blob: b4ba875db90700ef93f239c362c26483a1b63efe [file] [log] [blame]
Chris Lattner0a8191e2010-01-05 07:50:36 +00001//===- InstCombineAndOrXor.cpp --------------------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visitAnd, visitOr, and visitXor functions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
15#include "llvm/Intrinsics.h"
16#include "llvm/Analysis/InstructionSimplify.h"
17#include "llvm/Support/PatternMatch.h"
18using namespace llvm;
19using namespace PatternMatch;
20
21
22/// AddOne - Add one to a ConstantInt.
23static Constant *AddOne(Constant *C) {
24 return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
25}
26/// SubOne - Subtract one from a ConstantInt.
27static Constant *SubOne(ConstantInt *C) {
28 return ConstantInt::get(C->getContext(), C->getValue()-1);
29}
30
31/// isFreeToInvert - Return true if the specified value is free to invert (apply
32/// ~ to). This happens in cases where the ~ can be eliminated.
33static inline bool isFreeToInvert(Value *V) {
34 // ~(~(X)) -> X.
35 if (BinaryOperator::isNot(V))
36 return true;
37
38 // Constants can be considered to be not'ed values.
39 if (isa<ConstantInt>(V))
40 return true;
41
42 // Compares can be inverted if they have a single use.
43 if (CmpInst *CI = dyn_cast<CmpInst>(V))
44 return CI->hasOneUse();
45
46 return false;
47}
48
49static inline Value *dyn_castNotVal(Value *V) {
50 // If this is not(not(x)) don't return that this is a not: we want the two
51 // not's to be folded first.
52 if (BinaryOperator::isNot(V)) {
53 Value *Operand = BinaryOperator::getNotArgument(V);
54 if (!isFreeToInvert(Operand))
55 return Operand;
56 }
57
58 // Constants can be considered to be not'ed values...
59 if (ConstantInt *C = dyn_cast<ConstantInt>(V))
60 return ConstantInt::get(C->getType(), ~C->getValue());
61 return 0;
62}
63
64
65/// getICmpCode - Encode a icmp predicate into a three bit mask. These bits
66/// are carefully arranged to allow folding of expressions such as:
67///
68/// (A < B) | (A > B) --> (A != B)
69///
70/// Note that this is only valid if the first and second predicates have the
71/// same sign. Is illegal to do: (A u< B) | (A s> B)
72///
73/// Three bits are used to represent the condition, as follows:
74/// 0 A > B
75/// 1 A == B
76/// 2 A < B
77///
78/// <=> Value Definition
79/// 000 0 Always false
80/// 001 1 A > B
81/// 010 2 A == B
82/// 011 3 A >= B
83/// 100 4 A < B
84/// 101 5 A != B
85/// 110 6 A <= B
86/// 111 7 Always true
87///
88static unsigned getICmpCode(const ICmpInst *ICI) {
89 switch (ICI->getPredicate()) {
90 // False -> 0
91 case ICmpInst::ICMP_UGT: return 1; // 001
92 case ICmpInst::ICMP_SGT: return 1; // 001
93 case ICmpInst::ICMP_EQ: return 2; // 010
94 case ICmpInst::ICMP_UGE: return 3; // 011
95 case ICmpInst::ICMP_SGE: return 3; // 011
96 case ICmpInst::ICMP_ULT: return 4; // 100
97 case ICmpInst::ICMP_SLT: return 4; // 100
98 case ICmpInst::ICMP_NE: return 5; // 101
99 case ICmpInst::ICMP_ULE: return 6; // 110
100 case ICmpInst::ICMP_SLE: return 6; // 110
101 // True -> 7
102 default:
103 llvm_unreachable("Invalid ICmp predicate!");
104 return 0;
105 }
106}
107
108/// getFCmpCode - Similar to getICmpCode but for FCmpInst. This encodes a fcmp
109/// predicate into a three bit mask. It also returns whether it is an ordered
110/// predicate by reference.
111static unsigned getFCmpCode(FCmpInst::Predicate CC, bool &isOrdered) {
112 isOrdered = false;
113 switch (CC) {
114 case FCmpInst::FCMP_ORD: isOrdered = true; return 0; // 000
115 case FCmpInst::FCMP_UNO: return 0; // 000
116 case FCmpInst::FCMP_OGT: isOrdered = true; return 1; // 001
117 case FCmpInst::FCMP_UGT: return 1; // 001
118 case FCmpInst::FCMP_OEQ: isOrdered = true; return 2; // 010
119 case FCmpInst::FCMP_UEQ: return 2; // 010
120 case FCmpInst::FCMP_OGE: isOrdered = true; return 3; // 011
121 case FCmpInst::FCMP_UGE: return 3; // 011
122 case FCmpInst::FCMP_OLT: isOrdered = true; return 4; // 100
123 case FCmpInst::FCMP_ULT: return 4; // 100
124 case FCmpInst::FCMP_ONE: isOrdered = true; return 5; // 101
125 case FCmpInst::FCMP_UNE: return 5; // 101
126 case FCmpInst::FCMP_OLE: isOrdered = true; return 6; // 110
127 case FCmpInst::FCMP_ULE: return 6; // 110
128 // True -> 7
129 default:
130 // Not expecting FCMP_FALSE and FCMP_TRUE;
131 llvm_unreachable("Unexpected FCmp predicate!");
132 return 0;
133 }
134}
135
136/// getICmpValue - This is the complement of getICmpCode, which turns an
137/// opcode and two operands into either a constant true or false, or a brand
138/// new ICmp instruction. The sign is passed in to determine which kind
139/// of predicate to use in the new icmp instruction.
Chris Lattner067459c2010-03-05 08:46:26 +0000140static Value *getICmpValue(bool Sign, unsigned Code, Value *LHS, Value *RHS,
141 InstCombiner::BuilderTy *Builder) {
Chris Lattner343d2e42010-03-05 07:47:57 +0000142 CmpInst::Predicate Pred;
Chris Lattner0a8191e2010-01-05 07:50:36 +0000143 switch (Code) {
144 default: assert(0 && "Illegal ICmp code!");
Chris Lattner343d2e42010-03-05 07:47:57 +0000145 case 0: // False.
146 return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
147 case 1: Pred = Sign ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; break;
148 case 2: Pred = ICmpInst::ICMP_EQ; break;
149 case 3: Pred = Sign ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; break;
150 case 4: Pred = Sign ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; break;
151 case 5: Pred = ICmpInst::ICMP_NE; break;
152 case 6: Pred = Sign ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; break;
153 case 7: // True.
154 return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 1);
Chris Lattner0a8191e2010-01-05 07:50:36 +0000155 }
Chris Lattner067459c2010-03-05 08:46:26 +0000156 return Builder->CreateICmp(Pred, LHS, RHS);
Chris Lattner0a8191e2010-01-05 07:50:36 +0000157}
158
159/// getFCmpValue - This is the complement of getFCmpCode, which turns an
160/// opcode and two operands into either a FCmp instruction. isordered is passed
161/// in to determine which kind of predicate to use in the new fcmp instruction.
162static Value *getFCmpValue(bool isordered, unsigned code,
Chris Lattner067459c2010-03-05 08:46:26 +0000163 Value *LHS, Value *RHS,
164 InstCombiner::BuilderTy *Builder) {
Chris Lattner343d2e42010-03-05 07:47:57 +0000165 CmpInst::Predicate Pred;
Chris Lattner0a8191e2010-01-05 07:50:36 +0000166 switch (code) {
Chris Lattner343d2e42010-03-05 07:47:57 +0000167 default: assert(0 && "Illegal FCmp code!");
168 case 0: Pred = isordered ? FCmpInst::FCMP_ORD : FCmpInst::FCMP_UNO; break;
169 case 1: Pred = isordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; break;
170 case 2: Pred = isordered ? FCmpInst::FCMP_OEQ : FCmpInst::FCMP_UEQ; break;
171 case 3: Pred = isordered ? FCmpInst::FCMP_OGE : FCmpInst::FCMP_UGE; break;
172 case 4: Pred = isordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; break;
173 case 5: Pred = isordered ? FCmpInst::FCMP_ONE : FCmpInst::FCMP_UNE; break;
174 case 6: Pred = isordered ? FCmpInst::FCMP_OLE : FCmpInst::FCMP_ULE; break;
175 case 7: return ConstantInt::getTrue(LHS->getContext());
Chris Lattner0a8191e2010-01-05 07:50:36 +0000176 }
Chris Lattner067459c2010-03-05 08:46:26 +0000177 return Builder->CreateFCmp(Pred, LHS, RHS);
Chris Lattner0a8191e2010-01-05 07:50:36 +0000178}
179
180/// PredicatesFoldable - Return true if both predicates match sign or if at
181/// least one of them is an equality comparison (which is signless).
182static bool PredicatesFoldable(ICmpInst::Predicate p1, ICmpInst::Predicate p2) {
183 return (CmpInst::isSigned(p1) == CmpInst::isSigned(p2)) ||
184 (CmpInst::isSigned(p1) && ICmpInst::isEquality(p2)) ||
185 (CmpInst::isSigned(p2) && ICmpInst::isEquality(p1));
186}
187
188// OptAndOp - This handles expressions of the form ((val OP C1) & C2). Where
189// the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'. Op is
190// guaranteed to be a binary operator.
191Instruction *InstCombiner::OptAndOp(Instruction *Op,
192 ConstantInt *OpRHS,
193 ConstantInt *AndRHS,
194 BinaryOperator &TheAnd) {
195 Value *X = Op->getOperand(0);
196 Constant *Together = 0;
197 if (!Op->isShift())
198 Together = ConstantExpr::getAnd(AndRHS, OpRHS);
199
200 switch (Op->getOpcode()) {
201 case Instruction::Xor:
202 if (Op->hasOneUse()) {
203 // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
204 Value *And = Builder->CreateAnd(X, AndRHS);
205 And->takeName(Op);
206 return BinaryOperator::CreateXor(And, Together);
207 }
208 break;
209 case Instruction::Or:
210 if (Together == AndRHS) // (X | C) & C --> C
211 return ReplaceInstUsesWith(TheAnd, AndRHS);
212
213 if (Op->hasOneUse() && Together != OpRHS) {
214 // (X | C1) & C2 --> (X | (C1&C2)) & C2
215 Value *Or = Builder->CreateOr(X, Together);
216 Or->takeName(Op);
217 return BinaryOperator::CreateAnd(Or, AndRHS);
218 }
219 break;
220 case Instruction::Add:
221 if (Op->hasOneUse()) {
222 // Adding a one to a single bit bit-field should be turned into an XOR
223 // of the bit. First thing to check is to see if this AND is with a
224 // single bit constant.
225 const APInt &AndRHSV = cast<ConstantInt>(AndRHS)->getValue();
226
227 // If there is only one bit set.
228 if (AndRHSV.isPowerOf2()) {
229 // Ok, at this point, we know that we are masking the result of the
230 // ADD down to exactly one bit. If the constant we are adding has
231 // no bits set below this bit, then we can eliminate the ADD.
232 const APInt& AddRHS = cast<ConstantInt>(OpRHS)->getValue();
233
234 // Check to see if any bits below the one bit set in AndRHSV are set.
235 if ((AddRHS & (AndRHSV-1)) == 0) {
236 // If not, the only thing that can effect the output of the AND is
237 // the bit specified by AndRHSV. If that bit is set, the effect of
238 // the XOR is to toggle the bit. If it is clear, then the ADD has
239 // no effect.
240 if ((AddRHS & AndRHSV) == 0) { // Bit is not set, noop
241 TheAnd.setOperand(0, X);
242 return &TheAnd;
243 } else {
244 // Pull the XOR out of the AND.
245 Value *NewAnd = Builder->CreateAnd(X, AndRHS);
246 NewAnd->takeName(Op);
247 return BinaryOperator::CreateXor(NewAnd, AndRHS);
248 }
249 }
250 }
251 }
252 break;
253
254 case Instruction::Shl: {
255 // We know that the AND will not produce any of the bits shifted in, so if
256 // the anded constant includes them, clear them now!
257 //
258 uint32_t BitWidth = AndRHS->getType()->getBitWidth();
259 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
260 APInt ShlMask(APInt::getHighBitsSet(BitWidth, BitWidth-OpRHSVal));
261 ConstantInt *CI = ConstantInt::get(AndRHS->getContext(),
262 AndRHS->getValue() & ShlMask);
263
264 if (CI->getValue() == ShlMask) {
265 // Masking out bits that the shift already masks
266 return ReplaceInstUsesWith(TheAnd, Op); // No need for the and.
267 } else if (CI != AndRHS) { // Reducing bits set in and.
268 TheAnd.setOperand(1, CI);
269 return &TheAnd;
270 }
271 break;
272 }
273 case Instruction::LShr: {
274 // We know that the AND will not produce any of the bits shifted in, so if
275 // the anded constant includes them, clear them now! This only applies to
276 // unsigned shifts, because a signed shr may bring in set bits!
277 //
278 uint32_t BitWidth = AndRHS->getType()->getBitWidth();
279 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
280 APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
281 ConstantInt *CI = ConstantInt::get(Op->getContext(),
282 AndRHS->getValue() & ShrMask);
283
284 if (CI->getValue() == ShrMask) {
285 // Masking out bits that the shift already masks.
286 return ReplaceInstUsesWith(TheAnd, Op);
287 } else if (CI != AndRHS) {
288 TheAnd.setOperand(1, CI); // Reduce bits set in and cst.
289 return &TheAnd;
290 }
291 break;
292 }
293 case Instruction::AShr:
294 // Signed shr.
295 // See if this is shifting in some sign extension, then masking it out
296 // with an and.
297 if (Op->hasOneUse()) {
298 uint32_t BitWidth = AndRHS->getType()->getBitWidth();
299 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
300 APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
301 Constant *C = ConstantInt::get(Op->getContext(),
302 AndRHS->getValue() & ShrMask);
303 if (C == AndRHS) { // Masking out bits shifted in.
304 // (Val ashr C1) & C2 -> (Val lshr C1) & C2
305 // Make the argument unsigned.
306 Value *ShVal = Op->getOperand(0);
307 ShVal = Builder->CreateLShr(ShVal, OpRHS, Op->getName());
308 return BinaryOperator::CreateAnd(ShVal, AndRHS, TheAnd.getName());
309 }
310 }
311 break;
312 }
313 return 0;
314}
315
316
317/// InsertRangeTest - Emit a computation of: (V >= Lo && V < Hi) if Inside is
318/// true, otherwise (V < Lo || V >= Hi). In pratice, we emit the more efficient
319/// (V-Lo) <u Hi-Lo. This method expects that Lo <= Hi. isSigned indicates
320/// whether to treat the V, Lo and HI as signed or not. IB is the location to
321/// insert new instructions.
Chris Lattner067459c2010-03-05 08:46:26 +0000322Value *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
323 bool isSigned, bool Inside) {
Chris Lattner0a8191e2010-01-05 07:50:36 +0000324 assert(cast<ConstantInt>(ConstantExpr::getICmp((isSigned ?
325 ICmpInst::ICMP_SLE:ICmpInst::ICMP_ULE), Lo, Hi))->getZExtValue() &&
326 "Lo is not <= Hi in range emission code!");
327
328 if (Inside) {
329 if (Lo == Hi) // Trivially false.
Chris Lattner067459c2010-03-05 08:46:26 +0000330 return ConstantInt::getFalse(V->getContext());
Chris Lattner0a8191e2010-01-05 07:50:36 +0000331
332 // V >= Min && V < Hi --> V < Hi
333 if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
334 ICmpInst::Predicate pred = (isSigned ?
335 ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT);
Chris Lattner067459c2010-03-05 08:46:26 +0000336 return Builder->CreateICmp(pred, V, Hi);
Chris Lattner0a8191e2010-01-05 07:50:36 +0000337 }
338
339 // Emit V-Lo <u Hi-Lo
340 Constant *NegLo = ConstantExpr::getNeg(Lo);
341 Value *Add = Builder->CreateAdd(V, NegLo, V->getName()+".off");
342 Constant *UpperBound = ConstantExpr::getAdd(NegLo, Hi);
Chris Lattner067459c2010-03-05 08:46:26 +0000343 return Builder->CreateICmpULT(Add, UpperBound);
Chris Lattner0a8191e2010-01-05 07:50:36 +0000344 }
345
346 if (Lo == Hi) // Trivially true.
Chris Lattner067459c2010-03-05 08:46:26 +0000347 return ConstantInt::getTrue(V->getContext());
Chris Lattner0a8191e2010-01-05 07:50:36 +0000348
349 // V < Min || V >= Hi -> V > Hi-1
350 Hi = SubOne(cast<ConstantInt>(Hi));
351 if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
352 ICmpInst::Predicate pred = (isSigned ?
353 ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT);
Chris Lattner067459c2010-03-05 08:46:26 +0000354 return Builder->CreateICmp(pred, V, Hi);
Chris Lattner0a8191e2010-01-05 07:50:36 +0000355 }
356
357 // Emit V-Lo >u Hi-1-Lo
358 // Note that Hi has already had one subtracted from it, above.
359 ConstantInt *NegLo = cast<ConstantInt>(ConstantExpr::getNeg(Lo));
360 Value *Add = Builder->CreateAdd(V, NegLo, V->getName()+".off");
361 Constant *LowerBound = ConstantExpr::getAdd(NegLo, Hi);
Chris Lattner067459c2010-03-05 08:46:26 +0000362 return Builder->CreateICmpUGT(Add, LowerBound);
Chris Lattner0a8191e2010-01-05 07:50:36 +0000363}
364
365// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s with
366// any number of 0s on either side. The 1s are allowed to wrap from LSB to
367// MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs. 0x0F0F0000 is
368// not, since all 1s are not contiguous.
369static bool isRunOfOnes(ConstantInt *Val, uint32_t &MB, uint32_t &ME) {
370 const APInt& V = Val->getValue();
371 uint32_t BitWidth = Val->getType()->getBitWidth();
372 if (!APIntOps::isShiftedMask(BitWidth, V)) return false;
373
374 // look for the first zero bit after the run of ones
375 MB = BitWidth - ((V - 1) ^ V).countLeadingZeros();
376 // look for the first non-zero bit
377 ME = V.getActiveBits();
378 return true;
379}
380
381/// FoldLogicalPlusAnd - This is part of an expression (LHS +/- RHS) & Mask,
382/// where isSub determines whether the operator is a sub. If we can fold one of
383/// the following xforms:
384///
385/// ((A & N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == Mask
386/// ((A | N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
387/// ((A ^ N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
388///
389/// return (A +/- B).
390///
391Value *InstCombiner::FoldLogicalPlusAnd(Value *LHS, Value *RHS,
392 ConstantInt *Mask, bool isSub,
393 Instruction &I) {
394 Instruction *LHSI = dyn_cast<Instruction>(LHS);
395 if (!LHSI || LHSI->getNumOperands() != 2 ||
396 !isa<ConstantInt>(LHSI->getOperand(1))) return 0;
397
398 ConstantInt *N = cast<ConstantInt>(LHSI->getOperand(1));
399
400 switch (LHSI->getOpcode()) {
401 default: return 0;
402 case Instruction::And:
403 if (ConstantExpr::getAnd(N, Mask) == Mask) {
404 // If the AndRHS is a power of two minus one (0+1+), this is simple.
405 if ((Mask->getValue().countLeadingZeros() +
406 Mask->getValue().countPopulation()) ==
407 Mask->getValue().getBitWidth())
408 break;
409
410 // Otherwise, if Mask is 0+1+0+, and if B is known to have the low 0+
411 // part, we don't need any explicit masks to take them out of A. If that
412 // is all N is, ignore it.
413 uint32_t MB = 0, ME = 0;
414 if (isRunOfOnes(Mask, MB, ME)) { // begin/end bit of run, inclusive
415 uint32_t BitWidth = cast<IntegerType>(RHS->getType())->getBitWidth();
416 APInt Mask(APInt::getLowBitsSet(BitWidth, MB-1));
417 if (MaskedValueIsZero(RHS, Mask))
418 break;
419 }
420 }
421 return 0;
422 case Instruction::Or:
423 case Instruction::Xor:
424 // If the AndRHS is a power of two minus one (0+1+), and N&Mask == 0
425 if ((Mask->getValue().countLeadingZeros() +
426 Mask->getValue().countPopulation()) == Mask->getValue().getBitWidth()
427 && ConstantExpr::getAnd(N, Mask)->isNullValue())
428 break;
429 return 0;
430 }
431
432 if (isSub)
433 return Builder->CreateSub(LHSI->getOperand(0), RHS, "fold");
434 return Builder->CreateAdd(LHSI->getOperand(0), RHS, "fold");
435}
436
Owen Anderson3fe002d2010-09-08 22:16:17 +0000437/// enum for classifying (icmp eq (A & B), C) and (icmp ne (A & B), C)
438/// One of A and B is considered the mask, the other the value. This is
439/// described as the "AMask" or "BMask" part of the enum. If the enum
440/// contains only "Mask", then both A and B can be considered masks.
441/// If A is the mask, then it was proven, that (A & C) == C. This
442/// is trivial if C == A, or C == 0. If both A and C are constants, this
443/// proof is also easy.
444/// For the following explanations we assume that A is the mask.
445/// The part "AllOnes" declares, that the comparison is true only
446/// if (A & B) == A, or all bits of A are set in B.
447/// Example: (icmp eq (A & 3), 3) -> FoldMskICmp_AMask_AllOnes
448/// The part "AllZeroes" declares, that the comparison is true only
449/// if (A & B) == 0, or all bits of A are cleared in B.
450/// Example: (icmp eq (A & 3), 0) -> FoldMskICmp_Mask_AllZeroes
451/// The part "Mixed" declares, that (A & B) == C and C might or might not
452/// contain any number of one bits and zero bits.
453/// Example: (icmp eq (A & 3), 1) -> FoldMskICmp_AMask_Mixed
454/// The Part "Not" means, that in above descriptions "==" should be replaced
455/// by "!=".
456/// Example: (icmp ne (A & 3), 3) -> FoldMskICmp_AMask_NotAllOnes
457/// If the mask A contains a single bit, then the following is equivalent:
458/// (icmp eq (A & B), A) equals (icmp ne (A & B), 0)
459/// (icmp ne (A & B), A) equals (icmp eq (A & B), 0)
460enum MaskedICmpType {
461 FoldMskICmp_AMask_AllOnes = 1,
462 FoldMskICmp_AMask_NotAllOnes = 2,
463 FoldMskICmp_BMask_AllOnes = 4,
464 FoldMskICmp_BMask_NotAllOnes = 8,
465 FoldMskICmp_Mask_AllZeroes = 16,
466 FoldMskICmp_Mask_NotAllZeroes = 32,
467 FoldMskICmp_AMask_Mixed = 64,
468 FoldMskICmp_AMask_NotMixed = 128,
469 FoldMskICmp_BMask_Mixed = 256,
470 FoldMskICmp_BMask_NotMixed = 512
471};
472
473/// return the set of pattern classes (from MaskedICmpType)
474/// that (icmp SCC (A & B), C) satisfies
475static unsigned getTypeOfMaskedICmp(Value* A, Value* B, Value* C,
476 ICmpInst::Predicate SCC)
477{
478 ConstantInt *ACst = dyn_cast<ConstantInt>(A);
479 ConstantInt *BCst = dyn_cast<ConstantInt>(B);
480 ConstantInt *CCst = dyn_cast<ConstantInt>(C);
481 bool icmp_eq = (SCC == ICmpInst::ICMP_EQ);
482 bool icmp_abit = (ACst != 0 && !ACst->isZero() &&
483 ACst->getValue().isPowerOf2());
484 bool icmp_bbit = (BCst != 0 && !BCst->isZero() &&
485 BCst->getValue().isPowerOf2());
486 unsigned result = 0;
487 if (CCst != 0 && CCst->isZero()) {
488 // if C is zero, then both A and B qualify as mask
489 result |= (icmp_eq ? (FoldMskICmp_Mask_AllZeroes |
490 FoldMskICmp_Mask_AllZeroes |
491 FoldMskICmp_AMask_Mixed |
492 FoldMskICmp_BMask_Mixed)
493 : (FoldMskICmp_Mask_NotAllZeroes |
494 FoldMskICmp_Mask_NotAllZeroes |
495 FoldMskICmp_AMask_NotMixed |
496 FoldMskICmp_BMask_NotMixed));
497 if (icmp_abit)
498 result |= (icmp_eq ? (FoldMskICmp_AMask_NotAllOnes |
499 FoldMskICmp_AMask_NotMixed)
500 : (FoldMskICmp_AMask_AllOnes |
501 FoldMskICmp_AMask_Mixed));
502 if (icmp_bbit)
503 result |= (icmp_eq ? (FoldMskICmp_BMask_NotAllOnes |
504 FoldMskICmp_BMask_NotMixed)
505 : (FoldMskICmp_BMask_AllOnes |
506 FoldMskICmp_BMask_Mixed));
507 return result;
508 }
509 if (A == C) {
510 result |= (icmp_eq ? (FoldMskICmp_AMask_AllOnes |
511 FoldMskICmp_AMask_Mixed)
512 : (FoldMskICmp_AMask_NotAllOnes |
513 FoldMskICmp_AMask_NotMixed));
514 if (icmp_abit)
515 result |= (icmp_eq ? (FoldMskICmp_Mask_NotAllZeroes |
516 FoldMskICmp_AMask_NotMixed)
517 : (FoldMskICmp_Mask_AllZeroes |
518 FoldMskICmp_AMask_Mixed));
519 }
520 else if (ACst != 0 && CCst != 0 &&
521 ConstantExpr::getAnd(ACst, CCst) == CCst) {
522 result |= (icmp_eq ? FoldMskICmp_AMask_Mixed
523 : FoldMskICmp_AMask_NotMixed);
524 }
525 if (B == C)
526 {
527 result |= (icmp_eq ? (FoldMskICmp_BMask_AllOnes |
528 FoldMskICmp_BMask_Mixed)
529 : (FoldMskICmp_BMask_NotAllOnes |
530 FoldMskICmp_BMask_NotMixed));
531 if (icmp_bbit)
532 result |= (icmp_eq ? (FoldMskICmp_Mask_NotAllZeroes |
533 FoldMskICmp_BMask_NotMixed)
534 : (FoldMskICmp_Mask_AllZeroes |
535 FoldMskICmp_BMask_Mixed));
536 }
537 else if (BCst != 0 && CCst != 0 &&
538 ConstantExpr::getAnd(BCst, CCst) == CCst) {
539 result |= (icmp_eq ? FoldMskICmp_BMask_Mixed
540 : FoldMskICmp_BMask_NotMixed);
541 }
542 return result;
543}
544
545/// foldLogOpOfMaskedICmpsHelper:
546/// handle (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E)
547/// return the set of pattern classes (from MaskedICmpType)
548/// that both LHS and RHS satisfy
549static unsigned foldLogOpOfMaskedICmpsHelper(Value*& A,
550 Value*& B, Value*& C,
551 Value*& D, Value*& E,
552 ICmpInst *LHS, ICmpInst *RHS) {
553 ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate();
554 if (LHSCC != ICmpInst::ICMP_EQ && LHSCC != ICmpInst::ICMP_NE) return 0;
555 if (RHSCC != ICmpInst::ICMP_EQ && RHSCC != ICmpInst::ICMP_NE) return 0;
556 if (LHS->getOperand(0)->getType() != RHS->getOperand(0)->getType()) return 0;
557 // vectors are not (yet?) supported
558 if (LHS->getOperand(0)->getType()->isVectorTy()) return 0;
559
560 // Here comes the tricky part:
561 // LHS might be of the form L11 & L12 == X, X == L21 & L22,
562 // and L11 & L12 == L21 & L22. The same goes for RHS.
563 // Now we must find those components L** and R**, that are equal, so
564 // that we can extract the parameters A, B, C, D, and E for the canonical
565 // above.
566 Value *L1 = LHS->getOperand(0);
567 Value *L2 = LHS->getOperand(1);
568 Value *L11,*L12,*L21,*L22;
569 if (match(L1, m_And(m_Value(L11), m_Value(L12)))) {
570 if (!match(L2, m_And(m_Value(L21), m_Value(L22))))
571 L21 = L22 = 0;
572 }
573 else {
574 if (!match(L2, m_And(m_Value(L11), m_Value(L12))))
575 return 0;
576 std::swap(L1, L2);
577 L21 = L22 = 0;
578 }
579
580 Value *R1 = RHS->getOperand(0);
581 Value *R2 = RHS->getOperand(1);
582 Value *R11,*R12;
583 bool ok = false;
584 if (match(R1, m_And(m_Value(R11), m_Value(R12)))) {
585 if (R11 != 0 && (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22)) {
586 A = R11; D = R12; E = R2; ok = true;
587 }
588 else
589 if (R12 != 0 && (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22)) {
590 A = R12; D = R11; E = R2; ok = true;
591 }
592 }
593 if (!ok && match(R2, m_And(m_Value(R11), m_Value(R12)))) {
594 if (R11 != 0 && (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22)) {
595 A = R11; D = R12; E = R1; ok = true;
596 }
597 else
598 if (R12 != 0 && (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22)) {
599 A = R12; D = R11; E = R1; ok = true;
600 }
601 else
602 return 0;
603 }
604 if (!ok)
605 return 0;
606
607 if (L11 == A) {
608 B = L12; C = L2;
609 }
610 else if (L12 == A) {
611 B = L11; C = L2;
612 }
613 else if (L21 == A) {
614 B = L22; C = L1;
615 }
616 else if (L22 == A) {
617 B = L21; C = L1;
618 }
619
620 unsigned left_type = getTypeOfMaskedICmp(A, B, C, LHSCC);
621 unsigned right_type = getTypeOfMaskedICmp(A, D, E, RHSCC);
622 return left_type & right_type;
623}
624/// foldLogOpOfMaskedICmps:
625/// try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E)
626/// into a single (icmp(A & X) ==/!= Y)
627static Value* foldLogOpOfMaskedICmps(ICmpInst *LHS, ICmpInst *RHS,
628 ICmpInst::Predicate NEWCC,
629 llvm::InstCombiner::BuilderTy* Builder) {
630 Value *A = 0, *B = 0, *C = 0, *D = 0, *E = 0;
631 unsigned mask = foldLogOpOfMaskedICmpsHelper(A, B, C, D, E, LHS, RHS);
632 if (mask == 0) return 0;
633
634 if (NEWCC == ICmpInst::ICMP_NE)
635 mask >>= 1; // treat "Not"-states as normal states
636
637 if (mask & FoldMskICmp_Mask_AllZeroes) {
638 // (icmp eq (A & B), 0) & (icmp eq (A & D), 0)
639 // -> (icmp eq (A & (B|D)), 0)
640 Value* newOr = Builder->CreateOr(B, D);
641 Value* newAnd = Builder->CreateAnd(A, newOr);
642 // we can't use C as zero, because we might actually handle
643 // (icmp ne (A & B), B) & (icmp ne (A & D), D)
644 // with B and D, having a single bit set
645 Value* zero = Constant::getNullValue(A->getType());
646 return Builder->CreateICmp(NEWCC, newAnd, zero);
647 }
648 else if (mask & FoldMskICmp_BMask_AllOnes) {
649 // (icmp eq (A & B), B) & (icmp eq (A & D), D)
650 // -> (icmp eq (A & (B|D)), (B|D))
651 Value* newOr = Builder->CreateOr(B, D);
652 Value* newAnd = Builder->CreateAnd(A, newOr);
653 return Builder->CreateICmp(NEWCC, newAnd, newOr);
654 }
655 else if (mask & FoldMskICmp_AMask_AllOnes) {
656 // (icmp eq (A & B), A) & (icmp eq (A & D), A)
657 // -> (icmp eq (A & (B&D)), A)
658 Value* newAnd1 = Builder->CreateAnd(B, D);
659 Value* newAnd = Builder->CreateAnd(A, newAnd1);
660 return Builder->CreateICmp(NEWCC, newAnd, A);
661 }
662 else if (mask & FoldMskICmp_BMask_Mixed) {
663 // (icmp eq (A & B), C) & (icmp eq (A & D), E)
664 // We already know that B & C == C && D & E == E.
665 // If we can prove that (B & D) & (C ^ E) == 0, that is, the bits of
666 // C and E, which are shared by both the mask B and the mask D, don't
667 // contradict, then we can transform to
668 // -> (icmp eq (A & (B|D)), (C|E))
669 // Currently, we only handle the case of B, C, D, and E being constant.
670 ConstantInt *BCst = dyn_cast<ConstantInt>(B);
671 if (BCst == 0) return 0;
672 ConstantInt *DCst = dyn_cast<ConstantInt>(D);
673 if (DCst == 0) return 0;
674 // we can't simply use C and E, because we might actually handle
675 // (icmp ne (A & B), B) & (icmp eq (A & D), D)
676 // with B and D, having a single bit set
677
678 ConstantInt *CCst = dyn_cast<ConstantInt>(C);
679 if (CCst == 0) return 0;
680 if (LHS->getPredicate() != NEWCC)
681 CCst = dyn_cast<ConstantInt>( ConstantExpr::getXor(BCst, CCst) );
682 ConstantInt *ECst = dyn_cast<ConstantInt>(E);
683 if (ECst == 0) return 0;
684 if (RHS->getPredicate() != NEWCC)
685 ECst = dyn_cast<ConstantInt>( ConstantExpr::getXor(DCst, ECst) );
686 ConstantInt* MCst = dyn_cast<ConstantInt>(
687 ConstantExpr::getAnd(ConstantExpr::getAnd(BCst, DCst),
688 ConstantExpr::getXor(CCst, ECst)) );
689 // if there is a conflict we should actually return a false for the
690 // whole construct
691 if (!MCst->isZero())
692 return 0;
693 Value* newOr1 = Builder->CreateOr(B, D);
694 Value* newOr2 = ConstantExpr::getOr(CCst, ECst);
695 Value* newAnd = Builder->CreateAnd(A, newOr1);
696 return Builder->CreateICmp(NEWCC, newAnd, newOr2);
697 }
698 return 0;
699}
700
Chris Lattner0a8191e2010-01-05 07:50:36 +0000701/// FoldAndOfICmps - Fold (icmp)&(icmp) if possible.
Chris Lattner067459c2010-03-05 08:46:26 +0000702Value *InstCombiner::FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
Chris Lattner0a8191e2010-01-05 07:50:36 +0000703 ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate();
704
705 // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
706 if (PredicatesFoldable(LHSCC, RHSCC)) {
707 if (LHS->getOperand(0) == RHS->getOperand(1) &&
708 LHS->getOperand(1) == RHS->getOperand(0))
709 LHS->swapOperands();
710 if (LHS->getOperand(0) == RHS->getOperand(0) &&
711 LHS->getOperand(1) == RHS->getOperand(1)) {
712 Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
713 unsigned Code = getICmpCode(LHS) & getICmpCode(RHS);
714 bool isSigned = LHS->isSigned() || RHS->isSigned();
Chris Lattner067459c2010-03-05 08:46:26 +0000715 return getICmpValue(isSigned, Code, Op0, Op1, Builder);
Chris Lattner0a8191e2010-01-05 07:50:36 +0000716 }
717 }
Owen Anderson3fe002d2010-09-08 22:16:17 +0000718
719 {
720 // handle (roughly):
721 // (icmp eq (A & B), C) & (icmp eq (A & D), E)
722 Value* fold = foldLogOpOfMaskedICmps(LHS, RHS, ICmpInst::ICMP_EQ, Builder);
723 if (fold) return fold;
724 }
Chris Lattner0a8191e2010-01-05 07:50:36 +0000725
726 // This only handles icmp of constants: (icmp1 A, C1) & (icmp2 B, C2).
727 Value *Val = LHS->getOperand(0), *Val2 = RHS->getOperand(0);
728 ConstantInt *LHSCst = dyn_cast<ConstantInt>(LHS->getOperand(1));
729 ConstantInt *RHSCst = dyn_cast<ConstantInt>(RHS->getOperand(1));
730 if (LHSCst == 0 || RHSCst == 0) return 0;
731
732 if (LHSCst == RHSCst && LHSCC == RHSCC) {
733 // (icmp ult A, C) & (icmp ult B, C) --> (icmp ult (A|B), C)
734 // where C is a power of 2
735 if (LHSCC == ICmpInst::ICMP_ULT &&
736 LHSCst->getValue().isPowerOf2()) {
737 Value *NewOr = Builder->CreateOr(Val, Val2);
Chris Lattner067459c2010-03-05 08:46:26 +0000738 return Builder->CreateICmp(LHSCC, NewOr, LHSCst);
Chris Lattner0a8191e2010-01-05 07:50:36 +0000739 }
740
741 // (icmp eq A, 0) & (icmp eq B, 0) --> (icmp eq (A|B), 0)
742 if (LHSCC == ICmpInst::ICMP_EQ && LHSCst->isZero()) {
743 Value *NewOr = Builder->CreateOr(Val, Val2);
Chris Lattner067459c2010-03-05 08:46:26 +0000744 return Builder->CreateICmp(LHSCC, NewOr, LHSCst);
Chris Lattner0a8191e2010-01-05 07:50:36 +0000745 }
746 }
747
748 // From here on, we only handle:
749 // (icmp1 A, C1) & (icmp2 A, C2) --> something simpler.
750 if (Val != Val2) return 0;
751
752 // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
753 if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE ||
754 RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE ||
755 LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE ||
756 RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE)
757 return 0;
758
759 // We can't fold (ugt x, C) & (sgt x, C2).
760 if (!PredicatesFoldable(LHSCC, RHSCC))
761 return 0;
762
763 // Ensure that the larger constant is on the RHS.
764 bool ShouldSwap;
765 if (CmpInst::isSigned(LHSCC) ||
766 (ICmpInst::isEquality(LHSCC) &&
767 CmpInst::isSigned(RHSCC)))
768 ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue());
769 else
770 ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue());
771
772 if (ShouldSwap) {
773 std::swap(LHS, RHS);
774 std::swap(LHSCst, RHSCst);
775 std::swap(LHSCC, RHSCC);
776 }
777
Dan Gohman4a618822010-02-10 16:03:48 +0000778 // At this point, we know we have two icmp instructions
Chris Lattner0a8191e2010-01-05 07:50:36 +0000779 // comparing a value against two constants and and'ing the result
780 // together. Because of the above check, we know that we only have
781 // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know
782 // (from the icmp folding check above), that the two constants
783 // are not equal and that the larger constant is on the RHS
784 assert(LHSCst != RHSCst && "Compares not folded above?");
785
786 switch (LHSCC) {
787 default: llvm_unreachable("Unknown integer condition code!");
788 case ICmpInst::ICMP_EQ:
789 switch (RHSCC) {
790 default: llvm_unreachable("Unknown integer condition code!");
791 case ICmpInst::ICMP_EQ: // (X == 13 & X == 15) -> false
792 case ICmpInst::ICMP_UGT: // (X == 13 & X > 15) -> false
793 case ICmpInst::ICMP_SGT: // (X == 13 & X > 15) -> false
Chris Lattner067459c2010-03-05 08:46:26 +0000794 return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
Chris Lattner0a8191e2010-01-05 07:50:36 +0000795 case ICmpInst::ICMP_NE: // (X == 13 & X != 15) -> X == 13
796 case ICmpInst::ICMP_ULT: // (X == 13 & X < 15) -> X == 13
797 case ICmpInst::ICMP_SLT: // (X == 13 & X < 15) -> X == 13
Chris Lattner067459c2010-03-05 08:46:26 +0000798 return LHS;
Chris Lattner0a8191e2010-01-05 07:50:36 +0000799 }
800 case ICmpInst::ICMP_NE:
801 switch (RHSCC) {
802 default: llvm_unreachable("Unknown integer condition code!");
803 case ICmpInst::ICMP_ULT:
804 if (LHSCst == SubOne(RHSCst)) // (X != 13 & X u< 14) -> X < 13
Chris Lattner067459c2010-03-05 08:46:26 +0000805 return Builder->CreateICmpULT(Val, LHSCst);
Chris Lattner0a8191e2010-01-05 07:50:36 +0000806 break; // (X != 13 & X u< 15) -> no change
807 case ICmpInst::ICMP_SLT:
808 if (LHSCst == SubOne(RHSCst)) // (X != 13 & X s< 14) -> X < 13
Chris Lattner067459c2010-03-05 08:46:26 +0000809 return Builder->CreateICmpSLT(Val, LHSCst);
Chris Lattner0a8191e2010-01-05 07:50:36 +0000810 break; // (X != 13 & X s< 15) -> no change
811 case ICmpInst::ICMP_EQ: // (X != 13 & X == 15) -> X == 15
812 case ICmpInst::ICMP_UGT: // (X != 13 & X u> 15) -> X u> 15
813 case ICmpInst::ICMP_SGT: // (X != 13 & X s> 15) -> X s> 15
Chris Lattner067459c2010-03-05 08:46:26 +0000814 return RHS;
Chris Lattner0a8191e2010-01-05 07:50:36 +0000815 case ICmpInst::ICMP_NE:
816 if (LHSCst == SubOne(RHSCst)){// (X != 13 & X != 14) -> X-13 >u 1
817 Constant *AddCST = ConstantExpr::getNeg(LHSCst);
818 Value *Add = Builder->CreateAdd(Val, AddCST, Val->getName()+".off");
Chris Lattner067459c2010-03-05 08:46:26 +0000819 return Builder->CreateICmpUGT(Add, ConstantInt::get(Add->getType(), 1));
Chris Lattner0a8191e2010-01-05 07:50:36 +0000820 }
821 break; // (X != 13 & X != 15) -> no change
822 }
823 break;
824 case ICmpInst::ICMP_ULT:
825 switch (RHSCC) {
826 default: llvm_unreachable("Unknown integer condition code!");
827 case ICmpInst::ICMP_EQ: // (X u< 13 & X == 15) -> false
828 case ICmpInst::ICMP_UGT: // (X u< 13 & X u> 15) -> false
Chris Lattner067459c2010-03-05 08:46:26 +0000829 return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
Chris Lattner0a8191e2010-01-05 07:50:36 +0000830 case ICmpInst::ICMP_SGT: // (X u< 13 & X s> 15) -> no change
831 break;
832 case ICmpInst::ICMP_NE: // (X u< 13 & X != 15) -> X u< 13
833 case ICmpInst::ICMP_ULT: // (X u< 13 & X u< 15) -> X u< 13
Chris Lattner067459c2010-03-05 08:46:26 +0000834 return LHS;
Chris Lattner0a8191e2010-01-05 07:50:36 +0000835 case ICmpInst::ICMP_SLT: // (X u< 13 & X s< 15) -> no change
836 break;
837 }
838 break;
839 case ICmpInst::ICMP_SLT:
840 switch (RHSCC) {
841 default: llvm_unreachable("Unknown integer condition code!");
842 case ICmpInst::ICMP_EQ: // (X s< 13 & X == 15) -> false
843 case ICmpInst::ICMP_SGT: // (X s< 13 & X s> 15) -> false
Chris Lattner067459c2010-03-05 08:46:26 +0000844 return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
Chris Lattner0a8191e2010-01-05 07:50:36 +0000845 case ICmpInst::ICMP_UGT: // (X s< 13 & X u> 15) -> no change
846 break;
847 case ICmpInst::ICMP_NE: // (X s< 13 & X != 15) -> X < 13
848 case ICmpInst::ICMP_SLT: // (X s< 13 & X s< 15) -> X < 13
Chris Lattner067459c2010-03-05 08:46:26 +0000849 return LHS;
Chris Lattner0a8191e2010-01-05 07:50:36 +0000850 case ICmpInst::ICMP_ULT: // (X s< 13 & X u< 15) -> no change
851 break;
852 }
853 break;
854 case ICmpInst::ICMP_UGT:
855 switch (RHSCC) {
856 default: llvm_unreachable("Unknown integer condition code!");
857 case ICmpInst::ICMP_EQ: // (X u> 13 & X == 15) -> X == 15
858 case ICmpInst::ICMP_UGT: // (X u> 13 & X u> 15) -> X u> 15
Chris Lattner067459c2010-03-05 08:46:26 +0000859 return RHS;
Chris Lattner0a8191e2010-01-05 07:50:36 +0000860 case ICmpInst::ICMP_SGT: // (X u> 13 & X s> 15) -> no change
861 break;
862 case ICmpInst::ICMP_NE:
863 if (RHSCst == AddOne(LHSCst)) // (X u> 13 & X != 14) -> X u> 14
Chris Lattner067459c2010-03-05 08:46:26 +0000864 return Builder->CreateICmp(LHSCC, Val, RHSCst);
Chris Lattner0a8191e2010-01-05 07:50:36 +0000865 break; // (X u> 13 & X != 15) -> no change
866 case ICmpInst::ICMP_ULT: // (X u> 13 & X u< 15) -> (X-14) <u 1
Chris Lattner067459c2010-03-05 08:46:26 +0000867 return InsertRangeTest(Val, AddOne(LHSCst), RHSCst, false, true);
Chris Lattner0a8191e2010-01-05 07:50:36 +0000868 case ICmpInst::ICMP_SLT: // (X u> 13 & X s< 15) -> no change
869 break;
870 }
871 break;
872 case ICmpInst::ICMP_SGT:
873 switch (RHSCC) {
874 default: llvm_unreachable("Unknown integer condition code!");
875 case ICmpInst::ICMP_EQ: // (X s> 13 & X == 15) -> X == 15
876 case ICmpInst::ICMP_SGT: // (X s> 13 & X s> 15) -> X s> 15
Chris Lattner067459c2010-03-05 08:46:26 +0000877 return RHS;
Chris Lattner0a8191e2010-01-05 07:50:36 +0000878 case ICmpInst::ICMP_UGT: // (X s> 13 & X u> 15) -> no change
879 break;
880 case ICmpInst::ICMP_NE:
881 if (RHSCst == AddOne(LHSCst)) // (X s> 13 & X != 14) -> X s> 14
Chris Lattner067459c2010-03-05 08:46:26 +0000882 return Builder->CreateICmp(LHSCC, Val, RHSCst);
Chris Lattner0a8191e2010-01-05 07:50:36 +0000883 break; // (X s> 13 & X != 15) -> no change
884 case ICmpInst::ICMP_SLT: // (X s> 13 & X s< 15) -> (X-14) s< 1
Chris Lattner067459c2010-03-05 08:46:26 +0000885 return InsertRangeTest(Val, AddOne(LHSCst), RHSCst, true, true);
Chris Lattner0a8191e2010-01-05 07:50:36 +0000886 case ICmpInst::ICMP_ULT: // (X s> 13 & X u< 15) -> no change
887 break;
888 }
889 break;
890 }
891
892 return 0;
893}
894
Chris Lattner067459c2010-03-05 08:46:26 +0000895/// FoldAndOfFCmps - Optimize (fcmp)&(fcmp). NOTE: Unlike the rest of
896/// instcombine, this returns a Value which should already be inserted into the
897/// function.
898Value *InstCombiner::FoldAndOfFCmps(FCmpInst *LHS, FCmpInst *RHS) {
Chris Lattner0a8191e2010-01-05 07:50:36 +0000899 if (LHS->getPredicate() == FCmpInst::FCMP_ORD &&
900 RHS->getPredicate() == FCmpInst::FCMP_ORD) {
901 // (fcmp ord x, c) & (fcmp ord y, c) -> (fcmp ord x, y)
902 if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
903 if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
904 // If either of the constants are nans, then the whole thing returns
905 // false.
906 if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
Chris Lattner067459c2010-03-05 08:46:26 +0000907 return ConstantInt::getFalse(LHS->getContext());
908 return Builder->CreateFCmpORD(LHS->getOperand(0), RHS->getOperand(0));
Chris Lattner0a8191e2010-01-05 07:50:36 +0000909 }
910
911 // Handle vector zeros. This occurs because the canonical form of
912 // "fcmp ord x,x" is "fcmp ord x, 0".
913 if (isa<ConstantAggregateZero>(LHS->getOperand(1)) &&
914 isa<ConstantAggregateZero>(RHS->getOperand(1)))
Chris Lattner067459c2010-03-05 08:46:26 +0000915 return Builder->CreateFCmpORD(LHS->getOperand(0), RHS->getOperand(0));
Chris Lattner0a8191e2010-01-05 07:50:36 +0000916 return 0;
917 }
918
919 Value *Op0LHS = LHS->getOperand(0), *Op0RHS = LHS->getOperand(1);
920 Value *Op1LHS = RHS->getOperand(0), *Op1RHS = RHS->getOperand(1);
921 FCmpInst::Predicate Op0CC = LHS->getPredicate(), Op1CC = RHS->getPredicate();
922
923
924 if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
925 // Swap RHS operands to match LHS.
926 Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
927 std::swap(Op1LHS, Op1RHS);
928 }
929
930 if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
931 // Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y).
932 if (Op0CC == Op1CC)
Chris Lattner067459c2010-03-05 08:46:26 +0000933 return Builder->CreateFCmp((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS);
Chris Lattner0a8191e2010-01-05 07:50:36 +0000934 if (Op0CC == FCmpInst::FCMP_FALSE || Op1CC == FCmpInst::FCMP_FALSE)
Chris Lattner067459c2010-03-05 08:46:26 +0000935 return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
Chris Lattner0a8191e2010-01-05 07:50:36 +0000936 if (Op0CC == FCmpInst::FCMP_TRUE)
Chris Lattner067459c2010-03-05 08:46:26 +0000937 return RHS;
Chris Lattner0a8191e2010-01-05 07:50:36 +0000938 if (Op1CC == FCmpInst::FCMP_TRUE)
Chris Lattner067459c2010-03-05 08:46:26 +0000939 return LHS;
Chris Lattner0a8191e2010-01-05 07:50:36 +0000940
941 bool Op0Ordered;
942 bool Op1Ordered;
943 unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
944 unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
945 if (Op1Pred == 0) {
946 std::swap(LHS, RHS);
947 std::swap(Op0Pred, Op1Pred);
948 std::swap(Op0Ordered, Op1Ordered);
949 }
950 if (Op0Pred == 0) {
951 // uno && ueq -> uno && (uno || eq) -> ueq
952 // ord && olt -> ord && (ord && lt) -> olt
953 if (Op0Ordered == Op1Ordered)
Chris Lattner067459c2010-03-05 08:46:26 +0000954 return RHS;
Chris Lattner0a8191e2010-01-05 07:50:36 +0000955
956 // uno && oeq -> uno && (ord && eq) -> false
957 // uno && ord -> false
958 if (!Op0Ordered)
Chris Lattner067459c2010-03-05 08:46:26 +0000959 return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
Chris Lattner0a8191e2010-01-05 07:50:36 +0000960 // ord && ueq -> ord && (uno || eq) -> oeq
Chris Lattner067459c2010-03-05 08:46:26 +0000961 return getFCmpValue(true, Op1Pred, Op0LHS, Op0RHS, Builder);
Chris Lattner0a8191e2010-01-05 07:50:36 +0000962 }
963 }
964
965 return 0;
966}
967
968
969Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
970 bool Changed = SimplifyCommutative(I);
971 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
972
973 if (Value *V = SimplifyAndInst(Op0, Op1, TD))
974 return ReplaceInstUsesWith(I, V);
975
976 // See if we can simplify any instructions used by the instruction whose sole
977 // purpose is to compute bits we don't care about.
978 if (SimplifyDemandedInstructionBits(I))
979 return &I;
980
981 if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(Op1)) {
982 const APInt &AndRHSMask = AndRHS->getValue();
983 APInt NotAndRHS(~AndRHSMask);
984
985 // Optimize a variety of ((val OP C1) & C2) combinations...
986 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
987 Value *Op0LHS = Op0I->getOperand(0);
988 Value *Op0RHS = Op0I->getOperand(1);
989 switch (Op0I->getOpcode()) {
990 default: break;
991 case Instruction::Xor:
992 case Instruction::Or:
993 // If the mask is only needed on one incoming arm, push it up.
994 if (!Op0I->hasOneUse()) break;
995
996 if (MaskedValueIsZero(Op0LHS, NotAndRHS)) {
997 // Not masking anything out for the LHS, move to RHS.
998 Value *NewRHS = Builder->CreateAnd(Op0RHS, AndRHS,
999 Op0RHS->getName()+".masked");
1000 return BinaryOperator::Create(Op0I->getOpcode(), Op0LHS, NewRHS);
1001 }
1002 if (!isa<Constant>(Op0RHS) &&
1003 MaskedValueIsZero(Op0RHS, NotAndRHS)) {
1004 // Not masking anything out for the RHS, move to LHS.
1005 Value *NewLHS = Builder->CreateAnd(Op0LHS, AndRHS,
1006 Op0LHS->getName()+".masked");
1007 return BinaryOperator::Create(Op0I->getOpcode(), NewLHS, Op0RHS);
1008 }
1009
1010 break;
1011 case Instruction::Add:
1012 // ((A & N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == AndRHS.
1013 // ((A | N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
1014 // ((A ^ N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
1015 if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, false, I))
1016 return BinaryOperator::CreateAnd(V, AndRHS);
1017 if (Value *V = FoldLogicalPlusAnd(Op0RHS, Op0LHS, AndRHS, false, I))
1018 return BinaryOperator::CreateAnd(V, AndRHS); // Add commutes
1019 break;
1020
1021 case Instruction::Sub:
1022 // ((A & N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == AndRHS.
1023 // ((A | N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
1024 // ((A ^ N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
1025 if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, true, I))
1026 return BinaryOperator::CreateAnd(V, AndRHS);
1027
1028 // (A - N) & AndRHS -> -N & AndRHS iff A&AndRHS==0 and AndRHS
1029 // has 1's for all bits that the subtraction with A might affect.
1030 if (Op0I->hasOneUse()) {
1031 uint32_t BitWidth = AndRHSMask.getBitWidth();
1032 uint32_t Zeros = AndRHSMask.countLeadingZeros();
1033 APInt Mask = APInt::getLowBitsSet(BitWidth, BitWidth - Zeros);
1034
1035 ConstantInt *A = dyn_cast<ConstantInt>(Op0LHS);
1036 if (!(A && A->isZero()) && // avoid infinite recursion.
1037 MaskedValueIsZero(Op0LHS, Mask)) {
1038 Value *NewNeg = Builder->CreateNeg(Op0RHS);
1039 return BinaryOperator::CreateAnd(NewNeg, AndRHS);
1040 }
1041 }
1042 break;
1043
1044 case Instruction::Shl:
1045 case Instruction::LShr:
1046 // (1 << x) & 1 --> zext(x == 0)
1047 // (1 >> x) & 1 --> zext(x == 0)
1048 if (AndRHSMask == 1 && Op0LHS == AndRHS) {
1049 Value *NewICmp =
1050 Builder->CreateICmpEQ(Op0RHS, Constant::getNullValue(I.getType()));
1051 return new ZExtInst(NewICmp, I.getType());
1052 }
1053 break;
1054 }
1055
1056 if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
1057 if (Instruction *Res = OptAndOp(Op0I, Op0CI, AndRHS, I))
1058 return Res;
1059 } else if (CastInst *CI = dyn_cast<CastInst>(Op0)) {
1060 // If this is an integer truncation or change from signed-to-unsigned, and
1061 // if the source is an and/or with immediate, transform it. This
1062 // frequently occurs for bitfield accesses.
1063 if (Instruction *CastOp = dyn_cast<Instruction>(CI->getOperand(0))) {
1064 if ((isa<TruncInst>(CI) || isa<BitCastInst>(CI)) &&
1065 CastOp->getNumOperands() == 2)
1066 if (ConstantInt *AndCI =dyn_cast<ConstantInt>(CastOp->getOperand(1))){
1067 if (CastOp->getOpcode() == Instruction::And) {
1068 // Change: and (cast (and X, C1) to T), C2
1069 // into : and (cast X to T), trunc_or_bitcast(C1)&C2
1070 // This will fold the two constants together, which may allow
1071 // other simplifications.
1072 Value *NewCast = Builder->CreateTruncOrBitCast(
1073 CastOp->getOperand(0), I.getType(),
1074 CastOp->getName()+".shrunk");
1075 // trunc_or_bitcast(C1)&C2
1076 Constant *C3 = ConstantExpr::getTruncOrBitCast(AndCI,I.getType());
1077 C3 = ConstantExpr::getAnd(C3, AndRHS);
1078 return BinaryOperator::CreateAnd(NewCast, C3);
1079 } else if (CastOp->getOpcode() == Instruction::Or) {
1080 // Change: and (cast (or X, C1) to T), C2
1081 // into : trunc(C1)&C2 iff trunc(C1)&C2 == C2
1082 Constant *C3 = ConstantExpr::getTruncOrBitCast(AndCI,I.getType());
1083 if (ConstantExpr::getAnd(C3, AndRHS) == AndRHS)
1084 // trunc(C1)&C2
1085 return ReplaceInstUsesWith(I, AndRHS);
1086 }
1087 }
1088 }
1089 }
1090
1091 // Try to fold constant and into select arguments.
1092 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
1093 if (Instruction *R = FoldOpIntoSelect(I, SI))
1094 return R;
1095 if (isa<PHINode>(Op0))
1096 if (Instruction *NV = FoldOpIntoPhi(I))
1097 return NV;
1098 }
1099
1100
1101 // (~A & ~B) == (~(A | B)) - De Morgan's Law
1102 if (Value *Op0NotVal = dyn_castNotVal(Op0))
1103 if (Value *Op1NotVal = dyn_castNotVal(Op1))
1104 if (Op0->hasOneUse() && Op1->hasOneUse()) {
1105 Value *Or = Builder->CreateOr(Op0NotVal, Op1NotVal,
1106 I.getName()+".demorgan");
1107 return BinaryOperator::CreateNot(Or);
1108 }
1109
1110 {
1111 Value *A = 0, *B = 0, *C = 0, *D = 0;
1112 // (A|B) & ~(A&B) -> A^B
1113 if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
1114 match(Op1, m_Not(m_And(m_Value(C), m_Value(D)))) &&
1115 ((A == C && B == D) || (A == D && B == C)))
1116 return BinaryOperator::CreateXor(A, B);
1117
1118 // ~(A&B) & (A|B) -> A^B
1119 if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
1120 match(Op0, m_Not(m_And(m_Value(C), m_Value(D)))) &&
1121 ((A == C && B == D) || (A == D && B == C)))
1122 return BinaryOperator::CreateXor(A, B);
1123
1124 if (Op0->hasOneUse() &&
1125 match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
1126 if (A == Op1) { // (A^B)&A -> A&(A^B)
1127 I.swapOperands(); // Simplify below
1128 std::swap(Op0, Op1);
1129 } else if (B == Op1) { // (A^B)&B -> B&(B^A)
1130 cast<BinaryOperator>(Op0)->swapOperands();
1131 I.swapOperands(); // Simplify below
1132 std::swap(Op0, Op1);
1133 }
1134 }
1135
1136 if (Op1->hasOneUse() &&
1137 match(Op1, m_Xor(m_Value(A), m_Value(B)))) {
1138 if (B == Op0) { // B&(A^B) -> B&(B^A)
1139 cast<BinaryOperator>(Op1)->swapOperands();
1140 std::swap(A, B);
1141 }
1142 if (A == Op0) // A&(A^B) -> A & ~B
1143 return BinaryOperator::CreateAnd(A, Builder->CreateNot(B, "tmp"));
1144 }
1145
1146 // (A&((~A)|B)) -> A&B
1147 if (match(Op0, m_Or(m_Not(m_Specific(Op1)), m_Value(A))) ||
1148 match(Op0, m_Or(m_Value(A), m_Not(m_Specific(Op1)))))
1149 return BinaryOperator::CreateAnd(A, Op1);
1150 if (match(Op1, m_Or(m_Not(m_Specific(Op0)), m_Value(A))) ||
1151 match(Op1, m_Or(m_Value(A), m_Not(m_Specific(Op0)))))
1152 return BinaryOperator::CreateAnd(A, Op0);
1153 }
1154
1155 if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1))
1156 if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0))
Chris Lattner067459c2010-03-05 08:46:26 +00001157 if (Value *Res = FoldAndOfICmps(LHS, RHS))
1158 return ReplaceInstUsesWith(I, Res);
Chris Lattner4e8137d2010-02-11 06:26:33 +00001159
1160 // If and'ing two fcmp, try combine them into one.
1161 if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
1162 if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
Chris Lattner067459c2010-03-05 08:46:26 +00001163 if (Value *Res = FoldAndOfFCmps(LHS, RHS))
1164 return ReplaceInstUsesWith(I, Res);
Chris Lattner4e8137d2010-02-11 06:26:33 +00001165
1166
Chris Lattner0a8191e2010-01-05 07:50:36 +00001167 // fold (and (cast A), (cast B)) -> (cast (and A, B))
1168 if (CastInst *Op0C = dyn_cast<CastInst>(Op0))
Chris Lattner4e8137d2010-02-11 06:26:33 +00001169 if (CastInst *Op1C = dyn_cast<CastInst>(Op1)) {
1170 const Type *SrcTy = Op0C->getOperand(0)->getType();
1171 if (Op0C->getOpcode() == Op1C->getOpcode() && // same cast kind ?
1172 SrcTy == Op1C->getOperand(0)->getType() &&
Duncan Sands9dff9be2010-02-15 16:12:20 +00001173 SrcTy->isIntOrIntVectorTy()) {
Chris Lattner4e8137d2010-02-11 06:26:33 +00001174 Value *Op0COp = Op0C->getOperand(0), *Op1COp = Op1C->getOperand(0);
1175
1176 // Only do this if the casts both really cause code to be generated.
1177 if (ShouldOptimizeCast(Op0C->getOpcode(), Op0COp, I.getType()) &&
1178 ShouldOptimizeCast(Op1C->getOpcode(), Op1COp, I.getType())) {
1179 Value *NewOp = Builder->CreateAnd(Op0COp, Op1COp, I.getName());
Chris Lattner0a8191e2010-01-05 07:50:36 +00001180 return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
1181 }
Chris Lattner4e8137d2010-02-11 06:26:33 +00001182
1183 // If this is and(cast(icmp), cast(icmp)), try to fold this even if the
1184 // cast is otherwise not optimizable. This happens for vector sexts.
1185 if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1COp))
1186 if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0COp))
Chris Lattner067459c2010-03-05 08:46:26 +00001187 if (Value *Res = FoldAndOfICmps(LHS, RHS))
Chris Lattner4e8137d2010-02-11 06:26:33 +00001188 return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
Chris Lattner4e8137d2010-02-11 06:26:33 +00001189
1190 // If this is and(cast(fcmp), cast(fcmp)), try to fold this even if the
1191 // cast is otherwise not optimizable. This happens for vector sexts.
1192 if (FCmpInst *RHS = dyn_cast<FCmpInst>(Op1COp))
1193 if (FCmpInst *LHS = dyn_cast<FCmpInst>(Op0COp))
Chris Lattner067459c2010-03-05 08:46:26 +00001194 if (Value *Res = FoldAndOfFCmps(LHS, RHS))
Chris Lattner4e8137d2010-02-11 06:26:33 +00001195 return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
Chris Lattner0a8191e2010-01-05 07:50:36 +00001196 }
Chris Lattner4e8137d2010-02-11 06:26:33 +00001197 }
Chris Lattner0a8191e2010-01-05 07:50:36 +00001198
1199 // (X >> Z) & (Y >> Z) -> (X&Y) >> Z for all shifts.
1200 if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
1201 if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
1202 if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
1203 SI0->getOperand(1) == SI1->getOperand(1) &&
1204 (SI0->hasOneUse() || SI1->hasOneUse())) {
1205 Value *NewOp =
1206 Builder->CreateAnd(SI0->getOperand(0), SI1->getOperand(0),
1207 SI0->getName());
1208 return BinaryOperator::Create(SI1->getOpcode(), NewOp,
1209 SI1->getOperand(1));
1210 }
1211 }
1212
Chris Lattner0a8191e2010-01-05 07:50:36 +00001213 return Changed ? &I : 0;
1214}
1215
1216/// CollectBSwapParts - Analyze the specified subexpression and see if it is
1217/// capable of providing pieces of a bswap. The subexpression provides pieces
1218/// of a bswap if it is proven that each of the non-zero bytes in the output of
1219/// the expression came from the corresponding "byte swapped" byte in some other
1220/// value. For example, if the current subexpression is "(shl i32 %X, 24)" then
1221/// we know that the expression deposits the low byte of %X into the high byte
1222/// of the bswap result and that all other bytes are zero. This expression is
1223/// accepted, the high byte of ByteValues is set to X to indicate a correct
1224/// match.
1225///
1226/// This function returns true if the match was unsuccessful and false if so.
1227/// On entry to the function the "OverallLeftShift" is a signed integer value
1228/// indicating the number of bytes that the subexpression is later shifted. For
1229/// example, if the expression is later right shifted by 16 bits, the
1230/// OverallLeftShift value would be -2 on entry. This is used to specify which
1231/// byte of ByteValues is actually being set.
1232///
1233/// Similarly, ByteMask is a bitmask where a bit is clear if its corresponding
1234/// byte is masked to zero by a user. For example, in (X & 255), X will be
1235/// processed with a bytemask of 1. Because bytemask is 32-bits, this limits
1236/// this function to working on up to 32-byte (256 bit) values. ByteMask is
1237/// always in the local (OverallLeftShift) coordinate space.
1238///
1239static bool CollectBSwapParts(Value *V, int OverallLeftShift, uint32_t ByteMask,
1240 SmallVector<Value*, 8> &ByteValues) {
1241 if (Instruction *I = dyn_cast<Instruction>(V)) {
1242 // If this is an or instruction, it may be an inner node of the bswap.
1243 if (I->getOpcode() == Instruction::Or) {
1244 return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
1245 ByteValues) ||
1246 CollectBSwapParts(I->getOperand(1), OverallLeftShift, ByteMask,
1247 ByteValues);
1248 }
1249
1250 // If this is a logical shift by a constant multiple of 8, recurse with
1251 // OverallLeftShift and ByteMask adjusted.
1252 if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
1253 unsigned ShAmt =
1254 cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
1255 // Ensure the shift amount is defined and of a byte value.
1256 if ((ShAmt & 7) || (ShAmt > 8*ByteValues.size()))
1257 return true;
1258
1259 unsigned ByteShift = ShAmt >> 3;
1260 if (I->getOpcode() == Instruction::Shl) {
1261 // X << 2 -> collect(X, +2)
1262 OverallLeftShift += ByteShift;
1263 ByteMask >>= ByteShift;
1264 } else {
1265 // X >>u 2 -> collect(X, -2)
1266 OverallLeftShift -= ByteShift;
1267 ByteMask <<= ByteShift;
1268 ByteMask &= (~0U >> (32-ByteValues.size()));
1269 }
1270
1271 if (OverallLeftShift >= (int)ByteValues.size()) return true;
1272 if (OverallLeftShift <= -(int)ByteValues.size()) return true;
1273
1274 return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
1275 ByteValues);
1276 }
1277
1278 // If this is a logical 'and' with a mask that clears bytes, clear the
1279 // corresponding bytes in ByteMask.
1280 if (I->getOpcode() == Instruction::And &&
1281 isa<ConstantInt>(I->getOperand(1))) {
1282 // Scan every byte of the and mask, seeing if the byte is either 0 or 255.
1283 unsigned NumBytes = ByteValues.size();
1284 APInt Byte(I->getType()->getPrimitiveSizeInBits(), 255);
1285 const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
1286
1287 for (unsigned i = 0; i != NumBytes; ++i, Byte <<= 8) {
1288 // If this byte is masked out by a later operation, we don't care what
1289 // the and mask is.
1290 if ((ByteMask & (1 << i)) == 0)
1291 continue;
1292
1293 // If the AndMask is all zeros for this byte, clear the bit.
1294 APInt MaskB = AndMask & Byte;
1295 if (MaskB == 0) {
1296 ByteMask &= ~(1U << i);
1297 continue;
1298 }
1299
1300 // If the AndMask is not all ones for this byte, it's not a bytezap.
1301 if (MaskB != Byte)
1302 return true;
1303
1304 // Otherwise, this byte is kept.
1305 }
1306
1307 return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
1308 ByteValues);
1309 }
1310 }
1311
1312 // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be
1313 // the input value to the bswap. Some observations: 1) if more than one byte
1314 // is demanded from this input, then it could not be successfully assembled
1315 // into a byteswap. At least one of the two bytes would not be aligned with
1316 // their ultimate destination.
1317 if (!isPowerOf2_32(ByteMask)) return true;
1318 unsigned InputByteNo = CountTrailingZeros_32(ByteMask);
1319
1320 // 2) The input and ultimate destinations must line up: if byte 3 of an i32
1321 // is demanded, it needs to go into byte 0 of the result. This means that the
1322 // byte needs to be shifted until it lands in the right byte bucket. The
1323 // shift amount depends on the position: if the byte is coming from the high
1324 // part of the value (e.g. byte 3) then it must be shifted right. If from the
1325 // low part, it must be shifted left.
1326 unsigned DestByteNo = InputByteNo + OverallLeftShift;
1327 if (InputByteNo < ByteValues.size()/2) {
1328 if (ByteValues.size()-1-DestByteNo != InputByteNo)
1329 return true;
1330 } else {
1331 if (ByteValues.size()-1-DestByteNo != InputByteNo)
1332 return true;
1333 }
1334
1335 // If the destination byte value is already defined, the values are or'd
1336 // together, which isn't a bswap (unless it's an or of the same bits).
1337 if (ByteValues[DestByteNo] && ByteValues[DestByteNo] != V)
1338 return true;
1339 ByteValues[DestByteNo] = V;
1340 return false;
1341}
1342
1343/// MatchBSwap - Given an OR instruction, check to see if this is a bswap idiom.
1344/// If so, insert the new bswap intrinsic and return it.
1345Instruction *InstCombiner::MatchBSwap(BinaryOperator &I) {
1346 const IntegerType *ITy = dyn_cast<IntegerType>(I.getType());
1347 if (!ITy || ITy->getBitWidth() % 16 ||
1348 // ByteMask only allows up to 32-byte values.
1349 ITy->getBitWidth() > 32*8)
1350 return 0; // Can only bswap pairs of bytes. Can't do vectors.
1351
1352 /// ByteValues - For each byte of the result, we keep track of which value
1353 /// defines each byte.
1354 SmallVector<Value*, 8> ByteValues;
1355 ByteValues.resize(ITy->getBitWidth()/8);
1356
1357 // Try to find all the pieces corresponding to the bswap.
1358 uint32_t ByteMask = ~0U >> (32-ByteValues.size());
1359 if (CollectBSwapParts(&I, 0, ByteMask, ByteValues))
1360 return 0;
1361
1362 // Check to see if all of the bytes come from the same value.
1363 Value *V = ByteValues[0];
1364 if (V == 0) return 0; // Didn't find a byte? Must be zero.
1365
1366 // Check to make sure that all of the bytes come from the same value.
1367 for (unsigned i = 1, e = ByteValues.size(); i != e; ++i)
1368 if (ByteValues[i] != V)
1369 return 0;
1370 const Type *Tys[] = { ITy };
1371 Module *M = I.getParent()->getParent()->getParent();
1372 Function *F = Intrinsic::getDeclaration(M, Intrinsic::bswap, Tys, 1);
1373 return CallInst::Create(F, V);
1374}
1375
1376/// MatchSelectFromAndOr - We have an expression of the form (A&C)|(B&D). Check
1377/// If A is (cond?-1:0) and either B or D is ~(cond?-1,0) or (cond?0,-1), then
1378/// we can simplify this expression to "cond ? C : D or B".
1379static Instruction *MatchSelectFromAndOr(Value *A, Value *B,
1380 Value *C, Value *D) {
1381 // If A is not a select of -1/0, this cannot match.
1382 Value *Cond = 0;
Chris Lattner9b6a1782010-02-09 01:12:41 +00001383 if (!match(A, m_SExt(m_Value(Cond))) ||
Duncan Sands9dff9be2010-02-15 16:12:20 +00001384 !Cond->getType()->isIntegerTy(1))
Chris Lattner0a8191e2010-01-05 07:50:36 +00001385 return 0;
1386
1387 // ((cond?-1:0)&C) | (B&(cond?0:-1)) -> cond ? C : B.
Chris Lattnerf4c8d3c2010-02-09 01:14:06 +00001388 if (match(D, m_Not(m_SExt(m_Specific(Cond)))))
Chris Lattner0a8191e2010-01-05 07:50:36 +00001389 return SelectInst::Create(Cond, C, B);
Chris Lattnerf4c8d3c2010-02-09 01:14:06 +00001390 if (match(D, m_SExt(m_Not(m_Specific(Cond)))))
Chris Lattner64ffd112010-02-05 19:53:02 +00001391 return SelectInst::Create(Cond, C, B);
1392
Chris Lattner0a8191e2010-01-05 07:50:36 +00001393 // ((cond?-1:0)&C) | ((cond?0:-1)&D) -> cond ? C : D.
Chris Lattnerf4c8d3c2010-02-09 01:14:06 +00001394 if (match(B, m_Not(m_SExt(m_Specific(Cond)))))
Chris Lattner64ffd112010-02-05 19:53:02 +00001395 return SelectInst::Create(Cond, C, D);
Chris Lattnerf4c8d3c2010-02-09 01:14:06 +00001396 if (match(B, m_SExt(m_Not(m_Specific(Cond)))))
Chris Lattner0a8191e2010-01-05 07:50:36 +00001397 return SelectInst::Create(Cond, C, D);
Chris Lattner0a8191e2010-01-05 07:50:36 +00001398 return 0;
1399}
1400
Chris Lattner067459c2010-03-05 08:46:26 +00001401/// FoldOrOfICmps - Fold (icmp)|(icmp) if possible.
1402Value *InstCombiner::FoldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
Chris Lattner0a8191e2010-01-05 07:50:36 +00001403 ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate();
1404
1405 // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B)
1406 if (PredicatesFoldable(LHSCC, RHSCC)) {
1407 if (LHS->getOperand(0) == RHS->getOperand(1) &&
1408 LHS->getOperand(1) == RHS->getOperand(0))
1409 LHS->swapOperands();
1410 if (LHS->getOperand(0) == RHS->getOperand(0) &&
1411 LHS->getOperand(1) == RHS->getOperand(1)) {
1412 Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
1413 unsigned Code = getICmpCode(LHS) | getICmpCode(RHS);
1414 bool isSigned = LHS->isSigned() || RHS->isSigned();
Chris Lattner067459c2010-03-05 08:46:26 +00001415 return getICmpValue(isSigned, Code, Op0, Op1, Builder);
Chris Lattner0a8191e2010-01-05 07:50:36 +00001416 }
1417 }
1418
Owen Anderson3fe002d2010-09-08 22:16:17 +00001419 {
1420 // handle (roughly):
1421 // (icmp ne (A & B), C) | (icmp ne (A & D), E)
1422 Value* fold = foldLogOpOfMaskedICmps(LHS, RHS, ICmpInst::ICMP_NE, Builder);
1423 if (fold) return fold;
1424 }
1425
Chris Lattner0a8191e2010-01-05 07:50:36 +00001426 // This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2).
1427 Value *Val = LHS->getOperand(0), *Val2 = RHS->getOperand(0);
1428 ConstantInt *LHSCst = dyn_cast<ConstantInt>(LHS->getOperand(1));
1429 ConstantInt *RHSCst = dyn_cast<ConstantInt>(RHS->getOperand(1));
1430 if (LHSCst == 0 || RHSCst == 0) return 0;
1431
Owen Anderson8f306a72010-08-02 09:32:13 +00001432 if (LHSCst == RHSCst && LHSCC == RHSCC) {
1433 // (icmp ne A, 0) | (icmp ne B, 0) --> (icmp ne (A|B), 0)
1434 if (LHSCC == ICmpInst::ICMP_NE && LHSCst->isZero()) {
1435 Value *NewOr = Builder->CreateOr(Val, Val2);
1436 return Builder->CreateICmp(LHSCC, NewOr, LHSCst);
1437 }
Chris Lattner0a8191e2010-01-05 07:50:36 +00001438 }
1439
1440 // From here on, we only handle:
1441 // (icmp1 A, C1) | (icmp2 A, C2) --> something simpler.
1442 if (Val != Val2) return 0;
1443
1444 // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
1445 if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE ||
1446 RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE ||
1447 LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE ||
1448 RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE)
1449 return 0;
1450
1451 // We can't fold (ugt x, C) | (sgt x, C2).
1452 if (!PredicatesFoldable(LHSCC, RHSCC))
1453 return 0;
1454
1455 // Ensure that the larger constant is on the RHS.
1456 bool ShouldSwap;
1457 if (CmpInst::isSigned(LHSCC) ||
1458 (ICmpInst::isEquality(LHSCC) &&
1459 CmpInst::isSigned(RHSCC)))
1460 ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue());
1461 else
1462 ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue());
1463
1464 if (ShouldSwap) {
1465 std::swap(LHS, RHS);
1466 std::swap(LHSCst, RHSCst);
1467 std::swap(LHSCC, RHSCC);
1468 }
1469
Dan Gohman4a618822010-02-10 16:03:48 +00001470 // At this point, we know we have two icmp instructions
Chris Lattner0a8191e2010-01-05 07:50:36 +00001471 // comparing a value against two constants and or'ing the result
1472 // together. Because of the above check, we know that we only have
1473 // ICMP_EQ, ICMP_NE, ICMP_LT, and ICMP_GT here. We also know (from the
1474 // icmp folding check above), that the two constants are not
1475 // equal.
1476 assert(LHSCst != RHSCst && "Compares not folded above?");
1477
1478 switch (LHSCC) {
1479 default: llvm_unreachable("Unknown integer condition code!");
1480 case ICmpInst::ICMP_EQ:
1481 switch (RHSCC) {
1482 default: llvm_unreachable("Unknown integer condition code!");
1483 case ICmpInst::ICMP_EQ:
1484 if (LHSCst == SubOne(RHSCst)) {
1485 // (X == 13 | X == 14) -> X-13 <u 2
1486 Constant *AddCST = ConstantExpr::getNeg(LHSCst);
1487 Value *Add = Builder->CreateAdd(Val, AddCST, Val->getName()+".off");
1488 AddCST = ConstantExpr::getSub(AddOne(RHSCst), LHSCst);
Chris Lattner067459c2010-03-05 08:46:26 +00001489 return Builder->CreateICmpULT(Add, AddCST);
Chris Lattner0a8191e2010-01-05 07:50:36 +00001490 }
1491 break; // (X == 13 | X == 15) -> no change
1492 case ICmpInst::ICMP_UGT: // (X == 13 | X u> 14) -> no change
1493 case ICmpInst::ICMP_SGT: // (X == 13 | X s> 14) -> no change
1494 break;
1495 case ICmpInst::ICMP_NE: // (X == 13 | X != 15) -> X != 15
1496 case ICmpInst::ICMP_ULT: // (X == 13 | X u< 15) -> X u< 15
1497 case ICmpInst::ICMP_SLT: // (X == 13 | X s< 15) -> X s< 15
Chris Lattner067459c2010-03-05 08:46:26 +00001498 return RHS;
Chris Lattner0a8191e2010-01-05 07:50:36 +00001499 }
1500 break;
1501 case ICmpInst::ICMP_NE:
1502 switch (RHSCC) {
1503 default: llvm_unreachable("Unknown integer condition code!");
1504 case ICmpInst::ICMP_EQ: // (X != 13 | X == 15) -> X != 13
1505 case ICmpInst::ICMP_UGT: // (X != 13 | X u> 15) -> X != 13
1506 case ICmpInst::ICMP_SGT: // (X != 13 | X s> 15) -> X != 13
Chris Lattner067459c2010-03-05 08:46:26 +00001507 return LHS;
Chris Lattner0a8191e2010-01-05 07:50:36 +00001508 case ICmpInst::ICMP_NE: // (X != 13 | X != 15) -> true
1509 case ICmpInst::ICMP_ULT: // (X != 13 | X u< 15) -> true
1510 case ICmpInst::ICMP_SLT: // (X != 13 | X s< 15) -> true
Chris Lattner067459c2010-03-05 08:46:26 +00001511 return ConstantInt::getTrue(LHS->getContext());
Chris Lattner0a8191e2010-01-05 07:50:36 +00001512 }
1513 break;
1514 case ICmpInst::ICMP_ULT:
1515 switch (RHSCC) {
1516 default: llvm_unreachable("Unknown integer condition code!");
1517 case ICmpInst::ICMP_EQ: // (X u< 13 | X == 14) -> no change
1518 break;
1519 case ICmpInst::ICMP_UGT: // (X u< 13 | X u> 15) -> (X-13) u> 2
1520 // If RHSCst is [us]MAXINT, it is always false. Not handling
1521 // this can cause overflow.
1522 if (RHSCst->isMaxValue(false))
Chris Lattner067459c2010-03-05 08:46:26 +00001523 return LHS;
1524 return InsertRangeTest(Val, LHSCst, AddOne(RHSCst), false, false);
Chris Lattner0a8191e2010-01-05 07:50:36 +00001525 case ICmpInst::ICMP_SGT: // (X u< 13 | X s> 15) -> no change
1526 break;
1527 case ICmpInst::ICMP_NE: // (X u< 13 | X != 15) -> X != 15
1528 case ICmpInst::ICMP_ULT: // (X u< 13 | X u< 15) -> X u< 15
Chris Lattner067459c2010-03-05 08:46:26 +00001529 return RHS;
Chris Lattner0a8191e2010-01-05 07:50:36 +00001530 case ICmpInst::ICMP_SLT: // (X u< 13 | X s< 15) -> no change
1531 break;
1532 }
1533 break;
1534 case ICmpInst::ICMP_SLT:
1535 switch (RHSCC) {
1536 default: llvm_unreachable("Unknown integer condition code!");
1537 case ICmpInst::ICMP_EQ: // (X s< 13 | X == 14) -> no change
1538 break;
1539 case ICmpInst::ICMP_SGT: // (X s< 13 | X s> 15) -> (X-13) s> 2
1540 // If RHSCst is [us]MAXINT, it is always false. Not handling
1541 // this can cause overflow.
1542 if (RHSCst->isMaxValue(true))
Chris Lattner067459c2010-03-05 08:46:26 +00001543 return LHS;
1544 return InsertRangeTest(Val, LHSCst, AddOne(RHSCst), true, false);
Chris Lattner0a8191e2010-01-05 07:50:36 +00001545 case ICmpInst::ICMP_UGT: // (X s< 13 | X u> 15) -> no change
1546 break;
1547 case ICmpInst::ICMP_NE: // (X s< 13 | X != 15) -> X != 15
1548 case ICmpInst::ICMP_SLT: // (X s< 13 | X s< 15) -> X s< 15
Chris Lattner067459c2010-03-05 08:46:26 +00001549 return RHS;
Chris Lattner0a8191e2010-01-05 07:50:36 +00001550 case ICmpInst::ICMP_ULT: // (X s< 13 | X u< 15) -> no change
1551 break;
1552 }
1553 break;
1554 case ICmpInst::ICMP_UGT:
1555 switch (RHSCC) {
1556 default: llvm_unreachable("Unknown integer condition code!");
1557 case ICmpInst::ICMP_EQ: // (X u> 13 | X == 15) -> X u> 13
1558 case ICmpInst::ICMP_UGT: // (X u> 13 | X u> 15) -> X u> 13
Chris Lattner067459c2010-03-05 08:46:26 +00001559 return LHS;
Chris Lattner0a8191e2010-01-05 07:50:36 +00001560 case ICmpInst::ICMP_SGT: // (X u> 13 | X s> 15) -> no change
1561 break;
1562 case ICmpInst::ICMP_NE: // (X u> 13 | X != 15) -> true
1563 case ICmpInst::ICMP_ULT: // (X u> 13 | X u< 15) -> true
Chris Lattner067459c2010-03-05 08:46:26 +00001564 return ConstantInt::getTrue(LHS->getContext());
Chris Lattner0a8191e2010-01-05 07:50:36 +00001565 case ICmpInst::ICMP_SLT: // (X u> 13 | X s< 15) -> no change
1566 break;
1567 }
1568 break;
1569 case ICmpInst::ICMP_SGT:
1570 switch (RHSCC) {
1571 default: llvm_unreachable("Unknown integer condition code!");
1572 case ICmpInst::ICMP_EQ: // (X s> 13 | X == 15) -> X > 13
1573 case ICmpInst::ICMP_SGT: // (X s> 13 | X s> 15) -> X > 13
Chris Lattner067459c2010-03-05 08:46:26 +00001574 return LHS;
Chris Lattner0a8191e2010-01-05 07:50:36 +00001575 case ICmpInst::ICMP_UGT: // (X s> 13 | X u> 15) -> no change
1576 break;
1577 case ICmpInst::ICMP_NE: // (X s> 13 | X != 15) -> true
1578 case ICmpInst::ICMP_SLT: // (X s> 13 | X s< 15) -> true
Chris Lattner067459c2010-03-05 08:46:26 +00001579 return ConstantInt::getTrue(LHS->getContext());
Chris Lattner0a8191e2010-01-05 07:50:36 +00001580 case ICmpInst::ICMP_ULT: // (X s> 13 | X u< 15) -> no change
1581 break;
1582 }
1583 break;
1584 }
1585 return 0;
1586}
1587
Chris Lattner067459c2010-03-05 08:46:26 +00001588/// FoldOrOfFCmps - Optimize (fcmp)|(fcmp). NOTE: Unlike the rest of
1589/// instcombine, this returns a Value which should already be inserted into the
1590/// function.
1591Value *InstCombiner::FoldOrOfFCmps(FCmpInst *LHS, FCmpInst *RHS) {
Chris Lattner0a8191e2010-01-05 07:50:36 +00001592 if (LHS->getPredicate() == FCmpInst::FCMP_UNO &&
1593 RHS->getPredicate() == FCmpInst::FCMP_UNO &&
1594 LHS->getOperand(0)->getType() == RHS->getOperand(0)->getType()) {
1595 if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
1596 if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
1597 // If either of the constants are nans, then the whole thing returns
1598 // true.
1599 if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
Chris Lattner067459c2010-03-05 08:46:26 +00001600 return ConstantInt::getTrue(LHS->getContext());
Chris Lattner0a8191e2010-01-05 07:50:36 +00001601
1602 // Otherwise, no need to compare the two constants, compare the
1603 // rest.
Chris Lattner067459c2010-03-05 08:46:26 +00001604 return Builder->CreateFCmpUNO(LHS->getOperand(0), RHS->getOperand(0));
Chris Lattner0a8191e2010-01-05 07:50:36 +00001605 }
1606
1607 // Handle vector zeros. This occurs because the canonical form of
1608 // "fcmp uno x,x" is "fcmp uno x, 0".
1609 if (isa<ConstantAggregateZero>(LHS->getOperand(1)) &&
1610 isa<ConstantAggregateZero>(RHS->getOperand(1)))
Chris Lattner067459c2010-03-05 08:46:26 +00001611 return Builder->CreateFCmpUNO(LHS->getOperand(0), RHS->getOperand(0));
Chris Lattner0a8191e2010-01-05 07:50:36 +00001612
1613 return 0;
1614 }
1615
1616 Value *Op0LHS = LHS->getOperand(0), *Op0RHS = LHS->getOperand(1);
1617 Value *Op1LHS = RHS->getOperand(0), *Op1RHS = RHS->getOperand(1);
1618 FCmpInst::Predicate Op0CC = LHS->getPredicate(), Op1CC = RHS->getPredicate();
1619
1620 if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
1621 // Swap RHS operands to match LHS.
1622 Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
1623 std::swap(Op1LHS, Op1RHS);
1624 }
1625 if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
1626 // Simplify (fcmp cc0 x, y) | (fcmp cc1 x, y).
1627 if (Op0CC == Op1CC)
Chris Lattner067459c2010-03-05 08:46:26 +00001628 return Builder->CreateFCmp((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS);
Chris Lattner0a8191e2010-01-05 07:50:36 +00001629 if (Op0CC == FCmpInst::FCMP_TRUE || Op1CC == FCmpInst::FCMP_TRUE)
Chris Lattner067459c2010-03-05 08:46:26 +00001630 return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 1);
Chris Lattner0a8191e2010-01-05 07:50:36 +00001631 if (Op0CC == FCmpInst::FCMP_FALSE)
Chris Lattner067459c2010-03-05 08:46:26 +00001632 return RHS;
Chris Lattner0a8191e2010-01-05 07:50:36 +00001633 if (Op1CC == FCmpInst::FCMP_FALSE)
Chris Lattner067459c2010-03-05 08:46:26 +00001634 return LHS;
Chris Lattner0a8191e2010-01-05 07:50:36 +00001635 bool Op0Ordered;
1636 bool Op1Ordered;
1637 unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
1638 unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
1639 if (Op0Ordered == Op1Ordered) {
1640 // If both are ordered or unordered, return a new fcmp with
1641 // or'ed predicates.
Chris Lattner067459c2010-03-05 08:46:26 +00001642 return getFCmpValue(Op0Ordered, Op0Pred|Op1Pred, Op0LHS, Op0RHS, Builder);
Chris Lattner0a8191e2010-01-05 07:50:36 +00001643 }
1644 }
1645 return 0;
1646}
1647
1648/// FoldOrWithConstants - This helper function folds:
1649///
1650/// ((A | B) & C1) | (B & C2)
1651///
1652/// into:
1653///
1654/// (A & C1) | B
1655///
1656/// when the XOR of the two constants is "all ones" (-1).
1657Instruction *InstCombiner::FoldOrWithConstants(BinaryOperator &I, Value *Op,
1658 Value *A, Value *B, Value *C) {
1659 ConstantInt *CI1 = dyn_cast<ConstantInt>(C);
1660 if (!CI1) return 0;
1661
1662 Value *V1 = 0;
1663 ConstantInt *CI2 = 0;
1664 if (!match(Op, m_And(m_Value(V1), m_ConstantInt(CI2)))) return 0;
1665
1666 APInt Xor = CI1->getValue() ^ CI2->getValue();
1667 if (!Xor.isAllOnesValue()) return 0;
1668
1669 if (V1 == A || V1 == B) {
1670 Value *NewOp = Builder->CreateAnd((V1 == A) ? B : A, CI1);
1671 return BinaryOperator::CreateOr(NewOp, V1);
1672 }
1673
1674 return 0;
1675}
1676
1677Instruction *InstCombiner::visitOr(BinaryOperator &I) {
1678 bool Changed = SimplifyCommutative(I);
1679 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1680
1681 if (Value *V = SimplifyOrInst(Op0, Op1, TD))
1682 return ReplaceInstUsesWith(I, V);
Bill Wendlingaf13d822010-03-03 00:35:56 +00001683
Chris Lattner0a8191e2010-01-05 07:50:36 +00001684 // See if we can simplify any instructions used by the instruction whose sole
1685 // purpose is to compute bits we don't care about.
1686 if (SimplifyDemandedInstructionBits(I))
1687 return &I;
1688
1689 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
1690 ConstantInt *C1 = 0; Value *X = 0;
1691 // (X & C1) | C2 --> (X | C2) & (C1|C2)
Bill Wendlingaf13d822010-03-03 00:35:56 +00001692 // iff (C1 & C2) == 0.
Chris Lattner0a8191e2010-01-05 07:50:36 +00001693 if (match(Op0, m_And(m_Value(X), m_ConstantInt(C1))) &&
Bill Wendlingaf13d822010-03-03 00:35:56 +00001694 (RHS->getValue() & C1->getValue()) != 0 &&
Chris Lattner0a8191e2010-01-05 07:50:36 +00001695 Op0->hasOneUse()) {
1696 Value *Or = Builder->CreateOr(X, RHS);
1697 Or->takeName(Op0);
1698 return BinaryOperator::CreateAnd(Or,
1699 ConstantInt::get(I.getContext(),
1700 RHS->getValue() | C1->getValue()));
1701 }
1702
1703 // (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2)
1704 if (match(Op0, m_Xor(m_Value(X), m_ConstantInt(C1))) &&
1705 Op0->hasOneUse()) {
1706 Value *Or = Builder->CreateOr(X, RHS);
1707 Or->takeName(Op0);
1708 return BinaryOperator::CreateXor(Or,
1709 ConstantInt::get(I.getContext(),
1710 C1->getValue() & ~RHS->getValue()));
1711 }
1712
1713 // Try to fold constant and into select arguments.
1714 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
1715 if (Instruction *R = FoldOpIntoSelect(I, SI))
1716 return R;
Bill Wendlingaf13d822010-03-03 00:35:56 +00001717
Chris Lattner0a8191e2010-01-05 07:50:36 +00001718 if (isa<PHINode>(Op0))
1719 if (Instruction *NV = FoldOpIntoPhi(I))
1720 return NV;
1721 }
1722
1723 Value *A = 0, *B = 0;
1724 ConstantInt *C1 = 0, *C2 = 0;
1725
1726 // (A | B) | C and A | (B | C) -> bswap if possible.
1727 // (A >> B) | (C << D) and (A << B) | (B >> C) -> bswap if possible.
1728 if (match(Op0, m_Or(m_Value(), m_Value())) ||
1729 match(Op1, m_Or(m_Value(), m_Value())) ||
1730 (match(Op0, m_Shift(m_Value(), m_Value())) &&
1731 match(Op1, m_Shift(m_Value(), m_Value())))) {
1732 if (Instruction *BSwap = MatchBSwap(I))
1733 return BSwap;
1734 }
1735
1736 // (X^C)|Y -> (X|Y)^C iff Y&C == 0
1737 if (Op0->hasOneUse() &&
1738 match(Op0, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
1739 MaskedValueIsZero(Op1, C1->getValue())) {
1740 Value *NOr = Builder->CreateOr(A, Op1);
1741 NOr->takeName(Op0);
1742 return BinaryOperator::CreateXor(NOr, C1);
1743 }
1744
1745 // Y|(X^C) -> (X|Y)^C iff Y&C == 0
1746 if (Op1->hasOneUse() &&
1747 match(Op1, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
1748 MaskedValueIsZero(Op0, C1->getValue())) {
1749 Value *NOr = Builder->CreateOr(A, Op0);
1750 NOr->takeName(Op0);
1751 return BinaryOperator::CreateXor(NOr, C1);
1752 }
1753
1754 // (A & C)|(B & D)
1755 Value *C = 0, *D = 0;
1756 if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
1757 match(Op1, m_And(m_Value(B), m_Value(D)))) {
1758 Value *V1 = 0, *V2 = 0, *V3 = 0;
1759 C1 = dyn_cast<ConstantInt>(C);
1760 C2 = dyn_cast<ConstantInt>(D);
1761 if (C1 && C2) { // (A & C1)|(B & C2)
1762 // If we have: ((V + N) & C1) | (V & C2)
1763 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
1764 // replace with V+N.
1765 if (C1->getValue() == ~C2->getValue()) {
1766 if ((C2->getValue() & (C2->getValue()+1)) == 0 && // C2 == 0+1+
1767 match(A, m_Add(m_Value(V1), m_Value(V2)))) {
1768 // Add commutes, try both ways.
1769 if (V1 == B && MaskedValueIsZero(V2, C2->getValue()))
1770 return ReplaceInstUsesWith(I, A);
1771 if (V2 == B && MaskedValueIsZero(V1, C2->getValue()))
1772 return ReplaceInstUsesWith(I, A);
1773 }
1774 // Or commutes, try both ways.
1775 if ((C1->getValue() & (C1->getValue()+1)) == 0 &&
1776 match(B, m_Add(m_Value(V1), m_Value(V2)))) {
1777 // Add commutes, try both ways.
1778 if (V1 == A && MaskedValueIsZero(V2, C1->getValue()))
1779 return ReplaceInstUsesWith(I, B);
1780 if (V2 == A && MaskedValueIsZero(V1, C1->getValue()))
1781 return ReplaceInstUsesWith(I, B);
1782 }
1783 }
1784
Chris Lattner0a8191e2010-01-05 07:50:36 +00001785 if ((C1->getValue() & C2->getValue()) == 0) {
Chris Lattner95188692010-01-11 06:55:24 +00001786 // ((V | N) & C1) | (V & C2) --> (V|N) & (C1|C2)
1787 // iff (C1&C2) == 0 and (N&~C1) == 0
Chris Lattner0a8191e2010-01-05 07:50:36 +00001788 if (match(A, m_Or(m_Value(V1), m_Value(V2))) &&
1789 ((V1 == B && MaskedValueIsZero(V2, ~C1->getValue())) || // (V|N)
1790 (V2 == B && MaskedValueIsZero(V1, ~C1->getValue())))) // (N|V)
1791 return BinaryOperator::CreateAnd(A,
1792 ConstantInt::get(A->getContext(),
1793 C1->getValue()|C2->getValue()));
1794 // Or commutes, try both ways.
1795 if (match(B, m_Or(m_Value(V1), m_Value(V2))) &&
1796 ((V1 == A && MaskedValueIsZero(V2, ~C2->getValue())) || // (V|N)
1797 (V2 == A && MaskedValueIsZero(V1, ~C2->getValue())))) // (N|V)
1798 return BinaryOperator::CreateAnd(B,
1799 ConstantInt::get(B->getContext(),
1800 C1->getValue()|C2->getValue()));
Chris Lattner95188692010-01-11 06:55:24 +00001801
1802 // ((V|C3)&C1) | ((V|C4)&C2) --> (V|C3|C4)&(C1|C2)
1803 // iff (C1&C2) == 0 and (C3&~C1) == 0 and (C4&~C2) == 0.
1804 ConstantInt *C3 = 0, *C4 = 0;
1805 if (match(A, m_Or(m_Value(V1), m_ConstantInt(C3))) &&
1806 (C3->getValue() & ~C1->getValue()) == 0 &&
1807 match(B, m_Or(m_Specific(V1), m_ConstantInt(C4))) &&
1808 (C4->getValue() & ~C2->getValue()) == 0) {
1809 V2 = Builder->CreateOr(V1, ConstantExpr::getOr(C3, C4), "bitfield");
1810 return BinaryOperator::CreateAnd(V2,
1811 ConstantInt::get(B->getContext(),
1812 C1->getValue()|C2->getValue()));
1813 }
Chris Lattner0a8191e2010-01-05 07:50:36 +00001814 }
1815 }
1816
1817 // Check to see if we have any common things being and'ed. If so, find the
1818 // terms for V1 & (V2|V3).
1819 if (Op0->hasOneUse() || Op1->hasOneUse()) {
1820 V1 = 0;
1821 if (A == B) // (A & C)|(A & D) == A & (C|D)
1822 V1 = A, V2 = C, V3 = D;
1823 else if (A == D) // (A & C)|(B & A) == A & (B|C)
1824 V1 = A, V2 = B, V3 = C;
1825 else if (C == B) // (A & C)|(C & D) == C & (A|D)
1826 V1 = C, V2 = A, V3 = D;
1827 else if (C == D) // (A & C)|(B & C) == C & (A|B)
1828 V1 = C, V2 = A, V3 = B;
1829
1830 if (V1) {
1831 Value *Or = Builder->CreateOr(V2, V3, "tmp");
1832 return BinaryOperator::CreateAnd(V1, Or);
1833 }
1834 }
1835
Chris Lattner8e2c4712010-02-02 02:43:51 +00001836 // (A & (C0?-1:0)) | (B & ~(C0?-1:0)) -> C0 ? A : B, and commuted variants.
1837 // Don't do this for vector select idioms, the code generator doesn't handle
1838 // them well yet.
Duncan Sands19d0b472010-02-16 11:11:14 +00001839 if (!I.getType()->isVectorTy()) {
Chris Lattner8e2c4712010-02-02 02:43:51 +00001840 if (Instruction *Match = MatchSelectFromAndOr(A, B, C, D))
1841 return Match;
1842 if (Instruction *Match = MatchSelectFromAndOr(B, A, D, C))
1843 return Match;
1844 if (Instruction *Match = MatchSelectFromAndOr(C, B, A, D))
1845 return Match;
1846 if (Instruction *Match = MatchSelectFromAndOr(D, A, B, C))
1847 return Match;
1848 }
Chris Lattner0a8191e2010-01-05 07:50:36 +00001849
1850 // ((A&~B)|(~A&B)) -> A^B
1851 if ((match(C, m_Not(m_Specific(D))) &&
1852 match(B, m_Not(m_Specific(A)))))
1853 return BinaryOperator::CreateXor(A, D);
1854 // ((~B&A)|(~A&B)) -> A^B
1855 if ((match(A, m_Not(m_Specific(D))) &&
1856 match(B, m_Not(m_Specific(C)))))
1857 return BinaryOperator::CreateXor(C, D);
1858 // ((A&~B)|(B&~A)) -> A^B
1859 if ((match(C, m_Not(m_Specific(B))) &&
1860 match(D, m_Not(m_Specific(A)))))
1861 return BinaryOperator::CreateXor(A, B);
1862 // ((~B&A)|(B&~A)) -> A^B
1863 if ((match(A, m_Not(m_Specific(B))) &&
1864 match(D, m_Not(m_Specific(C)))))
1865 return BinaryOperator::CreateXor(C, B);
Benjamin Kramer11743242010-07-12 13:34:22 +00001866
1867 // ((A|B)&1)|(B&-2) -> (A&1) | B
1868 if (match(A, m_Or(m_Value(V1), m_Specific(B))) ||
1869 match(A, m_Or(m_Specific(B), m_Value(V1)))) {
1870 Instruction *Ret = FoldOrWithConstants(I, Op1, V1, B, C);
1871 if (Ret) return Ret;
1872 }
1873 // (B&-2)|((A|B)&1) -> (A&1) | B
1874 if (match(B, m_Or(m_Specific(A), m_Value(V1))) ||
1875 match(B, m_Or(m_Value(V1), m_Specific(A)))) {
1876 Instruction *Ret = FoldOrWithConstants(I, Op0, A, V1, D);
1877 if (Ret) return Ret;
1878 }
Chris Lattner0a8191e2010-01-05 07:50:36 +00001879 }
1880
1881 // (X >> Z) | (Y >> Z) -> (X|Y) >> Z for all shifts.
1882 if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
1883 if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
1884 if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
1885 SI0->getOperand(1) == SI1->getOperand(1) &&
1886 (SI0->hasOneUse() || SI1->hasOneUse())) {
1887 Value *NewOp = Builder->CreateOr(SI0->getOperand(0), SI1->getOperand(0),
1888 SI0->getName());
1889 return BinaryOperator::Create(SI1->getOpcode(), NewOp,
1890 SI1->getOperand(1));
1891 }
1892 }
1893
Chris Lattner0a8191e2010-01-05 07:50:36 +00001894 // (~A | ~B) == (~(A & B)) - De Morgan's Law
1895 if (Value *Op0NotVal = dyn_castNotVal(Op0))
1896 if (Value *Op1NotVal = dyn_castNotVal(Op1))
1897 if (Op0->hasOneUse() && Op1->hasOneUse()) {
1898 Value *And = Builder->CreateAnd(Op0NotVal, Op1NotVal,
1899 I.getName()+".demorgan");
1900 return BinaryOperator::CreateNot(And);
1901 }
1902
1903 if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
1904 if (ICmpInst *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
Chris Lattner067459c2010-03-05 08:46:26 +00001905 if (Value *Res = FoldOrOfICmps(LHS, RHS))
1906 return ReplaceInstUsesWith(I, Res);
Chris Lattner0a8191e2010-01-05 07:50:36 +00001907
Chris Lattner4e8137d2010-02-11 06:26:33 +00001908 // (fcmp uno x, c) | (fcmp uno y, c) -> (fcmp uno x, y)
1909 if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
1910 if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
Chris Lattner067459c2010-03-05 08:46:26 +00001911 if (Value *Res = FoldOrOfFCmps(LHS, RHS))
1912 return ReplaceInstUsesWith(I, Res);
Chris Lattner4e8137d2010-02-11 06:26:33 +00001913
Chris Lattner0a8191e2010-01-05 07:50:36 +00001914 // fold (or (cast A), (cast B)) -> (cast (or A, B))
1915 if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
1916 if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
1917 if (Op0C->getOpcode() == Op1C->getOpcode()) {// same cast kind ?
Chris Lattner4e8137d2010-02-11 06:26:33 +00001918 const Type *SrcTy = Op0C->getOperand(0)->getType();
1919 if (SrcTy == Op1C->getOperand(0)->getType() &&
Duncan Sands9dff9be2010-02-15 16:12:20 +00001920 SrcTy->isIntOrIntVectorTy()) {
Chris Lattner4e8137d2010-02-11 06:26:33 +00001921 Value *Op0COp = Op0C->getOperand(0), *Op1COp = Op1C->getOperand(0);
1922
1923 if ((!isa<ICmpInst>(Op0COp) || !isa<ICmpInst>(Op1COp)) &&
Chris Lattner0a8191e2010-01-05 07:50:36 +00001924 // Only do this if the casts both really cause code to be
1925 // generated.
Chris Lattner4e8137d2010-02-11 06:26:33 +00001926 ShouldOptimizeCast(Op0C->getOpcode(), Op0COp, I.getType()) &&
1927 ShouldOptimizeCast(Op1C->getOpcode(), Op1COp, I.getType())) {
1928 Value *NewOp = Builder->CreateOr(Op0COp, Op1COp, I.getName());
Chris Lattner0a8191e2010-01-05 07:50:36 +00001929 return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
1930 }
Chris Lattner4e8137d2010-02-11 06:26:33 +00001931
1932 // If this is or(cast(icmp), cast(icmp)), try to fold this even if the
1933 // cast is otherwise not optimizable. This happens for vector sexts.
1934 if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1COp))
1935 if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0COp))
Chris Lattner067459c2010-03-05 08:46:26 +00001936 if (Value *Res = FoldOrOfICmps(LHS, RHS))
Chris Lattner4e8137d2010-02-11 06:26:33 +00001937 return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
Chris Lattner4e8137d2010-02-11 06:26:33 +00001938
1939 // If this is or(cast(fcmp), cast(fcmp)), try to fold this even if the
1940 // cast is otherwise not optimizable. This happens for vector sexts.
1941 if (FCmpInst *RHS = dyn_cast<FCmpInst>(Op1COp))
1942 if (FCmpInst *LHS = dyn_cast<FCmpInst>(Op0COp))
Chris Lattner067459c2010-03-05 08:46:26 +00001943 if (Value *Res = FoldOrOfFCmps(LHS, RHS))
Chris Lattner4e8137d2010-02-11 06:26:33 +00001944 return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
Chris Lattner0a8191e2010-01-05 07:50:36 +00001945 }
1946 }
1947 }
1948
Chris Lattner0a8191e2010-01-05 07:50:36 +00001949 return Changed ? &I : 0;
1950}
1951
1952Instruction *InstCombiner::visitXor(BinaryOperator &I) {
1953 bool Changed = SimplifyCommutative(I);
1954 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1955
1956 if (isa<UndefValue>(Op1)) {
1957 if (isa<UndefValue>(Op0))
1958 // Handle undef ^ undef -> 0 special case. This is a common
1959 // idiom (misuse).
1960 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
1961 return ReplaceInstUsesWith(I, Op1); // X ^ undef -> undef
1962 }
1963
1964 // xor X, X = 0
1965 if (Op0 == Op1)
1966 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
1967
1968 // See if we can simplify any instructions used by the instruction whose sole
1969 // purpose is to compute bits we don't care about.
1970 if (SimplifyDemandedInstructionBits(I))
1971 return &I;
Duncan Sands19d0b472010-02-16 11:11:14 +00001972 if (I.getType()->isVectorTy())
Chris Lattner0a8191e2010-01-05 07:50:36 +00001973 if (isa<ConstantAggregateZero>(Op1))
1974 return ReplaceInstUsesWith(I, Op0); // X ^ <0,0> -> X
1975
1976 // Is this a ~ operation?
1977 if (Value *NotOp = dyn_castNotVal(&I)) {
1978 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(NotOp)) {
1979 if (Op0I->getOpcode() == Instruction::And ||
1980 Op0I->getOpcode() == Instruction::Or) {
1981 // ~(~X & Y) --> (X | ~Y) - De Morgan's Law
1982 // ~(~X | Y) === (X & ~Y) - De Morgan's Law
1983 if (dyn_castNotVal(Op0I->getOperand(1)))
1984 Op0I->swapOperands();
1985 if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0))) {
1986 Value *NotY =
1987 Builder->CreateNot(Op0I->getOperand(1),
1988 Op0I->getOperand(1)->getName()+".not");
1989 if (Op0I->getOpcode() == Instruction::And)
1990 return BinaryOperator::CreateOr(Op0NotVal, NotY);
1991 return BinaryOperator::CreateAnd(Op0NotVal, NotY);
1992 }
1993
1994 // ~(X & Y) --> (~X | ~Y) - De Morgan's Law
1995 // ~(X | Y) === (~X & ~Y) - De Morgan's Law
1996 if (isFreeToInvert(Op0I->getOperand(0)) &&
1997 isFreeToInvert(Op0I->getOperand(1))) {
1998 Value *NotX =
1999 Builder->CreateNot(Op0I->getOperand(0), "notlhs");
2000 Value *NotY =
2001 Builder->CreateNot(Op0I->getOperand(1), "notrhs");
2002 if (Op0I->getOpcode() == Instruction::And)
2003 return BinaryOperator::CreateOr(NotX, NotY);
2004 return BinaryOperator::CreateAnd(NotX, NotY);
2005 }
Chris Lattner18f49ce2010-01-19 18:16:19 +00002006
2007 } else if (Op0I->getOpcode() == Instruction::AShr) {
2008 // ~(~X >>s Y) --> (X >>s Y)
2009 if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0)))
2010 return BinaryOperator::CreateAShr(Op0NotVal, Op0I->getOperand(1));
Chris Lattner0a8191e2010-01-05 07:50:36 +00002011 }
2012 }
2013 }
2014
2015
2016 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
Dan Gohman0a8175d2010-04-09 14:53:59 +00002017 if (RHS->isOne() && Op0->hasOneUse())
Chris Lattner0a8191e2010-01-05 07:50:36 +00002018 // xor (cmp A, B), true = not (cmp A, B) = !cmp A, B
Dan Gohman0a8175d2010-04-09 14:53:59 +00002019 if (CmpInst *CI = dyn_cast<CmpInst>(Op0))
2020 return CmpInst::Create(CI->getOpcode(),
2021 CI->getInversePredicate(),
2022 CI->getOperand(0), CI->getOperand(1));
Chris Lattner0a8191e2010-01-05 07:50:36 +00002023
2024 // fold (xor(zext(cmp)), 1) and (xor(sext(cmp)), -1) to ext(!cmp).
2025 if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
2026 if (CmpInst *CI = dyn_cast<CmpInst>(Op0C->getOperand(0))) {
2027 if (CI->hasOneUse() && Op0C->hasOneUse()) {
2028 Instruction::CastOps Opcode = Op0C->getOpcode();
2029 if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) &&
2030 (RHS == ConstantExpr::getCast(Opcode,
2031 ConstantInt::getTrue(I.getContext()),
2032 Op0C->getDestTy()))) {
2033 CI->setPredicate(CI->getInversePredicate());
2034 return CastInst::Create(Opcode, CI, Op0C->getType());
2035 }
2036 }
2037 }
2038 }
2039
2040 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
2041 // ~(c-X) == X-c-1 == X+(-c-1)
2042 if (Op0I->getOpcode() == Instruction::Sub && RHS->isAllOnesValue())
2043 if (Constant *Op0I0C = dyn_cast<Constant>(Op0I->getOperand(0))) {
2044 Constant *NegOp0I0C = ConstantExpr::getNeg(Op0I0C);
2045 Constant *ConstantRHS = ConstantExpr::getSub(NegOp0I0C,
2046 ConstantInt::get(I.getType(), 1));
2047 return BinaryOperator::CreateAdd(Op0I->getOperand(1), ConstantRHS);
2048 }
2049
2050 if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
2051 if (Op0I->getOpcode() == Instruction::Add) {
2052 // ~(X-c) --> (-c-1)-X
2053 if (RHS->isAllOnesValue()) {
2054 Constant *NegOp0CI = ConstantExpr::getNeg(Op0CI);
2055 return BinaryOperator::CreateSub(
2056 ConstantExpr::getSub(NegOp0CI,
2057 ConstantInt::get(I.getType(), 1)),
2058 Op0I->getOperand(0));
2059 } else if (RHS->getValue().isSignBit()) {
2060 // (X + C) ^ signbit -> (X + C + signbit)
2061 Constant *C = ConstantInt::get(I.getContext(),
2062 RHS->getValue() + Op0CI->getValue());
2063 return BinaryOperator::CreateAdd(Op0I->getOperand(0), C);
2064
2065 }
2066 } else if (Op0I->getOpcode() == Instruction::Or) {
2067 // (X|C1)^C2 -> X^(C1|C2) iff X&~C1 == 0
2068 if (MaskedValueIsZero(Op0I->getOperand(0), Op0CI->getValue())) {
2069 Constant *NewRHS = ConstantExpr::getOr(Op0CI, RHS);
2070 // Anything in both C1 and C2 is known to be zero, remove it from
2071 // NewRHS.
2072 Constant *CommonBits = ConstantExpr::getAnd(Op0CI, RHS);
2073 NewRHS = ConstantExpr::getAnd(NewRHS,
2074 ConstantExpr::getNot(CommonBits));
2075 Worklist.Add(Op0I);
2076 I.setOperand(0, Op0I->getOperand(0));
2077 I.setOperand(1, NewRHS);
2078 return &I;
2079 }
2080 }
2081 }
2082 }
2083
2084 // Try to fold constant and into select arguments.
2085 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
2086 if (Instruction *R = FoldOpIntoSelect(I, SI))
2087 return R;
2088 if (isa<PHINode>(Op0))
2089 if (Instruction *NV = FoldOpIntoPhi(I))
2090 return NV;
2091 }
2092
2093 if (Value *X = dyn_castNotVal(Op0)) // ~A ^ A == -1
2094 if (X == Op1)
2095 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
2096
2097 if (Value *X = dyn_castNotVal(Op1)) // A ^ ~A == -1
2098 if (X == Op0)
2099 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
2100
2101
2102 BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1);
2103 if (Op1I) {
2104 Value *A, *B;
2105 if (match(Op1I, m_Or(m_Value(A), m_Value(B)))) {
2106 if (A == Op0) { // B^(B|A) == (A|B)^B
2107 Op1I->swapOperands();
2108 I.swapOperands();
2109 std::swap(Op0, Op1);
2110 } else if (B == Op0) { // B^(A|B) == (A|B)^B
2111 I.swapOperands(); // Simplified below.
2112 std::swap(Op0, Op1);
2113 }
2114 } else if (match(Op1I, m_Xor(m_Specific(Op0), m_Value(B)))) {
2115 return ReplaceInstUsesWith(I, B); // A^(A^B) == B
2116 } else if (match(Op1I, m_Xor(m_Value(A), m_Specific(Op0)))) {
2117 return ReplaceInstUsesWith(I, A); // A^(B^A) == B
2118 } else if (match(Op1I, m_And(m_Value(A), m_Value(B))) &&
2119 Op1I->hasOneUse()){
2120 if (A == Op0) { // A^(A&B) -> A^(B&A)
2121 Op1I->swapOperands();
2122 std::swap(A, B);
2123 }
2124 if (B == Op0) { // A^(B&A) -> (B&A)^A
2125 I.swapOperands(); // Simplified below.
2126 std::swap(Op0, Op1);
2127 }
2128 }
2129 }
2130
2131 BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0);
2132 if (Op0I) {
2133 Value *A, *B;
2134 if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
2135 Op0I->hasOneUse()) {
2136 if (A == Op1) // (B|A)^B == (A|B)^B
2137 std::swap(A, B);
2138 if (B == Op1) // (A|B)^B == A & ~B
2139 return BinaryOperator::CreateAnd(A, Builder->CreateNot(Op1, "tmp"));
2140 } else if (match(Op0I, m_Xor(m_Specific(Op1), m_Value(B)))) {
2141 return ReplaceInstUsesWith(I, B); // (A^B)^A == B
2142 } else if (match(Op0I, m_Xor(m_Value(A), m_Specific(Op1)))) {
2143 return ReplaceInstUsesWith(I, A); // (B^A)^A == B
2144 } else if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
2145 Op0I->hasOneUse()){
2146 if (A == Op1) // (A&B)^A -> (B&A)^A
2147 std::swap(A, B);
2148 if (B == Op1 && // (B&A)^A == ~B & A
2149 !isa<ConstantInt>(Op1)) { // Canonical form is (B&C)^C
2150 return BinaryOperator::CreateAnd(Builder->CreateNot(A, "tmp"), Op1);
2151 }
2152 }
2153 }
2154
2155 // (X >> Z) ^ (Y >> Z) -> (X^Y) >> Z for all shifts.
2156 if (Op0I && Op1I && Op0I->isShift() &&
2157 Op0I->getOpcode() == Op1I->getOpcode() &&
2158 Op0I->getOperand(1) == Op1I->getOperand(1) &&
2159 (Op1I->hasOneUse() || Op1I->hasOneUse())) {
2160 Value *NewOp =
2161 Builder->CreateXor(Op0I->getOperand(0), Op1I->getOperand(0),
2162 Op0I->getName());
2163 return BinaryOperator::Create(Op1I->getOpcode(), NewOp,
2164 Op1I->getOperand(1));
2165 }
2166
2167 if (Op0I && Op1I) {
2168 Value *A, *B, *C, *D;
2169 // (A & B)^(A | B) -> A ^ B
2170 if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
2171 match(Op1I, m_Or(m_Value(C), m_Value(D)))) {
2172 if ((A == C && B == D) || (A == D && B == C))
2173 return BinaryOperator::CreateXor(A, B);
2174 }
2175 // (A | B)^(A & B) -> A ^ B
2176 if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
2177 match(Op1I, m_And(m_Value(C), m_Value(D)))) {
2178 if ((A == C && B == D) || (A == D && B == C))
2179 return BinaryOperator::CreateXor(A, B);
2180 }
2181
2182 // (A & B)^(C & D)
2183 if ((Op0I->hasOneUse() || Op1I->hasOneUse()) &&
2184 match(Op0I, m_And(m_Value(A), m_Value(B))) &&
2185 match(Op1I, m_And(m_Value(C), m_Value(D)))) {
2186 // (X & Y)^(X & Y) -> (Y^Z) & X
2187 Value *X = 0, *Y = 0, *Z = 0;
2188 if (A == C)
2189 X = A, Y = B, Z = D;
2190 else if (A == D)
2191 X = A, Y = B, Z = C;
2192 else if (B == C)
2193 X = B, Y = A, Z = D;
2194 else if (B == D)
2195 X = B, Y = A, Z = C;
2196
2197 if (X) {
2198 Value *NewOp = Builder->CreateXor(Y, Z, Op0->getName());
2199 return BinaryOperator::CreateAnd(NewOp, X);
2200 }
2201 }
2202 }
2203
2204 // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B)
2205 if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
2206 if (ICmpInst *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
2207 if (PredicatesFoldable(LHS->getPredicate(), RHS->getPredicate())) {
2208 if (LHS->getOperand(0) == RHS->getOperand(1) &&
2209 LHS->getOperand(1) == RHS->getOperand(0))
2210 LHS->swapOperands();
2211 if (LHS->getOperand(0) == RHS->getOperand(0) &&
2212 LHS->getOperand(1) == RHS->getOperand(1)) {
2213 Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
2214 unsigned Code = getICmpCode(LHS) ^ getICmpCode(RHS);
2215 bool isSigned = LHS->isSigned() || RHS->isSigned();
Chris Lattner067459c2010-03-05 08:46:26 +00002216 return ReplaceInstUsesWith(I,
2217 getICmpValue(isSigned, Code, Op0, Op1, Builder));
Chris Lattner0a8191e2010-01-05 07:50:36 +00002218 }
2219 }
2220
2221 // fold (xor (cast A), (cast B)) -> (cast (xor A, B))
2222 if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
2223 if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
2224 if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind?
2225 const Type *SrcTy = Op0C->getOperand(0)->getType();
Duncan Sands9dff9be2010-02-15 16:12:20 +00002226 if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isIntegerTy() &&
Chris Lattner0a8191e2010-01-05 07:50:36 +00002227 // Only do this if the casts both really cause code to be generated.
Chris Lattner4e8137d2010-02-11 06:26:33 +00002228 ShouldOptimizeCast(Op0C->getOpcode(), Op0C->getOperand(0),
2229 I.getType()) &&
2230 ShouldOptimizeCast(Op1C->getOpcode(), Op1C->getOperand(0),
2231 I.getType())) {
Chris Lattner0a8191e2010-01-05 07:50:36 +00002232 Value *NewOp = Builder->CreateXor(Op0C->getOperand(0),
2233 Op1C->getOperand(0), I.getName());
2234 return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
2235 }
2236 }
2237 }
2238
2239 return Changed ? &I : 0;
2240}