blob: 2e780f035b2ba2003c0b2ebad6f16c7e06a33c68 [file] [log] [blame]
Colin LeMahieu7cd08922015-11-09 04:07:48 +00001//===-- HexagonAsmParser.cpp - Parse Hexagon asm to MCInst instructions----===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#define DEBUG_TYPE "mcasmparser"
11
12#include "Hexagon.h"
13#include "HexagonRegisterInfo.h"
14#include "HexagonTargetStreamer.h"
15#include "MCTargetDesc/HexagonBaseInfo.h"
16#include "MCTargetDesc/HexagonMCELFStreamer.h"
17#include "MCTargetDesc/HexagonMCChecker.h"
18#include "MCTargetDesc/HexagonMCExpr.h"
19#include "MCTargetDesc/HexagonMCShuffler.h"
20#include "MCTargetDesc/HexagonMCTargetDesc.h"
21#include "MCTargetDesc/HexagonMCAsmInfo.h"
22#include "MCTargetDesc/HexagonShuffler.h"
23#include "llvm/ADT/SmallString.h"
24#include "llvm/ADT/SmallVector.h"
25#include "llvm/ADT/StringExtras.h"
26#include "llvm/ADT/Twine.h"
27#include "llvm/MC/MCContext.h"
28#include "llvm/MC/MCELFStreamer.h"
29#include "llvm/MC/MCExpr.h"
30#include "llvm/MC/MCInst.h"
31#include "llvm/MC/MCParser/MCAsmLexer.h"
32#include "llvm/MC/MCParser/MCAsmParser.h"
33#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
34#include "llvm/MC/MCStreamer.h"
35#include "llvm/MC/MCSectionELF.h"
36#include "llvm/MC/MCSubtargetInfo.h"
37#include "llvm/MC/MCTargetAsmParser.h"
38#include "llvm/Support/CommandLine.h"
39#include "llvm/Support/Debug.h"
40#include "llvm/Support/ELF.h"
Alexey Samsonovbcfabaa2015-12-02 21:13:43 +000041#include "llvm/Support/Format.h"
Colin LeMahieu7cd08922015-11-09 04:07:48 +000042#include "llvm/Support/SourceMgr.h"
43#include "llvm/Support/MemoryBuffer.h"
44#include "llvm/Support/TargetRegistry.h"
45#include "llvm/Support/raw_ostream.h"
46#include <sstream>
47
48using namespace llvm;
49
50static cl::opt<bool> EnableFutureRegs("mfuture-regs",
51 cl::desc("Enable future registers"));
52
53static cl::opt<bool> WarnMissingParenthesis("mwarn-missing-parenthesis",
54cl::desc("Warn for missing parenthesis around predicate registers"),
55cl::init(true));
56static cl::opt<bool> ErrorMissingParenthesis("merror-missing-parenthesis",
57cl::desc("Error for missing parenthesis around predicate registers"),
58cl::init(false));
59static cl::opt<bool> WarnSignedMismatch("mwarn-sign-mismatch",
60cl::desc("Warn for mismatching a signed and unsigned value"),
61cl::init(true));
62static cl::opt<bool> WarnNoncontigiousRegister("mwarn-noncontigious-register",
63cl::desc("Warn for register names that arent contigious"),
64cl::init(true));
65static cl::opt<bool> ErrorNoncontigiousRegister("merror-noncontigious-register",
66cl::desc("Error for register names that aren't contigious"),
67cl::init(false));
68
69
70namespace {
71struct HexagonOperand;
72
73class HexagonAsmParser : public MCTargetAsmParser {
74
75 HexagonTargetStreamer &getTargetStreamer() {
76 MCTargetStreamer &TS = *Parser.getStreamer().getTargetStreamer();
77 return static_cast<HexagonTargetStreamer &>(TS);
78 }
79
Colin LeMahieu7cd08922015-11-09 04:07:48 +000080 MCAsmParser &Parser;
81 MCAssembler *Assembler;
82 MCInstrInfo const &MCII;
83 MCInst MCB;
84 bool InBrackets;
85
86 MCAsmParser &getParser() const { return Parser; }
87 MCAssembler *getAssembler() const { return Assembler; }
88 MCAsmLexer &getLexer() const { return Parser.getLexer(); }
89
Colin LeMahieu7cd08922015-11-09 04:07:48 +000090 bool equalIsAsmAssignment() override { return false; }
91 bool isLabel(AsmToken &Token) override;
92
93 void Warning(SMLoc L, const Twine &Msg) { Parser.Warning(L, Msg); }
94 bool Error(SMLoc L, const Twine &Msg) { return Parser.Error(L, Msg); }
95 bool ParseDirectiveFalign(unsigned Size, SMLoc L);
96
97 virtual bool ParseRegister(unsigned &RegNo,
98 SMLoc &StartLoc,
99 SMLoc &EndLoc) override;
100 bool ParseDirectiveSubsection(SMLoc L);
101 bool ParseDirectiveValue(unsigned Size, SMLoc L);
102 bool ParseDirectiveComm(bool IsLocal, SMLoc L);
103 bool RegisterMatchesArch(unsigned MatchNum) const;
104
105 bool matchBundleOptions();
106 bool handleNoncontigiousRegister(bool Contigious, SMLoc &Loc);
107 bool finishBundle(SMLoc IDLoc, MCStreamer &Out);
108 void canonicalizeImmediates(MCInst &MCI);
109 bool matchOneInstruction(MCInst &MCB, SMLoc IDLoc,
110 OperandVector &InstOperands, uint64_t &ErrorInfo,
111 bool MatchingInlineAsm, bool &MustExtend);
112
113 bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
114 OperandVector &Operands, MCStreamer &Out,
Colin LeMahieu9ea507e2015-11-09 07:10:24 +0000115 uint64_t &ErrorInfo, bool MatchingInlineAsm) override;
Colin LeMahieu7cd08922015-11-09 04:07:48 +0000116
117 unsigned validateTargetOperandClass(MCParsedAsmOperand &Op, unsigned Kind) override;
118 void OutOfRange(SMLoc IDLoc, long long Val, long long Max);
119 int processInstruction(MCInst &Inst, OperandVector const &Operands,
120 SMLoc IDLoc, bool &MustExtend);
121
122 // Check if we have an assembler and, if so, set the ELF e_header flags.
123 void chksetELFHeaderEFlags(unsigned flags) {
124 if (getAssembler())
125 getAssembler()->setELFHeaderEFlags(flags);
126 }
127
128/// @name Auto-generated Match Functions
129/// {
130
131#define GET_ASSEMBLER_HEADER
132#include "HexagonGenAsmMatcher.inc"
133
134 /// }
135
136public:
Akira Hatanakab11ef082015-11-14 06:35:56 +0000137 HexagonAsmParser(const MCSubtargetInfo &_STI, MCAsmParser &_Parser,
Colin LeMahieu7cd08922015-11-09 04:07:48 +0000138 const MCInstrInfo &MII, const MCTargetOptions &Options)
Akira Hatanakabd9fc282015-11-14 05:20:05 +0000139 : MCTargetAsmParser(Options, _STI), Parser(_Parser),
Colin LeMahieuf0af6e52015-11-13 17:42:46 +0000140 MCII (MII), MCB(HexagonMCInstrInfo::createBundle()), InBrackets(false) {
Akira Hatanakabd9fc282015-11-14 05:20:05 +0000141 setAvailableFeatures(ComputeAvailableFeatures(getSTI().getFeatureBits()));
Colin LeMahieu7cd08922015-11-09 04:07:48 +0000142
143 MCAsmParserExtension::Initialize(_Parser);
144
145 Assembler = nullptr;
146 // FIXME: need better way to detect AsmStreamer (upstream removed getKind())
147 if (!Parser.getStreamer().hasRawTextSupport()) {
148 MCELFStreamer *MES = static_cast<MCELFStreamer *>(&Parser.getStreamer());
149 Assembler = &MES->getAssembler();
150 }
151 }
152
153 bool mustExtend(OperandVector &Operands);
154 bool splitIdentifier(OperandVector &Operands);
155 bool parseOperand(OperandVector &Operands);
156 bool parseInstruction(OperandVector &Operands);
157 bool implicitExpressionLocation(OperandVector &Operands);
158 bool parseExpressionOrOperand(OperandVector &Operands);
159 bool parseExpression(MCExpr const *& Expr);
160 virtual bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
Colin LeMahieu9ea507e2015-11-09 07:10:24 +0000161 SMLoc NameLoc, OperandVector &Operands) override
162 {
Colin LeMahieu7cd08922015-11-09 04:07:48 +0000163 llvm_unreachable("Unimplemented");
164 }
165 virtual bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
Colin LeMahieu9ea507e2015-11-09 07:10:24 +0000166 AsmToken ID, OperandVector &Operands) override;
Colin LeMahieu7cd08922015-11-09 04:07:48 +0000167
Colin LeMahieu9ea507e2015-11-09 07:10:24 +0000168 virtual bool ParseDirective(AsmToken DirectiveID) override;
Colin LeMahieu7cd08922015-11-09 04:07:48 +0000169};
170
171/// HexagonOperand - Instances of this class represent a parsed Hexagon machine
172/// instruction.
173struct HexagonOperand : public MCParsedAsmOperand {
174 enum KindTy { Token, Immediate, Register } Kind;
175
176 SMLoc StartLoc, EndLoc;
177
178 struct TokTy {
179 const char *Data;
180 unsigned Length;
181 };
182
183 struct RegTy {
184 unsigned RegNum;
185 };
186
187 struct ImmTy {
188 const MCExpr *Val;
189 bool MustExtend;
190 };
191
192 struct InstTy {
193 OperandVector *SubInsts;
194 };
195
196 union {
197 struct TokTy Tok;
198 struct RegTy Reg;
199 struct ImmTy Imm;
200 };
201
202 HexagonOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {}
203
204public:
205 HexagonOperand(const HexagonOperand &o) : MCParsedAsmOperand() {
206 Kind = o.Kind;
207 StartLoc = o.StartLoc;
208 EndLoc = o.EndLoc;
209 switch (Kind) {
210 case Register:
211 Reg = o.Reg;
212 break;
213 case Immediate:
214 Imm = o.Imm;
215 break;
216 case Token:
217 Tok = o.Tok;
218 break;
219 }
220 }
221
222 /// getStartLoc - Get the location of the first token of this operand.
223 SMLoc getStartLoc() const { return StartLoc; }
224
225 /// getEndLoc - Get the location of the last token of this operand.
226 SMLoc getEndLoc() const { return EndLoc; }
227
228 unsigned getReg() const {
229 assert(Kind == Register && "Invalid access!");
230 return Reg.RegNum;
231 }
232
233 const MCExpr *getImm() const {
234 assert(Kind == Immediate && "Invalid access!");
235 return Imm.Val;
236 }
237
238 bool isToken() const { return Kind == Token; }
239 bool isImm() const { return Kind == Immediate; }
240 bool isMem() const { llvm_unreachable("No isMem"); }
241 bool isReg() const { return Kind == Register; }
242
243 bool CheckImmRange(int immBits, int zeroBits, bool isSigned,
244 bool isRelocatable, bool Extendable) const {
245 if (Kind == Immediate) {
246 const MCExpr *myMCExpr = getImm();
247 if (Imm.MustExtend && !Extendable)
248 return false;
249 int64_t Res;
250 if (myMCExpr->evaluateAsAbsolute(Res)) {
251 int bits = immBits + zeroBits;
252 // Field bit range is zerobits + bits
253 // zeroBits must be 0
254 if (Res & ((1 << zeroBits) - 1))
255 return false;
256 if (isSigned) {
257 if (Res < (1LL << (bits - 1)) && Res >= -(1LL << (bits - 1)))
258 return true;
259 } else {
260 if (bits == 64)
261 return true;
262 if (Res >= 0)
263 return ((uint64_t)Res < (uint64_t)(1ULL << bits)) ? true : false;
264 else {
265 const int64_t high_bit_set = 1ULL << 63;
266 const uint64_t mask = (high_bit_set >> (63 - bits));
267 return (((uint64_t)Res & mask) == mask) ? true : false;
268 }
269 }
270 } else if (myMCExpr->getKind() == MCExpr::SymbolRef && isRelocatable)
271 return true;
272 else if (myMCExpr->getKind() == MCExpr::Binary ||
273 myMCExpr->getKind() == MCExpr::Unary)
274 return true;
275 }
276 return false;
277 }
278
279 bool isf32Ext() const { return false; }
280 bool iss32Imm() const { return CheckImmRange(32, 0, true, true, false); }
281 bool iss8Imm() const { return CheckImmRange(8, 0, true, false, false); }
282 bool iss8Imm64() const { return CheckImmRange(8, 0, true, true, false); }
283 bool iss7Imm() const { return CheckImmRange(7, 0, true, false, false); }
284 bool iss6Imm() const { return CheckImmRange(6, 0, true, false, false); }
285 bool iss4Imm() const { return CheckImmRange(4, 0, true, false, false); }
286 bool iss4_0Imm() const { return CheckImmRange(4, 0, true, false, false); }
287 bool iss4_1Imm() const { return CheckImmRange(4, 1, true, false, false); }
288 bool iss4_2Imm() const { return CheckImmRange(4, 2, true, false, false); }
289 bool iss4_3Imm() const { return CheckImmRange(4, 3, true, false, false); }
290 bool iss4_6Imm() const { return CheckImmRange(4, 0, true, false, false); }
291 bool iss3_6Imm() const { return CheckImmRange(3, 0, true, false, false); }
292 bool iss3Imm() const { return CheckImmRange(3, 0, true, false, false); }
293
294 bool isu64Imm() const { return CheckImmRange(64, 0, false, true, true); }
295 bool isu32Imm() const { return CheckImmRange(32, 0, false, true, false); }
296 bool isu26_6Imm() const { return CheckImmRange(26, 6, false, true, false); }
297 bool isu16Imm() const { return CheckImmRange(16, 0, false, true, false); }
298 bool isu16_0Imm() const { return CheckImmRange(16, 0, false, true, false); }
299 bool isu16_1Imm() const { return CheckImmRange(16, 1, false, true, false); }
300 bool isu16_2Imm() const { return CheckImmRange(16, 2, false, true, false); }
301 bool isu16_3Imm() const { return CheckImmRange(16, 3, false, true, false); }
302 bool isu11_3Imm() const { return CheckImmRange(11, 3, false, false, false); }
303 bool isu6_0Imm() const { return CheckImmRange(6, 0, false, false, false); }
304 bool isu6_1Imm() const { return CheckImmRange(6, 1, false, false, false); }
305 bool isu6_2Imm() const { return CheckImmRange(6, 2, false, false, false); }
306 bool isu6_3Imm() const { return CheckImmRange(6, 3, false, false, false); }
307 bool isu10Imm() const { return CheckImmRange(10, 0, false, false, false); }
308 bool isu9Imm() const { return CheckImmRange(9, 0, false, false, false); }
309 bool isu8Imm() const { return CheckImmRange(8, 0, false, false, false); }
310 bool isu7Imm() const { return CheckImmRange(7, 0, false, false, false); }
311 bool isu6Imm() const { return CheckImmRange(6, 0, false, false, false); }
312 bool isu5Imm() const { return CheckImmRange(5, 0, false, false, false); }
313 bool isu4Imm() const { return CheckImmRange(4, 0, false, false, false); }
314 bool isu3Imm() const { return CheckImmRange(3, 0, false, false, false); }
315 bool isu2Imm() const { return CheckImmRange(2, 0, false, false, false); }
316 bool isu1Imm() const { return CheckImmRange(1, 0, false, false, false); }
317
318 bool ism6Imm() const { return CheckImmRange(6, 0, false, false, false); }
319 bool isn8Imm() const { return CheckImmRange(8, 0, false, false, false); }
320
321 bool iss16Ext() const { return CheckImmRange(16 + 26, 0, true, true, true); }
322 bool iss12Ext() const { return CheckImmRange(12 + 26, 0, true, true, true); }
323 bool iss10Ext() const { return CheckImmRange(10 + 26, 0, true, true, true); }
324 bool iss9Ext() const { return CheckImmRange(9 + 26, 0, true, true, true); }
325 bool iss8Ext() const { return CheckImmRange(8 + 26, 0, true, true, true); }
326 bool iss7Ext() const { return CheckImmRange(7 + 26, 0, true, true, true); }
327 bool iss6Ext() const { return CheckImmRange(6 + 26, 0, true, true, true); }
328 bool iss11_0Ext() const {
329 return CheckImmRange(11 + 26, 0, true, true, true);
330 }
331 bool iss11_1Ext() const {
332 return CheckImmRange(11 + 26, 1, true, true, true);
333 }
334 bool iss11_2Ext() const {
335 return CheckImmRange(11 + 26, 2, true, true, true);
336 }
337 bool iss11_3Ext() const {
338 return CheckImmRange(11 + 26, 3, true, true, true);
339 }
340
341 bool isu6Ext() const { return CheckImmRange(6 + 26, 0, false, true, true); }
342 bool isu7Ext() const { return CheckImmRange(7 + 26, 0, false, true, true); }
343 bool isu8Ext() const { return CheckImmRange(8 + 26, 0, false, true, true); }
344 bool isu9Ext() const { return CheckImmRange(9 + 26, 0, false, true, true); }
345 bool isu10Ext() const { return CheckImmRange(10 + 26, 0, false, true, true); }
346 bool isu6_0Ext() const { return CheckImmRange(6 + 26, 0, false, true, true); }
347 bool isu6_1Ext() const { return CheckImmRange(6 + 26, 1, false, true, true); }
348 bool isu6_2Ext() const { return CheckImmRange(6 + 26, 2, false, true, true); }
349 bool isu6_3Ext() const { return CheckImmRange(6 + 26, 3, false, true, true); }
350 bool isu32MustExt() const { return isImm() && Imm.MustExtend; }
351
352 void addRegOperands(MCInst &Inst, unsigned N) const {
353 assert(N == 1 && "Invalid number of operands!");
354 Inst.addOperand(MCOperand::createReg(getReg()));
355 }
356
357 void addImmOperands(MCInst &Inst, unsigned N) const {
358 assert(N == 1 && "Invalid number of operands!");
359 Inst.addOperand(MCOperand::createExpr(getImm()));
360 }
361
362 void addSignedImmOperands(MCInst &Inst, unsigned N) const {
363 assert(N == 1 && "Invalid number of operands!");
364 MCExpr const *Expr = getImm();
365 int64_t Value;
366 if (!Expr->evaluateAsAbsolute(Value)) {
367 Inst.addOperand(MCOperand::createExpr(Expr));
368 return;
369 }
370 int64_t Extended = SignExtend64 (Value, 32);
371 if ((Extended < 0) == (Value < 0)) {
372 Inst.addOperand(MCOperand::createExpr(Expr));
373 return;
374 }
375 // Flip bit 33 to signal signed unsigned mismatch
376 Extended ^= 0x100000000;
377 Inst.addOperand(MCOperand::createImm(Extended));
378 }
379
380 void addf32ExtOperands(MCInst &Inst, unsigned N) const {
381 addImmOperands(Inst, N);
382 }
383
384 void adds32ImmOperands(MCInst &Inst, unsigned N) const {
385 addSignedImmOperands(Inst, N);
386 }
387 void adds8ImmOperands(MCInst &Inst, unsigned N) const {
388 addSignedImmOperands(Inst, N);
389 }
390 void adds8Imm64Operands(MCInst &Inst, unsigned N) const {
391 addSignedImmOperands(Inst, N);
392 }
393 void adds6ImmOperands(MCInst &Inst, unsigned N) const {
394 addSignedImmOperands(Inst, N);
395 }
396 void adds4ImmOperands(MCInst &Inst, unsigned N) const {
397 addSignedImmOperands(Inst, N);
398 }
399 void adds4_0ImmOperands(MCInst &Inst, unsigned N) const {
400 addSignedImmOperands(Inst, N);
401 }
402 void adds4_1ImmOperands(MCInst &Inst, unsigned N) const {
403 addSignedImmOperands(Inst, N);
404 }
405 void adds4_2ImmOperands(MCInst &Inst, unsigned N) const {
406 addSignedImmOperands(Inst, N);
407 }
408 void adds4_3ImmOperands(MCInst &Inst, unsigned N) const {
409 addSignedImmOperands(Inst, N);
410 }
411 void adds3ImmOperands(MCInst &Inst, unsigned N) const {
412 addSignedImmOperands(Inst, N);
413 }
414
415 void addu64ImmOperands(MCInst &Inst, unsigned N) const {
416 addImmOperands(Inst, N);
417 }
418 void addu32ImmOperands(MCInst &Inst, unsigned N) const {
419 addImmOperands(Inst, N);
420 }
421 void addu26_6ImmOperands(MCInst &Inst, unsigned N) const {
422 addImmOperands(Inst, N);
423 }
424 void addu16ImmOperands(MCInst &Inst, unsigned N) const {
425 addImmOperands(Inst, N);
426 }
427 void addu16_0ImmOperands(MCInst &Inst, unsigned N) const {
428 addImmOperands(Inst, N);
429 }
430 void addu16_1ImmOperands(MCInst &Inst, unsigned N) const {
431 addImmOperands(Inst, N);
432 }
433 void addu16_2ImmOperands(MCInst &Inst, unsigned N) const {
434 addImmOperands(Inst, N);
435 }
436 void addu16_3ImmOperands(MCInst &Inst, unsigned N) const {
437 addImmOperands(Inst, N);
438 }
439 void addu11_3ImmOperands(MCInst &Inst, unsigned N) const {
440 addImmOperands(Inst, N);
441 }
442 void addu10ImmOperands(MCInst &Inst, unsigned N) const {
443 addImmOperands(Inst, N);
444 }
445 void addu9ImmOperands(MCInst &Inst, unsigned N) const {
446 addImmOperands(Inst, N);
447 }
448 void addu8ImmOperands(MCInst &Inst, unsigned N) const {
449 addImmOperands(Inst, N);
450 }
451 void addu7ImmOperands(MCInst &Inst, unsigned N) const {
452 addImmOperands(Inst, N);
453 }
454 void addu6ImmOperands(MCInst &Inst, unsigned N) const {
455 addImmOperands(Inst, N);
456 }
457 void addu6_0ImmOperands(MCInst &Inst, unsigned N) const {
458 addImmOperands(Inst, N);
459 }
460 void addu6_1ImmOperands(MCInst &Inst, unsigned N) const {
461 addImmOperands(Inst, N);
462 }
463 void addu6_2ImmOperands(MCInst &Inst, unsigned N) const {
464 addImmOperands(Inst, N);
465 }
466 void addu6_3ImmOperands(MCInst &Inst, unsigned N) const {
467 addImmOperands(Inst, N);
468 }
469 void addu5ImmOperands(MCInst &Inst, unsigned N) const {
470 addImmOperands(Inst, N);
471 }
472 void addu4ImmOperands(MCInst &Inst, unsigned N) const {
473 addImmOperands(Inst, N);
474 }
475 void addu3ImmOperands(MCInst &Inst, unsigned N) const {
476 addImmOperands(Inst, N);
477 }
478 void addu2ImmOperands(MCInst &Inst, unsigned N) const {
479 addImmOperands(Inst, N);
480 }
481 void addu1ImmOperands(MCInst &Inst, unsigned N) const {
482 addImmOperands(Inst, N);
483 }
484
485 void addm6ImmOperands(MCInst &Inst, unsigned N) const {
486 addImmOperands(Inst, N);
487 }
488 void addn8ImmOperands(MCInst &Inst, unsigned N) const {
489 addImmOperands(Inst, N);
490 }
491
492 void adds16ExtOperands(MCInst &Inst, unsigned N) const {
493 addSignedImmOperands(Inst, N);
494 }
495 void adds12ExtOperands(MCInst &Inst, unsigned N) const {
496 addSignedImmOperands(Inst, N);
497 }
498 void adds10ExtOperands(MCInst &Inst, unsigned N) const {
499 addSignedImmOperands(Inst, N);
500 }
501 void adds9ExtOperands(MCInst &Inst, unsigned N) const {
502 addSignedImmOperands(Inst, N);
503 }
504 void adds8ExtOperands(MCInst &Inst, unsigned N) const {
505 addSignedImmOperands(Inst, N);
506 }
507 void adds6ExtOperands(MCInst &Inst, unsigned N) const {
508 addSignedImmOperands(Inst, N);
509 }
510 void adds11_0ExtOperands(MCInst &Inst, unsigned N) const {
511 addSignedImmOperands(Inst, N);
512 }
513 void adds11_1ExtOperands(MCInst &Inst, unsigned N) const {
514 addSignedImmOperands(Inst, N);
515 }
516 void adds11_2ExtOperands(MCInst &Inst, unsigned N) const {
517 addSignedImmOperands(Inst, N);
518 }
519 void adds11_3ExtOperands(MCInst &Inst, unsigned N) const {
520 addSignedImmOperands(Inst, N);
521 }
522
523 void addu6ExtOperands(MCInst &Inst, unsigned N) const {
524 addImmOperands(Inst, N);
525 }
526 void addu7ExtOperands(MCInst &Inst, unsigned N) const {
527 addImmOperands(Inst, N);
528 }
529 void addu8ExtOperands(MCInst &Inst, unsigned N) const {
530 addImmOperands(Inst, N);
531 }
532 void addu9ExtOperands(MCInst &Inst, unsigned N) const {
533 addImmOperands(Inst, N);
534 }
535 void addu10ExtOperands(MCInst &Inst, unsigned N) const {
536 addImmOperands(Inst, N);
537 }
538 void addu6_0ExtOperands(MCInst &Inst, unsigned N) const {
539 addImmOperands(Inst, N);
540 }
541 void addu6_1ExtOperands(MCInst &Inst, unsigned N) const {
542 addImmOperands(Inst, N);
543 }
544 void addu6_2ExtOperands(MCInst &Inst, unsigned N) const {
545 addImmOperands(Inst, N);
546 }
547 void addu6_3ExtOperands(MCInst &Inst, unsigned N) const {
548 addImmOperands(Inst, N);
549 }
550 void addu32MustExtOperands(MCInst &Inst, unsigned N) const {
551 addImmOperands(Inst, N);
552 }
553
554 void adds4_6ImmOperands(MCInst &Inst, unsigned N) const {
555 assert(N == 1 && "Invalid number of operands!");
556 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
557 Inst.addOperand(MCOperand::createImm(CE->getValue() << 6));
558 }
559
560 void adds3_6ImmOperands(MCInst &Inst, unsigned N) const {
561 assert(N == 1 && "Invalid number of operands!");
562 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
563 Inst.addOperand(MCOperand::createImm(CE->getValue() << 6));
564 }
565
566 StringRef getToken() const {
567 assert(Kind == Token && "Invalid access!");
568 return StringRef(Tok.Data, Tok.Length);
569 }
570
571 virtual void print(raw_ostream &OS) const;
572
573 static std::unique_ptr<HexagonOperand> CreateToken(StringRef Str, SMLoc S) {
574 HexagonOperand *Op = new HexagonOperand(Token);
575 Op->Tok.Data = Str.data();
576 Op->Tok.Length = Str.size();
577 Op->StartLoc = S;
578 Op->EndLoc = S;
579 return std::unique_ptr<HexagonOperand>(Op);
580 }
581
582 static std::unique_ptr<HexagonOperand> CreateReg(unsigned RegNum, SMLoc S,
583 SMLoc E) {
584 HexagonOperand *Op = new HexagonOperand(Register);
585 Op->Reg.RegNum = RegNum;
586 Op->StartLoc = S;
587 Op->EndLoc = E;
588 return std::unique_ptr<HexagonOperand>(Op);
589 }
590
591 static std::unique_ptr<HexagonOperand> CreateImm(const MCExpr *Val, SMLoc S,
592 SMLoc E) {
593 HexagonOperand *Op = new HexagonOperand(Immediate);
594 Op->Imm.Val = Val;
595 Op->Imm.MustExtend = false;
596 Op->StartLoc = S;
597 Op->EndLoc = E;
598 return std::unique_ptr<HexagonOperand>(Op);
599 }
600};
601
602} // end anonymous namespace.
603
604void HexagonOperand::print(raw_ostream &OS) const {
605 switch (Kind) {
606 case Immediate:
607 getImm()->print(OS, nullptr);
608 break;
609 case Register:
610 OS << "<register R";
611 OS << getReg() << ">";
612 break;
613 case Token:
614 OS << "'" << getToken() << "'";
615 break;
616 }
617}
618
619/// @name Auto-generated Match Functions
620static unsigned MatchRegisterName(StringRef Name);
621
622bool HexagonAsmParser::finishBundle(SMLoc IDLoc, MCStreamer &Out) {
623 DEBUG(dbgs() << "Bundle:");
624 DEBUG(MCB.dump_pretty(dbgs()));
625 DEBUG(dbgs() << "--\n");
626
627 // Check the bundle for errors.
628 const MCRegisterInfo *RI = getContext().getRegisterInfo();
Akira Hatanakabd9fc282015-11-14 05:20:05 +0000629 HexagonMCChecker Check(MCII, getSTI(), MCB, MCB, *RI);
Colin LeMahieu7cd08922015-11-09 04:07:48 +0000630
Akira Hatanakabd9fc282015-11-14 05:20:05 +0000631 bool CheckOk = HexagonMCInstrInfo::canonicalizePacket(MCII, getSTI(),
632 getContext(), MCB,
633 &Check);
Colin LeMahieu7cd08922015-11-09 04:07:48 +0000634
635 while (Check.getNextErrInfo() == true) {
636 unsigned Reg = Check.getErrRegister();
637 Twine R(RI->getName(Reg));
638
639 uint64_t Err = Check.getError();
640 if (Err != HexagonMCErrInfo::CHECK_SUCCESS) {
641 if (HexagonMCErrInfo::CHECK_ERROR_BRANCHES & Err)
642 Error(IDLoc,
643 "unconditional branch cannot precede another branch in packet");
644
645 if (HexagonMCErrInfo::CHECK_ERROR_NEWP & Err ||
646 HexagonMCErrInfo::CHECK_ERROR_NEWV & Err)
647 Error(IDLoc, "register `" + R +
648 "' used with `.new' "
649 "but not validly modified in the same packet");
650
651 if (HexagonMCErrInfo::CHECK_ERROR_REGISTERS & Err)
652 Error(IDLoc, "register `" + R + "' modified more than once");
653
654 if (HexagonMCErrInfo::CHECK_ERROR_READONLY & Err)
655 Error(IDLoc, "cannot write to read-only register `" + R + "'");
656
657 if (HexagonMCErrInfo::CHECK_ERROR_LOOP & Err)
658 Error(IDLoc, "loop-setup and some branch instructions "
659 "cannot be in the same packet");
660
661 if (HexagonMCErrInfo::CHECK_ERROR_ENDLOOP & Err) {
662 Twine N(HexagonMCInstrInfo::isInnerLoop(MCB) ? '0' : '1');
663 Error(IDLoc, "packet marked with `:endloop" + N + "' " +
664 "cannot contain instructions that modify register " +
665 "`" + R + "'");
666 }
667
668 if (HexagonMCErrInfo::CHECK_ERROR_SOLO & Err)
669 Error(IDLoc,
670 "instruction cannot appear in packet with other instructions");
671
672 if (HexagonMCErrInfo::CHECK_ERROR_NOSLOTS & Err)
673 Error(IDLoc, "too many slots used in packet");
674
675 if (Err & HexagonMCErrInfo::CHECK_ERROR_SHUFFLE) {
676 uint64_t Erm = Check.getShuffleError();
677
678 if (HexagonShuffler::SHUFFLE_ERROR_INVALID == Erm)
679 Error(IDLoc, "invalid instruction packet");
680 else if (HexagonShuffler::SHUFFLE_ERROR_STORES == Erm)
681 Error(IDLoc, "invalid instruction packet: too many stores");
682 else if (HexagonShuffler::SHUFFLE_ERROR_LOADS == Erm)
683 Error(IDLoc, "invalid instruction packet: too many loads");
684 else if (HexagonShuffler::SHUFFLE_ERROR_BRANCHES == Erm)
685 Error(IDLoc, "too many branches in packet");
686 else if (HexagonShuffler::SHUFFLE_ERROR_NOSLOTS == Erm)
687 Error(IDLoc, "invalid instruction packet: out of slots");
688 else if (HexagonShuffler::SHUFFLE_ERROR_SLOTS == Erm)
689 Error(IDLoc, "invalid instruction packet: slot error");
690 else if (HexagonShuffler::SHUFFLE_ERROR_ERRATA2 == Erm)
691 Error(IDLoc, "v60 packet violation");
692 else if (HexagonShuffler::SHUFFLE_ERROR_STORE_LOAD_CONFLICT == Erm)
693 Error(IDLoc, "slot 0 instruction does not allow slot 1 store");
694 else
695 Error(IDLoc, "unknown error in instruction packet");
696 }
697 }
698
699 unsigned Warn = Check.getWarning();
700 if (Warn != HexagonMCErrInfo::CHECK_SUCCESS) {
701 if (HexagonMCErrInfo::CHECK_WARN_CURRENT & Warn)
702 Warning(IDLoc, "register `" + R + "' used with `.cur' "
703 "but not used in the same packet");
704 else if (HexagonMCErrInfo::CHECK_WARN_TEMPORARY & Warn)
705 Warning(IDLoc, "register `" + R + "' used with `.tmp' "
706 "but not used in the same packet");
707 }
708 }
709
710 if (CheckOk) {
711 MCB.setLoc(IDLoc);
712 if (HexagonMCInstrInfo::bundleSize(MCB) == 0) {
713 assert(!HexagonMCInstrInfo::isInnerLoop(MCB));
714 assert(!HexagonMCInstrInfo::isOuterLoop(MCB));
715 // Empty packets are valid yet aren't emitted
716 return false;
717 }
Akira Hatanakabd9fc282015-11-14 05:20:05 +0000718 Out.EmitInstruction(MCB, getSTI());
Colin LeMahieu7cd08922015-11-09 04:07:48 +0000719 } else {
720 // If compounding and duplexing didn't reduce the size below
721 // 4 or less we have a packet that is too big.
722 if (HexagonMCInstrInfo::bundleSize(MCB) > HEXAGON_PACKET_SIZE) {
723 Error(IDLoc, "invalid instruction packet: out of slots");
724 return true; // Error
725 }
726 }
727
728 return false; // No error
729}
730
731bool HexagonAsmParser::matchBundleOptions() {
732 MCAsmParser &Parser = getParser();
733 MCAsmLexer &Lexer = getLexer();
734 while (true) {
735 if (!Parser.getTok().is(AsmToken::Colon))
736 return false;
737 Lexer.Lex();
738 StringRef Option = Parser.getTok().getString();
739 if (Option.compare_lower("endloop0") == 0)
740 HexagonMCInstrInfo::setInnerLoop(MCB);
741 else if (Option.compare_lower("endloop1") == 0)
742 HexagonMCInstrInfo::setOuterLoop(MCB);
743 else if (Option.compare_lower("mem_noshuf") == 0)
744 HexagonMCInstrInfo::setMemReorderDisabled(MCB);
745 else if (Option.compare_lower("mem_shuf") == 0)
746 HexagonMCInstrInfo::setMemStoreReorderEnabled(MCB);
747 else
748 return true;
749 Lexer.Lex();
750 }
751}
752
753// For instruction aliases, immediates are generated rather than
754// MCConstantExpr. Convert them for uniform MCExpr.
755// Also check for signed/unsigned mismatches and warn
756void HexagonAsmParser::canonicalizeImmediates(MCInst &MCI) {
757 MCInst NewInst;
758 NewInst.setOpcode(MCI.getOpcode());
759 for (MCOperand &I : MCI)
760 if (I.isImm()) {
761 int64_t Value (I.getImm());
762 if ((Value & 0x100000000) != (Value & 0x80000000)) {
763 // Detect flipped bit 33 wrt bit 32 and signal warning
764 Value ^= 0x100000000;
765 if (WarnSignedMismatch)
766 Warning (MCI.getLoc(), "Signed/Unsigned mismatch");
767 }
768 NewInst.addOperand(MCOperand::createExpr(
769 MCConstantExpr::create(Value, getContext())));
770 }
771 else
772 NewInst.addOperand(I);
773 MCI = NewInst;
774}
775
776bool HexagonAsmParser::matchOneInstruction(MCInst &MCI, SMLoc IDLoc,
777 OperandVector &InstOperands,
778 uint64_t &ErrorInfo,
779 bool MatchingInlineAsm,
780 bool &MustExtend) {
781 // Perform matching with tablegen asmmatcher generated function
782 int result =
783 MatchInstructionImpl(InstOperands, MCI, ErrorInfo, MatchingInlineAsm);
784 if (result == Match_Success) {
785 MCI.setLoc(IDLoc);
786 MustExtend = mustExtend(InstOperands);
787 canonicalizeImmediates(MCI);
788 result = processInstruction(MCI, InstOperands, IDLoc, MustExtend);
789
790 DEBUG(dbgs() << "Insn:");
791 DEBUG(MCI.dump_pretty(dbgs()));
792 DEBUG(dbgs() << "\n\n");
793
794 MCI.setLoc(IDLoc);
795 }
796
797 // Create instruction operand for bundle instruction
798 // Break this into a separate function Code here is less readable
799 // Think about how to get an instruction error to report correctly.
800 // SMLoc will return the "{"
801 switch (result) {
802 default:
803 break;
804 case Match_Success:
805 return false;
806 case Match_MissingFeature:
807 return Error(IDLoc, "invalid instruction");
808 case Match_MnemonicFail:
809 return Error(IDLoc, "unrecognized instruction");
810 case Match_InvalidOperand:
811 SMLoc ErrorLoc = IDLoc;
812 if (ErrorInfo != ~0U) {
813 if (ErrorInfo >= InstOperands.size())
814 return Error(IDLoc, "too few operands for instruction");
815
816 ErrorLoc = (static_cast<HexagonOperand *>(InstOperands[ErrorInfo].get()))
817 ->getStartLoc();
818 if (ErrorLoc == SMLoc())
819 ErrorLoc = IDLoc;
820 }
821 return Error(ErrorLoc, "invalid operand for instruction");
822 }
823 llvm_unreachable("Implement any new match types added!");
824}
825
826bool HexagonAsmParser::mustExtend(OperandVector &Operands) {
827 unsigned Count = 0;
828 for (std::unique_ptr<MCParsedAsmOperand> &i : Operands)
829 if (i->isImm())
830 if (static_cast<HexagonOperand *>(i.get())->Imm.MustExtend)
831 ++Count;
832 // Multiple extenders should have been filtered by iss9Ext et. al.
833 assert(Count < 2 && "Multiple extenders");
834 return Count == 1;
835}
836
837bool HexagonAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
838 OperandVector &Operands,
839 MCStreamer &Out,
840 uint64_t &ErrorInfo,
841 bool MatchingInlineAsm) {
842 if (!InBrackets) {
843 MCB.clear();
844 MCB.addOperand(MCOperand::createImm(0));
845 }
846 HexagonOperand &FirstOperand = static_cast<HexagonOperand &>(*Operands[0]);
847 if (FirstOperand.isToken() && FirstOperand.getToken() == "{") {
848 assert(Operands.size() == 1 && "Brackets should be by themselves");
849 if (InBrackets) {
850 getParser().Error(IDLoc, "Already in a packet");
851 return true;
852 }
853 InBrackets = true;
854 return false;
855 }
856 if (FirstOperand.isToken() && FirstOperand.getToken() == "}") {
857 assert(Operands.size() == 1 && "Brackets should be by themselves");
858 if (!InBrackets) {
859 getParser().Error(IDLoc, "Not in a packet");
860 return true;
861 }
862 InBrackets = false;
863 if (matchBundleOptions())
864 return true;
865 return finishBundle(IDLoc, Out);
866 }
867 MCInst *SubInst = new (getParser().getContext()) MCInst;
868 bool MustExtend = false;
869 if (matchOneInstruction(*SubInst, IDLoc, Operands, ErrorInfo,
870 MatchingInlineAsm, MustExtend))
871 return true;
872 HexagonMCInstrInfo::extendIfNeeded(
Benjamin Kramer7c576d82015-11-12 19:30:40 +0000873 getParser().getContext(), MCII, MCB, *SubInst,
Colin LeMahieu7cd08922015-11-09 04:07:48 +0000874 HexagonMCInstrInfo::isExtended(MCII, *SubInst) || MustExtend);
875 MCB.addOperand(MCOperand::createInst(SubInst));
876 if (!InBrackets)
877 return finishBundle(IDLoc, Out);
878 return false;
879}
880
881/// ParseDirective parses the Hexagon specific directives
882bool HexagonAsmParser::ParseDirective(AsmToken DirectiveID) {
883 StringRef IDVal = DirectiveID.getIdentifier();
884 if ((IDVal.lower() == ".word") || (IDVal.lower() == ".4byte"))
885 return ParseDirectiveValue(4, DirectiveID.getLoc());
886 if (IDVal.lower() == ".short" || IDVal.lower() == ".hword" ||
887 IDVal.lower() == ".half")
888 return ParseDirectiveValue(2, DirectiveID.getLoc());
889 if (IDVal.lower() == ".falign")
890 return ParseDirectiveFalign(256, DirectiveID.getLoc());
891 if ((IDVal.lower() == ".lcomm") || (IDVal.lower() == ".lcommon"))
892 return ParseDirectiveComm(true, DirectiveID.getLoc());
893 if ((IDVal.lower() == ".comm") || (IDVal.lower() == ".common"))
894 return ParseDirectiveComm(false, DirectiveID.getLoc());
895 if (IDVal.lower() == ".subsection")
896 return ParseDirectiveSubsection(DirectiveID.getLoc());
897
898 return true;
899}
900bool HexagonAsmParser::ParseDirectiveSubsection(SMLoc L) {
901 const MCExpr *Subsection = 0;
902 int64_t Res;
903
904 assert((getLexer().isNot(AsmToken::EndOfStatement)) &&
905 "Invalid subsection directive");
906 getParser().parseExpression(Subsection);
907
908 if (!Subsection->evaluateAsAbsolute(Res))
909 return Error(L, "Cannot evaluate subsection number");
910
911 if (getLexer().isNot(AsmToken::EndOfStatement))
912 return TokError("unexpected token in directive");
913
914 // 0-8192 is the hard-coded range in MCObjectStreamper.cpp, this keeps the
915 // negative subsections together and in the same order but at the opposite
916 // end of the section. Only legacy hexagon-gcc created assembly code
917 // used negative subsections.
918 if ((Res < 0) && (Res > -8193))
919 Subsection = MCConstantExpr::create(8192 + Res, this->getContext());
920
921 getStreamer().SubSection(Subsection);
922 return false;
923}
924
925/// ::= .falign [expression]
926bool HexagonAsmParser::ParseDirectiveFalign(unsigned Size, SMLoc L) {
927
928 int64_t MaxBytesToFill = 15;
929
930 // if there is an arguement
931 if (getLexer().isNot(AsmToken::EndOfStatement)) {
932 const MCExpr *Value;
933 SMLoc ExprLoc = L;
934
935 // Make sure we have a number (false is returned if expression is a number)
936 if (getParser().parseExpression(Value) == false) {
937 // Make sure this is a number that is in range
938 const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(Value);
939 uint64_t IntValue = MCE->getValue();
940 if (!isUIntN(Size, IntValue) && !isIntN(Size, IntValue))
941 return Error(ExprLoc, "literal value out of range (256) for falign");
942 MaxBytesToFill = IntValue;
943 Lex();
944 } else {
945 return Error(ExprLoc, "not a valid expression for falign directive");
946 }
947 }
948
949 getTargetStreamer().emitFAlign(16, MaxBytesToFill);
950 Lex();
951
952 return false;
953}
954
955/// ::= .word [ expression (, expression)* ]
956bool HexagonAsmParser::ParseDirectiveValue(unsigned Size, SMLoc L) {
957 if (getLexer().isNot(AsmToken::EndOfStatement)) {
958
959 for (;;) {
960 const MCExpr *Value;
961 SMLoc ExprLoc = L;
962 if (getParser().parseExpression(Value))
963 return true;
964
965 // Special case constant expressions to match code generator.
966 if (const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(Value)) {
967 assert(Size <= 8 && "Invalid size");
968 uint64_t IntValue = MCE->getValue();
969 if (!isUIntN(8 * Size, IntValue) && !isIntN(8 * Size, IntValue))
970 return Error(ExprLoc, "literal value out of range for directive");
971 getStreamer().EmitIntValue(IntValue, Size);
972 } else
973 getStreamer().EmitValue(Value, Size);
974
975 if (getLexer().is(AsmToken::EndOfStatement))
976 break;
977
978 // FIXME: Improve diagnostic.
979 if (getLexer().isNot(AsmToken::Comma))
980 return TokError("unexpected token in directive");
981 Lex();
982 }
983 }
984
985 Lex();
986 return false;
987}
988
989// This is largely a copy of AsmParser's ParseDirectiveComm extended to
990// accept a 3rd argument, AccessAlignment which indicates the smallest
991// memory access made to the symbol, expressed in bytes. If no
992// AccessAlignment is specified it defaults to the Alignment Value.
993// Hexagon's .lcomm:
994// .lcomm Symbol, Length, Alignment, AccessAlignment
995bool HexagonAsmParser::ParseDirectiveComm(bool IsLocal, SMLoc Loc) {
996 // FIXME: need better way to detect if AsmStreamer (upstream removed
997 // getKind())
998 if (getStreamer().hasRawTextSupport())
999 return true; // Only object file output requires special treatment.
1000
1001 StringRef Name;
1002 if (getParser().parseIdentifier(Name))
1003 return TokError("expected identifier in directive");
1004 // Handle the identifier as the key symbol.
1005 MCSymbol *Sym = getContext().getOrCreateSymbol(Name);
1006
1007 if (getLexer().isNot(AsmToken::Comma))
1008 return TokError("unexpected token in directive");
1009 Lex();
1010
1011 int64_t Size;
1012 SMLoc SizeLoc = getLexer().getLoc();
1013 if (getParser().parseAbsoluteExpression(Size))
1014 return true;
1015
1016 int64_t ByteAlignment = 1;
1017 SMLoc ByteAlignmentLoc;
1018 if (getLexer().is(AsmToken::Comma)) {
1019 Lex();
1020 ByteAlignmentLoc = getLexer().getLoc();
1021 if (getParser().parseAbsoluteExpression(ByteAlignment))
1022 return true;
1023 if (!isPowerOf2_64(ByteAlignment))
1024 return Error(ByteAlignmentLoc, "alignment must be a power of 2");
1025 }
1026
1027 int64_t AccessAlignment = 0;
1028 if (getLexer().is(AsmToken::Comma)) {
1029 // The optional access argument specifies the size of the smallest memory
1030 // access to be made to the symbol, expressed in bytes.
1031 SMLoc AccessAlignmentLoc;
1032 Lex();
1033 AccessAlignmentLoc = getLexer().getLoc();
1034 if (getParser().parseAbsoluteExpression(AccessAlignment))
1035 return true;
1036
1037 if (!isPowerOf2_64(AccessAlignment))
1038 return Error(AccessAlignmentLoc, "access alignment must be a power of 2");
1039 }
1040
1041 if (getLexer().isNot(AsmToken::EndOfStatement))
1042 return TokError("unexpected token in '.comm' or '.lcomm' directive");
1043
1044 Lex();
1045
1046 // NOTE: a size of zero for a .comm should create a undefined symbol
1047 // but a size of .lcomm creates a bss symbol of size zero.
1048 if (Size < 0)
1049 return Error(SizeLoc, "invalid '.comm' or '.lcomm' directive size, can't "
1050 "be less than zero");
1051
1052 // NOTE: The alignment in the directive is a power of 2 value, the assembler
1053 // may internally end up wanting an alignment in bytes.
1054 // FIXME: Diagnose overflow.
1055 if (ByteAlignment < 0)
1056 return Error(ByteAlignmentLoc, "invalid '.comm' or '.lcomm' directive "
1057 "alignment, can't be less than zero");
1058
1059 if (!Sym->isUndefined())
1060 return Error(Loc, "invalid symbol redefinition");
1061
1062 HexagonMCELFStreamer &HexagonELFStreamer =
1063 static_cast<HexagonMCELFStreamer &>(getStreamer());
1064 if (IsLocal) {
1065 HexagonELFStreamer.HexagonMCEmitLocalCommonSymbol(Sym, Size, ByteAlignment,
1066 AccessAlignment);
1067 return false;
1068 }
1069
1070 HexagonELFStreamer.HexagonMCEmitCommonSymbol(Sym, Size, ByteAlignment,
1071 AccessAlignment);
1072 return false;
1073}
1074
1075// validate register against architecture
1076bool HexagonAsmParser::RegisterMatchesArch(unsigned MatchNum) const {
1077 return true;
1078}
1079
1080// extern "C" void LLVMInitializeHexagonAsmLexer();
1081
1082/// Force static initialization.
1083extern "C" void LLVMInitializeHexagonAsmParser() {
1084 RegisterMCAsmParser<HexagonAsmParser> X(TheHexagonTarget);
1085}
1086
1087#define GET_MATCHER_IMPLEMENTATION
1088#define GET_REGISTER_MATCHER
1089#include "HexagonGenAsmMatcher.inc"
1090
1091namespace {
1092bool previousEqual(OperandVector &Operands, size_t Index, StringRef String) {
1093 if (Index >= Operands.size())
1094 return false;
1095 MCParsedAsmOperand &Operand = *Operands[Operands.size() - Index - 1];
1096 if (!Operand.isToken())
1097 return false;
1098 return static_cast<HexagonOperand &>(Operand).getToken().equals_lower(String);
1099}
1100bool previousIsLoop(OperandVector &Operands, size_t Index) {
1101 return previousEqual(Operands, Index, "loop0") ||
1102 previousEqual(Operands, Index, "loop1") ||
1103 previousEqual(Operands, Index, "sp1loop0") ||
1104 previousEqual(Operands, Index, "sp2loop0") ||
1105 previousEqual(Operands, Index, "sp3loop0");
1106}
1107}
1108
1109bool HexagonAsmParser::splitIdentifier(OperandVector &Operands) {
1110 AsmToken const &Token = getParser().getTok();
1111 StringRef String = Token.getString();
1112 SMLoc Loc = Token.getLoc();
1113 getLexer().Lex();
1114 do {
1115 std::pair<StringRef, StringRef> HeadTail = String.split('.');
1116 if (!HeadTail.first.empty())
1117 Operands.push_back(HexagonOperand::CreateToken(HeadTail.first, Loc));
1118 if (!HeadTail.second.empty())
1119 Operands.push_back(HexagonOperand::CreateToken(
1120 String.substr(HeadTail.first.size(), 1), Loc));
1121 String = HeadTail.second;
1122 } while (!String.empty());
1123 return false;
1124}
1125
1126bool HexagonAsmParser::parseOperand(OperandVector &Operands) {
1127 unsigned Register;
1128 SMLoc Begin;
1129 SMLoc End;
1130 MCAsmLexer &Lexer = getLexer();
1131 if (!ParseRegister(Register, Begin, End)) {
1132 if (!ErrorMissingParenthesis)
1133 switch (Register) {
1134 default:
1135 break;
1136 case Hexagon::P0:
1137 case Hexagon::P1:
1138 case Hexagon::P2:
1139 case Hexagon::P3:
1140 if (previousEqual(Operands, 0, "if")) {
1141 if (WarnMissingParenthesis)
1142 Warning (Begin, "Missing parenthesis around predicate register");
1143 static char const *LParen = "(";
1144 static char const *RParen = ")";
1145 Operands.push_back(HexagonOperand::CreateToken(LParen, Begin));
1146 Operands.push_back(HexagonOperand::CreateReg(Register, Begin, End));
1147 AsmToken MaybeDotNew = Lexer.getTok();
1148 if (MaybeDotNew.is(AsmToken::TokenKind::Identifier) &&
1149 MaybeDotNew.getString().equals_lower(".new"))
1150 splitIdentifier(Operands);
1151 Operands.push_back(HexagonOperand::CreateToken(RParen, Begin));
1152 return false;
1153 }
1154 if (previousEqual(Operands, 0, "!") &&
1155 previousEqual(Operands, 1, "if")) {
1156 if (WarnMissingParenthesis)
1157 Warning (Begin, "Missing parenthesis around predicate register");
1158 static char const *LParen = "(";
1159 static char const *RParen = ")";
1160 Operands.insert(Operands.end () - 1,
1161 HexagonOperand::CreateToken(LParen, Begin));
1162 Operands.push_back(HexagonOperand::CreateReg(Register, Begin, End));
1163 AsmToken MaybeDotNew = Lexer.getTok();
1164 if (MaybeDotNew.is(AsmToken::TokenKind::Identifier) &&
1165 MaybeDotNew.getString().equals_lower(".new"))
1166 splitIdentifier(Operands);
1167 Operands.push_back(HexagonOperand::CreateToken(RParen, Begin));
1168 return false;
1169 }
1170 break;
1171 }
1172 Operands.push_back(HexagonOperand::CreateReg(
1173 Register, Begin, End));
1174 return false;
1175 }
1176 return splitIdentifier(Operands);
1177}
1178
1179bool HexagonAsmParser::isLabel(AsmToken &Token) {
1180 MCAsmLexer &Lexer = getLexer();
1181 AsmToken const &Second = Lexer.getTok();
1182 AsmToken Third = Lexer.peekTok();
1183 StringRef String = Token.getString();
1184 if (Token.is(AsmToken::TokenKind::LCurly) ||
1185 Token.is(AsmToken::TokenKind::RCurly))
1186 return false;
1187 if (!Token.is(AsmToken::TokenKind::Identifier))
1188 return true;
1189 if (!MatchRegisterName(String.lower()))
1190 return true;
Colin LeMahieu9d851f02015-11-09 21:06:28 +00001191 (void)Second;
1192 assert(Second.is(AsmToken::Colon));
Colin LeMahieu7cd08922015-11-09 04:07:48 +00001193 StringRef Raw (String.data(), Third.getString().data() - String.data() +
1194 Third.getString().size());
1195 std::string Collapsed = Raw;
1196 Collapsed.erase(std::remove_if(Collapsed.begin(), Collapsed.end(), isspace),
1197 Collapsed.end());
1198 StringRef Whole = Collapsed;
1199 std::pair<StringRef, StringRef> DotSplit = Whole.split('.');
1200 if (!MatchRegisterName(DotSplit.first.lower()))
1201 return true;
1202 return false;
1203}
1204
1205bool HexagonAsmParser::handleNoncontigiousRegister(bool Contigious, SMLoc &Loc) {
1206 if (!Contigious && ErrorNoncontigiousRegister) {
1207 Error(Loc, "Register name is not contigious");
1208 return true;
1209 }
1210 if (!Contigious && WarnNoncontigiousRegister)
1211 Warning(Loc, "Register name is not contigious");
1212 return false;
1213}
1214
1215bool HexagonAsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) {
1216 MCAsmLexer &Lexer = getLexer();
1217 StartLoc = getLexer().getLoc();
1218 SmallVector<AsmToken, 5> Lookahead;
1219 StringRef RawString(Lexer.getTok().getString().data(), 0);
1220 bool Again = Lexer.is(AsmToken::Identifier);
1221 bool NeededWorkaround = false;
1222 while (Again) {
1223 AsmToken const &Token = Lexer.getTok();
1224 RawString = StringRef(RawString.data(),
1225 Token.getString().data() - RawString.data () +
1226 Token.getString().size());
1227 Lookahead.push_back(Token);
1228 Lexer.Lex();
1229 bool Contigious = Lexer.getTok().getString().data() ==
1230 Lookahead.back().getString().data() +
1231 Lookahead.back().getString().size();
1232 bool Type = Lexer.is(AsmToken::Identifier) || Lexer.is(AsmToken::Dot) ||
1233 Lexer.is(AsmToken::Integer) || Lexer.is(AsmToken::Real) ||
1234 Lexer.is(AsmToken::Colon);
1235 bool Workaround = Lexer.is(AsmToken::Colon) ||
1236 Lookahead.back().is(AsmToken::Colon);
1237 Again = (Contigious && Type) || (Workaround && Type);
1238 NeededWorkaround = NeededWorkaround || (Again && !(Contigious && Type));
1239 }
1240 std::string Collapsed = RawString;
1241 Collapsed.erase(std::remove_if(Collapsed.begin(), Collapsed.end(), isspace),
1242 Collapsed.end());
1243 StringRef FullString = Collapsed;
1244 std::pair<StringRef, StringRef> DotSplit = FullString.split('.');
1245 unsigned DotReg = MatchRegisterName(DotSplit.first.lower());
1246 if (DotReg != Hexagon::NoRegister && RegisterMatchesArch(DotReg)) {
1247 if (DotSplit.second.empty()) {
1248 RegNo = DotReg;
1249 EndLoc = Lexer.getLoc();
1250 if (handleNoncontigiousRegister(!NeededWorkaround, StartLoc))
1251 return true;
1252 return false;
1253 } else {
1254 RegNo = DotReg;
1255 size_t First = RawString.find('.');
1256 StringRef DotString (RawString.data() + First, RawString.size() - First);
1257 Lexer.UnLex(AsmToken(AsmToken::Identifier, DotString));
1258 EndLoc = Lexer.getLoc();
1259 if (handleNoncontigiousRegister(!NeededWorkaround, StartLoc))
1260 return true;
1261 return false;
1262 }
1263 }
1264 std::pair<StringRef, StringRef> ColonSplit = StringRef(FullString).split(':');
1265 unsigned ColonReg = MatchRegisterName(ColonSplit.first.lower());
1266 if (ColonReg != Hexagon::NoRegister && RegisterMatchesArch(DotReg)) {
1267 Lexer.UnLex(Lookahead.back());
1268 Lookahead.pop_back();
1269 Lexer.UnLex(Lookahead.back());
1270 Lookahead.pop_back();
1271 RegNo = ColonReg;
1272 EndLoc = Lexer.getLoc();
1273 if (handleNoncontigiousRegister(!NeededWorkaround, StartLoc))
1274 return true;
1275 return false;
1276 }
1277 while (!Lookahead.empty()) {
1278 Lexer.UnLex(Lookahead.back());
1279 Lookahead.pop_back();
1280 }
1281 return true;
1282}
1283
1284bool HexagonAsmParser::implicitExpressionLocation(OperandVector &Operands) {
1285 if (previousEqual(Operands, 0, "call"))
1286 return true;
1287 if (previousEqual(Operands, 0, "jump"))
1288 if (!getLexer().getTok().is(AsmToken::Colon))
1289 return true;
1290 if (previousEqual(Operands, 0, "(") && previousIsLoop(Operands, 1))
1291 return true;
1292 if (previousEqual(Operands, 1, ":") && previousEqual(Operands, 2, "jump") &&
1293 (previousEqual(Operands, 0, "nt") || previousEqual(Operands, 0, "t")))
1294 return true;
1295 return false;
1296}
1297
1298bool HexagonAsmParser::parseExpression(MCExpr const *& Expr) {
1299 llvm::SmallVector<AsmToken, 4> Tokens;
1300 MCAsmLexer &Lexer = getLexer();
1301 bool Done = false;
1302 static char const * Comma = ",";
1303 do {
1304 Tokens.emplace_back (Lexer.getTok());
1305 Lexer.Lex();
1306 switch (Tokens.back().getKind())
1307 {
1308 case AsmToken::TokenKind::Hash:
1309 if (Tokens.size () > 1)
1310 if ((Tokens.end () - 2)->getKind() == AsmToken::TokenKind::Plus) {
1311 Tokens.insert(Tokens.end() - 2,
1312 AsmToken(AsmToken::TokenKind::Comma, Comma));
1313 Done = true;
1314 }
1315 break;
1316 case AsmToken::TokenKind::RCurly:
1317 case AsmToken::TokenKind::EndOfStatement:
1318 case AsmToken::TokenKind::Eof:
1319 Done = true;
1320 break;
1321 default:
1322 break;
1323 }
1324 } while (!Done);
1325 while (!Tokens.empty()) {
1326 Lexer.UnLex(Tokens.back());
1327 Tokens.pop_back();
1328 }
1329 return getParser().parseExpression(Expr);
1330}
1331
1332bool HexagonAsmParser::parseExpressionOrOperand(OperandVector &Operands) {
1333 if (implicitExpressionLocation(Operands)) {
1334 MCAsmParser &Parser = getParser();
1335 SMLoc Loc = Parser.getLexer().getLoc();
1336 std::unique_ptr<HexagonOperand> Expr =
1337 HexagonOperand::CreateImm(nullptr, Loc, Loc);
1338 MCExpr const *& Val = Expr->Imm.Val;
1339 Operands.push_back(std::move(Expr));
1340 return parseExpression(Val);
1341 }
1342 return parseOperand(Operands);
1343}
1344
1345/// Parse an instruction.
1346bool HexagonAsmParser::parseInstruction(OperandVector &Operands) {
1347 MCAsmParser &Parser = getParser();
1348 MCAsmLexer &Lexer = getLexer();
1349 while (true) {
1350 AsmToken const &Token = Parser.getTok();
1351 switch (Token.getKind()) {
1352 case AsmToken::EndOfStatement: {
1353 Lexer.Lex();
1354 return false;
1355 }
1356 case AsmToken::LCurly: {
1357 if (!Operands.empty())
1358 return true;
1359 Operands.push_back(
1360 HexagonOperand::CreateToken(Token.getString(), Token.getLoc()));
1361 Lexer.Lex();
1362 return false;
1363 }
1364 case AsmToken::RCurly: {
1365 if (Operands.empty()) {
1366 Operands.push_back(
1367 HexagonOperand::CreateToken(Token.getString(), Token.getLoc()));
1368 Lexer.Lex();
1369 }
1370 return false;
1371 }
1372 case AsmToken::Comma: {
1373 Lexer.Lex();
1374 continue;
1375 }
1376 case AsmToken::EqualEqual:
1377 case AsmToken::ExclaimEqual:
1378 case AsmToken::GreaterEqual:
1379 case AsmToken::GreaterGreater:
1380 case AsmToken::LessEqual:
1381 case AsmToken::LessLess: {
1382 Operands.push_back(HexagonOperand::CreateToken(
1383 Token.getString().substr(0, 1), Token.getLoc()));
1384 Operands.push_back(HexagonOperand::CreateToken(
1385 Token.getString().substr(1, 1), Token.getLoc()));
1386 Lexer.Lex();
1387 continue;
1388 }
1389 case AsmToken::Hash: {
1390 bool MustNotExtend = false;
1391 bool ImplicitExpression = implicitExpressionLocation(Operands);
1392 std::unique_ptr<HexagonOperand> Expr = HexagonOperand::CreateImm(
1393 nullptr, Lexer.getLoc(), Lexer.getLoc());
1394 if (!ImplicitExpression)
1395 Operands.push_back(
1396 HexagonOperand::CreateToken(Token.getString(), Token.getLoc()));
1397 Lexer.Lex();
1398 bool MustExtend = false;
1399 bool HiOnly = false;
1400 bool LoOnly = false;
1401 if (Lexer.is(AsmToken::Hash)) {
1402 Lexer.Lex();
1403 MustExtend = true;
1404 } else if (ImplicitExpression)
1405 MustNotExtend = true;
1406 AsmToken const &Token = Parser.getTok();
1407 if (Token.is(AsmToken::Identifier)) {
1408 StringRef String = Token.getString();
1409 AsmToken IDToken = Token;
1410 if (String.lower() == "hi") {
1411 HiOnly = true;
1412 } else if (String.lower() == "lo") {
1413 LoOnly = true;
1414 }
1415 if (HiOnly || LoOnly) {
1416 AsmToken LParen = Lexer.peekTok();
1417 if (!LParen.is(AsmToken::LParen)) {
1418 HiOnly = false;
1419 LoOnly = false;
1420 } else {
1421 Lexer.Lex();
1422 }
1423 }
1424 }
1425 if (parseExpression(Expr->Imm.Val))
1426 return true;
1427 int64_t Value;
1428 MCContext &Context = Parser.getContext();
1429 assert(Expr->Imm.Val != nullptr);
1430 if (Expr->Imm.Val->evaluateAsAbsolute(Value)) {
1431 if (HiOnly)
1432 Expr->Imm.Val = MCBinaryExpr::createLShr(
1433 Expr->Imm.Val, MCConstantExpr::create(16, Context), Context);
1434 if (HiOnly || LoOnly)
1435 Expr->Imm.Val = MCBinaryExpr::createAnd(
1436 Expr->Imm.Val, MCConstantExpr::create(0xffff, Context), Context);
1437 }
1438 if (MustNotExtend)
1439 Expr->Imm.Val = HexagonNoExtendOperand::Create(Expr->Imm.Val, Context);
1440 Expr->Imm.MustExtend = MustExtend;
1441 Operands.push_back(std::move(Expr));
1442 continue;
1443 }
1444 default:
1445 break;
1446 }
1447 if (parseExpressionOrOperand(Operands))
1448 return true;
1449 }
1450}
1451
1452bool HexagonAsmParser::ParseInstruction(ParseInstructionInfo &Info,
1453 StringRef Name,
1454 AsmToken ID,
1455 OperandVector &Operands) {
1456 getLexer().UnLex(ID);
1457 return parseInstruction(Operands);
1458}
1459
1460namespace {
1461MCInst makeCombineInst(int opCode, MCOperand &Rdd,
1462 MCOperand &MO1, MCOperand &MO2) {
1463 MCInst TmpInst;
1464 TmpInst.setOpcode(opCode);
1465 TmpInst.addOperand(Rdd);
1466 TmpInst.addOperand(MO1);
1467 TmpInst.addOperand(MO2);
1468
1469 return TmpInst;
1470}
1471}
1472
1473// Define this matcher function after the auto-generated include so we
1474// have the match class enum definitions.
1475unsigned HexagonAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp,
1476 unsigned Kind) {
1477 HexagonOperand *Op = static_cast<HexagonOperand *>(&AsmOp);
1478
1479 switch (Kind) {
1480 case MCK_0: {
1481 int64_t Value;
1482 return Op->isImm() && Op->Imm.Val->evaluateAsAbsolute(Value) && Value == 0
1483 ? Match_Success
1484 : Match_InvalidOperand;
1485 }
1486 case MCK_1: {
1487 int64_t Value;
1488 return Op->isImm() && Op->Imm.Val->evaluateAsAbsolute(Value) && Value == 1
1489 ? Match_Success
1490 : Match_InvalidOperand;
1491 }
1492 case MCK__MINUS_1: {
1493 int64_t Value;
1494 return Op->isImm() && Op->Imm.Val->evaluateAsAbsolute(Value) && Value == -1
1495 ? Match_Success
1496 : Match_InvalidOperand;
1497 }
1498 }
1499 if (Op->Kind == HexagonOperand::Token && Kind != InvalidMatchClass) {
1500 StringRef myStringRef = StringRef(Op->Tok.Data, Op->Tok.Length);
1501 if (matchTokenString(myStringRef.lower()) == (MatchClassKind)Kind)
1502 return Match_Success;
1503 if (matchTokenString(myStringRef.upper()) == (MatchClassKind)Kind)
1504 return Match_Success;
1505 }
1506
1507 DEBUG(dbgs() << "Unmatched Operand:");
1508 DEBUG(Op->dump());
1509 DEBUG(dbgs() << "\n");
1510
1511 return Match_InvalidOperand;
1512}
1513
1514void HexagonAsmParser::OutOfRange(SMLoc IDLoc, long long Val, long long Max) {
Alexey Samsonovbcfabaa2015-12-02 21:13:43 +00001515 std::string errStr;
1516 raw_string_ostream ES(errStr);
1517 ES << "value " << Val << "(" << format("0x%" PRIx64, Val)
Colin LeMahieu7cd08922015-11-09 04:07:48 +00001518 << ") out of range: ";
1519 if (Max >= 0)
Alexey Samsonovbcfabaa2015-12-02 21:13:43 +00001520 ES << "0-" << Max;
Colin LeMahieu7cd08922015-11-09 04:07:48 +00001521 else
Alexey Samsonovbcfabaa2015-12-02 21:13:43 +00001522 ES << Max << "-" << (-Max - 1);
1523 Error(IDLoc, ES.str().c_str());
Colin LeMahieu7cd08922015-11-09 04:07:48 +00001524}
1525
1526int HexagonAsmParser::processInstruction(MCInst &Inst,
1527 OperandVector const &Operands,
1528 SMLoc IDLoc, bool &MustExtend) {
1529 MCContext &Context = getParser().getContext();
1530 const MCRegisterInfo *RI = getContext().getRegisterInfo();
1531 std::string r = "r";
1532 std::string v = "v";
1533 std::string Colon = ":";
1534
1535 bool is32bit = false; // used to distinguish between CONST32 and CONST64
1536 switch (Inst.getOpcode()) {
1537 default:
1538 break;
1539
1540 case Hexagon::M4_mpyrr_addr:
1541 case Hexagon::S4_addi_asl_ri:
1542 case Hexagon::S4_addi_lsr_ri:
1543 case Hexagon::S4_andi_asl_ri:
1544 case Hexagon::S4_andi_lsr_ri:
1545 case Hexagon::S4_ori_asl_ri:
1546 case Hexagon::S4_ori_lsr_ri:
1547 case Hexagon::S4_or_andix:
1548 case Hexagon::S4_subi_asl_ri:
1549 case Hexagon::S4_subi_lsr_ri: {
1550 MCOperand &Ry = Inst.getOperand(0);
1551 MCOperand &src = Inst.getOperand(2);
1552 if (RI->getEncodingValue(Ry.getReg()) != RI->getEncodingValue(src.getReg()))
1553 return Match_InvalidOperand;
1554 break;
1555 }
1556
1557 case Hexagon::C2_cmpgei: {
1558 MCOperand &MO = Inst.getOperand(2);
1559 MO.setExpr(MCBinaryExpr::createSub(
1560 MO.getExpr(), MCConstantExpr::create(1, Context), Context));
1561 Inst.setOpcode(Hexagon::C2_cmpgti);
1562 break;
1563 }
1564
1565 case Hexagon::C2_cmpgeui: {
1566 MCOperand &MO = Inst.getOperand(2);
1567 int64_t Value;
1568 bool Success = MO.getExpr()->evaluateAsAbsolute(Value);
Colin LeMahieu9d851f02015-11-09 21:06:28 +00001569 (void)Success;
1570 assert(Success && "Assured by matcher");
Colin LeMahieu7cd08922015-11-09 04:07:48 +00001571 if (Value == 0) {
1572 MCInst TmpInst;
1573 MCOperand &Pd = Inst.getOperand(0);
1574 MCOperand &Rt = Inst.getOperand(1);
1575 TmpInst.setOpcode(Hexagon::C2_cmpeq);
1576 TmpInst.addOperand(Pd);
1577 TmpInst.addOperand(Rt);
1578 TmpInst.addOperand(Rt);
1579 Inst = TmpInst;
1580 } else {
1581 MO.setExpr(MCBinaryExpr::createSub(
1582 MO.getExpr(), MCConstantExpr::create(1, Context), Context));
1583 Inst.setOpcode(Hexagon::C2_cmpgtui);
1584 }
1585 break;
1586 }
1587 case Hexagon::J2_loop1r:
1588 case Hexagon::J2_loop1i:
1589 case Hexagon::J2_loop0r:
1590 case Hexagon::J2_loop0i: {
1591 MCOperand &MO = Inst.getOperand(0);
1592 // Loop has different opcodes for extended vs not extended, but we should
1593 // not use the other opcode as it is a legacy artifact of TD files.
1594 int64_t Value;
1595 if (MO.getExpr()->evaluateAsAbsolute(Value)) {
1596 // if the the operand can fit within a 7:2 field
1597 if (Value < (1 << 8) && Value >= -(1 << 8)) {
1598 SMLoc myLoc = Operands[2]->getStartLoc();
1599 // # is left in startLoc in the case of ##
1600 // If '##' found then force extension.
1601 if (*myLoc.getPointer() == '#') {
1602 MustExtend = true;
1603 break;
1604 }
1605 } else {
1606 // If immediate and out of 7:2 range.
1607 MustExtend = true;
1608 }
1609 }
1610 break;
1611 }
1612
1613 // Translate a "$Rdd = $Rss" to "$Rdd = combine($Rs, $Rt)"
1614 case Hexagon::A2_tfrp: {
1615 MCOperand &MO = Inst.getOperand(1);
1616 unsigned int RegPairNum = RI->getEncodingValue(MO.getReg());
1617 std::string R1 = r + llvm::utostr_32(RegPairNum + 1);
1618 StringRef Reg1(R1);
1619 MO.setReg(MatchRegisterName(Reg1));
1620 // Add a new operand for the second register in the pair.
1621 std::string R2 = r + llvm::utostr_32(RegPairNum);
1622 StringRef Reg2(R2);
1623 Inst.addOperand(MCOperand::createReg(MatchRegisterName(Reg2)));
1624 Inst.setOpcode(Hexagon::A2_combinew);
1625 break;
1626 }
1627
1628 case Hexagon::A2_tfrpt:
1629 case Hexagon::A2_tfrpf: {
1630 MCOperand &MO = Inst.getOperand(2);
1631 unsigned int RegPairNum = RI->getEncodingValue(MO.getReg());
1632 std::string R1 = r + llvm::utostr_32(RegPairNum + 1);
1633 StringRef Reg1(R1);
1634 MO.setReg(MatchRegisterName(Reg1));
1635 // Add a new operand for the second register in the pair.
1636 std::string R2 = r + llvm::utostr_32(RegPairNum);
1637 StringRef Reg2(R2);
1638 Inst.addOperand(MCOperand::createReg(MatchRegisterName(Reg2)));
1639 Inst.setOpcode((Inst.getOpcode() == Hexagon::A2_tfrpt)
1640 ? Hexagon::C2_ccombinewt
1641 : Hexagon::C2_ccombinewf);
1642 break;
1643 }
1644 case Hexagon::A2_tfrptnew:
1645 case Hexagon::A2_tfrpfnew: {
1646 MCOperand &MO = Inst.getOperand(2);
1647 unsigned int RegPairNum = RI->getEncodingValue(MO.getReg());
1648 std::string R1 = r + llvm::utostr_32(RegPairNum + 1);
1649 StringRef Reg1(R1);
1650 MO.setReg(MatchRegisterName(Reg1));
1651 // Add a new operand for the second register in the pair.
1652 std::string R2 = r + llvm::utostr_32(RegPairNum);
1653 StringRef Reg2(R2);
1654 Inst.addOperand(MCOperand::createReg(MatchRegisterName(Reg2)));
1655 Inst.setOpcode((Inst.getOpcode() == Hexagon::A2_tfrptnew)
1656 ? Hexagon::C2_ccombinewnewt
1657 : Hexagon::C2_ccombinewnewf);
1658 break;
1659 }
1660
1661 // Translate a "$Rx = CONST32(#imm)" to "$Rx = memw(gp+#LABEL) "
1662 case Hexagon::CONST32:
1663 case Hexagon::CONST32_Float_Real:
1664 case Hexagon::CONST32_Int_Real:
1665 case Hexagon::FCONST32_nsdata:
1666 is32bit = true;
1667 // Translate a "$Rx:y = CONST64(#imm)" to "$Rx:y = memd(gp+#LABEL) "
1668 case Hexagon::CONST64_Float_Real:
1669 case Hexagon::CONST64_Int_Real:
1670
1671 // FIXME: need better way to detect AsmStreamer (upstream removed getKind())
1672 if (!Parser.getStreamer().hasRawTextSupport()) {
1673 MCELFStreamer *MES = static_cast<MCELFStreamer *>(&Parser.getStreamer());
1674 MCOperand &MO_1 = Inst.getOperand(1);
1675 MCOperand &MO_0 = Inst.getOperand(0);
1676
1677 // push section onto section stack
1678 MES->PushSection();
1679
1680 std::string myCharStr;
1681 MCSectionELF *mySection;
1682
1683 // check if this as an immediate or a symbol
1684 int64_t Value;
1685 bool Absolute = MO_1.getExpr()->evaluateAsAbsolute(Value);
1686 if (Absolute) {
1687 // Create a new section - one for each constant
1688 // Some or all of the zeros are replaced with the given immediate.
1689 if (is32bit) {
1690 std::string myImmStr = utohexstr(static_cast<uint32_t>(Value));
1691 myCharStr = StringRef(".gnu.linkonce.l4.CONST_00000000")
1692 .drop_back(myImmStr.size())
1693 .str() +
1694 myImmStr;
1695 } else {
1696 std::string myImmStr = utohexstr(Value);
1697 myCharStr = StringRef(".gnu.linkonce.l8.CONST_0000000000000000")
1698 .drop_back(myImmStr.size())
1699 .str() +
1700 myImmStr;
1701 }
1702
1703 mySection = getContext().getELFSection(myCharStr, ELF::SHT_PROGBITS,
1704 ELF::SHF_ALLOC | ELF::SHF_WRITE);
1705 } else if (MO_1.isExpr()) {
1706 // .lita - for expressions
1707 myCharStr = ".lita";
1708 mySection = getContext().getELFSection(myCharStr, ELF::SHT_PROGBITS,
1709 ELF::SHF_ALLOC | ELF::SHF_WRITE);
1710 } else
1711 llvm_unreachable("unexpected type of machine operand!");
1712
1713 MES->SwitchSection(mySection);
1714 unsigned byteSize = is32bit ? 4 : 8;
1715 getStreamer().EmitCodeAlignment(byteSize, byteSize);
1716
1717 MCSymbol *Sym;
1718
1719 // for symbols, get rid of prepended ".gnu.linkonce.lx."
1720
1721 // emit symbol if needed
1722 if (Absolute) {
1723 Sym = getContext().getOrCreateSymbol(StringRef(myCharStr.c_str() + 16));
1724 if (Sym->isUndefined()) {
1725 getStreamer().EmitLabel(Sym);
1726 getStreamer().EmitSymbolAttribute(Sym, MCSA_Global);
1727 getStreamer().EmitIntValue(Value, byteSize);
1728 }
1729 } else if (MO_1.isExpr()) {
1730 const char *StringStart = 0;
1731 const char *StringEnd = 0;
1732 if (*Operands[4]->getStartLoc().getPointer() == '#') {
1733 StringStart = Operands[5]->getStartLoc().getPointer();
1734 StringEnd = Operands[6]->getStartLoc().getPointer();
1735 } else { // no pound
1736 StringStart = Operands[4]->getStartLoc().getPointer();
1737 StringEnd = Operands[5]->getStartLoc().getPointer();
1738 }
1739
1740 unsigned size = StringEnd - StringStart;
1741 std::string DotConst = ".CONST_";
1742 Sym = getContext().getOrCreateSymbol(DotConst +
1743 StringRef(StringStart, size));
1744
1745 if (Sym->isUndefined()) {
1746 // case where symbol is not yet defined: emit symbol
1747 getStreamer().EmitLabel(Sym);
1748 getStreamer().EmitSymbolAttribute(Sym, MCSA_Local);
1749 getStreamer().EmitValue(MO_1.getExpr(), 4);
1750 }
1751 } else
1752 llvm_unreachable("unexpected type of machine operand!");
1753
1754 MES->PopSection();
1755
1756 if (Sym) {
1757 MCInst TmpInst;
1758 if (is32bit) // 32 bit
1759 TmpInst.setOpcode(Hexagon::L2_loadrigp);
1760 else // 64 bit
1761 TmpInst.setOpcode(Hexagon::L2_loadrdgp);
1762
1763 TmpInst.addOperand(MO_0);
1764 TmpInst.addOperand(
1765 MCOperand::createExpr(MCSymbolRefExpr::create(Sym, getContext())));
1766 Inst = TmpInst;
1767 }
1768 }
1769 break;
1770
1771 // Translate a "$Rdd = #-imm" to "$Rdd = combine(#[-1,0], #-imm)"
1772 case Hexagon::A2_tfrpi: {
1773 MCOperand &Rdd = Inst.getOperand(0);
1774 MCOperand &MO = Inst.getOperand(1);
1775 int64_t Value;
1776 int sVal = (MO.getExpr()->evaluateAsAbsolute(Value) && Value < 0) ? -1 : 0;
1777 MCOperand imm(MCOperand::createExpr(MCConstantExpr::create(sVal, Context)));
1778 Inst = makeCombineInst(Hexagon::A2_combineii, Rdd, imm, MO);
1779 break;
1780 }
1781
1782 // Translate a "$Rdd = [#]#imm" to "$Rdd = combine(#, [#]#imm)"
1783 case Hexagon::TFRI64_V4: {
1784 MCOperand &Rdd = Inst.getOperand(0);
1785 MCOperand &MO = Inst.getOperand(1);
1786 int64_t Value;
1787 if (MO.getExpr()->evaluateAsAbsolute(Value)) {
1788 unsigned long long u64 = Value;
1789 signed int s8 = (u64 >> 32) & 0xFFFFFFFF;
1790 if (s8 < -128 || s8 > 127)
1791 OutOfRange(IDLoc, s8, -128);
1792 MCOperand imm(MCOperand::createExpr(
1793 MCConstantExpr::create(s8, Context))); // upper 32
1794 MCOperand imm2(MCOperand::createExpr(
1795 MCConstantExpr::create(u64 & 0xFFFFFFFF, Context))); // lower 32
1796 Inst = makeCombineInst(Hexagon::A4_combineii, Rdd, imm, imm2);
1797 } else {
1798 MCOperand imm(MCOperand::createExpr(
1799 MCConstantExpr::create(0, Context))); // upper 32
1800 Inst = makeCombineInst(Hexagon::A4_combineii, Rdd, imm, MO);
1801 }
1802 break;
1803 }
1804
1805 // Handle $Rdd = combine(##imm, #imm)"
1806 case Hexagon::TFRI64_V2_ext: {
1807 MCOperand &Rdd = Inst.getOperand(0);
1808 MCOperand &MO1 = Inst.getOperand(1);
1809 MCOperand &MO2 = Inst.getOperand(2);
1810 int64_t Value;
1811 if (MO2.getExpr()->evaluateAsAbsolute(Value)) {
1812 int s8 = Value;
1813 if (s8 < -128 || s8 > 127)
1814 OutOfRange(IDLoc, s8, -128);
1815 }
1816 Inst = makeCombineInst(Hexagon::A2_combineii, Rdd, MO1, MO2);
1817 break;
1818 }
1819
1820 // Handle $Rdd = combine(#imm, ##imm)"
1821 case Hexagon::A4_combineii: {
1822 MCOperand &Rdd = Inst.getOperand(0);
1823 MCOperand &MO1 = Inst.getOperand(1);
1824 int64_t Value;
1825 if (MO1.getExpr()->evaluateAsAbsolute(Value)) {
1826 int s8 = Value;
1827 if (s8 < -128 || s8 > 127)
1828 OutOfRange(IDLoc, s8, -128);
1829 }
1830 MCOperand &MO2 = Inst.getOperand(2);
1831 Inst = makeCombineInst(Hexagon::A4_combineii, Rdd, MO1, MO2);
1832 break;
1833 }
1834
1835 case Hexagon::S2_tableidxb_goodsyntax: {
1836 Inst.setOpcode(Hexagon::S2_tableidxb);
1837 break;
1838 }
1839
1840 case Hexagon::S2_tableidxh_goodsyntax: {
1841 MCInst TmpInst;
1842 MCOperand &Rx = Inst.getOperand(0);
1843 MCOperand &_dst_ = Inst.getOperand(1);
1844 MCOperand &Rs = Inst.getOperand(2);
1845 MCOperand &Imm4 = Inst.getOperand(3);
1846 MCOperand &Imm6 = Inst.getOperand(4);
1847 Imm6.setExpr(MCBinaryExpr::createSub(
1848 Imm6.getExpr(), MCConstantExpr::create(1, Context), Context));
1849 TmpInst.setOpcode(Hexagon::S2_tableidxh);
1850 TmpInst.addOperand(Rx);
1851 TmpInst.addOperand(_dst_);
1852 TmpInst.addOperand(Rs);
1853 TmpInst.addOperand(Imm4);
1854 TmpInst.addOperand(Imm6);
1855 Inst = TmpInst;
1856 break;
1857 }
1858
1859 case Hexagon::S2_tableidxw_goodsyntax: {
1860 MCInst TmpInst;
1861 MCOperand &Rx = Inst.getOperand(0);
1862 MCOperand &_dst_ = Inst.getOperand(1);
1863 MCOperand &Rs = Inst.getOperand(2);
1864 MCOperand &Imm4 = Inst.getOperand(3);
1865 MCOperand &Imm6 = Inst.getOperand(4);
1866 Imm6.setExpr(MCBinaryExpr::createSub(
1867 Imm6.getExpr(), MCConstantExpr::create(2, Context), Context));
1868 TmpInst.setOpcode(Hexagon::S2_tableidxw);
1869 TmpInst.addOperand(Rx);
1870 TmpInst.addOperand(_dst_);
1871 TmpInst.addOperand(Rs);
1872 TmpInst.addOperand(Imm4);
1873 TmpInst.addOperand(Imm6);
1874 Inst = TmpInst;
1875 break;
1876 }
1877
1878 case Hexagon::S2_tableidxd_goodsyntax: {
1879 MCInst TmpInst;
1880 MCOperand &Rx = Inst.getOperand(0);
1881 MCOperand &_dst_ = Inst.getOperand(1);
1882 MCOperand &Rs = Inst.getOperand(2);
1883 MCOperand &Imm4 = Inst.getOperand(3);
1884 MCOperand &Imm6 = Inst.getOperand(4);
1885 Imm6.setExpr(MCBinaryExpr::createSub(
1886 Imm6.getExpr(), MCConstantExpr::create(3, Context), Context));
1887 TmpInst.setOpcode(Hexagon::S2_tableidxd);
1888 TmpInst.addOperand(Rx);
1889 TmpInst.addOperand(_dst_);
1890 TmpInst.addOperand(Rs);
1891 TmpInst.addOperand(Imm4);
1892 TmpInst.addOperand(Imm6);
1893 Inst = TmpInst;
1894 break;
1895 }
1896
1897 case Hexagon::M2_mpyui: {
1898 Inst.setOpcode(Hexagon::M2_mpyi);
1899 break;
1900 }
1901 case Hexagon::M2_mpysmi: {
1902 MCInst TmpInst;
1903 MCOperand &Rd = Inst.getOperand(0);
1904 MCOperand &Rs = Inst.getOperand(1);
1905 MCOperand &Imm = Inst.getOperand(2);
1906 int64_t Value;
1907 bool Absolute = Imm.getExpr()->evaluateAsAbsolute(Value);
1908 assert(Absolute);
1909 (void)Absolute;
1910 if (!MustExtend) {
1911 if (Value < 0 && Value > -256) {
1912 Imm.setExpr(MCConstantExpr::create(Value * -1, Context));
1913 TmpInst.setOpcode(Hexagon::M2_mpysin);
1914 } else if (Value < 256 && Value >= 0)
1915 TmpInst.setOpcode(Hexagon::M2_mpysip);
1916 else
1917 return Match_InvalidOperand;
1918 } else {
1919 if (Value >= 0)
1920 TmpInst.setOpcode(Hexagon::M2_mpysip);
1921 else
1922 return Match_InvalidOperand;
1923 }
1924 TmpInst.addOperand(Rd);
1925 TmpInst.addOperand(Rs);
1926 TmpInst.addOperand(Imm);
1927 Inst = TmpInst;
1928 break;
1929 }
1930
1931 case Hexagon::S2_asr_i_r_rnd_goodsyntax: {
1932 MCOperand &Imm = Inst.getOperand(2);
1933 MCInst TmpInst;
1934 int64_t Value;
1935 bool Absolute = Imm.getExpr()->evaluateAsAbsolute(Value);
1936 assert(Absolute);
1937 (void)Absolute;
1938 if (Value == 0) { // convert to $Rd = $Rs
1939 TmpInst.setOpcode(Hexagon::A2_tfr);
1940 MCOperand &Rd = Inst.getOperand(0);
1941 MCOperand &Rs = Inst.getOperand(1);
1942 TmpInst.addOperand(Rd);
1943 TmpInst.addOperand(Rs);
1944 } else {
1945 Imm.setExpr(MCBinaryExpr::createSub(
1946 Imm.getExpr(), MCConstantExpr::create(1, Context), Context));
1947 TmpInst.setOpcode(Hexagon::S2_asr_i_r_rnd);
1948 MCOperand &Rd = Inst.getOperand(0);
1949 MCOperand &Rs = Inst.getOperand(1);
1950 TmpInst.addOperand(Rd);
1951 TmpInst.addOperand(Rs);
1952 TmpInst.addOperand(Imm);
1953 }
1954 Inst = TmpInst;
1955 break;
1956 }
1957
1958 case Hexagon::S2_asr_i_p_rnd_goodsyntax: {
1959 MCOperand &Rdd = Inst.getOperand(0);
1960 MCOperand &Rss = Inst.getOperand(1);
1961 MCOperand &Imm = Inst.getOperand(2);
1962 int64_t Value;
1963 bool Absolute = Imm.getExpr()->evaluateAsAbsolute(Value);
1964 assert(Absolute);
1965 (void)Absolute;
1966 if (Value == 0) { // convert to $Rdd = combine ($Rs[0], $Rs[1])
1967 MCInst TmpInst;
1968 unsigned int RegPairNum = RI->getEncodingValue(Rss.getReg());
1969 std::string R1 = r + llvm::utostr_32(RegPairNum + 1);
1970 StringRef Reg1(R1);
1971 Rss.setReg(MatchRegisterName(Reg1));
1972 // Add a new operand for the second register in the pair.
1973 std::string R2 = r + llvm::utostr_32(RegPairNum);
1974 StringRef Reg2(R2);
1975 TmpInst.setOpcode(Hexagon::A2_combinew);
1976 TmpInst.addOperand(Rdd);
1977 TmpInst.addOperand(Rss);
1978 TmpInst.addOperand(MCOperand::createReg(MatchRegisterName(Reg2)));
1979 Inst = TmpInst;
1980 } else {
1981 Imm.setExpr(MCBinaryExpr::createSub(
1982 Imm.getExpr(), MCConstantExpr::create(1, Context), Context));
1983 Inst.setOpcode(Hexagon::S2_asr_i_p_rnd);
1984 }
1985 break;
1986 }
1987
1988 case Hexagon::A4_boundscheck: {
1989 MCOperand &Rs = Inst.getOperand(1);
1990 unsigned int RegNum = RI->getEncodingValue(Rs.getReg());
1991 if (RegNum & 1) { // Odd mapped to raw:hi, regpair is rodd:odd-1, like r3:2
1992 Inst.setOpcode(Hexagon::A4_boundscheck_hi);
1993 std::string Name =
1994 r + llvm::utostr_32(RegNum) + Colon + llvm::utostr_32(RegNum - 1);
1995 StringRef RegPair = Name;
1996 Rs.setReg(MatchRegisterName(RegPair));
1997 } else { // raw:lo
1998 Inst.setOpcode(Hexagon::A4_boundscheck_lo);
1999 std::string Name =
2000 r + llvm::utostr_32(RegNum + 1) + Colon + llvm::utostr_32(RegNum);
2001 StringRef RegPair = Name;
2002 Rs.setReg(MatchRegisterName(RegPair));
2003 }
2004 break;
2005 }
2006
2007 case Hexagon::A2_addsp: {
2008 MCOperand &Rs = Inst.getOperand(1);
2009 unsigned int RegNum = RI->getEncodingValue(Rs.getReg());
2010 if (RegNum & 1) { // Odd mapped to raw:hi
2011 Inst.setOpcode(Hexagon::A2_addsph);
2012 std::string Name =
2013 r + llvm::utostr_32(RegNum) + Colon + llvm::utostr_32(RegNum - 1);
2014 StringRef RegPair = Name;
2015 Rs.setReg(MatchRegisterName(RegPair));
2016 } else { // Even mapped raw:lo
2017 Inst.setOpcode(Hexagon::A2_addspl);
2018 std::string Name =
2019 r + llvm::utostr_32(RegNum + 1) + Colon + llvm::utostr_32(RegNum);
2020 StringRef RegPair = Name;
2021 Rs.setReg(MatchRegisterName(RegPair));
2022 }
2023 break;
2024 }
2025
2026 case Hexagon::M2_vrcmpys_s1: {
2027 MCOperand &Rt = Inst.getOperand(2);
2028 unsigned int RegNum = RI->getEncodingValue(Rt.getReg());
2029 if (RegNum & 1) { // Odd mapped to sat:raw:hi
2030 Inst.setOpcode(Hexagon::M2_vrcmpys_s1_h);
2031 std::string Name =
2032 r + llvm::utostr_32(RegNum) + Colon + llvm::utostr_32(RegNum - 1);
2033 StringRef RegPair = Name;
2034 Rt.setReg(MatchRegisterName(RegPair));
2035 } else { // Even mapped sat:raw:lo
2036 Inst.setOpcode(Hexagon::M2_vrcmpys_s1_l);
2037 std::string Name =
2038 r + llvm::utostr_32(RegNum + 1) + Colon + llvm::utostr_32(RegNum);
2039 StringRef RegPair = Name;
2040 Rt.setReg(MatchRegisterName(RegPair));
2041 }
2042 break;
2043 }
2044
2045 case Hexagon::M2_vrcmpys_acc_s1: {
2046 MCInst TmpInst;
2047 MCOperand &Rxx = Inst.getOperand(0);
2048 MCOperand &Rss = Inst.getOperand(2);
2049 MCOperand &Rt = Inst.getOperand(3);
2050 unsigned int RegNum = RI->getEncodingValue(Rt.getReg());
2051 if (RegNum & 1) { // Odd mapped to sat:raw:hi
2052 TmpInst.setOpcode(Hexagon::M2_vrcmpys_acc_s1_h);
2053 std::string Name =
2054 r + llvm::utostr_32(RegNum) + Colon + llvm::utostr_32(RegNum - 1);
2055 StringRef RegPair = Name;
2056 Rt.setReg(MatchRegisterName(RegPair));
2057 } else { // Even mapped sat:raw:lo
2058 TmpInst.setOpcode(Hexagon::M2_vrcmpys_acc_s1_l);
2059 std::string Name =
2060 r + llvm::utostr_32(RegNum + 1) + Colon + llvm::utostr_32(RegNum);
2061 StringRef RegPair = Name;
2062 Rt.setReg(MatchRegisterName(RegPair));
2063 }
2064 // Registers are in different positions
2065 TmpInst.addOperand(Rxx);
2066 TmpInst.addOperand(Rxx);
2067 TmpInst.addOperand(Rss);
2068 TmpInst.addOperand(Rt);
2069 Inst = TmpInst;
2070 break;
2071 }
2072
2073 case Hexagon::M2_vrcmpys_s1rp: {
2074 MCOperand &Rt = Inst.getOperand(2);
2075 unsigned int RegNum = RI->getEncodingValue(Rt.getReg());
2076 if (RegNum & 1) { // Odd mapped to rnd:sat:raw:hi
2077 Inst.setOpcode(Hexagon::M2_vrcmpys_s1rp_h);
2078 std::string Name =
2079 r + llvm::utostr_32(RegNum) + Colon + llvm::utostr_32(RegNum - 1);
2080 StringRef RegPair = Name;
2081 Rt.setReg(MatchRegisterName(RegPair));
2082 } else { // Even mapped rnd:sat:raw:lo
2083 Inst.setOpcode(Hexagon::M2_vrcmpys_s1rp_l);
2084 std::string Name =
2085 r + llvm::utostr_32(RegNum + 1) + Colon + llvm::utostr_32(RegNum);
2086 StringRef RegPair = Name;
2087 Rt.setReg(MatchRegisterName(RegPair));
2088 }
2089 break;
2090 }
2091
2092 case Hexagon::S5_asrhub_rnd_sat_goodsyntax: {
2093 MCOperand &Imm = Inst.getOperand(2);
2094 int64_t Value;
2095 bool Absolute = Imm.getExpr()->evaluateAsAbsolute(Value);
2096 assert(Absolute);
2097 (void)Absolute;
2098 if (Value == 0)
2099 Inst.setOpcode(Hexagon::S2_vsathub);
2100 else {
2101 Imm.setExpr(MCBinaryExpr::createSub(
2102 Imm.getExpr(), MCConstantExpr::create(1, Context), Context));
2103 Inst.setOpcode(Hexagon::S5_asrhub_rnd_sat);
2104 }
2105 break;
2106 }
2107
2108 case Hexagon::S5_vasrhrnd_goodsyntax: {
2109 MCOperand &Rdd = Inst.getOperand(0);
2110 MCOperand &Rss = Inst.getOperand(1);
2111 MCOperand &Imm = Inst.getOperand(2);
2112 int64_t Value;
2113 bool Absolute = Imm.getExpr()->evaluateAsAbsolute(Value);
2114 assert(Absolute);
2115 (void)Absolute;
2116 if (Value == 0) {
2117 MCInst TmpInst;
2118 unsigned int RegPairNum = RI->getEncodingValue(Rss.getReg());
2119 std::string R1 = r + llvm::utostr_32(RegPairNum + 1);
2120 StringRef Reg1(R1);
2121 Rss.setReg(MatchRegisterName(Reg1));
2122 // Add a new operand for the second register in the pair.
2123 std::string R2 = r + llvm::utostr_32(RegPairNum);
2124 StringRef Reg2(R2);
2125 TmpInst.setOpcode(Hexagon::A2_combinew);
2126 TmpInst.addOperand(Rdd);
2127 TmpInst.addOperand(Rss);
2128 TmpInst.addOperand(MCOperand::createReg(MatchRegisterName(Reg2)));
2129 Inst = TmpInst;
2130 } else {
2131 Imm.setExpr(MCBinaryExpr::createSub(
2132 Imm.getExpr(), MCConstantExpr::create(1, Context), Context));
2133 Inst.setOpcode(Hexagon::S5_vasrhrnd);
2134 }
2135 break;
2136 }
2137
2138 case Hexagon::A2_not: {
2139 MCInst TmpInst;
2140 MCOperand &Rd = Inst.getOperand(0);
2141 MCOperand &Rs = Inst.getOperand(1);
2142 TmpInst.setOpcode(Hexagon::A2_subri);
2143 TmpInst.addOperand(Rd);
2144 TmpInst.addOperand(
2145 MCOperand::createExpr(MCConstantExpr::create(-1, Context)));
2146 TmpInst.addOperand(Rs);
2147 Inst = TmpInst;
2148 break;
2149 }
2150 } // switch
2151
2152 return Match_Success;
2153}