Daniel Dunbar | fd08999 | 2009-06-26 16:47:03 +0000 | [diff] [blame] | 1 | // This file is distributed under the University of Illinois Open Source |
| 2 | // License. See LICENSE.TXT for details. |
| 3 | |
| 4 | // di_int __moddi3(di_int a, di_int b); |
| 5 | |
| 6 | // result = remainder of a / b. |
| 7 | // both inputs and the output are 64-bit signed integers. |
| 8 | // This will do whatever the underlying hardware is set to do on division by zero. |
| 9 | // No other exceptions are generated, as the divide cannot overflow. |
| 10 | // |
| 11 | // This is targeted at 32-bit x86 *only*, as this can be done directly in hardware |
| 12 | // on x86_64. The performance goal is ~40 cycles per divide, which is faster than |
| 13 | // currently possible via simulation of integer divides on the x87 unit. |
| 14 | // |
| 15 | |
| 16 | // Stephen Canon, December 2008 |
| 17 | |
| 18 | #ifdef __i386__ |
| 19 | |
| 20 | .text |
| 21 | .align 4 |
| 22 | .globl ___moddi3 |
| 23 | ___moddi3: |
| 24 | |
| 25 | /* This is currently implemented by wrapping the unsigned modulus up in an absolute |
| 26 | value. This could certainly be improved upon. */ |
| 27 | |
| 28 | pushl %esi |
| 29 | movl 20(%esp), %edx // high word of b |
| 30 | movl 16(%esp), %eax // low word of b |
| 31 | movl %edx, %ecx |
| 32 | sarl $31, %ecx // (b < 0) ? -1 : 0 |
| 33 | xorl %ecx, %eax |
| 34 | xorl %ecx, %edx // EDX:EAX = (b < 0) ? not(b) : b |
| 35 | subl %ecx, %eax |
| 36 | sbbl %ecx, %edx // EDX:EAX = abs(b) |
| 37 | movl %edx, 20(%esp) |
| 38 | movl %eax, 16(%esp) // store abs(b) back to stack |
| 39 | |
| 40 | movl 12(%esp), %edx // high word of b |
| 41 | movl 8(%esp), %eax // low word of b |
| 42 | movl %edx, %ecx |
| 43 | sarl $31, %ecx // (a < 0) ? -1 : 0 |
| 44 | xorl %ecx, %eax |
| 45 | xorl %ecx, %edx // EDX:EAX = (a < 0) ? not(a) : a |
| 46 | subl %ecx, %eax |
| 47 | sbbl %ecx, %edx // EDX:EAX = abs(a) |
| 48 | movl %edx, 12(%esp) |
| 49 | movl %eax, 8(%esp) // store abs(a) back to stack |
| 50 | movl %ecx, %esi // set aside sign of a |
| 51 | |
| 52 | pushl %ebx |
| 53 | movl 24(%esp), %ebx // Find the index i of the leading bit in b. |
| 54 | bsrl %ebx, %ecx // If the high word of b is zero, jump to |
| 55 | jz 9f // the code to handle that special case [9]. |
| 56 | |
| 57 | /* High word of b is known to be non-zero on this branch */ |
| 58 | |
| 59 | movl 20(%esp), %eax // Construct bhi, containing bits [1+i:32+i] of b |
| 60 | |
| 61 | shrl %cl, %eax // Practically, this means that bhi is given by: |
| 62 | shrl %eax // |
| 63 | notl %ecx // bhi = (high word of b) << (31 - i) | |
| 64 | shll %cl, %ebx // (low word of b) >> (1 + i) |
| 65 | orl %eax, %ebx // |
| 66 | movl 16(%esp), %edx // Load the high and low words of a, and jump |
| 67 | movl 12(%esp), %eax // to [2] if the high word is larger than bhi |
| 68 | cmpl %ebx, %edx // to avoid overflowing the upcoming divide. |
| 69 | jae 2f |
| 70 | |
| 71 | /* High word of a is greater than or equal to (b >> (1 + i)) on this branch */ |
| 72 | |
| 73 | divl %ebx // eax <-- qs, edx <-- r such that ahi:alo = bs*qs + r |
| 74 | |
| 75 | pushl %edi |
| 76 | notl %ecx |
| 77 | shrl %eax |
| 78 | shrl %cl, %eax // q = qs >> (1 + i) |
| 79 | movl %eax, %edi |
| 80 | mull 24(%esp) // q*blo |
| 81 | movl 16(%esp), %ebx |
| 82 | movl 20(%esp), %ecx // ECX:EBX = a |
| 83 | subl %eax, %ebx |
| 84 | sbbl %edx, %ecx // ECX:EBX = a - q*blo |
| 85 | movl 28(%esp), %eax |
| 86 | imull %edi, %eax // q*bhi |
| 87 | subl %eax, %ecx // ECX:EBX = a - q*b |
| 88 | |
| 89 | jnc 1f // if positive, this is the result. |
| 90 | addl 24(%esp), %ebx // otherwise |
| 91 | adcl 28(%esp), %ecx // ECX:EBX = a - (q-1)*b = result |
| 92 | 1: movl %ebx, %eax |
| 93 | movl %ecx, %edx |
| 94 | |
| 95 | addl %esi, %eax // Restore correct sign to result |
| 96 | adcl %esi, %edx |
| 97 | xorl %esi, %eax |
| 98 | xorl %esi, %edx |
| 99 | popl %edi // Restore callee-save registers |
| 100 | popl %ebx |
| 101 | popl %esi |
| 102 | retl // Return |
| 103 | |
| 104 | 2: /* High word of a is greater than or equal to (b >> (1 + i)) on this branch */ |
| 105 | |
| 106 | subl %ebx, %edx // subtract bhi from ahi so that divide will not |
| 107 | divl %ebx // overflow, and find q and r such that |
| 108 | // |
| 109 | // ahi:alo = (1:q)*bhi + r |
| 110 | // |
| 111 | // Note that q is a number in (31-i).(1+i) |
| 112 | // fix point. |
| 113 | |
| 114 | pushl %edi |
| 115 | notl %ecx |
| 116 | shrl %eax |
| 117 | orl $0x80000000, %eax |
| 118 | shrl %cl, %eax // q = (1:qs) >> (1 + i) |
| 119 | movl %eax, %edi |
| 120 | mull 24(%esp) // q*blo |
| 121 | movl 16(%esp), %ebx |
| 122 | movl 20(%esp), %ecx // ECX:EBX = a |
| 123 | subl %eax, %ebx |
| 124 | sbbl %edx, %ecx // ECX:EBX = a - q*blo |
| 125 | movl 28(%esp), %eax |
| 126 | imull %edi, %eax // q*bhi |
| 127 | subl %eax, %ecx // ECX:EBX = a - q*b |
| 128 | |
| 129 | jnc 3f // if positive, this is the result. |
| 130 | addl 24(%esp), %ebx // otherwise |
| 131 | adcl 28(%esp), %ecx // ECX:EBX = a - (q-1)*b = result |
| 132 | 3: movl %ebx, %eax |
| 133 | movl %ecx, %edx |
| 134 | |
| 135 | addl %esi, %eax // Restore correct sign to result |
| 136 | adcl %esi, %edx |
| 137 | xorl %esi, %eax |
| 138 | xorl %esi, %edx |
| 139 | popl %edi // Restore callee-save registers |
| 140 | popl %ebx |
| 141 | popl %esi |
| 142 | retl // Return |
| 143 | |
| 144 | 9: /* High word of b is zero on this branch */ |
| 145 | |
| 146 | movl 16(%esp), %eax // Find qhi and rhi such that |
| 147 | movl 20(%esp), %ecx // |
| 148 | xorl %edx, %edx // ahi = qhi*b + rhi with 0 ≤ rhi < b |
| 149 | divl %ecx // |
| 150 | movl %eax, %ebx // |
| 151 | movl 12(%esp), %eax // Find rlo such that |
| 152 | divl %ecx // |
| 153 | movl %edx, %eax // rhi:alo = qlo*b + rlo with 0 ≤ rlo < b |
| 154 | popl %ebx // |
| 155 | xorl %edx, %edx // and return 0:rlo |
| 156 | |
| 157 | addl %esi, %eax // Restore correct sign to result |
| 158 | adcl %esi, %edx |
| 159 | xorl %esi, %eax |
| 160 | xorl %esi, %edx |
| 161 | popl %esi |
| 162 | retl // Return |
| 163 | |
| 164 | |
| 165 | #endif // __i386__ |