Duncan P. N. Exon Smith | 411840d | 2014-06-20 21:47:47 +0000 | [diff] [blame^] | 1 | //==- lib/Support/ScaledNumber.cpp - Support for scaled numbers -*- C++ -*-===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // Implementation of some scaled number algorithms. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "llvm/Support/ScaledNumber.h" |
| 15 | |
| 16 | using namespace llvm; |
| 17 | using namespace llvm::ScaledNumbers; |
| 18 | |
| 19 | std::pair<uint64_t, int16_t> ScaledNumbers::multiply64(uint64_t LHS, |
| 20 | uint64_t RHS) { |
| 21 | // Separate into two 32-bit digits (U.L). |
| 22 | auto getU = [](uint64_t N) { return N >> 32; }; |
| 23 | auto getL = [](uint64_t N) { return N & UINT32_MAX; }; |
| 24 | uint64_t UL = getU(LHS), LL = getL(LHS), UR = getU(RHS), LR = getL(RHS); |
| 25 | |
| 26 | // Compute cross products. |
| 27 | uint64_t P1 = UL * UR, P2 = UL * LR, P3 = LL * UR, P4 = LL * LR; |
| 28 | |
| 29 | // Sum into two 64-bit digits. |
| 30 | uint64_t Upper = P1, Lower = P4; |
| 31 | auto addWithCarry = [&](uint64_t N) { |
| 32 | uint64_t NewLower = Lower + (getL(N) << 32); |
| 33 | Upper += getU(N) + (NewLower < Lower); |
| 34 | Lower = NewLower; |
| 35 | }; |
| 36 | addWithCarry(P2); |
| 37 | addWithCarry(P3); |
| 38 | |
| 39 | // Check whether the upper digit is empty. |
| 40 | if (!Upper) |
| 41 | return std::make_pair(Lower, 0); |
| 42 | |
| 43 | // Shift as little as possible to maximize precision. |
| 44 | unsigned LeadingZeros = countLeadingZeros(Upper); |
| 45 | int Shift = 64 - LeadingZeros; |
| 46 | if (LeadingZeros) |
| 47 | Upper = Upper << LeadingZeros | Lower >> Shift; |
| 48 | return getRounded(Upper, Shift, |
| 49 | Shift && (Lower & UINT64_C(1) << (Shift - 1))); |
| 50 | } |
| 51 | |
| 52 | static uint64_t getHalf(uint64_t N) { return (N >> 1) + (N & 1); } |
| 53 | |
| 54 | std::pair<uint32_t, int16_t> ScaledNumbers::divide32(uint32_t Dividend, |
| 55 | uint32_t Divisor) { |
| 56 | assert(Dividend && "expected non-zero dividend"); |
| 57 | assert(Divisor && "expected non-zero divisor"); |
| 58 | |
| 59 | // Use 64-bit math and canonicalize the dividend to gain precision. |
| 60 | uint64_t Dividend64 = Dividend; |
| 61 | int Shift = 0; |
| 62 | if (int Zeros = countLeadingZeros(Dividend64)) { |
| 63 | Shift -= Zeros; |
| 64 | Dividend64 <<= Zeros; |
| 65 | } |
| 66 | uint64_t Quotient = Dividend64 / Divisor; |
| 67 | uint64_t Remainder = Dividend64 % Divisor; |
| 68 | |
| 69 | // If Quotient needs to be shifted, leave the rounding to getAdjusted(). |
| 70 | if (Quotient > UINT32_MAX) |
| 71 | return getAdjusted<uint32_t>(Quotient, Shift); |
| 72 | |
| 73 | // Round based on the value of the next bit. |
| 74 | return getRounded<uint32_t>(Quotient, Shift, Remainder >= getHalf(Divisor)); |
| 75 | } |
| 76 | |
| 77 | std::pair<uint64_t, int16_t> ScaledNumbers::divide64(uint64_t Dividend, |
| 78 | uint64_t Divisor) { |
| 79 | assert(Dividend && "expected non-zero dividend"); |
| 80 | assert(Divisor && "expected non-zero divisor"); |
| 81 | |
| 82 | // Minimize size of divisor. |
| 83 | int Shift = 0; |
| 84 | if (int Zeros = countTrailingZeros(Divisor)) { |
| 85 | Shift -= Zeros; |
| 86 | Divisor >>= Zeros; |
| 87 | } |
| 88 | |
| 89 | // Check for powers of two. |
| 90 | if (Divisor == 1) |
| 91 | return std::make_pair(Dividend, Shift); |
| 92 | |
| 93 | // Maximize size of dividend. |
| 94 | if (int Zeros = countLeadingZeros(Dividend)) { |
| 95 | Shift -= Zeros; |
| 96 | Dividend <<= Zeros; |
| 97 | } |
| 98 | |
| 99 | // Start with the result of a divide. |
| 100 | uint64_t Quotient = Dividend / Divisor; |
| 101 | Dividend %= Divisor; |
| 102 | |
| 103 | // Continue building the quotient with long division. |
| 104 | while (!(Quotient >> 63) && Dividend) { |
| 105 | // Shift Dividend and check for overflow. |
| 106 | bool IsOverflow = Dividend >> 63; |
| 107 | Dividend <<= 1; |
| 108 | --Shift; |
| 109 | |
| 110 | // Get the next bit of Quotient. |
| 111 | Quotient <<= 1; |
| 112 | if (IsOverflow || Divisor <= Dividend) { |
| 113 | Quotient |= 1; |
| 114 | Dividend -= Divisor; |
| 115 | } |
| 116 | } |
| 117 | |
| 118 | return getRounded(Quotient, Shift, Dividend >= getHalf(Divisor)); |
| 119 | } |