] | 73 | CVPLatticeVal(std::vector<Function *> &&Functions) |
| 74 | : LatticeState(FunctionSet), Functions(std::move(Functions)) { |
| 75 | assert(std::is_sorted(this->Functions.begin(), this->Functions.end(), |
| 76 | Compare())); |
| 77 | } |
| Matthew Simpson | cb58558 | 2017-10-25 13:40:08 +0000 | [diff] [blame] | 78 | |
| 79 | /// Get a reference to the functions held by this lattice value. The number |
| 80 | /// of functions will be zero for states other than FunctionSet. |
| Benjamin Kramer | c8bd544 | 2018-05-30 19:31:11 +0000 | [diff] [blame] | 81 | const std::vector<Function *> &getFunctions() const { |
| Matthew Simpson | cb58558 | 2017-10-25 13:40:08 +0000 | [diff] [blame] | 82 | return Functions; |
| 83 | } |
| 84 | |
| 85 | /// Returns true if the lattice value is in the FunctionSet state. |
| 86 | bool isFunctionSet() const { return LatticeState == FunctionSet; } |
| 87 | |
| 88 | bool operator==(const CVPLatticeVal &RHS) const { |
| 89 | return LatticeState == RHS.LatticeState && Functions == RHS.Functions; |
| 90 | } |
| 91 | |
| 92 | bool operator!=(const CVPLatticeVal &RHS) const { |
| 93 | return LatticeState != RHS.LatticeState || Functions != RHS.Functions; |
| 94 | } |
| 95 | |
| 96 | private: |
| 97 | /// Holds the state this lattice value is in. |
| 98 | CVPLatticeStateTy LatticeState; |
| 99 | |
| 100 | /// Holds functions indicating the possible targets of call sites. This set |
| 101 | /// is empty for lattice values in the undefined, overdefined, and untracked |
| 102 | /// states. The maximum size of the set is controlled by |
| 103 | /// MaxFunctionsPerValue. Since most LLVM values are expected to be in |
| 104 | /// uninteresting states (i.e., overdefined), CVPLatticeVal objects should be |
| 105 | /// small and efficiently copyable. |
| Benjamin Kramer | c8bd544 | 2018-05-30 19:31:11 +0000 | [diff] [blame] | 106 | // FIXME: This could be a TinyPtrVector and/or merge with LatticeState. |
| 107 | std::vector<Function *> Functions; |
| Matthew Simpson | cb58558 | 2017-10-25 13:40:08 +0000 | [diff] [blame] | 108 | }; |
| 109 | |
| 110 | /// The custom lattice function used by the generic sparse propagation solver. |
| 111 | /// It handles merging lattice values and computing new lattice values for |
| 112 | /// constants, arguments, values returned from trackable functions, and values |
| 113 | /// located in trackable global variables. It also computes the lattice values |
| 114 | /// that change as a result of executing instructions. |
| 115 | class CVPLatticeFunc |
| 116 | : public AbstractLatticeFunction<CVPLatticeKey, CVPLatticeVal> { |
| 117 | public: |
| 118 | CVPLatticeFunc() |
| 119 | : AbstractLatticeFunction(CVPLatticeVal(CVPLatticeVal::Undefined), |
| 120 | CVPLatticeVal(CVPLatticeVal::Overdefined), |
| 121 | CVPLatticeVal(CVPLatticeVal::Untracked)) {} |
| 122 | |
| 123 | /// Compute and return a CVPLatticeVal for the given CVPLatticeKey. |
| 124 | CVPLatticeVal ComputeLatticeVal(CVPLatticeKey Key) override { |
| 125 | switch (Key.getInt()) { |
| 126 | case IPOGrouping::Register: |
| 127 | if (isa<Instruction>(Key.getPointer())) { |
| 128 | return getUndefVal(); |
| 129 | } else if (auto *A = dyn_cast<Argument>(Key.getPointer())) { |
| 130 | if (canTrackArgumentsInterprocedurally(A->getParent())) |
| 131 | return getUndefVal(); |
| 132 | } else if (auto *C = dyn_cast<Constant>(Key.getPointer())) { |
| 133 | return computeConstant(C); |
| 134 | } |
| 135 | return getOverdefinedVal(); |
| 136 | case IPOGrouping::Memory: |
| 137 | case IPOGrouping::Return: |
| 138 | if (auto *GV = dyn_cast<GlobalVariable>(Key.getPointer())) { |
| 139 | if (canTrackGlobalVariableInterprocedurally(GV)) |
| 140 | return computeConstant(GV->getInitializer()); |
| 141 | } else if (auto *F = cast<Function>(Key.getPointer())) |
| 142 | if (canTrackReturnsInterprocedurally(F)) |
| 143 | return getUndefVal(); |
| 144 | } |
| 145 | return getOverdefinedVal(); |
| 146 | } |
| 147 | |
| 148 | /// Merge the two given lattice values. The interesting cases are merging two |
| 149 | /// FunctionSet values and a FunctionSet value with an Undefined value. For |
| 150 | /// these cases, we simply union the function sets. If the size of the union |
| 151 | /// is greater than the maximum functions we track, the merged value is |
| 152 | /// overdefined. |
| 153 | CVPLatticeVal MergeValues(CVPLatticeVal X, CVPLatticeVal Y) override { |
| 154 | if (X == getOverdefinedVal() || Y == getOverdefinedVal()) |
| 155 | return getOverdefinedVal(); |
| 156 | if (X == getUndefVal() && Y == getUndefVal()) |
| 157 | return getUndefVal(); |
| Benjamin Kramer | c8bd544 | 2018-05-30 19:31:11 +0000 | [diff] [blame] | 158 | std::vector<Function *> Union; |
| Matthew Simpson | cb58558 | 2017-10-25 13:40:08 +0000 | [diff] [blame] | 159 | std::set_union(X.getFunctions().begin(), X.getFunctions().end(), |
| 160 | Y.getFunctions().begin(), Y.getFunctions().end(), |
| Benjamin Kramer | c8bd544 | 2018-05-30 19:31:11 +0000 | [diff] [blame] | 161 | std::back_inserter(Union), CVPLatticeVal::Compare{}); |
| Matthew Simpson | cb58558 | 2017-10-25 13:40:08 +0000 | [diff] [blame] | 162 | if (Union.size() > MaxFunctionsPerValue) |
| 163 | return getOverdefinedVal(); |
| 164 | return CVPLatticeVal(std::move(Union)); |
| 165 | } |
| 166 | |
| 167 | /// Compute the lattice values that change as a result of executing the given |
| 168 | /// instruction. The changed values are stored in \p ChangedValues. We handle |
| 169 | /// just a few kinds of instructions since we're only propagating values that |
| 170 | /// can be called. |
| 171 | void ComputeInstructionState( |
| 172 | Instruction &I, DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues, |
| 173 | SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) override { |
| 174 | switch (I.getOpcode()) { |
| 175 | case Instruction::Call: |
| 176 | return visitCallSite(cast<CallInst>(&I), ChangedValues, SS); |
| 177 | case Instruction::Invoke: |
| 178 | return visitCallSite(cast<InvokeInst>(&I), ChangedValues, SS); |
| 179 | case Instruction::Load: |
| 180 | return visitLoad(*cast<LoadInst>(&I), ChangedValues, SS); |
| 181 | case Instruction::Ret: |
| 182 | return visitReturn(*cast<ReturnInst>(&I), ChangedValues, SS); |
| 183 | case Instruction::Select: |
| 184 | return visitSelect(*cast<SelectInst>(&I), ChangedValues, SS); |
| 185 | case Instruction::Store: |
| 186 | return visitStore(*cast<StoreInst>(&I), ChangedValues, SS); |
| 187 | default: |
| 188 | return visitInst(I, ChangedValues, SS); |
| 189 | } |
| 190 | } |
| 191 | |
| 192 | /// Print the given CVPLatticeVal to the specified stream. |
| 193 | void PrintLatticeVal(CVPLatticeVal LV, raw_ostream &OS) override { |
| 194 | if (LV == getUndefVal()) |
| 195 | OS << "Undefined "; |
| 196 | else if (LV == getOverdefinedVal()) |
| 197 | OS << "Overdefined"; |
| 198 | else if (LV == getUntrackedVal()) |
| 199 | OS << "Untracked "; |
| 200 | else |
| 201 | OS << "FunctionSet"; |
| 202 | } |
| 203 | |
| 204 | /// Print the given CVPLatticeKey to the specified stream. |
| 205 | void PrintLatticeKey(CVPLatticeKey Key, raw_ostream &OS) override { |
| 206 | if (Key.getInt() == IPOGrouping::Register) |
| 207 | OS << "<reg> "; |
| 208 | else if (Key.getInt() == IPOGrouping::Memory) |
| 209 | OS << "<mem> "; |
| 210 | else if (Key.getInt() == IPOGrouping::Return) |
| 211 | OS << "<ret> "; |
| 212 | if (isa<Function>(Key.getPointer())) |
| 213 | OS << Key.getPointer()->getName(); |
| 214 | else |
| 215 | OS << *Key.getPointer(); |
| 216 | } |
| 217 | |
| 218 | /// We collect a set of indirect calls when visiting call sites. This method |
| 219 | /// returns a reference to that set. |
| 220 | SmallPtrSetImpl<Instruction *> &getIndirectCalls() { return IndirectCalls; } |
| 221 | |
| 222 | private: |
| 223 | /// Holds the indirect calls we encounter during the analysis. We will attach |
| 224 | /// metadata to these calls after the analysis indicating the functions the |
| 225 | /// calls can possibly target. |
| 226 | SmallPtrSet<Instruction *, 32> IndirectCalls; |
| 227 | |
| 228 | /// Compute a new lattice value for the given constant. The constant, after |
| 229 | /// stripping any pointer casts, should be a Function. We ignore null |
| 230 | /// pointers as an optimization, since calling these values is undefined |
| 231 | /// behavior. |
| 232 | CVPLatticeVal computeConstant(Constant *C) { |
| 233 | if (isa<ConstantPointerNull>(C)) |
| 234 | return CVPLatticeVal(CVPLatticeVal::FunctionSet); |
| 235 | if (auto *F = dyn_cast<Function>(C->stripPointerCasts())) |
| 236 | return CVPLatticeVal({F}); |
| 237 | return getOverdefinedVal(); |
| 238 | } |
| 239 | |
| 240 | /// Handle return instructions. The function's return state is the merge of |
| 241 | /// the returned value state and the function's return state. |
| 242 | void visitReturn(ReturnInst &I, |
| 243 | DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues, |
| 244 | SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) { |
| 245 | Function *F = I.getParent()->getParent(); |
| 246 | if (F->getReturnType()->isVoidTy()) |
| 247 | return; |
| 248 | auto RegI = CVPLatticeKey(I.getReturnValue(), IPOGrouping::Register); |
| 249 | auto RetF = CVPLatticeKey(F, IPOGrouping::Return); |
| 250 | ChangedValues[RetF] = |
| 251 | MergeValues(SS.getValueState(RegI), SS.getValueState(RetF)); |
| 252 | } |
| 253 | |
| 254 | /// Handle call sites. The state of a called function's formal arguments is |
| 255 | /// the merge of the argument state with the call sites corresponding actual |
| 256 | /// argument state. The call site state is the merge of the call site state |
| 257 | /// with the returned value state of the called function. |
| 258 | void visitCallSite(CallSite CS, |
| 259 | DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues, |
| 260 | SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) { |
| 261 | Function *F = CS.getCalledFunction(); |
| 262 | Instruction *I = CS.getInstruction(); |
| 263 | auto RegI = CVPLatticeKey(I, IPOGrouping::Register); |
| 264 | |
| 265 | // If this is an indirect call, save it so we can quickly revisit it when |
| 266 | // attaching metadata. |
| 267 | if (!F) |
| 268 | IndirectCalls.insert(I); |
| 269 | |
| 270 | // If we can't track the function's return values, there's nothing to do. |
| 271 | if (!F || !canTrackReturnsInterprocedurally(F)) { |
| Xin Tong | b467233 | 2018-07-09 14:53:37 +0000 | [diff] [blame] | 272 | // Void return, No need to create and update CVPLattice state as no one |
| 273 | // can use it. |
| 274 | if (I->getType()->isVoidTy()) |
| 275 | return; |
| Matthew Simpson | cb58558 | 2017-10-25 13:40:08 +0000 | [diff] [blame] | 276 | ChangedValues[RegI] = getOverdefinedVal(); |
| 277 | return; |
| 278 | } |
| 279 | |
| 280 | // Inform the solver that the called function is executable, and perform |
| 281 | // the merges for the arguments and return value. |
| 282 | SS.MarkBlockExecutable(&F->front()); |
| 283 | auto RetF = CVPLatticeKey(F, IPOGrouping::Return); |
| 284 | for (Argument &A : F->args()) { |
| 285 | auto RegFormal = CVPLatticeKey(&A, IPOGrouping::Register); |
| 286 | auto RegActual = |
| 287 | CVPLatticeKey(CS.getArgument(A.getArgNo()), IPOGrouping::Register); |
| 288 | ChangedValues[RegFormal] = |
| 289 | MergeValues(SS.getValueState(RegFormal), SS.getValueState(RegActual)); |
| 290 | } |
| Xin Tong | b467233 | 2018-07-09 14:53:37 +0000 | [diff] [blame] | 291 | |
| 292 | // Void return, No need to create and update CVPLattice state as no one can |
| 293 | // use it. |
| 294 | if (I->getType()->isVoidTy()) |
| 295 | return; |
| 296 | |
| Matthew Simpson | cb58558 | 2017-10-25 13:40:08 +0000 | [diff] [blame] | 297 | ChangedValues[RegI] = |
| 298 | MergeValues(SS.getValueState(RegI), SS.getValueState(RetF)); |
| 299 | } |
| 300 | |
| 301 | /// Handle select instructions. The select instruction state is the merge the |
| 302 | /// true and false value states. |
| 303 | void visitSelect(SelectInst &I, |
| 304 | DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues, |
| 305 | SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) { |
| 306 | auto RegI = CVPLatticeKey(&I, IPOGrouping::Register); |
| 307 | auto RegT = CVPLatticeKey(I.getTrueValue(), IPOGrouping::Register); |
| 308 | auto RegF = CVPLatticeKey(I.getFalseValue(), IPOGrouping::Register); |
| 309 | ChangedValues[RegI] = |
| 310 | MergeValues(SS.getValueState(RegT), SS.getValueState(RegF)); |
| 311 | } |
| 312 | |
| 313 | /// Handle load instructions. If the pointer operand of the load is a global |
| 314 | /// variable, we attempt to track the value. The loaded value state is the |
| 315 | /// merge of the loaded value state with the global variable state. |
| 316 | void visitLoad(LoadInst &I, |
| 317 | DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues, |
| 318 | SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) { |
| 319 | auto RegI = CVPLatticeKey(&I, IPOGrouping::Register); |
| 320 | if (auto *GV = dyn_cast<GlobalVariable>(I.getPointerOperand())) { |
| 321 | auto MemGV = CVPLatticeKey(GV, IPOGrouping::Memory); |
| 322 | ChangedValues[RegI] = |
| 323 | MergeValues(SS.getValueState(RegI), SS.getValueState(MemGV)); |
| 324 | } else { |
| 325 | ChangedValues[RegI] = getOverdefinedVal(); |
| 326 | } |
| 327 | } |
| 328 | |
| 329 | /// Handle store instructions. If the pointer operand of the store is a |
| 330 | /// global variable, we attempt to track the value. The global variable state |
| 331 | /// is the merge of the stored value state with the global variable state. |
| 332 | void visitStore(StoreInst &I, |
| 333 | DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues, |
| 334 | SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) { |
| 335 | auto *GV = dyn_cast<GlobalVariable>(I.getPointerOperand()); |
| 336 | if (!GV) |
| 337 | return; |
| 338 | auto RegI = CVPLatticeKey(I.getValueOperand(), IPOGrouping::Register); |
| 339 | auto MemGV = CVPLatticeKey(GV, IPOGrouping::Memory); |
| 340 | ChangedValues[MemGV] = |
| 341 | MergeValues(SS.getValueState(RegI), SS.getValueState(MemGV)); |
| 342 | } |
| 343 | |
| 344 | /// Handle all other instructions. All other instructions are marked |
| 345 | /// overdefined. |
| 346 | void visitInst(Instruction &I, |
| 347 | DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues, |
| 348 | SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) { |
| Xin Tong | 8a505c6 | 2018-09-17 15:28:01 +0000 | [diff] [blame] | 349 | // Simply bail if this instruction has no user. |
| 350 | if (I.use_empty()) |
| 351 | return; |
| Matthew Simpson | cb58558 | 2017-10-25 13:40:08 +0000 | [diff] [blame] | 352 | auto RegI = CVPLatticeKey(&I, IPOGrouping::Register); |
| 353 | ChangedValues[RegI] = getOverdefinedVal(); |
| 354 | } |
| 355 | }; |
| 356 | } // namespace |
| 357 | |
| 358 | namespace llvm { |
| 359 | /// A specialization of LatticeKeyInfo for CVPLatticeKeys. The generic solver |
| 360 | /// must translate between LatticeKeys and LLVM Values when adding Values to |
| 361 | /// its work list and inspecting the state of control-flow related values. |
| 362 | template <> struct LatticeKeyInfo<CVPLatticeKey> { |
| 363 | static inline Value *getValueFromLatticeKey(CVPLatticeKey Key) { |
| 364 | return Key.getPointer(); |
| 365 | } |
| 366 | static inline CVPLatticeKey getLatticeKeyFromValue(Value *V) { |
| 367 | return CVPLatticeKey(V, IPOGrouping::Register); |
| 368 | } |
| 369 | }; |
| 370 | } // namespace llvm |
| 371 | |
| 372 | static bool runCVP(Module &M) { |
| 373 | // Our custom lattice function and generic sparse propagation solver. |
| 374 | CVPLatticeFunc Lattice; |
| 375 | SparseSolver<CVPLatticeKey, CVPLatticeVal> Solver(&Lattice); |
| 376 | |
| 377 | // For each function in the module, if we can't track its arguments, let the |
| 378 | // generic solver assume it is executable. |
| 379 | for (Function &F : M) |
| 380 | if (!F.isDeclaration() && !canTrackArgumentsInterprocedurally(&F)) |
| 381 | Solver.MarkBlockExecutable(&F.front()); |
| 382 | |
| 383 | // Solver our custom lattice. In doing so, we will also build a set of |
| 384 | // indirect call sites. |
| 385 | Solver.Solve(); |
| 386 | |
| 387 | // Attach metadata to the indirect call sites that were collected indicating |
| 388 | // the set of functions they can possibly target. |
| 389 | bool Changed = false; |
| 390 | MDBuilder MDB(M.getContext()); |
| 391 | for (Instruction *C : Lattice.getIndirectCalls()) { |
| 392 | CallSite CS(C); |
| 393 | auto RegI = CVPLatticeKey(CS.getCalledValue(), IPOGrouping::Register); |
| 394 | CVPLatticeVal LV = Solver.getExistingValueState(RegI); |
| 395 | if (!LV.isFunctionSet() || LV.getFunctions().empty()) |
| 396 | continue; |
| Benjamin Kramer | c8bd544 | 2018-05-30 19:31:11 +0000 | [diff] [blame] | 397 | MDNode *Callees = MDB.createCallees(LV.getFunctions()); |
| Matthew Simpson | cb58558 | 2017-10-25 13:40:08 +0000 | [diff] [blame] | 398 | C->setMetadata(LLVMContext::MD_callees, Callees); |
| 399 | Changed = true; |
| 400 | } |
| 401 | |
| 402 | return Changed; |
| 403 | } |
| 404 | |
| 405 | PreservedAnalyses CalledValuePropagationPass::run(Module &M, |
| 406 | ModuleAnalysisManager &) { |
| 407 | runCVP(M); |
| 408 | return PreservedAnalyses::all(); |
| 409 | } |
| 410 | |
| 411 | namespace { |
| 412 | class CalledValuePropagationLegacyPass : public ModulePass { |
| 413 | public: |
| 414 | static char ID; |
| 415 | |
| 416 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
| 417 | AU.setPreservesAll(); |
| 418 | } |
| 419 | |
| 420 | CalledValuePropagationLegacyPass() : ModulePass(ID) { |
| 421 | initializeCalledValuePropagationLegacyPassPass( |
| 422 | *PassRegistry::getPassRegistry()); |
| 423 | } |
| 424 | |
| 425 | bool runOnModule(Module &M) override { |
| 426 | if (skipModule(M)) |
| 427 | return false; |
| 428 | return runCVP(M); |
| 429 | } |
| 430 | }; |
| 431 | } // namespace |
| 432 | |
| 433 | char CalledValuePropagationLegacyPass::ID = 0; |
| 434 | INITIALIZE_PASS(CalledValuePropagationLegacyPass, "called-value-propagation", |
| 435 | "Called Value Propagation", false, false) |
| 436 | |
| 437 | ModulePass *llvm::createCalledValuePropagationPass() { |
| 438 | return new CalledValuePropagationLegacyPass(); |
| 439 | } |