| Chris Lattner | de1fede | 2010-01-05 05:31:55 +0000 | [diff] [blame] | 1 | //===- InstCombinePHI.cpp -------------------------------------------------===// | 
|  | 2 | // | 
|  | 3 | //                     The LLVM Compiler Infrastructure | 
|  | 4 | // | 
|  | 5 | // This file is distributed under the University of Illinois Open Source | 
|  | 6 | // License. See LICENSE.TXT for details. | 
|  | 7 | // | 
|  | 8 | //===----------------------------------------------------------------------===// | 
|  | 9 | // | 
|  | 10 | // This file implements the visitPHINode function. | 
|  | 11 | // | 
|  | 12 | //===----------------------------------------------------------------------===// | 
|  | 13 |  | 
|  | 14 | #include "InstCombine.h" | 
| Duncan Sands | 4581ddc | 2010-11-14 13:30:18 +0000 | [diff] [blame] | 15 | #include "llvm/Analysis/InstructionSimplify.h" | 
| Chris Lattner | de1fede | 2010-01-05 05:31:55 +0000 | [diff] [blame] | 16 | #include "llvm/Target/TargetData.h" | 
|  | 17 | #include "llvm/ADT/SmallPtrSet.h" | 
|  | 18 | #include "llvm/ADT/STLExtras.h" | 
|  | 19 | using namespace llvm; | 
|  | 20 |  | 
|  | 21 | /// FoldPHIArgBinOpIntoPHI - If we have something like phi [add (a,b), add(a,c)] | 
|  | 22 | /// and if a/b/c and the add's all have a single use, turn this into a phi | 
|  | 23 | /// and a single binop. | 
|  | 24 | Instruction *InstCombiner::FoldPHIArgBinOpIntoPHI(PHINode &PN) { | 
|  | 25 | Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0)); | 
|  | 26 | assert(isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst)); | 
|  | 27 | unsigned Opc = FirstInst->getOpcode(); | 
|  | 28 | Value *LHSVal = FirstInst->getOperand(0); | 
|  | 29 | Value *RHSVal = FirstInst->getOperand(1); | 
|  | 30 |  | 
|  | 31 | const Type *LHSType = LHSVal->getType(); | 
|  | 32 | const Type *RHSType = RHSVal->getType(); | 
|  | 33 |  | 
|  | 34 | // Scan to see if all operands are the same opcode, and all have one use. | 
|  | 35 | for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) { | 
|  | 36 | Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i)); | 
|  | 37 | if (!I || I->getOpcode() != Opc || !I->hasOneUse() || | 
|  | 38 | // Verify type of the LHS matches so we don't fold cmp's of different | 
|  | 39 | // types or GEP's with different index types. | 
|  | 40 | I->getOperand(0)->getType() != LHSType || | 
|  | 41 | I->getOperand(1)->getType() != RHSType) | 
|  | 42 | return 0; | 
|  | 43 |  | 
|  | 44 | // If they are CmpInst instructions, check their predicates | 
|  | 45 | if (Opc == Instruction::ICmp || Opc == Instruction::FCmp) | 
|  | 46 | if (cast<CmpInst>(I)->getPredicate() != | 
|  | 47 | cast<CmpInst>(FirstInst)->getPredicate()) | 
|  | 48 | return 0; | 
|  | 49 |  | 
|  | 50 | // Keep track of which operand needs a phi node. | 
|  | 51 | if (I->getOperand(0) != LHSVal) LHSVal = 0; | 
|  | 52 | if (I->getOperand(1) != RHSVal) RHSVal = 0; | 
|  | 53 | } | 
|  | 54 |  | 
|  | 55 | // If both LHS and RHS would need a PHI, don't do this transformation, | 
|  | 56 | // because it would increase the number of PHIs entering the block, | 
|  | 57 | // which leads to higher register pressure. This is especially | 
|  | 58 | // bad when the PHIs are in the header of a loop. | 
|  | 59 | if (!LHSVal && !RHSVal) | 
|  | 60 | return 0; | 
|  | 61 |  | 
|  | 62 | // Otherwise, this is safe to transform! | 
|  | 63 |  | 
|  | 64 | Value *InLHS = FirstInst->getOperand(0); | 
|  | 65 | Value *InRHS = FirstInst->getOperand(1); | 
|  | 66 | PHINode *NewLHS = 0, *NewRHS = 0; | 
|  | 67 | if (LHSVal == 0) { | 
|  | 68 | NewLHS = PHINode::Create(LHSType, | 
|  | 69 | FirstInst->getOperand(0)->getName() + ".pn"); | 
|  | 70 | NewLHS->reserveOperandSpace(PN.getNumOperands()/2); | 
|  | 71 | NewLHS->addIncoming(InLHS, PN.getIncomingBlock(0)); | 
|  | 72 | InsertNewInstBefore(NewLHS, PN); | 
|  | 73 | LHSVal = NewLHS; | 
|  | 74 | } | 
|  | 75 |  | 
|  | 76 | if (RHSVal == 0) { | 
|  | 77 | NewRHS = PHINode::Create(RHSType, | 
|  | 78 | FirstInst->getOperand(1)->getName() + ".pn"); | 
|  | 79 | NewRHS->reserveOperandSpace(PN.getNumOperands()/2); | 
|  | 80 | NewRHS->addIncoming(InRHS, PN.getIncomingBlock(0)); | 
|  | 81 | InsertNewInstBefore(NewRHS, PN); | 
|  | 82 | RHSVal = NewRHS; | 
|  | 83 | } | 
|  | 84 |  | 
|  | 85 | // Add all operands to the new PHIs. | 
|  | 86 | if (NewLHS || NewRHS) { | 
|  | 87 | for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) { | 
|  | 88 | Instruction *InInst = cast<Instruction>(PN.getIncomingValue(i)); | 
|  | 89 | if (NewLHS) { | 
|  | 90 | Value *NewInLHS = InInst->getOperand(0); | 
|  | 91 | NewLHS->addIncoming(NewInLHS, PN.getIncomingBlock(i)); | 
|  | 92 | } | 
|  | 93 | if (NewRHS) { | 
|  | 94 | Value *NewInRHS = InInst->getOperand(1); | 
|  | 95 | NewRHS->addIncoming(NewInRHS, PN.getIncomingBlock(i)); | 
|  | 96 | } | 
|  | 97 | } | 
|  | 98 | } | 
|  | 99 |  | 
|  | 100 | if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst)) | 
|  | 101 | return BinaryOperator::Create(BinOp->getOpcode(), LHSVal, RHSVal); | 
|  | 102 | CmpInst *CIOp = cast<CmpInst>(FirstInst); | 
|  | 103 | return CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(), | 
|  | 104 | LHSVal, RHSVal); | 
|  | 105 | } | 
|  | 106 |  | 
|  | 107 | Instruction *InstCombiner::FoldPHIArgGEPIntoPHI(PHINode &PN) { | 
|  | 108 | GetElementPtrInst *FirstInst =cast<GetElementPtrInst>(PN.getIncomingValue(0)); | 
|  | 109 |  | 
|  | 110 | SmallVector<Value*, 16> FixedOperands(FirstInst->op_begin(), | 
|  | 111 | FirstInst->op_end()); | 
|  | 112 | // This is true if all GEP bases are allocas and if all indices into them are | 
|  | 113 | // constants. | 
|  | 114 | bool AllBasePointersAreAllocas = true; | 
|  | 115 |  | 
|  | 116 | // We don't want to replace this phi if the replacement would require | 
|  | 117 | // more than one phi, which leads to higher register pressure. This is | 
|  | 118 | // especially bad when the PHIs are in the header of a loop. | 
|  | 119 | bool NeededPhi = false; | 
|  | 120 |  | 
|  | 121 | // Scan to see if all operands are the same opcode, and all have one use. | 
|  | 122 | for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) { | 
|  | 123 | GetElementPtrInst *GEP= dyn_cast<GetElementPtrInst>(PN.getIncomingValue(i)); | 
|  | 124 | if (!GEP || !GEP->hasOneUse() || GEP->getType() != FirstInst->getType() || | 
|  | 125 | GEP->getNumOperands() != FirstInst->getNumOperands()) | 
|  | 126 | return 0; | 
|  | 127 |  | 
|  | 128 | // Keep track of whether or not all GEPs are of alloca pointers. | 
|  | 129 | if (AllBasePointersAreAllocas && | 
|  | 130 | (!isa<AllocaInst>(GEP->getOperand(0)) || | 
|  | 131 | !GEP->hasAllConstantIndices())) | 
|  | 132 | AllBasePointersAreAllocas = false; | 
|  | 133 |  | 
|  | 134 | // Compare the operand lists. | 
|  | 135 | for (unsigned op = 0, e = FirstInst->getNumOperands(); op != e; ++op) { | 
|  | 136 | if (FirstInst->getOperand(op) == GEP->getOperand(op)) | 
|  | 137 | continue; | 
|  | 138 |  | 
|  | 139 | // Don't merge two GEPs when two operands differ (introducing phi nodes) | 
|  | 140 | // if one of the PHIs has a constant for the index.  The index may be | 
|  | 141 | // substantially cheaper to compute for the constants, so making it a | 
|  | 142 | // variable index could pessimize the path.  This also handles the case | 
|  | 143 | // for struct indices, which must always be constant. | 
|  | 144 | if (isa<ConstantInt>(FirstInst->getOperand(op)) || | 
|  | 145 | isa<ConstantInt>(GEP->getOperand(op))) | 
|  | 146 | return 0; | 
|  | 147 |  | 
|  | 148 | if (FirstInst->getOperand(op)->getType() !=GEP->getOperand(op)->getType()) | 
|  | 149 | return 0; | 
|  | 150 |  | 
|  | 151 | // If we already needed a PHI for an earlier operand, and another operand | 
|  | 152 | // also requires a PHI, we'd be introducing more PHIs than we're | 
|  | 153 | // eliminating, which increases register pressure on entry to the PHI's | 
|  | 154 | // block. | 
|  | 155 | if (NeededPhi) | 
|  | 156 | return 0; | 
|  | 157 |  | 
|  | 158 | FixedOperands[op] = 0;  // Needs a PHI. | 
|  | 159 | NeededPhi = true; | 
|  | 160 | } | 
|  | 161 | } | 
|  | 162 |  | 
|  | 163 | // If all of the base pointers of the PHI'd GEPs are from allocas, don't | 
|  | 164 | // bother doing this transformation.  At best, this will just save a bit of | 
|  | 165 | // offset calculation, but all the predecessors will have to materialize the | 
|  | 166 | // stack address into a register anyway.  We'd actually rather *clone* the | 
|  | 167 | // load up into the predecessors so that we have a load of a gep of an alloca, | 
|  | 168 | // which can usually all be folded into the load. | 
|  | 169 | if (AllBasePointersAreAllocas) | 
|  | 170 | return 0; | 
|  | 171 |  | 
|  | 172 | // Otherwise, this is safe to transform.  Insert PHI nodes for each operand | 
|  | 173 | // that is variable. | 
|  | 174 | SmallVector<PHINode*, 16> OperandPhis(FixedOperands.size()); | 
|  | 175 |  | 
|  | 176 | bool HasAnyPHIs = false; | 
|  | 177 | for (unsigned i = 0, e = FixedOperands.size(); i != e; ++i) { | 
|  | 178 | if (FixedOperands[i]) continue;  // operand doesn't need a phi. | 
|  | 179 | Value *FirstOp = FirstInst->getOperand(i); | 
|  | 180 | PHINode *NewPN = PHINode::Create(FirstOp->getType(), | 
|  | 181 | FirstOp->getName()+".pn"); | 
|  | 182 | InsertNewInstBefore(NewPN, PN); | 
|  | 183 |  | 
|  | 184 | NewPN->reserveOperandSpace(e); | 
|  | 185 | NewPN->addIncoming(FirstOp, PN.getIncomingBlock(0)); | 
|  | 186 | OperandPhis[i] = NewPN; | 
|  | 187 | FixedOperands[i] = NewPN; | 
|  | 188 | HasAnyPHIs = true; | 
|  | 189 | } | 
|  | 190 |  | 
|  | 191 |  | 
|  | 192 | // Add all operands to the new PHIs. | 
|  | 193 | if (HasAnyPHIs) { | 
|  | 194 | for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) { | 
|  | 195 | GetElementPtrInst *InGEP =cast<GetElementPtrInst>(PN.getIncomingValue(i)); | 
|  | 196 | BasicBlock *InBB = PN.getIncomingBlock(i); | 
|  | 197 |  | 
|  | 198 | for (unsigned op = 0, e = OperandPhis.size(); op != e; ++op) | 
|  | 199 | if (PHINode *OpPhi = OperandPhis[op]) | 
|  | 200 | OpPhi->addIncoming(InGEP->getOperand(op), InBB); | 
|  | 201 | } | 
|  | 202 | } | 
|  | 203 |  | 
|  | 204 | Value *Base = FixedOperands[0]; | 
|  | 205 | return cast<GEPOperator>(FirstInst)->isInBounds() ? | 
|  | 206 | GetElementPtrInst::CreateInBounds(Base, FixedOperands.begin()+1, | 
|  | 207 | FixedOperands.end()) : | 
|  | 208 | GetElementPtrInst::Create(Base, FixedOperands.begin()+1, | 
|  | 209 | FixedOperands.end()); | 
|  | 210 | } | 
|  | 211 |  | 
|  | 212 |  | 
|  | 213 | /// isSafeAndProfitableToSinkLoad - Return true if we know that it is safe to | 
|  | 214 | /// sink the load out of the block that defines it.  This means that it must be | 
|  | 215 | /// obvious the value of the load is not changed from the point of the load to | 
|  | 216 | /// the end of the block it is in. | 
|  | 217 | /// | 
|  | 218 | /// Finally, it is safe, but not profitable, to sink a load targetting a | 
|  | 219 | /// non-address-taken alloca.  Doing so will cause us to not promote the alloca | 
|  | 220 | /// to a register. | 
|  | 221 | static bool isSafeAndProfitableToSinkLoad(LoadInst *L) { | 
|  | 222 | BasicBlock::iterator BBI = L, E = L->getParent()->end(); | 
|  | 223 |  | 
|  | 224 | for (++BBI; BBI != E; ++BBI) | 
|  | 225 | if (BBI->mayWriteToMemory()) | 
|  | 226 | return false; | 
|  | 227 |  | 
|  | 228 | // Check for non-address taken alloca.  If not address-taken already, it isn't | 
|  | 229 | // profitable to do this xform. | 
|  | 230 | if (AllocaInst *AI = dyn_cast<AllocaInst>(L->getOperand(0))) { | 
|  | 231 | bool isAddressTaken = false; | 
|  | 232 | for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); | 
|  | 233 | UI != E; ++UI) { | 
| Gabor Greif | 96fedcb | 2010-07-12 14:15:58 +0000 | [diff] [blame] | 234 | User *U = *UI; | 
|  | 235 | if (isa<LoadInst>(U)) continue; | 
|  | 236 | if (StoreInst *SI = dyn_cast<StoreInst>(U)) { | 
| Chris Lattner | de1fede | 2010-01-05 05:31:55 +0000 | [diff] [blame] | 237 | // If storing TO the alloca, then the address isn't taken. | 
|  | 238 | if (SI->getOperand(1) == AI) continue; | 
|  | 239 | } | 
|  | 240 | isAddressTaken = true; | 
|  | 241 | break; | 
|  | 242 | } | 
|  | 243 |  | 
|  | 244 | if (!isAddressTaken && AI->isStaticAlloca()) | 
|  | 245 | return false; | 
|  | 246 | } | 
|  | 247 |  | 
|  | 248 | // If this load is a load from a GEP with a constant offset from an alloca, | 
|  | 249 | // then we don't want to sink it.  In its present form, it will be | 
|  | 250 | // load [constant stack offset].  Sinking it will cause us to have to | 
|  | 251 | // materialize the stack addresses in each predecessor in a register only to | 
|  | 252 | // do a shared load from register in the successor. | 
|  | 253 | if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(L->getOperand(0))) | 
|  | 254 | if (AllocaInst *AI = dyn_cast<AllocaInst>(GEP->getOperand(0))) | 
|  | 255 | if (AI->isStaticAlloca() && GEP->hasAllConstantIndices()) | 
|  | 256 | return false; | 
|  | 257 |  | 
|  | 258 | return true; | 
|  | 259 | } | 
|  | 260 |  | 
|  | 261 | Instruction *InstCombiner::FoldPHIArgLoadIntoPHI(PHINode &PN) { | 
|  | 262 | LoadInst *FirstLI = cast<LoadInst>(PN.getIncomingValue(0)); | 
|  | 263 |  | 
|  | 264 | // When processing loads, we need to propagate two bits of information to the | 
|  | 265 | // sunk load: whether it is volatile, and what its alignment is.  We currently | 
|  | 266 | // don't sink loads when some have their alignment specified and some don't. | 
|  | 267 | // visitLoadInst will propagate an alignment onto the load when TD is around, | 
|  | 268 | // and if TD isn't around, we can't handle the mixed case. | 
|  | 269 | bool isVolatile = FirstLI->isVolatile(); | 
|  | 270 | unsigned LoadAlignment = FirstLI->getAlignment(); | 
| Chris Lattner | f6befff | 2010-03-05 18:53:28 +0000 | [diff] [blame] | 271 | unsigned LoadAddrSpace = FirstLI->getPointerAddressSpace(); | 
| Chris Lattner | de1fede | 2010-01-05 05:31:55 +0000 | [diff] [blame] | 272 |  | 
|  | 273 | // We can't sink the load if the loaded value could be modified between the | 
|  | 274 | // load and the PHI. | 
|  | 275 | if (FirstLI->getParent() != PN.getIncomingBlock(0) || | 
|  | 276 | !isSafeAndProfitableToSinkLoad(FirstLI)) | 
|  | 277 | return 0; | 
|  | 278 |  | 
|  | 279 | // If the PHI is of volatile loads and the load block has multiple | 
|  | 280 | // successors, sinking it would remove a load of the volatile value from | 
|  | 281 | // the path through the other successor. | 
|  | 282 | if (isVolatile && | 
|  | 283 | FirstLI->getParent()->getTerminator()->getNumSuccessors() != 1) | 
|  | 284 | return 0; | 
|  | 285 |  | 
|  | 286 | // Check to see if all arguments are the same operation. | 
|  | 287 | for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) { | 
|  | 288 | LoadInst *LI = dyn_cast<LoadInst>(PN.getIncomingValue(i)); | 
|  | 289 | if (!LI || !LI->hasOneUse()) | 
|  | 290 | return 0; | 
|  | 291 |  | 
|  | 292 | // We can't sink the load if the loaded value could be modified between | 
|  | 293 | // the load and the PHI. | 
|  | 294 | if (LI->isVolatile() != isVolatile || | 
|  | 295 | LI->getParent() != PN.getIncomingBlock(i) || | 
| Chris Lattner | f6befff | 2010-03-05 18:53:28 +0000 | [diff] [blame] | 296 | LI->getPointerAddressSpace() != LoadAddrSpace || | 
| Chris Lattner | de1fede | 2010-01-05 05:31:55 +0000 | [diff] [blame] | 297 | !isSafeAndProfitableToSinkLoad(LI)) | 
|  | 298 | return 0; | 
|  | 299 |  | 
|  | 300 | // If some of the loads have an alignment specified but not all of them, | 
|  | 301 | // we can't do the transformation. | 
|  | 302 | if ((LoadAlignment != 0) != (LI->getAlignment() != 0)) | 
|  | 303 | return 0; | 
|  | 304 |  | 
|  | 305 | LoadAlignment = std::min(LoadAlignment, LI->getAlignment()); | 
|  | 306 |  | 
|  | 307 | // If the PHI is of volatile loads and the load block has multiple | 
|  | 308 | // successors, sinking it would remove a load of the volatile value from | 
|  | 309 | // the path through the other successor. | 
|  | 310 | if (isVolatile && | 
|  | 311 | LI->getParent()->getTerminator()->getNumSuccessors() != 1) | 
|  | 312 | return 0; | 
|  | 313 | } | 
|  | 314 |  | 
|  | 315 | // Okay, they are all the same operation.  Create a new PHI node of the | 
|  | 316 | // correct type, and PHI together all of the LHS's of the instructions. | 
|  | 317 | PHINode *NewPN = PHINode::Create(FirstLI->getOperand(0)->getType(), | 
|  | 318 | PN.getName()+".in"); | 
|  | 319 | NewPN->reserveOperandSpace(PN.getNumOperands()/2); | 
|  | 320 |  | 
|  | 321 | Value *InVal = FirstLI->getOperand(0); | 
|  | 322 | NewPN->addIncoming(InVal, PN.getIncomingBlock(0)); | 
|  | 323 |  | 
|  | 324 | // Add all operands to the new PHI. | 
|  | 325 | for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) { | 
|  | 326 | Value *NewInVal = cast<LoadInst>(PN.getIncomingValue(i))->getOperand(0); | 
|  | 327 | if (NewInVal != InVal) | 
|  | 328 | InVal = 0; | 
|  | 329 | NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i)); | 
|  | 330 | } | 
|  | 331 |  | 
|  | 332 | Value *PhiVal; | 
|  | 333 | if (InVal) { | 
|  | 334 | // The new PHI unions all of the same values together.  This is really | 
|  | 335 | // common, so we handle it intelligently here for compile-time speed. | 
|  | 336 | PhiVal = InVal; | 
|  | 337 | delete NewPN; | 
|  | 338 | } else { | 
|  | 339 | InsertNewInstBefore(NewPN, PN); | 
|  | 340 | PhiVal = NewPN; | 
|  | 341 | } | 
|  | 342 |  | 
|  | 343 | // If this was a volatile load that we are merging, make sure to loop through | 
|  | 344 | // and mark all the input loads as non-volatile.  If we don't do this, we will | 
|  | 345 | // insert a new volatile load and the old ones will not be deletable. | 
|  | 346 | if (isVolatile) | 
|  | 347 | for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) | 
|  | 348 | cast<LoadInst>(PN.getIncomingValue(i))->setVolatile(false); | 
|  | 349 |  | 
|  | 350 | return new LoadInst(PhiVal, "", isVolatile, LoadAlignment); | 
|  | 351 | } | 
|  | 352 |  | 
|  | 353 |  | 
|  | 354 |  | 
|  | 355 | /// FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary" | 
|  | 356 | /// operator and they all are only used by the PHI, PHI together their | 
|  | 357 | /// inputs, and do the operation once, to the result of the PHI. | 
|  | 358 | Instruction *InstCombiner::FoldPHIArgOpIntoPHI(PHINode &PN) { | 
|  | 359 | Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0)); | 
|  | 360 |  | 
|  | 361 | if (isa<GetElementPtrInst>(FirstInst)) | 
|  | 362 | return FoldPHIArgGEPIntoPHI(PN); | 
|  | 363 | if (isa<LoadInst>(FirstInst)) | 
|  | 364 | return FoldPHIArgLoadIntoPHI(PN); | 
|  | 365 |  | 
|  | 366 | // Scan the instruction, looking for input operations that can be folded away. | 
|  | 367 | // If all input operands to the phi are the same instruction (e.g. a cast from | 
|  | 368 | // the same type or "+42") we can pull the operation through the PHI, reducing | 
|  | 369 | // code size and simplifying code. | 
|  | 370 | Constant *ConstantOp = 0; | 
|  | 371 | const Type *CastSrcTy = 0; | 
|  | 372 |  | 
|  | 373 | if (isa<CastInst>(FirstInst)) { | 
|  | 374 | CastSrcTy = FirstInst->getOperand(0)->getType(); | 
|  | 375 |  | 
|  | 376 | // Be careful about transforming integer PHIs.  We don't want to pessimize | 
|  | 377 | // the code by turning an i32 into an i1293. | 
| Duncan Sands | 19d0b47 | 2010-02-16 11:11:14 +0000 | [diff] [blame] | 378 | if (PN.getType()->isIntegerTy() && CastSrcTy->isIntegerTy()) { | 
| Chris Lattner | de1fede | 2010-01-05 05:31:55 +0000 | [diff] [blame] | 379 | if (!ShouldChangeType(PN.getType(), CastSrcTy)) | 
|  | 380 | return 0; | 
|  | 381 | } | 
|  | 382 | } else if (isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst)) { | 
|  | 383 | // Can fold binop, compare or shift here if the RHS is a constant, | 
|  | 384 | // otherwise call FoldPHIArgBinOpIntoPHI. | 
|  | 385 | ConstantOp = dyn_cast<Constant>(FirstInst->getOperand(1)); | 
|  | 386 | if (ConstantOp == 0) | 
|  | 387 | return FoldPHIArgBinOpIntoPHI(PN); | 
|  | 388 | } else { | 
|  | 389 | return 0;  // Cannot fold this operation. | 
|  | 390 | } | 
|  | 391 |  | 
|  | 392 | // Check to see if all arguments are the same operation. | 
|  | 393 | for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) { | 
|  | 394 | Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i)); | 
|  | 395 | if (I == 0 || !I->hasOneUse() || !I->isSameOperationAs(FirstInst)) | 
|  | 396 | return 0; | 
|  | 397 | if (CastSrcTy) { | 
|  | 398 | if (I->getOperand(0)->getType() != CastSrcTy) | 
|  | 399 | return 0;  // Cast operation must match. | 
|  | 400 | } else if (I->getOperand(1) != ConstantOp) { | 
|  | 401 | return 0; | 
|  | 402 | } | 
|  | 403 | } | 
|  | 404 |  | 
|  | 405 | // Okay, they are all the same operation.  Create a new PHI node of the | 
|  | 406 | // correct type, and PHI together all of the LHS's of the instructions. | 
|  | 407 | PHINode *NewPN = PHINode::Create(FirstInst->getOperand(0)->getType(), | 
|  | 408 | PN.getName()+".in"); | 
|  | 409 | NewPN->reserveOperandSpace(PN.getNumOperands()/2); | 
|  | 410 |  | 
|  | 411 | Value *InVal = FirstInst->getOperand(0); | 
|  | 412 | NewPN->addIncoming(InVal, PN.getIncomingBlock(0)); | 
|  | 413 |  | 
|  | 414 | // Add all operands to the new PHI. | 
|  | 415 | for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) { | 
|  | 416 | Value *NewInVal = cast<Instruction>(PN.getIncomingValue(i))->getOperand(0); | 
|  | 417 | if (NewInVal != InVal) | 
|  | 418 | InVal = 0; | 
|  | 419 | NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i)); | 
|  | 420 | } | 
|  | 421 |  | 
|  | 422 | Value *PhiVal; | 
|  | 423 | if (InVal) { | 
|  | 424 | // The new PHI unions all of the same values together.  This is really | 
|  | 425 | // common, so we handle it intelligently here for compile-time speed. | 
|  | 426 | PhiVal = InVal; | 
|  | 427 | delete NewPN; | 
|  | 428 | } else { | 
|  | 429 | InsertNewInstBefore(NewPN, PN); | 
|  | 430 | PhiVal = NewPN; | 
|  | 431 | } | 
|  | 432 |  | 
|  | 433 | // Insert and return the new operation. | 
|  | 434 | if (CastInst *FirstCI = dyn_cast<CastInst>(FirstInst)) | 
|  | 435 | return CastInst::Create(FirstCI->getOpcode(), PhiVal, PN.getType()); | 
|  | 436 |  | 
|  | 437 | if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst)) | 
|  | 438 | return BinaryOperator::Create(BinOp->getOpcode(), PhiVal, ConstantOp); | 
|  | 439 |  | 
|  | 440 | CmpInst *CIOp = cast<CmpInst>(FirstInst); | 
|  | 441 | return CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(), | 
|  | 442 | PhiVal, ConstantOp); | 
|  | 443 | } | 
|  | 444 |  | 
|  | 445 | /// DeadPHICycle - Return true if this PHI node is only used by a PHI node cycle | 
|  | 446 | /// that is dead. | 
|  | 447 | static bool DeadPHICycle(PHINode *PN, | 
|  | 448 | SmallPtrSet<PHINode*, 16> &PotentiallyDeadPHIs) { | 
|  | 449 | if (PN->use_empty()) return true; | 
|  | 450 | if (!PN->hasOneUse()) return false; | 
|  | 451 |  | 
|  | 452 | // Remember this node, and if we find the cycle, return. | 
|  | 453 | if (!PotentiallyDeadPHIs.insert(PN)) | 
|  | 454 | return true; | 
|  | 455 |  | 
|  | 456 | // Don't scan crazily complex things. | 
|  | 457 | if (PotentiallyDeadPHIs.size() == 16) | 
|  | 458 | return false; | 
|  | 459 |  | 
|  | 460 | if (PHINode *PU = dyn_cast<PHINode>(PN->use_back())) | 
|  | 461 | return DeadPHICycle(PU, PotentiallyDeadPHIs); | 
|  | 462 |  | 
|  | 463 | return false; | 
|  | 464 | } | 
|  | 465 |  | 
|  | 466 | /// PHIsEqualValue - Return true if this phi node is always equal to | 
|  | 467 | /// NonPhiInVal.  This happens with mutually cyclic phi nodes like: | 
|  | 468 | ///   z = some value; x = phi (y, z); y = phi (x, z) | 
|  | 469 | static bool PHIsEqualValue(PHINode *PN, Value *NonPhiInVal, | 
|  | 470 | SmallPtrSet<PHINode*, 16> &ValueEqualPHIs) { | 
|  | 471 | // See if we already saw this PHI node. | 
|  | 472 | if (!ValueEqualPHIs.insert(PN)) | 
|  | 473 | return true; | 
|  | 474 |  | 
|  | 475 | // Don't scan crazily complex things. | 
|  | 476 | if (ValueEqualPHIs.size() == 16) | 
|  | 477 | return false; | 
|  | 478 |  | 
|  | 479 | // Scan the operands to see if they are either phi nodes or are equal to | 
|  | 480 | // the value. | 
|  | 481 | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { | 
|  | 482 | Value *Op = PN->getIncomingValue(i); | 
|  | 483 | if (PHINode *OpPN = dyn_cast<PHINode>(Op)) { | 
|  | 484 | if (!PHIsEqualValue(OpPN, NonPhiInVal, ValueEqualPHIs)) | 
|  | 485 | return false; | 
|  | 486 | } else if (Op != NonPhiInVal) | 
|  | 487 | return false; | 
|  | 488 | } | 
|  | 489 |  | 
|  | 490 | return true; | 
|  | 491 | } | 
|  | 492 |  | 
|  | 493 |  | 
|  | 494 | namespace { | 
|  | 495 | struct PHIUsageRecord { | 
|  | 496 | unsigned PHIId;     // The ID # of the PHI (something determinstic to sort on) | 
|  | 497 | unsigned Shift;     // The amount shifted. | 
|  | 498 | Instruction *Inst;  // The trunc instruction. | 
|  | 499 |  | 
|  | 500 | PHIUsageRecord(unsigned pn, unsigned Sh, Instruction *User) | 
|  | 501 | : PHIId(pn), Shift(Sh), Inst(User) {} | 
|  | 502 |  | 
|  | 503 | bool operator<(const PHIUsageRecord &RHS) const { | 
|  | 504 | if (PHIId < RHS.PHIId) return true; | 
|  | 505 | if (PHIId > RHS.PHIId) return false; | 
|  | 506 | if (Shift < RHS.Shift) return true; | 
|  | 507 | if (Shift > RHS.Shift) return false; | 
|  | 508 | return Inst->getType()->getPrimitiveSizeInBits() < | 
|  | 509 | RHS.Inst->getType()->getPrimitiveSizeInBits(); | 
|  | 510 | } | 
|  | 511 | }; | 
|  | 512 |  | 
|  | 513 | struct LoweredPHIRecord { | 
|  | 514 | PHINode *PN;        // The PHI that was lowered. | 
|  | 515 | unsigned Shift;     // The amount shifted. | 
|  | 516 | unsigned Width;     // The width extracted. | 
|  | 517 |  | 
|  | 518 | LoweredPHIRecord(PHINode *pn, unsigned Sh, const Type *Ty) | 
|  | 519 | : PN(pn), Shift(Sh), Width(Ty->getPrimitiveSizeInBits()) {} | 
|  | 520 |  | 
|  | 521 | // Ctor form used by DenseMap. | 
|  | 522 | LoweredPHIRecord(PHINode *pn, unsigned Sh) | 
|  | 523 | : PN(pn), Shift(Sh), Width(0) {} | 
|  | 524 | }; | 
|  | 525 | } | 
|  | 526 |  | 
|  | 527 | namespace llvm { | 
|  | 528 | template<> | 
|  | 529 | struct DenseMapInfo<LoweredPHIRecord> { | 
|  | 530 | static inline LoweredPHIRecord getEmptyKey() { | 
|  | 531 | return LoweredPHIRecord(0, 0); | 
|  | 532 | } | 
|  | 533 | static inline LoweredPHIRecord getTombstoneKey() { | 
|  | 534 | return LoweredPHIRecord(0, 1); | 
|  | 535 | } | 
|  | 536 | static unsigned getHashValue(const LoweredPHIRecord &Val) { | 
|  | 537 | return DenseMapInfo<PHINode*>::getHashValue(Val.PN) ^ (Val.Shift>>3) ^ | 
|  | 538 | (Val.Width>>3); | 
|  | 539 | } | 
|  | 540 | static bool isEqual(const LoweredPHIRecord &LHS, | 
|  | 541 | const LoweredPHIRecord &RHS) { | 
|  | 542 | return LHS.PN == RHS.PN && LHS.Shift == RHS.Shift && | 
|  | 543 | LHS.Width == RHS.Width; | 
|  | 544 | } | 
|  | 545 | }; | 
|  | 546 | template <> | 
|  | 547 | struct isPodLike<LoweredPHIRecord> { static const bool value = true; }; | 
|  | 548 | } | 
|  | 549 |  | 
|  | 550 |  | 
|  | 551 | /// SliceUpIllegalIntegerPHI - This is an integer PHI and we know that it has an | 
|  | 552 | /// illegal type: see if it is only used by trunc or trunc(lshr) operations.  If | 
|  | 553 | /// so, we split the PHI into the various pieces being extracted.  This sort of | 
|  | 554 | /// thing is introduced when SROA promotes an aggregate to large integer values. | 
|  | 555 | /// | 
|  | 556 | /// TODO: The user of the trunc may be an bitcast to float/double/vector or an | 
|  | 557 | /// inttoptr.  We should produce new PHIs in the right type. | 
|  | 558 | /// | 
|  | 559 | Instruction *InstCombiner::SliceUpIllegalIntegerPHI(PHINode &FirstPhi) { | 
|  | 560 | // PHIUsers - Keep track of all of the truncated values extracted from a set | 
|  | 561 | // of PHIs, along with their offset.  These are the things we want to rewrite. | 
|  | 562 | SmallVector<PHIUsageRecord, 16> PHIUsers; | 
|  | 563 |  | 
|  | 564 | // PHIs are often mutually cyclic, so we keep track of a whole set of PHI | 
|  | 565 | // nodes which are extracted from. PHIsToSlice is a set we use to avoid | 
|  | 566 | // revisiting PHIs, PHIsInspected is a ordered list of PHIs that we need to | 
|  | 567 | // check the uses of (to ensure they are all extracts). | 
|  | 568 | SmallVector<PHINode*, 8> PHIsToSlice; | 
|  | 569 | SmallPtrSet<PHINode*, 8> PHIsInspected; | 
|  | 570 |  | 
|  | 571 | PHIsToSlice.push_back(&FirstPhi); | 
|  | 572 | PHIsInspected.insert(&FirstPhi); | 
|  | 573 |  | 
|  | 574 | for (unsigned PHIId = 0; PHIId != PHIsToSlice.size(); ++PHIId) { | 
|  | 575 | PHINode *PN = PHIsToSlice[PHIId]; | 
|  | 576 |  | 
|  | 577 | // Scan the input list of the PHI.  If any input is an invoke, and if the | 
|  | 578 | // input is defined in the predecessor, then we won't be split the critical | 
|  | 579 | // edge which is required to insert a truncate.  Because of this, we have to | 
|  | 580 | // bail out. | 
|  | 581 | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { | 
|  | 582 | InvokeInst *II = dyn_cast<InvokeInst>(PN->getIncomingValue(i)); | 
|  | 583 | if (II == 0) continue; | 
|  | 584 | if (II->getParent() != PN->getIncomingBlock(i)) | 
|  | 585 | continue; | 
|  | 586 |  | 
|  | 587 | // If we have a phi, and if it's directly in the predecessor, then we have | 
|  | 588 | // a critical edge where we need to put the truncate.  Since we can't | 
|  | 589 | // split the edge in instcombine, we have to bail out. | 
|  | 590 | return 0; | 
|  | 591 | } | 
|  | 592 |  | 
|  | 593 |  | 
|  | 594 | for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end(); | 
|  | 595 | UI != E; ++UI) { | 
|  | 596 | Instruction *User = cast<Instruction>(*UI); | 
|  | 597 |  | 
|  | 598 | // If the user is a PHI, inspect its uses recursively. | 
|  | 599 | if (PHINode *UserPN = dyn_cast<PHINode>(User)) { | 
|  | 600 | if (PHIsInspected.insert(UserPN)) | 
|  | 601 | PHIsToSlice.push_back(UserPN); | 
|  | 602 | continue; | 
|  | 603 | } | 
|  | 604 |  | 
|  | 605 | // Truncates are always ok. | 
|  | 606 | if (isa<TruncInst>(User)) { | 
|  | 607 | PHIUsers.push_back(PHIUsageRecord(PHIId, 0, User)); | 
|  | 608 | continue; | 
|  | 609 | } | 
|  | 610 |  | 
|  | 611 | // Otherwise it must be a lshr which can only be used by one trunc. | 
|  | 612 | if (User->getOpcode() != Instruction::LShr || | 
|  | 613 | !User->hasOneUse() || !isa<TruncInst>(User->use_back()) || | 
|  | 614 | !isa<ConstantInt>(User->getOperand(1))) | 
|  | 615 | return 0; | 
|  | 616 |  | 
|  | 617 | unsigned Shift = cast<ConstantInt>(User->getOperand(1))->getZExtValue(); | 
|  | 618 | PHIUsers.push_back(PHIUsageRecord(PHIId, Shift, User->use_back())); | 
|  | 619 | } | 
|  | 620 | } | 
|  | 621 |  | 
|  | 622 | // If we have no users, they must be all self uses, just nuke the PHI. | 
|  | 623 | if (PHIUsers.empty()) | 
|  | 624 | return ReplaceInstUsesWith(FirstPhi, UndefValue::get(FirstPhi.getType())); | 
|  | 625 |  | 
|  | 626 | // If this phi node is transformable, create new PHIs for all the pieces | 
|  | 627 | // extracted out of it.  First, sort the users by their offset and size. | 
|  | 628 | array_pod_sort(PHIUsers.begin(), PHIUsers.end()); | 
|  | 629 |  | 
|  | 630 | DEBUG(errs() << "SLICING UP PHI: " << FirstPhi << '\n'; | 
|  | 631 | for (unsigned i = 1, e = PHIsToSlice.size(); i != e; ++i) | 
|  | 632 | errs() << "AND USER PHI #" << i << ": " << *PHIsToSlice[i] <<'\n'; | 
|  | 633 | ); | 
|  | 634 |  | 
|  | 635 | // PredValues - This is a temporary used when rewriting PHI nodes.  It is | 
|  | 636 | // hoisted out here to avoid construction/destruction thrashing. | 
|  | 637 | DenseMap<BasicBlock*, Value*> PredValues; | 
|  | 638 |  | 
|  | 639 | // ExtractedVals - Each new PHI we introduce is saved here so we don't | 
|  | 640 | // introduce redundant PHIs. | 
|  | 641 | DenseMap<LoweredPHIRecord, PHINode*> ExtractedVals; | 
|  | 642 |  | 
|  | 643 | for (unsigned UserI = 0, UserE = PHIUsers.size(); UserI != UserE; ++UserI) { | 
|  | 644 | unsigned PHIId = PHIUsers[UserI].PHIId; | 
|  | 645 | PHINode *PN = PHIsToSlice[PHIId]; | 
|  | 646 | unsigned Offset = PHIUsers[UserI].Shift; | 
|  | 647 | const Type *Ty = PHIUsers[UserI].Inst->getType(); | 
|  | 648 |  | 
|  | 649 | PHINode *EltPHI; | 
|  | 650 |  | 
|  | 651 | // If we've already lowered a user like this, reuse the previously lowered | 
|  | 652 | // value. | 
|  | 653 | if ((EltPHI = ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)]) == 0) { | 
|  | 654 |  | 
|  | 655 | // Otherwise, Create the new PHI node for this user. | 
|  | 656 | EltPHI = PHINode::Create(Ty, PN->getName()+".off"+Twine(Offset), PN); | 
|  | 657 | assert(EltPHI->getType() != PN->getType() && | 
|  | 658 | "Truncate didn't shrink phi?"); | 
|  | 659 |  | 
|  | 660 | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { | 
|  | 661 | BasicBlock *Pred = PN->getIncomingBlock(i); | 
|  | 662 | Value *&PredVal = PredValues[Pred]; | 
|  | 663 |  | 
|  | 664 | // If we already have a value for this predecessor, reuse it. | 
|  | 665 | if (PredVal) { | 
|  | 666 | EltPHI->addIncoming(PredVal, Pred); | 
|  | 667 | continue; | 
|  | 668 | } | 
|  | 669 |  | 
|  | 670 | // Handle the PHI self-reuse case. | 
|  | 671 | Value *InVal = PN->getIncomingValue(i); | 
|  | 672 | if (InVal == PN) { | 
|  | 673 | PredVal = EltPHI; | 
|  | 674 | EltPHI->addIncoming(PredVal, Pred); | 
|  | 675 | continue; | 
|  | 676 | } | 
|  | 677 |  | 
|  | 678 | if (PHINode *InPHI = dyn_cast<PHINode>(PN)) { | 
|  | 679 | // If the incoming value was a PHI, and if it was one of the PHIs we | 
|  | 680 | // already rewrote it, just use the lowered value. | 
|  | 681 | if (Value *Res = ExtractedVals[LoweredPHIRecord(InPHI, Offset, Ty)]) { | 
|  | 682 | PredVal = Res; | 
|  | 683 | EltPHI->addIncoming(PredVal, Pred); | 
|  | 684 | continue; | 
|  | 685 | } | 
|  | 686 | } | 
|  | 687 |  | 
|  | 688 | // Otherwise, do an extract in the predecessor. | 
|  | 689 | Builder->SetInsertPoint(Pred, Pred->getTerminator()); | 
|  | 690 | Value *Res = InVal; | 
|  | 691 | if (Offset) | 
|  | 692 | Res = Builder->CreateLShr(Res, ConstantInt::get(InVal->getType(), | 
|  | 693 | Offset), "extract"); | 
|  | 694 | Res = Builder->CreateTrunc(Res, Ty, "extract.t"); | 
|  | 695 | PredVal = Res; | 
|  | 696 | EltPHI->addIncoming(Res, Pred); | 
|  | 697 |  | 
|  | 698 | // If the incoming value was a PHI, and if it was one of the PHIs we are | 
|  | 699 | // rewriting, we will ultimately delete the code we inserted.  This | 
|  | 700 | // means we need to revisit that PHI to make sure we extract out the | 
|  | 701 | // needed piece. | 
|  | 702 | if (PHINode *OldInVal = dyn_cast<PHINode>(PN->getIncomingValue(i))) | 
|  | 703 | if (PHIsInspected.count(OldInVal)) { | 
|  | 704 | unsigned RefPHIId = std::find(PHIsToSlice.begin(),PHIsToSlice.end(), | 
|  | 705 | OldInVal)-PHIsToSlice.begin(); | 
|  | 706 | PHIUsers.push_back(PHIUsageRecord(RefPHIId, Offset, | 
|  | 707 | cast<Instruction>(Res))); | 
|  | 708 | ++UserE; | 
|  | 709 | } | 
|  | 710 | } | 
|  | 711 | PredValues.clear(); | 
|  | 712 |  | 
|  | 713 | DEBUG(errs() << "  Made element PHI for offset " << Offset << ": " | 
|  | 714 | << *EltPHI << '\n'); | 
|  | 715 | ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)] = EltPHI; | 
|  | 716 | } | 
|  | 717 |  | 
|  | 718 | // Replace the use of this piece with the PHI node. | 
|  | 719 | ReplaceInstUsesWith(*PHIUsers[UserI].Inst, EltPHI); | 
|  | 720 | } | 
|  | 721 |  | 
|  | 722 | // Replace all the remaining uses of the PHI nodes (self uses and the lshrs) | 
|  | 723 | // with undefs. | 
|  | 724 | Value *Undef = UndefValue::get(FirstPhi.getType()); | 
|  | 725 | for (unsigned i = 1, e = PHIsToSlice.size(); i != e; ++i) | 
|  | 726 | ReplaceInstUsesWith(*PHIsToSlice[i], Undef); | 
|  | 727 | return ReplaceInstUsesWith(FirstPhi, Undef); | 
|  | 728 | } | 
|  | 729 |  | 
|  | 730 | // PHINode simplification | 
|  | 731 | // | 
|  | 732 | Instruction *InstCombiner::visitPHINode(PHINode &PN) { | 
|  | 733 | // If LCSSA is around, don't mess with Phi nodes | 
|  | 734 | if (MustPreserveLCSSA) return 0; | 
| Duncan Sands | 4581ddc | 2010-11-14 13:30:18 +0000 | [diff] [blame] | 735 |  | 
|  | 736 | if (Value *V = SimplifyInstruction(&PN, TD)) | 
| Chris Lattner | de1fede | 2010-01-05 05:31:55 +0000 | [diff] [blame] | 737 | return ReplaceInstUsesWith(PN, V); | 
|  | 738 |  | 
|  | 739 | // If all PHI operands are the same operation, pull them through the PHI, | 
|  | 740 | // reducing code size. | 
|  | 741 | if (isa<Instruction>(PN.getIncomingValue(0)) && | 
|  | 742 | isa<Instruction>(PN.getIncomingValue(1)) && | 
|  | 743 | cast<Instruction>(PN.getIncomingValue(0))->getOpcode() == | 
|  | 744 | cast<Instruction>(PN.getIncomingValue(1))->getOpcode() && | 
|  | 745 | // FIXME: The hasOneUse check will fail for PHIs that use the value more | 
|  | 746 | // than themselves more than once. | 
|  | 747 | PN.getIncomingValue(0)->hasOneUse()) | 
|  | 748 | if (Instruction *Result = FoldPHIArgOpIntoPHI(PN)) | 
|  | 749 | return Result; | 
|  | 750 |  | 
|  | 751 | // If this is a trivial cycle in the PHI node graph, remove it.  Basically, if | 
|  | 752 | // this PHI only has a single use (a PHI), and if that PHI only has one use (a | 
|  | 753 | // PHI)... break the cycle. | 
|  | 754 | if (PN.hasOneUse()) { | 
|  | 755 | Instruction *PHIUser = cast<Instruction>(PN.use_back()); | 
|  | 756 | if (PHINode *PU = dyn_cast<PHINode>(PHIUser)) { | 
|  | 757 | SmallPtrSet<PHINode*, 16> PotentiallyDeadPHIs; | 
|  | 758 | PotentiallyDeadPHIs.insert(&PN); | 
|  | 759 | if (DeadPHICycle(PU, PotentiallyDeadPHIs)) | 
|  | 760 | return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType())); | 
|  | 761 | } | 
|  | 762 |  | 
|  | 763 | // If this phi has a single use, and if that use just computes a value for | 
|  | 764 | // the next iteration of a loop, delete the phi.  This occurs with unused | 
|  | 765 | // induction variables, e.g. "for (int j = 0; ; ++j);".  Detecting this | 
|  | 766 | // common case here is good because the only other things that catch this | 
|  | 767 | // are induction variable analysis (sometimes) and ADCE, which is only run | 
|  | 768 | // late. | 
|  | 769 | if (PHIUser->hasOneUse() && | 
|  | 770 | (isa<BinaryOperator>(PHIUser) || isa<GetElementPtrInst>(PHIUser)) && | 
|  | 771 | PHIUser->use_back() == &PN) { | 
|  | 772 | return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType())); | 
|  | 773 | } | 
|  | 774 | } | 
|  | 775 |  | 
|  | 776 | // We sometimes end up with phi cycles that non-obviously end up being the | 
|  | 777 | // same value, for example: | 
|  | 778 | //   z = some value; x = phi (y, z); y = phi (x, z) | 
|  | 779 | // where the phi nodes don't necessarily need to be in the same block.  Do a | 
|  | 780 | // quick check to see if the PHI node only contains a single non-phi value, if | 
|  | 781 | // so, scan to see if the phi cycle is actually equal to that value. | 
|  | 782 | { | 
|  | 783 | unsigned InValNo = 0, NumOperandVals = PN.getNumIncomingValues(); | 
|  | 784 | // Scan for the first non-phi operand. | 
|  | 785 | while (InValNo != NumOperandVals && | 
|  | 786 | isa<PHINode>(PN.getIncomingValue(InValNo))) | 
|  | 787 | ++InValNo; | 
|  | 788 |  | 
|  | 789 | if (InValNo != NumOperandVals) { | 
|  | 790 | Value *NonPhiInVal = PN.getOperand(InValNo); | 
|  | 791 |  | 
|  | 792 | // Scan the rest of the operands to see if there are any conflicts, if so | 
|  | 793 | // there is no need to recursively scan other phis. | 
|  | 794 | for (++InValNo; InValNo != NumOperandVals; ++InValNo) { | 
|  | 795 | Value *OpVal = PN.getIncomingValue(InValNo); | 
|  | 796 | if (OpVal != NonPhiInVal && !isa<PHINode>(OpVal)) | 
|  | 797 | break; | 
|  | 798 | } | 
|  | 799 |  | 
|  | 800 | // If we scanned over all operands, then we have one unique value plus | 
|  | 801 | // phi values.  Scan PHI nodes to see if they all merge in each other or | 
|  | 802 | // the value. | 
|  | 803 | if (InValNo == NumOperandVals) { | 
|  | 804 | SmallPtrSet<PHINode*, 16> ValueEqualPHIs; | 
|  | 805 | if (PHIsEqualValue(&PN, NonPhiInVal, ValueEqualPHIs)) | 
|  | 806 | return ReplaceInstUsesWith(PN, NonPhiInVal); | 
|  | 807 | } | 
|  | 808 | } | 
|  | 809 | } | 
|  | 810 |  | 
|  | 811 | // If there are multiple PHIs, sort their operands so that they all list | 
|  | 812 | // the blocks in the same order. This will help identical PHIs be eliminated | 
|  | 813 | // by other passes. Other passes shouldn't depend on this for correctness | 
|  | 814 | // however. | 
|  | 815 | PHINode *FirstPN = cast<PHINode>(PN.getParent()->begin()); | 
|  | 816 | if (&PN != FirstPN) | 
|  | 817 | for (unsigned i = 0, e = FirstPN->getNumIncomingValues(); i != e; ++i) { | 
|  | 818 | BasicBlock *BBA = PN.getIncomingBlock(i); | 
|  | 819 | BasicBlock *BBB = FirstPN->getIncomingBlock(i); | 
|  | 820 | if (BBA != BBB) { | 
|  | 821 | Value *VA = PN.getIncomingValue(i); | 
|  | 822 | unsigned j = PN.getBasicBlockIndex(BBB); | 
|  | 823 | Value *VB = PN.getIncomingValue(j); | 
|  | 824 | PN.setIncomingBlock(i, BBB); | 
|  | 825 | PN.setIncomingValue(i, VB); | 
|  | 826 | PN.setIncomingBlock(j, BBA); | 
|  | 827 | PN.setIncomingValue(j, VA); | 
|  | 828 | // NOTE: Instcombine normally would want us to "return &PN" if we | 
|  | 829 | // modified any of the operands of an instruction.  However, since we | 
|  | 830 | // aren't adding or removing uses (just rearranging them) we don't do | 
|  | 831 | // this in this case. | 
|  | 832 | } | 
|  | 833 | } | 
|  | 834 |  | 
|  | 835 | // If this is an integer PHI and we know that it has an illegal type, see if | 
|  | 836 | // it is only used by trunc or trunc(lshr) operations.  If so, we split the | 
|  | 837 | // PHI into the various pieces being extracted.  This sort of thing is | 
|  | 838 | // introduced when SROA promotes an aggregate to a single large integer type. | 
| Duncan Sands | 19d0b47 | 2010-02-16 11:11:14 +0000 | [diff] [blame] | 839 | if (PN.getType()->isIntegerTy() && TD && | 
| Chris Lattner | de1fede | 2010-01-05 05:31:55 +0000 | [diff] [blame] | 840 | !TD->isLegalInteger(PN.getType()->getPrimitiveSizeInBits())) | 
|  | 841 | if (Instruction *Res = SliceUpIllegalIntegerPHI(PN)) | 
|  | 842 | return Res; | 
|  | 843 |  | 
|  | 844 | return 0; | 
| Benjamin Kramer | f7cc698 | 2010-01-05 13:32:48 +0000 | [diff] [blame] | 845 | } |