blob: 6c8860173d0f925af3ac6e4d9509d3c634383e2f [file] [log] [blame]
Colin LeMahieu7cd08922015-11-09 04:07:48 +00001//===-- HexagonAsmParser.cpp - Parse Hexagon asm to MCInst instructions----===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#define DEBUG_TYPE "mcasmparser"
11
12#include "Hexagon.h"
13#include "HexagonRegisterInfo.h"
14#include "HexagonTargetStreamer.h"
15#include "MCTargetDesc/HexagonBaseInfo.h"
16#include "MCTargetDesc/HexagonMCELFStreamer.h"
17#include "MCTargetDesc/HexagonMCChecker.h"
18#include "MCTargetDesc/HexagonMCExpr.h"
19#include "MCTargetDesc/HexagonMCShuffler.h"
20#include "MCTargetDesc/HexagonMCTargetDesc.h"
21#include "MCTargetDesc/HexagonMCAsmInfo.h"
22#include "MCTargetDesc/HexagonShuffler.h"
23#include "llvm/ADT/SmallString.h"
24#include "llvm/ADT/SmallVector.h"
25#include "llvm/ADT/StringExtras.h"
26#include "llvm/ADT/Twine.h"
27#include "llvm/MC/MCContext.h"
28#include "llvm/MC/MCELFStreamer.h"
29#include "llvm/MC/MCExpr.h"
30#include "llvm/MC/MCInst.h"
31#include "llvm/MC/MCParser/MCAsmLexer.h"
32#include "llvm/MC/MCParser/MCAsmParser.h"
33#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
34#include "llvm/MC/MCStreamer.h"
35#include "llvm/MC/MCSectionELF.h"
36#include "llvm/MC/MCSubtargetInfo.h"
37#include "llvm/MC/MCTargetAsmParser.h"
38#include "llvm/Support/CommandLine.h"
39#include "llvm/Support/Debug.h"
40#include "llvm/Support/ELF.h"
41#include "llvm/Support/SourceMgr.h"
42#include "llvm/Support/MemoryBuffer.h"
43#include "llvm/Support/TargetRegistry.h"
44#include "llvm/Support/raw_ostream.h"
45#include <sstream>
46
47using namespace llvm;
48
49static cl::opt<bool> EnableFutureRegs("mfuture-regs",
50 cl::desc("Enable future registers"));
51
52static cl::opt<bool> WarnMissingParenthesis("mwarn-missing-parenthesis",
53cl::desc("Warn for missing parenthesis around predicate registers"),
54cl::init(true));
55static cl::opt<bool> ErrorMissingParenthesis("merror-missing-parenthesis",
56cl::desc("Error for missing parenthesis around predicate registers"),
57cl::init(false));
58static cl::opt<bool> WarnSignedMismatch("mwarn-sign-mismatch",
59cl::desc("Warn for mismatching a signed and unsigned value"),
60cl::init(true));
61static cl::opt<bool> WarnNoncontigiousRegister("mwarn-noncontigious-register",
62cl::desc("Warn for register names that arent contigious"),
63cl::init(true));
64static cl::opt<bool> ErrorNoncontigiousRegister("merror-noncontigious-register",
65cl::desc("Error for register names that aren't contigious"),
66cl::init(false));
67
68
69namespace {
70struct HexagonOperand;
71
72class HexagonAsmParser : public MCTargetAsmParser {
73
74 HexagonTargetStreamer &getTargetStreamer() {
75 MCTargetStreamer &TS = *Parser.getStreamer().getTargetStreamer();
76 return static_cast<HexagonTargetStreamer &>(TS);
77 }
78
79 MCSubtargetInfo &STI;
80 MCAsmParser &Parser;
81 MCAssembler *Assembler;
82 MCInstrInfo const &MCII;
83 MCInst MCB;
84 bool InBrackets;
85
86 MCAsmParser &getParser() const { return Parser; }
87 MCAssembler *getAssembler() const { return Assembler; }
88 MCAsmLexer &getLexer() const { return Parser.getLexer(); }
89
Colin LeMahieu7cd08922015-11-09 04:07:48 +000090 bool equalIsAsmAssignment() override { return false; }
91 bool isLabel(AsmToken &Token) override;
92
93 void Warning(SMLoc L, const Twine &Msg) { Parser.Warning(L, Msg); }
94 bool Error(SMLoc L, const Twine &Msg) { return Parser.Error(L, Msg); }
95 bool ParseDirectiveFalign(unsigned Size, SMLoc L);
96
97 virtual bool ParseRegister(unsigned &RegNo,
98 SMLoc &StartLoc,
99 SMLoc &EndLoc) override;
100 bool ParseDirectiveSubsection(SMLoc L);
101 bool ParseDirectiveValue(unsigned Size, SMLoc L);
102 bool ParseDirectiveComm(bool IsLocal, SMLoc L);
103 bool RegisterMatchesArch(unsigned MatchNum) const;
104
105 bool matchBundleOptions();
106 bool handleNoncontigiousRegister(bool Contigious, SMLoc &Loc);
107 bool finishBundle(SMLoc IDLoc, MCStreamer &Out);
108 void canonicalizeImmediates(MCInst &MCI);
109 bool matchOneInstruction(MCInst &MCB, SMLoc IDLoc,
110 OperandVector &InstOperands, uint64_t &ErrorInfo,
111 bool MatchingInlineAsm, bool &MustExtend);
112
113 bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
114 OperandVector &Operands, MCStreamer &Out,
Colin LeMahieu9ea507e2015-11-09 07:10:24 +0000115 uint64_t &ErrorInfo, bool MatchingInlineAsm) override;
Colin LeMahieu7cd08922015-11-09 04:07:48 +0000116
117 unsigned validateTargetOperandClass(MCParsedAsmOperand &Op, unsigned Kind) override;
118 void OutOfRange(SMLoc IDLoc, long long Val, long long Max);
119 int processInstruction(MCInst &Inst, OperandVector const &Operands,
120 SMLoc IDLoc, bool &MustExtend);
121
122 // Check if we have an assembler and, if so, set the ELF e_header flags.
123 void chksetELFHeaderEFlags(unsigned flags) {
124 if (getAssembler())
125 getAssembler()->setELFHeaderEFlags(flags);
126 }
127
128/// @name Auto-generated Match Functions
129/// {
130
131#define GET_ASSEMBLER_HEADER
132#include "HexagonGenAsmMatcher.inc"
133
134 /// }
135
136public:
137 HexagonAsmParser(MCSubtargetInfo &_STI, MCAsmParser &_Parser,
138 const MCInstrInfo &MII, const MCTargetOptions &Options)
139 : MCTargetAsmParser(Options), STI(_STI), Parser(_Parser),
140 MCII (MII), InBrackets(false) {
141 MCB.setOpcode(Hexagon::BUNDLE);
142 setAvailableFeatures(
143 ComputeAvailableFeatures(_STI.getFeatureBits()));
144
145 MCAsmParserExtension::Initialize(_Parser);
146
147 Assembler = nullptr;
148 // FIXME: need better way to detect AsmStreamer (upstream removed getKind())
149 if (!Parser.getStreamer().hasRawTextSupport()) {
150 MCELFStreamer *MES = static_cast<MCELFStreamer *>(&Parser.getStreamer());
151 Assembler = &MES->getAssembler();
152 }
153 }
154
155 bool mustExtend(OperandVector &Operands);
156 bool splitIdentifier(OperandVector &Operands);
157 bool parseOperand(OperandVector &Operands);
158 bool parseInstruction(OperandVector &Operands);
159 bool implicitExpressionLocation(OperandVector &Operands);
160 bool parseExpressionOrOperand(OperandVector &Operands);
161 bool parseExpression(MCExpr const *& Expr);
162 virtual bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
Colin LeMahieu9ea507e2015-11-09 07:10:24 +0000163 SMLoc NameLoc, OperandVector &Operands) override
164 {
Colin LeMahieu7cd08922015-11-09 04:07:48 +0000165 llvm_unreachable("Unimplemented");
166 }
167 virtual bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
Colin LeMahieu9ea507e2015-11-09 07:10:24 +0000168 AsmToken ID, OperandVector &Operands) override;
Colin LeMahieu7cd08922015-11-09 04:07:48 +0000169
Colin LeMahieu9ea507e2015-11-09 07:10:24 +0000170 virtual bool ParseDirective(AsmToken DirectiveID) override;
Colin LeMahieu7cd08922015-11-09 04:07:48 +0000171};
172
173/// HexagonOperand - Instances of this class represent a parsed Hexagon machine
174/// instruction.
175struct HexagonOperand : public MCParsedAsmOperand {
176 enum KindTy { Token, Immediate, Register } Kind;
177
178 SMLoc StartLoc, EndLoc;
179
180 struct TokTy {
181 const char *Data;
182 unsigned Length;
183 };
184
185 struct RegTy {
186 unsigned RegNum;
187 };
188
189 struct ImmTy {
190 const MCExpr *Val;
191 bool MustExtend;
192 };
193
194 struct InstTy {
195 OperandVector *SubInsts;
196 };
197
198 union {
199 struct TokTy Tok;
200 struct RegTy Reg;
201 struct ImmTy Imm;
202 };
203
204 HexagonOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {}
205
206public:
207 HexagonOperand(const HexagonOperand &o) : MCParsedAsmOperand() {
208 Kind = o.Kind;
209 StartLoc = o.StartLoc;
210 EndLoc = o.EndLoc;
211 switch (Kind) {
212 case Register:
213 Reg = o.Reg;
214 break;
215 case Immediate:
216 Imm = o.Imm;
217 break;
218 case Token:
219 Tok = o.Tok;
220 break;
221 }
222 }
223
224 /// getStartLoc - Get the location of the first token of this operand.
225 SMLoc getStartLoc() const { return StartLoc; }
226
227 /// getEndLoc - Get the location of the last token of this operand.
228 SMLoc getEndLoc() const { return EndLoc; }
229
230 unsigned getReg() const {
231 assert(Kind == Register && "Invalid access!");
232 return Reg.RegNum;
233 }
234
235 const MCExpr *getImm() const {
236 assert(Kind == Immediate && "Invalid access!");
237 return Imm.Val;
238 }
239
240 bool isToken() const { return Kind == Token; }
241 bool isImm() const { return Kind == Immediate; }
242 bool isMem() const { llvm_unreachable("No isMem"); }
243 bool isReg() const { return Kind == Register; }
244
245 bool CheckImmRange(int immBits, int zeroBits, bool isSigned,
246 bool isRelocatable, bool Extendable) const {
247 if (Kind == Immediate) {
248 const MCExpr *myMCExpr = getImm();
249 if (Imm.MustExtend && !Extendable)
250 return false;
251 int64_t Res;
252 if (myMCExpr->evaluateAsAbsolute(Res)) {
253 int bits = immBits + zeroBits;
254 // Field bit range is zerobits + bits
255 // zeroBits must be 0
256 if (Res & ((1 << zeroBits) - 1))
257 return false;
258 if (isSigned) {
259 if (Res < (1LL << (bits - 1)) && Res >= -(1LL << (bits - 1)))
260 return true;
261 } else {
262 if (bits == 64)
263 return true;
264 if (Res >= 0)
265 return ((uint64_t)Res < (uint64_t)(1ULL << bits)) ? true : false;
266 else {
267 const int64_t high_bit_set = 1ULL << 63;
268 const uint64_t mask = (high_bit_set >> (63 - bits));
269 return (((uint64_t)Res & mask) == mask) ? true : false;
270 }
271 }
272 } else if (myMCExpr->getKind() == MCExpr::SymbolRef && isRelocatable)
273 return true;
274 else if (myMCExpr->getKind() == MCExpr::Binary ||
275 myMCExpr->getKind() == MCExpr::Unary)
276 return true;
277 }
278 return false;
279 }
280
281 bool isf32Ext() const { return false; }
282 bool iss32Imm() const { return CheckImmRange(32, 0, true, true, false); }
283 bool iss8Imm() const { return CheckImmRange(8, 0, true, false, false); }
284 bool iss8Imm64() const { return CheckImmRange(8, 0, true, true, false); }
285 bool iss7Imm() const { return CheckImmRange(7, 0, true, false, false); }
286 bool iss6Imm() const { return CheckImmRange(6, 0, true, false, false); }
287 bool iss4Imm() const { return CheckImmRange(4, 0, true, false, false); }
288 bool iss4_0Imm() const { return CheckImmRange(4, 0, true, false, false); }
289 bool iss4_1Imm() const { return CheckImmRange(4, 1, true, false, false); }
290 bool iss4_2Imm() const { return CheckImmRange(4, 2, true, false, false); }
291 bool iss4_3Imm() const { return CheckImmRange(4, 3, true, false, false); }
292 bool iss4_6Imm() const { return CheckImmRange(4, 0, true, false, false); }
293 bool iss3_6Imm() const { return CheckImmRange(3, 0, true, false, false); }
294 bool iss3Imm() const { return CheckImmRange(3, 0, true, false, false); }
295
296 bool isu64Imm() const { return CheckImmRange(64, 0, false, true, true); }
297 bool isu32Imm() const { return CheckImmRange(32, 0, false, true, false); }
298 bool isu26_6Imm() const { return CheckImmRange(26, 6, false, true, false); }
299 bool isu16Imm() const { return CheckImmRange(16, 0, false, true, false); }
300 bool isu16_0Imm() const { return CheckImmRange(16, 0, false, true, false); }
301 bool isu16_1Imm() const { return CheckImmRange(16, 1, false, true, false); }
302 bool isu16_2Imm() const { return CheckImmRange(16, 2, false, true, false); }
303 bool isu16_3Imm() const { return CheckImmRange(16, 3, false, true, false); }
304 bool isu11_3Imm() const { return CheckImmRange(11, 3, false, false, false); }
305 bool isu6_0Imm() const { return CheckImmRange(6, 0, false, false, false); }
306 bool isu6_1Imm() const { return CheckImmRange(6, 1, false, false, false); }
307 bool isu6_2Imm() const { return CheckImmRange(6, 2, false, false, false); }
308 bool isu6_3Imm() const { return CheckImmRange(6, 3, false, false, false); }
309 bool isu10Imm() const { return CheckImmRange(10, 0, false, false, false); }
310 bool isu9Imm() const { return CheckImmRange(9, 0, false, false, false); }
311 bool isu8Imm() const { return CheckImmRange(8, 0, false, false, false); }
312 bool isu7Imm() const { return CheckImmRange(7, 0, false, false, false); }
313 bool isu6Imm() const { return CheckImmRange(6, 0, false, false, false); }
314 bool isu5Imm() const { return CheckImmRange(5, 0, false, false, false); }
315 bool isu4Imm() const { return CheckImmRange(4, 0, false, false, false); }
316 bool isu3Imm() const { return CheckImmRange(3, 0, false, false, false); }
317 bool isu2Imm() const { return CheckImmRange(2, 0, false, false, false); }
318 bool isu1Imm() const { return CheckImmRange(1, 0, false, false, false); }
319
320 bool ism6Imm() const { return CheckImmRange(6, 0, false, false, false); }
321 bool isn8Imm() const { return CheckImmRange(8, 0, false, false, false); }
322
323 bool iss16Ext() const { return CheckImmRange(16 + 26, 0, true, true, true); }
324 bool iss12Ext() const { return CheckImmRange(12 + 26, 0, true, true, true); }
325 bool iss10Ext() const { return CheckImmRange(10 + 26, 0, true, true, true); }
326 bool iss9Ext() const { return CheckImmRange(9 + 26, 0, true, true, true); }
327 bool iss8Ext() const { return CheckImmRange(8 + 26, 0, true, true, true); }
328 bool iss7Ext() const { return CheckImmRange(7 + 26, 0, true, true, true); }
329 bool iss6Ext() const { return CheckImmRange(6 + 26, 0, true, true, true); }
330 bool iss11_0Ext() const {
331 return CheckImmRange(11 + 26, 0, true, true, true);
332 }
333 bool iss11_1Ext() const {
334 return CheckImmRange(11 + 26, 1, true, true, true);
335 }
336 bool iss11_2Ext() const {
337 return CheckImmRange(11 + 26, 2, true, true, true);
338 }
339 bool iss11_3Ext() const {
340 return CheckImmRange(11 + 26, 3, true, true, true);
341 }
342
343 bool isu6Ext() const { return CheckImmRange(6 + 26, 0, false, true, true); }
344 bool isu7Ext() const { return CheckImmRange(7 + 26, 0, false, true, true); }
345 bool isu8Ext() const { return CheckImmRange(8 + 26, 0, false, true, true); }
346 bool isu9Ext() const { return CheckImmRange(9 + 26, 0, false, true, true); }
347 bool isu10Ext() const { return CheckImmRange(10 + 26, 0, false, true, true); }
348 bool isu6_0Ext() const { return CheckImmRange(6 + 26, 0, false, true, true); }
349 bool isu6_1Ext() const { return CheckImmRange(6 + 26, 1, false, true, true); }
350 bool isu6_2Ext() const { return CheckImmRange(6 + 26, 2, false, true, true); }
351 bool isu6_3Ext() const { return CheckImmRange(6 + 26, 3, false, true, true); }
352 bool isu32MustExt() const { return isImm() && Imm.MustExtend; }
353
354 void addRegOperands(MCInst &Inst, unsigned N) const {
355 assert(N == 1 && "Invalid number of operands!");
356 Inst.addOperand(MCOperand::createReg(getReg()));
357 }
358
359 void addImmOperands(MCInst &Inst, unsigned N) const {
360 assert(N == 1 && "Invalid number of operands!");
361 Inst.addOperand(MCOperand::createExpr(getImm()));
362 }
363
364 void addSignedImmOperands(MCInst &Inst, unsigned N) const {
365 assert(N == 1 && "Invalid number of operands!");
366 MCExpr const *Expr = getImm();
367 int64_t Value;
368 if (!Expr->evaluateAsAbsolute(Value)) {
369 Inst.addOperand(MCOperand::createExpr(Expr));
370 return;
371 }
372 int64_t Extended = SignExtend64 (Value, 32);
373 if ((Extended < 0) == (Value < 0)) {
374 Inst.addOperand(MCOperand::createExpr(Expr));
375 return;
376 }
377 // Flip bit 33 to signal signed unsigned mismatch
378 Extended ^= 0x100000000;
379 Inst.addOperand(MCOperand::createImm(Extended));
380 }
381
382 void addf32ExtOperands(MCInst &Inst, unsigned N) const {
383 addImmOperands(Inst, N);
384 }
385
386 void adds32ImmOperands(MCInst &Inst, unsigned N) const {
387 addSignedImmOperands(Inst, N);
388 }
389 void adds8ImmOperands(MCInst &Inst, unsigned N) const {
390 addSignedImmOperands(Inst, N);
391 }
392 void adds8Imm64Operands(MCInst &Inst, unsigned N) const {
393 addSignedImmOperands(Inst, N);
394 }
395 void adds6ImmOperands(MCInst &Inst, unsigned N) const {
396 addSignedImmOperands(Inst, N);
397 }
398 void adds4ImmOperands(MCInst &Inst, unsigned N) const {
399 addSignedImmOperands(Inst, N);
400 }
401 void adds4_0ImmOperands(MCInst &Inst, unsigned N) const {
402 addSignedImmOperands(Inst, N);
403 }
404 void adds4_1ImmOperands(MCInst &Inst, unsigned N) const {
405 addSignedImmOperands(Inst, N);
406 }
407 void adds4_2ImmOperands(MCInst &Inst, unsigned N) const {
408 addSignedImmOperands(Inst, N);
409 }
410 void adds4_3ImmOperands(MCInst &Inst, unsigned N) const {
411 addSignedImmOperands(Inst, N);
412 }
413 void adds3ImmOperands(MCInst &Inst, unsigned N) const {
414 addSignedImmOperands(Inst, N);
415 }
416
417 void addu64ImmOperands(MCInst &Inst, unsigned N) const {
418 addImmOperands(Inst, N);
419 }
420 void addu32ImmOperands(MCInst &Inst, unsigned N) const {
421 addImmOperands(Inst, N);
422 }
423 void addu26_6ImmOperands(MCInst &Inst, unsigned N) const {
424 addImmOperands(Inst, N);
425 }
426 void addu16ImmOperands(MCInst &Inst, unsigned N) const {
427 addImmOperands(Inst, N);
428 }
429 void addu16_0ImmOperands(MCInst &Inst, unsigned N) const {
430 addImmOperands(Inst, N);
431 }
432 void addu16_1ImmOperands(MCInst &Inst, unsigned N) const {
433 addImmOperands(Inst, N);
434 }
435 void addu16_2ImmOperands(MCInst &Inst, unsigned N) const {
436 addImmOperands(Inst, N);
437 }
438 void addu16_3ImmOperands(MCInst &Inst, unsigned N) const {
439 addImmOperands(Inst, N);
440 }
441 void addu11_3ImmOperands(MCInst &Inst, unsigned N) const {
442 addImmOperands(Inst, N);
443 }
444 void addu10ImmOperands(MCInst &Inst, unsigned N) const {
445 addImmOperands(Inst, N);
446 }
447 void addu9ImmOperands(MCInst &Inst, unsigned N) const {
448 addImmOperands(Inst, N);
449 }
450 void addu8ImmOperands(MCInst &Inst, unsigned N) const {
451 addImmOperands(Inst, N);
452 }
453 void addu7ImmOperands(MCInst &Inst, unsigned N) const {
454 addImmOperands(Inst, N);
455 }
456 void addu6ImmOperands(MCInst &Inst, unsigned N) const {
457 addImmOperands(Inst, N);
458 }
459 void addu6_0ImmOperands(MCInst &Inst, unsigned N) const {
460 addImmOperands(Inst, N);
461 }
462 void addu6_1ImmOperands(MCInst &Inst, unsigned N) const {
463 addImmOperands(Inst, N);
464 }
465 void addu6_2ImmOperands(MCInst &Inst, unsigned N) const {
466 addImmOperands(Inst, N);
467 }
468 void addu6_3ImmOperands(MCInst &Inst, unsigned N) const {
469 addImmOperands(Inst, N);
470 }
471 void addu5ImmOperands(MCInst &Inst, unsigned N) const {
472 addImmOperands(Inst, N);
473 }
474 void addu4ImmOperands(MCInst &Inst, unsigned N) const {
475 addImmOperands(Inst, N);
476 }
477 void addu3ImmOperands(MCInst &Inst, unsigned N) const {
478 addImmOperands(Inst, N);
479 }
480 void addu2ImmOperands(MCInst &Inst, unsigned N) const {
481 addImmOperands(Inst, N);
482 }
483 void addu1ImmOperands(MCInst &Inst, unsigned N) const {
484 addImmOperands(Inst, N);
485 }
486
487 void addm6ImmOperands(MCInst &Inst, unsigned N) const {
488 addImmOperands(Inst, N);
489 }
490 void addn8ImmOperands(MCInst &Inst, unsigned N) const {
491 addImmOperands(Inst, N);
492 }
493
494 void adds16ExtOperands(MCInst &Inst, unsigned N) const {
495 addSignedImmOperands(Inst, N);
496 }
497 void adds12ExtOperands(MCInst &Inst, unsigned N) const {
498 addSignedImmOperands(Inst, N);
499 }
500 void adds10ExtOperands(MCInst &Inst, unsigned N) const {
501 addSignedImmOperands(Inst, N);
502 }
503 void adds9ExtOperands(MCInst &Inst, unsigned N) const {
504 addSignedImmOperands(Inst, N);
505 }
506 void adds8ExtOperands(MCInst &Inst, unsigned N) const {
507 addSignedImmOperands(Inst, N);
508 }
509 void adds6ExtOperands(MCInst &Inst, unsigned N) const {
510 addSignedImmOperands(Inst, N);
511 }
512 void adds11_0ExtOperands(MCInst &Inst, unsigned N) const {
513 addSignedImmOperands(Inst, N);
514 }
515 void adds11_1ExtOperands(MCInst &Inst, unsigned N) const {
516 addSignedImmOperands(Inst, N);
517 }
518 void adds11_2ExtOperands(MCInst &Inst, unsigned N) const {
519 addSignedImmOperands(Inst, N);
520 }
521 void adds11_3ExtOperands(MCInst &Inst, unsigned N) const {
522 addSignedImmOperands(Inst, N);
523 }
524
525 void addu6ExtOperands(MCInst &Inst, unsigned N) const {
526 addImmOperands(Inst, N);
527 }
528 void addu7ExtOperands(MCInst &Inst, unsigned N) const {
529 addImmOperands(Inst, N);
530 }
531 void addu8ExtOperands(MCInst &Inst, unsigned N) const {
532 addImmOperands(Inst, N);
533 }
534 void addu9ExtOperands(MCInst &Inst, unsigned N) const {
535 addImmOperands(Inst, N);
536 }
537 void addu10ExtOperands(MCInst &Inst, unsigned N) const {
538 addImmOperands(Inst, N);
539 }
540 void addu6_0ExtOperands(MCInst &Inst, unsigned N) const {
541 addImmOperands(Inst, N);
542 }
543 void addu6_1ExtOperands(MCInst &Inst, unsigned N) const {
544 addImmOperands(Inst, N);
545 }
546 void addu6_2ExtOperands(MCInst &Inst, unsigned N) const {
547 addImmOperands(Inst, N);
548 }
549 void addu6_3ExtOperands(MCInst &Inst, unsigned N) const {
550 addImmOperands(Inst, N);
551 }
552 void addu32MustExtOperands(MCInst &Inst, unsigned N) const {
553 addImmOperands(Inst, N);
554 }
555
556 void adds4_6ImmOperands(MCInst &Inst, unsigned N) const {
557 assert(N == 1 && "Invalid number of operands!");
558 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
559 Inst.addOperand(MCOperand::createImm(CE->getValue() << 6));
560 }
561
562 void adds3_6ImmOperands(MCInst &Inst, unsigned N) const {
563 assert(N == 1 && "Invalid number of operands!");
564 const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
565 Inst.addOperand(MCOperand::createImm(CE->getValue() << 6));
566 }
567
568 StringRef getToken() const {
569 assert(Kind == Token && "Invalid access!");
570 return StringRef(Tok.Data, Tok.Length);
571 }
572
573 virtual void print(raw_ostream &OS) const;
574
575 static std::unique_ptr<HexagonOperand> CreateToken(StringRef Str, SMLoc S) {
576 HexagonOperand *Op = new HexagonOperand(Token);
577 Op->Tok.Data = Str.data();
578 Op->Tok.Length = Str.size();
579 Op->StartLoc = S;
580 Op->EndLoc = S;
581 return std::unique_ptr<HexagonOperand>(Op);
582 }
583
584 static std::unique_ptr<HexagonOperand> CreateReg(unsigned RegNum, SMLoc S,
585 SMLoc E) {
586 HexagonOperand *Op = new HexagonOperand(Register);
587 Op->Reg.RegNum = RegNum;
588 Op->StartLoc = S;
589 Op->EndLoc = E;
590 return std::unique_ptr<HexagonOperand>(Op);
591 }
592
593 static std::unique_ptr<HexagonOperand> CreateImm(const MCExpr *Val, SMLoc S,
594 SMLoc E) {
595 HexagonOperand *Op = new HexagonOperand(Immediate);
596 Op->Imm.Val = Val;
597 Op->Imm.MustExtend = false;
598 Op->StartLoc = S;
599 Op->EndLoc = E;
600 return std::unique_ptr<HexagonOperand>(Op);
601 }
602};
603
604} // end anonymous namespace.
605
606void HexagonOperand::print(raw_ostream &OS) const {
607 switch (Kind) {
608 case Immediate:
609 getImm()->print(OS, nullptr);
610 break;
611 case Register:
612 OS << "<register R";
613 OS << getReg() << ">";
614 break;
615 case Token:
616 OS << "'" << getToken() << "'";
617 break;
618 }
619}
620
621/// @name Auto-generated Match Functions
622static unsigned MatchRegisterName(StringRef Name);
623
624bool HexagonAsmParser::finishBundle(SMLoc IDLoc, MCStreamer &Out) {
625 DEBUG(dbgs() << "Bundle:");
626 DEBUG(MCB.dump_pretty(dbgs()));
627 DEBUG(dbgs() << "--\n");
628
629 // Check the bundle for errors.
630 const MCRegisterInfo *RI = getContext().getRegisterInfo();
631 HexagonMCChecker Check(MCII, STI, MCB, MCB, *RI);
632
633 bool CheckOk = HexagonMCInstrInfo::canonicalizePacket(MCII, STI, getContext(),
634 MCB, &Check);
635
636 while (Check.getNextErrInfo() == true) {
637 unsigned Reg = Check.getErrRegister();
638 Twine R(RI->getName(Reg));
639
640 uint64_t Err = Check.getError();
641 if (Err != HexagonMCErrInfo::CHECK_SUCCESS) {
642 if (HexagonMCErrInfo::CHECK_ERROR_BRANCHES & Err)
643 Error(IDLoc,
644 "unconditional branch cannot precede another branch in packet");
645
646 if (HexagonMCErrInfo::CHECK_ERROR_NEWP & Err ||
647 HexagonMCErrInfo::CHECK_ERROR_NEWV & Err)
648 Error(IDLoc, "register `" + R +
649 "' used with `.new' "
650 "but not validly modified in the same packet");
651
652 if (HexagonMCErrInfo::CHECK_ERROR_REGISTERS & Err)
653 Error(IDLoc, "register `" + R + "' modified more than once");
654
655 if (HexagonMCErrInfo::CHECK_ERROR_READONLY & Err)
656 Error(IDLoc, "cannot write to read-only register `" + R + "'");
657
658 if (HexagonMCErrInfo::CHECK_ERROR_LOOP & Err)
659 Error(IDLoc, "loop-setup and some branch instructions "
660 "cannot be in the same packet");
661
662 if (HexagonMCErrInfo::CHECK_ERROR_ENDLOOP & Err) {
663 Twine N(HexagonMCInstrInfo::isInnerLoop(MCB) ? '0' : '1');
664 Error(IDLoc, "packet marked with `:endloop" + N + "' " +
665 "cannot contain instructions that modify register " +
666 "`" + R + "'");
667 }
668
669 if (HexagonMCErrInfo::CHECK_ERROR_SOLO & Err)
670 Error(IDLoc,
671 "instruction cannot appear in packet with other instructions");
672
673 if (HexagonMCErrInfo::CHECK_ERROR_NOSLOTS & Err)
674 Error(IDLoc, "too many slots used in packet");
675
676 if (Err & HexagonMCErrInfo::CHECK_ERROR_SHUFFLE) {
677 uint64_t Erm = Check.getShuffleError();
678
679 if (HexagonShuffler::SHUFFLE_ERROR_INVALID == Erm)
680 Error(IDLoc, "invalid instruction packet");
681 else if (HexagonShuffler::SHUFFLE_ERROR_STORES == Erm)
682 Error(IDLoc, "invalid instruction packet: too many stores");
683 else if (HexagonShuffler::SHUFFLE_ERROR_LOADS == Erm)
684 Error(IDLoc, "invalid instruction packet: too many loads");
685 else if (HexagonShuffler::SHUFFLE_ERROR_BRANCHES == Erm)
686 Error(IDLoc, "too many branches in packet");
687 else if (HexagonShuffler::SHUFFLE_ERROR_NOSLOTS == Erm)
688 Error(IDLoc, "invalid instruction packet: out of slots");
689 else if (HexagonShuffler::SHUFFLE_ERROR_SLOTS == Erm)
690 Error(IDLoc, "invalid instruction packet: slot error");
691 else if (HexagonShuffler::SHUFFLE_ERROR_ERRATA2 == Erm)
692 Error(IDLoc, "v60 packet violation");
693 else if (HexagonShuffler::SHUFFLE_ERROR_STORE_LOAD_CONFLICT == Erm)
694 Error(IDLoc, "slot 0 instruction does not allow slot 1 store");
695 else
696 Error(IDLoc, "unknown error in instruction packet");
697 }
698 }
699
700 unsigned Warn = Check.getWarning();
701 if (Warn != HexagonMCErrInfo::CHECK_SUCCESS) {
702 if (HexagonMCErrInfo::CHECK_WARN_CURRENT & Warn)
703 Warning(IDLoc, "register `" + R + "' used with `.cur' "
704 "but not used in the same packet");
705 else if (HexagonMCErrInfo::CHECK_WARN_TEMPORARY & Warn)
706 Warning(IDLoc, "register `" + R + "' used with `.tmp' "
707 "but not used in the same packet");
708 }
709 }
710
711 if (CheckOk) {
712 MCB.setLoc(IDLoc);
713 if (HexagonMCInstrInfo::bundleSize(MCB) == 0) {
714 assert(!HexagonMCInstrInfo::isInnerLoop(MCB));
715 assert(!HexagonMCInstrInfo::isOuterLoop(MCB));
716 // Empty packets are valid yet aren't emitted
717 return false;
718 }
719 Out.EmitInstruction(MCB, STI);
720 } else {
721 // If compounding and duplexing didn't reduce the size below
722 // 4 or less we have a packet that is too big.
723 if (HexagonMCInstrInfo::bundleSize(MCB) > HEXAGON_PACKET_SIZE) {
724 Error(IDLoc, "invalid instruction packet: out of slots");
725 return true; // Error
726 }
727 }
728
729 return false; // No error
730}
731
732bool HexagonAsmParser::matchBundleOptions() {
733 MCAsmParser &Parser = getParser();
734 MCAsmLexer &Lexer = getLexer();
735 while (true) {
736 if (!Parser.getTok().is(AsmToken::Colon))
737 return false;
738 Lexer.Lex();
739 StringRef Option = Parser.getTok().getString();
740 if (Option.compare_lower("endloop0") == 0)
741 HexagonMCInstrInfo::setInnerLoop(MCB);
742 else if (Option.compare_lower("endloop1") == 0)
743 HexagonMCInstrInfo::setOuterLoop(MCB);
744 else if (Option.compare_lower("mem_noshuf") == 0)
745 HexagonMCInstrInfo::setMemReorderDisabled(MCB);
746 else if (Option.compare_lower("mem_shuf") == 0)
747 HexagonMCInstrInfo::setMemStoreReorderEnabled(MCB);
748 else
749 return true;
750 Lexer.Lex();
751 }
752}
753
754// For instruction aliases, immediates are generated rather than
755// MCConstantExpr. Convert them for uniform MCExpr.
756// Also check for signed/unsigned mismatches and warn
757void HexagonAsmParser::canonicalizeImmediates(MCInst &MCI) {
758 MCInst NewInst;
759 NewInst.setOpcode(MCI.getOpcode());
760 for (MCOperand &I : MCI)
761 if (I.isImm()) {
762 int64_t Value (I.getImm());
763 if ((Value & 0x100000000) != (Value & 0x80000000)) {
764 // Detect flipped bit 33 wrt bit 32 and signal warning
765 Value ^= 0x100000000;
766 if (WarnSignedMismatch)
767 Warning (MCI.getLoc(), "Signed/Unsigned mismatch");
768 }
769 NewInst.addOperand(MCOperand::createExpr(
770 MCConstantExpr::create(Value, getContext())));
771 }
772 else
773 NewInst.addOperand(I);
774 MCI = NewInst;
775}
776
777bool HexagonAsmParser::matchOneInstruction(MCInst &MCI, SMLoc IDLoc,
778 OperandVector &InstOperands,
779 uint64_t &ErrorInfo,
780 bool MatchingInlineAsm,
781 bool &MustExtend) {
782 // Perform matching with tablegen asmmatcher generated function
783 int result =
784 MatchInstructionImpl(InstOperands, MCI, ErrorInfo, MatchingInlineAsm);
785 if (result == Match_Success) {
786 MCI.setLoc(IDLoc);
787 MustExtend = mustExtend(InstOperands);
788 canonicalizeImmediates(MCI);
789 result = processInstruction(MCI, InstOperands, IDLoc, MustExtend);
790
791 DEBUG(dbgs() << "Insn:");
792 DEBUG(MCI.dump_pretty(dbgs()));
793 DEBUG(dbgs() << "\n\n");
794
795 MCI.setLoc(IDLoc);
796 }
797
798 // Create instruction operand for bundle instruction
799 // Break this into a separate function Code here is less readable
800 // Think about how to get an instruction error to report correctly.
801 // SMLoc will return the "{"
802 switch (result) {
803 default:
804 break;
805 case Match_Success:
806 return false;
807 case Match_MissingFeature:
808 return Error(IDLoc, "invalid instruction");
809 case Match_MnemonicFail:
810 return Error(IDLoc, "unrecognized instruction");
811 case Match_InvalidOperand:
812 SMLoc ErrorLoc = IDLoc;
813 if (ErrorInfo != ~0U) {
814 if (ErrorInfo >= InstOperands.size())
815 return Error(IDLoc, "too few operands for instruction");
816
817 ErrorLoc = (static_cast<HexagonOperand *>(InstOperands[ErrorInfo].get()))
818 ->getStartLoc();
819 if (ErrorLoc == SMLoc())
820 ErrorLoc = IDLoc;
821 }
822 return Error(ErrorLoc, "invalid operand for instruction");
823 }
824 llvm_unreachable("Implement any new match types added!");
825}
826
827bool HexagonAsmParser::mustExtend(OperandVector &Operands) {
828 unsigned Count = 0;
829 for (std::unique_ptr<MCParsedAsmOperand> &i : Operands)
830 if (i->isImm())
831 if (static_cast<HexagonOperand *>(i.get())->Imm.MustExtend)
832 ++Count;
833 // Multiple extenders should have been filtered by iss9Ext et. al.
834 assert(Count < 2 && "Multiple extenders");
835 return Count == 1;
836}
837
838bool HexagonAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
839 OperandVector &Operands,
840 MCStreamer &Out,
841 uint64_t &ErrorInfo,
842 bool MatchingInlineAsm) {
843 if (!InBrackets) {
844 MCB.clear();
845 MCB.addOperand(MCOperand::createImm(0));
846 }
847 HexagonOperand &FirstOperand = static_cast<HexagonOperand &>(*Operands[0]);
848 if (FirstOperand.isToken() && FirstOperand.getToken() == "{") {
849 assert(Operands.size() == 1 && "Brackets should be by themselves");
850 if (InBrackets) {
851 getParser().Error(IDLoc, "Already in a packet");
852 return true;
853 }
854 InBrackets = true;
855 return false;
856 }
857 if (FirstOperand.isToken() && FirstOperand.getToken() == "}") {
858 assert(Operands.size() == 1 && "Brackets should be by themselves");
859 if (!InBrackets) {
860 getParser().Error(IDLoc, "Not in a packet");
861 return true;
862 }
863 InBrackets = false;
864 if (matchBundleOptions())
865 return true;
866 return finishBundle(IDLoc, Out);
867 }
868 MCInst *SubInst = new (getParser().getContext()) MCInst;
869 bool MustExtend = false;
870 if (matchOneInstruction(*SubInst, IDLoc, Operands, ErrorInfo,
871 MatchingInlineAsm, MustExtend))
872 return true;
873 HexagonMCInstrInfo::extendIfNeeded(
874 MCII, MCB, *SubInst,
875 HexagonMCInstrInfo::isExtended(MCII, *SubInst) || MustExtend);
876 MCB.addOperand(MCOperand::createInst(SubInst));
877 if (!InBrackets)
878 return finishBundle(IDLoc, Out);
879 return false;
880}
881
882/// ParseDirective parses the Hexagon specific directives
883bool HexagonAsmParser::ParseDirective(AsmToken DirectiveID) {
884 StringRef IDVal = DirectiveID.getIdentifier();
885 if ((IDVal.lower() == ".word") || (IDVal.lower() == ".4byte"))
886 return ParseDirectiveValue(4, DirectiveID.getLoc());
887 if (IDVal.lower() == ".short" || IDVal.lower() == ".hword" ||
888 IDVal.lower() == ".half")
889 return ParseDirectiveValue(2, DirectiveID.getLoc());
890 if (IDVal.lower() == ".falign")
891 return ParseDirectiveFalign(256, DirectiveID.getLoc());
892 if ((IDVal.lower() == ".lcomm") || (IDVal.lower() == ".lcommon"))
893 return ParseDirectiveComm(true, DirectiveID.getLoc());
894 if ((IDVal.lower() == ".comm") || (IDVal.lower() == ".common"))
895 return ParseDirectiveComm(false, DirectiveID.getLoc());
896 if (IDVal.lower() == ".subsection")
897 return ParseDirectiveSubsection(DirectiveID.getLoc());
898
899 return true;
900}
901bool HexagonAsmParser::ParseDirectiveSubsection(SMLoc L) {
902 const MCExpr *Subsection = 0;
903 int64_t Res;
904
905 assert((getLexer().isNot(AsmToken::EndOfStatement)) &&
906 "Invalid subsection directive");
907 getParser().parseExpression(Subsection);
908
909 if (!Subsection->evaluateAsAbsolute(Res))
910 return Error(L, "Cannot evaluate subsection number");
911
912 if (getLexer().isNot(AsmToken::EndOfStatement))
913 return TokError("unexpected token in directive");
914
915 // 0-8192 is the hard-coded range in MCObjectStreamper.cpp, this keeps the
916 // negative subsections together and in the same order but at the opposite
917 // end of the section. Only legacy hexagon-gcc created assembly code
918 // used negative subsections.
919 if ((Res < 0) && (Res > -8193))
920 Subsection = MCConstantExpr::create(8192 + Res, this->getContext());
921
922 getStreamer().SubSection(Subsection);
923 return false;
924}
925
926/// ::= .falign [expression]
927bool HexagonAsmParser::ParseDirectiveFalign(unsigned Size, SMLoc L) {
928
929 int64_t MaxBytesToFill = 15;
930
931 // if there is an arguement
932 if (getLexer().isNot(AsmToken::EndOfStatement)) {
933 const MCExpr *Value;
934 SMLoc ExprLoc = L;
935
936 // Make sure we have a number (false is returned if expression is a number)
937 if (getParser().parseExpression(Value) == false) {
938 // Make sure this is a number that is in range
939 const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(Value);
940 uint64_t IntValue = MCE->getValue();
941 if (!isUIntN(Size, IntValue) && !isIntN(Size, IntValue))
942 return Error(ExprLoc, "literal value out of range (256) for falign");
943 MaxBytesToFill = IntValue;
944 Lex();
945 } else {
946 return Error(ExprLoc, "not a valid expression for falign directive");
947 }
948 }
949
950 getTargetStreamer().emitFAlign(16, MaxBytesToFill);
951 Lex();
952
953 return false;
954}
955
956/// ::= .word [ expression (, expression)* ]
957bool HexagonAsmParser::ParseDirectiveValue(unsigned Size, SMLoc L) {
958 if (getLexer().isNot(AsmToken::EndOfStatement)) {
959
960 for (;;) {
961 const MCExpr *Value;
962 SMLoc ExprLoc = L;
963 if (getParser().parseExpression(Value))
964 return true;
965
966 // Special case constant expressions to match code generator.
967 if (const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(Value)) {
968 assert(Size <= 8 && "Invalid size");
969 uint64_t IntValue = MCE->getValue();
970 if (!isUIntN(8 * Size, IntValue) && !isIntN(8 * Size, IntValue))
971 return Error(ExprLoc, "literal value out of range for directive");
972 getStreamer().EmitIntValue(IntValue, Size);
973 } else
974 getStreamer().EmitValue(Value, Size);
975
976 if (getLexer().is(AsmToken::EndOfStatement))
977 break;
978
979 // FIXME: Improve diagnostic.
980 if (getLexer().isNot(AsmToken::Comma))
981 return TokError("unexpected token in directive");
982 Lex();
983 }
984 }
985
986 Lex();
987 return false;
988}
989
990// This is largely a copy of AsmParser's ParseDirectiveComm extended to
991// accept a 3rd argument, AccessAlignment which indicates the smallest
992// memory access made to the symbol, expressed in bytes. If no
993// AccessAlignment is specified it defaults to the Alignment Value.
994// Hexagon's .lcomm:
995// .lcomm Symbol, Length, Alignment, AccessAlignment
996bool HexagonAsmParser::ParseDirectiveComm(bool IsLocal, SMLoc Loc) {
997 // FIXME: need better way to detect if AsmStreamer (upstream removed
998 // getKind())
999 if (getStreamer().hasRawTextSupport())
1000 return true; // Only object file output requires special treatment.
1001
1002 StringRef Name;
1003 if (getParser().parseIdentifier(Name))
1004 return TokError("expected identifier in directive");
1005 // Handle the identifier as the key symbol.
1006 MCSymbol *Sym = getContext().getOrCreateSymbol(Name);
1007
1008 if (getLexer().isNot(AsmToken::Comma))
1009 return TokError("unexpected token in directive");
1010 Lex();
1011
1012 int64_t Size;
1013 SMLoc SizeLoc = getLexer().getLoc();
1014 if (getParser().parseAbsoluteExpression(Size))
1015 return true;
1016
1017 int64_t ByteAlignment = 1;
1018 SMLoc ByteAlignmentLoc;
1019 if (getLexer().is(AsmToken::Comma)) {
1020 Lex();
1021 ByteAlignmentLoc = getLexer().getLoc();
1022 if (getParser().parseAbsoluteExpression(ByteAlignment))
1023 return true;
1024 if (!isPowerOf2_64(ByteAlignment))
1025 return Error(ByteAlignmentLoc, "alignment must be a power of 2");
1026 }
1027
1028 int64_t AccessAlignment = 0;
1029 if (getLexer().is(AsmToken::Comma)) {
1030 // The optional access argument specifies the size of the smallest memory
1031 // access to be made to the symbol, expressed in bytes.
1032 SMLoc AccessAlignmentLoc;
1033 Lex();
1034 AccessAlignmentLoc = getLexer().getLoc();
1035 if (getParser().parseAbsoluteExpression(AccessAlignment))
1036 return true;
1037
1038 if (!isPowerOf2_64(AccessAlignment))
1039 return Error(AccessAlignmentLoc, "access alignment must be a power of 2");
1040 }
1041
1042 if (getLexer().isNot(AsmToken::EndOfStatement))
1043 return TokError("unexpected token in '.comm' or '.lcomm' directive");
1044
1045 Lex();
1046
1047 // NOTE: a size of zero for a .comm should create a undefined symbol
1048 // but a size of .lcomm creates a bss symbol of size zero.
1049 if (Size < 0)
1050 return Error(SizeLoc, "invalid '.comm' or '.lcomm' directive size, can't "
1051 "be less than zero");
1052
1053 // NOTE: The alignment in the directive is a power of 2 value, the assembler
1054 // may internally end up wanting an alignment in bytes.
1055 // FIXME: Diagnose overflow.
1056 if (ByteAlignment < 0)
1057 return Error(ByteAlignmentLoc, "invalid '.comm' or '.lcomm' directive "
1058 "alignment, can't be less than zero");
1059
1060 if (!Sym->isUndefined())
1061 return Error(Loc, "invalid symbol redefinition");
1062
1063 HexagonMCELFStreamer &HexagonELFStreamer =
1064 static_cast<HexagonMCELFStreamer &>(getStreamer());
1065 if (IsLocal) {
1066 HexagonELFStreamer.HexagonMCEmitLocalCommonSymbol(Sym, Size, ByteAlignment,
1067 AccessAlignment);
1068 return false;
1069 }
1070
1071 HexagonELFStreamer.HexagonMCEmitCommonSymbol(Sym, Size, ByteAlignment,
1072 AccessAlignment);
1073 return false;
1074}
1075
1076// validate register against architecture
1077bool HexagonAsmParser::RegisterMatchesArch(unsigned MatchNum) const {
1078 return true;
1079}
1080
1081// extern "C" void LLVMInitializeHexagonAsmLexer();
1082
1083/// Force static initialization.
1084extern "C" void LLVMInitializeHexagonAsmParser() {
1085 RegisterMCAsmParser<HexagonAsmParser> X(TheHexagonTarget);
1086}
1087
1088#define GET_MATCHER_IMPLEMENTATION
1089#define GET_REGISTER_MATCHER
1090#include "HexagonGenAsmMatcher.inc"
1091
1092namespace {
1093bool previousEqual(OperandVector &Operands, size_t Index, StringRef String) {
1094 if (Index >= Operands.size())
1095 return false;
1096 MCParsedAsmOperand &Operand = *Operands[Operands.size() - Index - 1];
1097 if (!Operand.isToken())
1098 return false;
1099 return static_cast<HexagonOperand &>(Operand).getToken().equals_lower(String);
1100}
1101bool previousIsLoop(OperandVector &Operands, size_t Index) {
1102 return previousEqual(Operands, Index, "loop0") ||
1103 previousEqual(Operands, Index, "loop1") ||
1104 previousEqual(Operands, Index, "sp1loop0") ||
1105 previousEqual(Operands, Index, "sp2loop0") ||
1106 previousEqual(Operands, Index, "sp3loop0");
1107}
1108}
1109
1110bool HexagonAsmParser::splitIdentifier(OperandVector &Operands) {
1111 AsmToken const &Token = getParser().getTok();
1112 StringRef String = Token.getString();
1113 SMLoc Loc = Token.getLoc();
1114 getLexer().Lex();
1115 do {
1116 std::pair<StringRef, StringRef> HeadTail = String.split('.');
1117 if (!HeadTail.first.empty())
1118 Operands.push_back(HexagonOperand::CreateToken(HeadTail.first, Loc));
1119 if (!HeadTail.second.empty())
1120 Operands.push_back(HexagonOperand::CreateToken(
1121 String.substr(HeadTail.first.size(), 1), Loc));
1122 String = HeadTail.second;
1123 } while (!String.empty());
1124 return false;
1125}
1126
1127bool HexagonAsmParser::parseOperand(OperandVector &Operands) {
1128 unsigned Register;
1129 SMLoc Begin;
1130 SMLoc End;
1131 MCAsmLexer &Lexer = getLexer();
1132 if (!ParseRegister(Register, Begin, End)) {
1133 if (!ErrorMissingParenthesis)
1134 switch (Register) {
1135 default:
1136 break;
1137 case Hexagon::P0:
1138 case Hexagon::P1:
1139 case Hexagon::P2:
1140 case Hexagon::P3:
1141 if (previousEqual(Operands, 0, "if")) {
1142 if (WarnMissingParenthesis)
1143 Warning (Begin, "Missing parenthesis around predicate register");
1144 static char const *LParen = "(";
1145 static char const *RParen = ")";
1146 Operands.push_back(HexagonOperand::CreateToken(LParen, Begin));
1147 Operands.push_back(HexagonOperand::CreateReg(Register, Begin, End));
1148 AsmToken MaybeDotNew = Lexer.getTok();
1149 if (MaybeDotNew.is(AsmToken::TokenKind::Identifier) &&
1150 MaybeDotNew.getString().equals_lower(".new"))
1151 splitIdentifier(Operands);
1152 Operands.push_back(HexagonOperand::CreateToken(RParen, Begin));
1153 return false;
1154 }
1155 if (previousEqual(Operands, 0, "!") &&
1156 previousEqual(Operands, 1, "if")) {
1157 if (WarnMissingParenthesis)
1158 Warning (Begin, "Missing parenthesis around predicate register");
1159 static char const *LParen = "(";
1160 static char const *RParen = ")";
1161 Operands.insert(Operands.end () - 1,
1162 HexagonOperand::CreateToken(LParen, Begin));
1163 Operands.push_back(HexagonOperand::CreateReg(Register, Begin, End));
1164 AsmToken MaybeDotNew = Lexer.getTok();
1165 if (MaybeDotNew.is(AsmToken::TokenKind::Identifier) &&
1166 MaybeDotNew.getString().equals_lower(".new"))
1167 splitIdentifier(Operands);
1168 Operands.push_back(HexagonOperand::CreateToken(RParen, Begin));
1169 return false;
1170 }
1171 break;
1172 }
1173 Operands.push_back(HexagonOperand::CreateReg(
1174 Register, Begin, End));
1175 return false;
1176 }
1177 return splitIdentifier(Operands);
1178}
1179
1180bool HexagonAsmParser::isLabel(AsmToken &Token) {
1181 MCAsmLexer &Lexer = getLexer();
1182 AsmToken const &Second = Lexer.getTok();
1183 AsmToken Third = Lexer.peekTok();
1184 StringRef String = Token.getString();
1185 if (Token.is(AsmToken::TokenKind::LCurly) ||
1186 Token.is(AsmToken::TokenKind::RCurly))
1187 return false;
1188 if (!Token.is(AsmToken::TokenKind::Identifier))
1189 return true;
1190 if (!MatchRegisterName(String.lower()))
1191 return true;
Colin LeMahieu775d7ad2015-11-09 05:47:56 +00001192 assert(Second.is(AsmToken::Colon)); (void)Second;
Colin LeMahieu7cd08922015-11-09 04:07:48 +00001193 StringRef Raw (String.data(), Third.getString().data() - String.data() +
1194 Third.getString().size());
1195 std::string Collapsed = Raw;
1196 Collapsed.erase(std::remove_if(Collapsed.begin(), Collapsed.end(), isspace),
1197 Collapsed.end());
1198 StringRef Whole = Collapsed;
1199 std::pair<StringRef, StringRef> DotSplit = Whole.split('.');
1200 if (!MatchRegisterName(DotSplit.first.lower()))
1201 return true;
1202 return false;
1203}
1204
1205bool HexagonAsmParser::handleNoncontigiousRegister(bool Contigious, SMLoc &Loc) {
1206 if (!Contigious && ErrorNoncontigiousRegister) {
1207 Error(Loc, "Register name is not contigious");
1208 return true;
1209 }
1210 if (!Contigious && WarnNoncontigiousRegister)
1211 Warning(Loc, "Register name is not contigious");
1212 return false;
1213}
1214
1215bool HexagonAsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) {
1216 MCAsmLexer &Lexer = getLexer();
1217 StartLoc = getLexer().getLoc();
1218 SmallVector<AsmToken, 5> Lookahead;
1219 StringRef RawString(Lexer.getTok().getString().data(), 0);
1220 bool Again = Lexer.is(AsmToken::Identifier);
1221 bool NeededWorkaround = false;
1222 while (Again) {
1223 AsmToken const &Token = Lexer.getTok();
1224 RawString = StringRef(RawString.data(),
1225 Token.getString().data() - RawString.data () +
1226 Token.getString().size());
1227 Lookahead.push_back(Token);
1228 Lexer.Lex();
1229 bool Contigious = Lexer.getTok().getString().data() ==
1230 Lookahead.back().getString().data() +
1231 Lookahead.back().getString().size();
1232 bool Type = Lexer.is(AsmToken::Identifier) || Lexer.is(AsmToken::Dot) ||
1233 Lexer.is(AsmToken::Integer) || Lexer.is(AsmToken::Real) ||
1234 Lexer.is(AsmToken::Colon);
1235 bool Workaround = Lexer.is(AsmToken::Colon) ||
1236 Lookahead.back().is(AsmToken::Colon);
1237 Again = (Contigious && Type) || (Workaround && Type);
1238 NeededWorkaround = NeededWorkaround || (Again && !(Contigious && Type));
1239 }
1240 std::string Collapsed = RawString;
1241 Collapsed.erase(std::remove_if(Collapsed.begin(), Collapsed.end(), isspace),
1242 Collapsed.end());
1243 StringRef FullString = Collapsed;
1244 std::pair<StringRef, StringRef> DotSplit = FullString.split('.');
1245 unsigned DotReg = MatchRegisterName(DotSplit.first.lower());
1246 if (DotReg != Hexagon::NoRegister && RegisterMatchesArch(DotReg)) {
1247 if (DotSplit.second.empty()) {
1248 RegNo = DotReg;
1249 EndLoc = Lexer.getLoc();
1250 if (handleNoncontigiousRegister(!NeededWorkaround, StartLoc))
1251 return true;
1252 return false;
1253 } else {
1254 RegNo = DotReg;
1255 size_t First = RawString.find('.');
1256 StringRef DotString (RawString.data() + First, RawString.size() - First);
1257 Lexer.UnLex(AsmToken(AsmToken::Identifier, DotString));
1258 EndLoc = Lexer.getLoc();
1259 if (handleNoncontigiousRegister(!NeededWorkaround, StartLoc))
1260 return true;
1261 return false;
1262 }
1263 }
1264 std::pair<StringRef, StringRef> ColonSplit = StringRef(FullString).split(':');
1265 unsigned ColonReg = MatchRegisterName(ColonSplit.first.lower());
1266 if (ColonReg != Hexagon::NoRegister && RegisterMatchesArch(DotReg)) {
1267 Lexer.UnLex(Lookahead.back());
1268 Lookahead.pop_back();
1269 Lexer.UnLex(Lookahead.back());
1270 Lookahead.pop_back();
1271 RegNo = ColonReg;
1272 EndLoc = Lexer.getLoc();
1273 if (handleNoncontigiousRegister(!NeededWorkaround, StartLoc))
1274 return true;
1275 return false;
1276 }
1277 while (!Lookahead.empty()) {
1278 Lexer.UnLex(Lookahead.back());
1279 Lookahead.pop_back();
1280 }
1281 return true;
1282}
1283
1284bool HexagonAsmParser::implicitExpressionLocation(OperandVector &Operands) {
1285 if (previousEqual(Operands, 0, "call"))
1286 return true;
1287 if (previousEqual(Operands, 0, "jump"))
1288 if (!getLexer().getTok().is(AsmToken::Colon))
1289 return true;
1290 if (previousEqual(Operands, 0, "(") && previousIsLoop(Operands, 1))
1291 return true;
1292 if (previousEqual(Operands, 1, ":") && previousEqual(Operands, 2, "jump") &&
1293 (previousEqual(Operands, 0, "nt") || previousEqual(Operands, 0, "t")))
1294 return true;
1295 return false;
1296}
1297
1298bool HexagonAsmParser::parseExpression(MCExpr const *& Expr) {
1299 llvm::SmallVector<AsmToken, 4> Tokens;
1300 MCAsmLexer &Lexer = getLexer();
1301 bool Done = false;
1302 static char const * Comma = ",";
1303 do {
1304 Tokens.emplace_back (Lexer.getTok());
1305 Lexer.Lex();
1306 switch (Tokens.back().getKind())
1307 {
1308 case AsmToken::TokenKind::Hash:
1309 if (Tokens.size () > 1)
1310 if ((Tokens.end () - 2)->getKind() == AsmToken::TokenKind::Plus) {
1311 Tokens.insert(Tokens.end() - 2,
1312 AsmToken(AsmToken::TokenKind::Comma, Comma));
1313 Done = true;
1314 }
1315 break;
1316 case AsmToken::TokenKind::RCurly:
1317 case AsmToken::TokenKind::EndOfStatement:
1318 case AsmToken::TokenKind::Eof:
1319 Done = true;
1320 break;
1321 default:
1322 break;
1323 }
1324 } while (!Done);
1325 while (!Tokens.empty()) {
1326 Lexer.UnLex(Tokens.back());
1327 Tokens.pop_back();
1328 }
1329 return getParser().parseExpression(Expr);
1330}
1331
1332bool HexagonAsmParser::parseExpressionOrOperand(OperandVector &Operands) {
1333 if (implicitExpressionLocation(Operands)) {
1334 MCAsmParser &Parser = getParser();
1335 SMLoc Loc = Parser.getLexer().getLoc();
1336 std::unique_ptr<HexagonOperand> Expr =
1337 HexagonOperand::CreateImm(nullptr, Loc, Loc);
1338 MCExpr const *& Val = Expr->Imm.Val;
1339 Operands.push_back(std::move(Expr));
1340 return parseExpression(Val);
1341 }
1342 return parseOperand(Operands);
1343}
1344
1345/// Parse an instruction.
1346bool HexagonAsmParser::parseInstruction(OperandVector &Operands) {
1347 MCAsmParser &Parser = getParser();
1348 MCAsmLexer &Lexer = getLexer();
1349 while (true) {
1350 AsmToken const &Token = Parser.getTok();
1351 switch (Token.getKind()) {
1352 case AsmToken::EndOfStatement: {
1353 Lexer.Lex();
1354 return false;
1355 }
1356 case AsmToken::LCurly: {
1357 if (!Operands.empty())
1358 return true;
1359 Operands.push_back(
1360 HexagonOperand::CreateToken(Token.getString(), Token.getLoc()));
1361 Lexer.Lex();
1362 return false;
1363 }
1364 case AsmToken::RCurly: {
1365 if (Operands.empty()) {
1366 Operands.push_back(
1367 HexagonOperand::CreateToken(Token.getString(), Token.getLoc()));
1368 Lexer.Lex();
1369 }
1370 return false;
1371 }
1372 case AsmToken::Comma: {
1373 Lexer.Lex();
1374 continue;
1375 }
1376 case AsmToken::EqualEqual:
1377 case AsmToken::ExclaimEqual:
1378 case AsmToken::GreaterEqual:
1379 case AsmToken::GreaterGreater:
1380 case AsmToken::LessEqual:
1381 case AsmToken::LessLess: {
1382 Operands.push_back(HexagonOperand::CreateToken(
1383 Token.getString().substr(0, 1), Token.getLoc()));
1384 Operands.push_back(HexagonOperand::CreateToken(
1385 Token.getString().substr(1, 1), Token.getLoc()));
1386 Lexer.Lex();
1387 continue;
1388 }
1389 case AsmToken::Hash: {
1390 bool MustNotExtend = false;
1391 bool ImplicitExpression = implicitExpressionLocation(Operands);
1392 std::unique_ptr<HexagonOperand> Expr = HexagonOperand::CreateImm(
1393 nullptr, Lexer.getLoc(), Lexer.getLoc());
1394 if (!ImplicitExpression)
1395 Operands.push_back(
1396 HexagonOperand::CreateToken(Token.getString(), Token.getLoc()));
1397 Lexer.Lex();
1398 bool MustExtend = false;
1399 bool HiOnly = false;
1400 bool LoOnly = false;
1401 if (Lexer.is(AsmToken::Hash)) {
1402 Lexer.Lex();
1403 MustExtend = true;
1404 } else if (ImplicitExpression)
1405 MustNotExtend = true;
1406 AsmToken const &Token = Parser.getTok();
1407 if (Token.is(AsmToken::Identifier)) {
1408 StringRef String = Token.getString();
1409 AsmToken IDToken = Token;
1410 if (String.lower() == "hi") {
1411 HiOnly = true;
1412 } else if (String.lower() == "lo") {
1413 LoOnly = true;
1414 }
1415 if (HiOnly || LoOnly) {
1416 AsmToken LParen = Lexer.peekTok();
1417 if (!LParen.is(AsmToken::LParen)) {
1418 HiOnly = false;
1419 LoOnly = false;
1420 } else {
1421 Lexer.Lex();
1422 }
1423 }
1424 }
1425 if (parseExpression(Expr->Imm.Val))
1426 return true;
1427 int64_t Value;
1428 MCContext &Context = Parser.getContext();
1429 assert(Expr->Imm.Val != nullptr);
1430 if (Expr->Imm.Val->evaluateAsAbsolute(Value)) {
1431 if (HiOnly)
1432 Expr->Imm.Val = MCBinaryExpr::createLShr(
1433 Expr->Imm.Val, MCConstantExpr::create(16, Context), Context);
1434 if (HiOnly || LoOnly)
1435 Expr->Imm.Val = MCBinaryExpr::createAnd(
1436 Expr->Imm.Val, MCConstantExpr::create(0xffff, Context), Context);
1437 }
1438 if (MustNotExtend)
1439 Expr->Imm.Val = HexagonNoExtendOperand::Create(Expr->Imm.Val, Context);
1440 Expr->Imm.MustExtend = MustExtend;
1441 Operands.push_back(std::move(Expr));
1442 continue;
1443 }
1444 default:
1445 break;
1446 }
1447 if (parseExpressionOrOperand(Operands))
1448 return true;
1449 }
1450}
1451
1452bool HexagonAsmParser::ParseInstruction(ParseInstructionInfo &Info,
1453 StringRef Name,
1454 AsmToken ID,
1455 OperandVector &Operands) {
1456 getLexer().UnLex(ID);
1457 return parseInstruction(Operands);
1458}
1459
1460namespace {
1461MCInst makeCombineInst(int opCode, MCOperand &Rdd,
1462 MCOperand &MO1, MCOperand &MO2) {
1463 MCInst TmpInst;
1464 TmpInst.setOpcode(opCode);
1465 TmpInst.addOperand(Rdd);
1466 TmpInst.addOperand(MO1);
1467 TmpInst.addOperand(MO2);
1468
1469 return TmpInst;
1470}
1471}
1472
1473// Define this matcher function after the auto-generated include so we
1474// have the match class enum definitions.
1475unsigned HexagonAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp,
1476 unsigned Kind) {
1477 HexagonOperand *Op = static_cast<HexagonOperand *>(&AsmOp);
1478
1479 switch (Kind) {
1480 case MCK_0: {
1481 int64_t Value;
1482 return Op->isImm() && Op->Imm.Val->evaluateAsAbsolute(Value) && Value == 0
1483 ? Match_Success
1484 : Match_InvalidOperand;
1485 }
1486 case MCK_1: {
1487 int64_t Value;
1488 return Op->isImm() && Op->Imm.Val->evaluateAsAbsolute(Value) && Value == 1
1489 ? Match_Success
1490 : Match_InvalidOperand;
1491 }
1492 case MCK__MINUS_1: {
1493 int64_t Value;
1494 return Op->isImm() && Op->Imm.Val->evaluateAsAbsolute(Value) && Value == -1
1495 ? Match_Success
1496 : Match_InvalidOperand;
1497 }
1498 }
1499 if (Op->Kind == HexagonOperand::Token && Kind != InvalidMatchClass) {
1500 StringRef myStringRef = StringRef(Op->Tok.Data, Op->Tok.Length);
1501 if (matchTokenString(myStringRef.lower()) == (MatchClassKind)Kind)
1502 return Match_Success;
1503 if (matchTokenString(myStringRef.upper()) == (MatchClassKind)Kind)
1504 return Match_Success;
1505 }
1506
1507 DEBUG(dbgs() << "Unmatched Operand:");
1508 DEBUG(Op->dump());
1509 DEBUG(dbgs() << "\n");
1510
1511 return Match_InvalidOperand;
1512}
1513
1514void HexagonAsmParser::OutOfRange(SMLoc IDLoc, long long Val, long long Max) {
1515 std::stringstream errStr;
1516 errStr << "value " << Val << "(0x" << std::hex << Val << std::dec
1517 << ") out of range: ";
1518 if (Max >= 0)
1519 errStr << "0-" << Max;
1520 else
1521 errStr << Max << "-" << (-Max - 1);
1522 Error(IDLoc, errStr.str().c_str());
1523}
1524
1525int HexagonAsmParser::processInstruction(MCInst &Inst,
1526 OperandVector const &Operands,
1527 SMLoc IDLoc, bool &MustExtend) {
1528 MCContext &Context = getParser().getContext();
1529 const MCRegisterInfo *RI = getContext().getRegisterInfo();
1530 std::string r = "r";
1531 std::string v = "v";
1532 std::string Colon = ":";
1533
1534 bool is32bit = false; // used to distinguish between CONST32 and CONST64
1535 switch (Inst.getOpcode()) {
1536 default:
1537 break;
1538
1539 case Hexagon::M4_mpyrr_addr:
1540 case Hexagon::S4_addi_asl_ri:
1541 case Hexagon::S4_addi_lsr_ri:
1542 case Hexagon::S4_andi_asl_ri:
1543 case Hexagon::S4_andi_lsr_ri:
1544 case Hexagon::S4_ori_asl_ri:
1545 case Hexagon::S4_ori_lsr_ri:
1546 case Hexagon::S4_or_andix:
1547 case Hexagon::S4_subi_asl_ri:
1548 case Hexagon::S4_subi_lsr_ri: {
1549 MCOperand &Ry = Inst.getOperand(0);
1550 MCOperand &src = Inst.getOperand(2);
1551 if (RI->getEncodingValue(Ry.getReg()) != RI->getEncodingValue(src.getReg()))
1552 return Match_InvalidOperand;
1553 break;
1554 }
1555
1556 case Hexagon::C2_cmpgei: {
1557 MCOperand &MO = Inst.getOperand(2);
1558 MO.setExpr(MCBinaryExpr::createSub(
1559 MO.getExpr(), MCConstantExpr::create(1, Context), Context));
1560 Inst.setOpcode(Hexagon::C2_cmpgti);
1561 break;
1562 }
1563
1564 case Hexagon::C2_cmpgeui: {
1565 MCOperand &MO = Inst.getOperand(2);
1566 int64_t Value;
1567 bool Success = MO.getExpr()->evaluateAsAbsolute(Value);
Colin LeMahieu775d7ad2015-11-09 05:47:56 +00001568 assert(Success && "Assured by matcher"); (void)Success;
Colin LeMahieu7cd08922015-11-09 04:07:48 +00001569 if (Value == 0) {
1570 MCInst TmpInst;
1571 MCOperand &Pd = Inst.getOperand(0);
1572 MCOperand &Rt = Inst.getOperand(1);
1573 TmpInst.setOpcode(Hexagon::C2_cmpeq);
1574 TmpInst.addOperand(Pd);
1575 TmpInst.addOperand(Rt);
1576 TmpInst.addOperand(Rt);
1577 Inst = TmpInst;
1578 } else {
1579 MO.setExpr(MCBinaryExpr::createSub(
1580 MO.getExpr(), MCConstantExpr::create(1, Context), Context));
1581 Inst.setOpcode(Hexagon::C2_cmpgtui);
1582 }
1583 break;
1584 }
1585 case Hexagon::J2_loop1r:
1586 case Hexagon::J2_loop1i:
1587 case Hexagon::J2_loop0r:
1588 case Hexagon::J2_loop0i: {
1589 MCOperand &MO = Inst.getOperand(0);
1590 // Loop has different opcodes for extended vs not extended, but we should
1591 // not use the other opcode as it is a legacy artifact of TD files.
1592 int64_t Value;
1593 if (MO.getExpr()->evaluateAsAbsolute(Value)) {
1594 // if the the operand can fit within a 7:2 field
1595 if (Value < (1 << 8) && Value >= -(1 << 8)) {
1596 SMLoc myLoc = Operands[2]->getStartLoc();
1597 // # is left in startLoc in the case of ##
1598 // If '##' found then force extension.
1599 if (*myLoc.getPointer() == '#') {
1600 MustExtend = true;
1601 break;
1602 }
1603 } else {
1604 // If immediate and out of 7:2 range.
1605 MustExtend = true;
1606 }
1607 }
1608 break;
1609 }
1610
1611 // Translate a "$Rdd = $Rss" to "$Rdd = combine($Rs, $Rt)"
1612 case Hexagon::A2_tfrp: {
1613 MCOperand &MO = Inst.getOperand(1);
1614 unsigned int RegPairNum = RI->getEncodingValue(MO.getReg());
1615 std::string R1 = r + llvm::utostr_32(RegPairNum + 1);
1616 StringRef Reg1(R1);
1617 MO.setReg(MatchRegisterName(Reg1));
1618 // Add a new operand for the second register in the pair.
1619 std::string R2 = r + llvm::utostr_32(RegPairNum);
1620 StringRef Reg2(R2);
1621 Inst.addOperand(MCOperand::createReg(MatchRegisterName(Reg2)));
1622 Inst.setOpcode(Hexagon::A2_combinew);
1623 break;
1624 }
1625
1626 case Hexagon::A2_tfrpt:
1627 case Hexagon::A2_tfrpf: {
1628 MCOperand &MO = Inst.getOperand(2);
1629 unsigned int RegPairNum = RI->getEncodingValue(MO.getReg());
1630 std::string R1 = r + llvm::utostr_32(RegPairNum + 1);
1631 StringRef Reg1(R1);
1632 MO.setReg(MatchRegisterName(Reg1));
1633 // Add a new operand for the second register in the pair.
1634 std::string R2 = r + llvm::utostr_32(RegPairNum);
1635 StringRef Reg2(R2);
1636 Inst.addOperand(MCOperand::createReg(MatchRegisterName(Reg2)));
1637 Inst.setOpcode((Inst.getOpcode() == Hexagon::A2_tfrpt)
1638 ? Hexagon::C2_ccombinewt
1639 : Hexagon::C2_ccombinewf);
1640 break;
1641 }
1642 case Hexagon::A2_tfrptnew:
1643 case Hexagon::A2_tfrpfnew: {
1644 MCOperand &MO = Inst.getOperand(2);
1645 unsigned int RegPairNum = RI->getEncodingValue(MO.getReg());
1646 std::string R1 = r + llvm::utostr_32(RegPairNum + 1);
1647 StringRef Reg1(R1);
1648 MO.setReg(MatchRegisterName(Reg1));
1649 // Add a new operand for the second register in the pair.
1650 std::string R2 = r + llvm::utostr_32(RegPairNum);
1651 StringRef Reg2(R2);
1652 Inst.addOperand(MCOperand::createReg(MatchRegisterName(Reg2)));
1653 Inst.setOpcode((Inst.getOpcode() == Hexagon::A2_tfrptnew)
1654 ? Hexagon::C2_ccombinewnewt
1655 : Hexagon::C2_ccombinewnewf);
1656 break;
1657 }
1658
1659 // Translate a "$Rx = CONST32(#imm)" to "$Rx = memw(gp+#LABEL) "
1660 case Hexagon::CONST32:
1661 case Hexagon::CONST32_Float_Real:
1662 case Hexagon::CONST32_Int_Real:
1663 case Hexagon::FCONST32_nsdata:
1664 is32bit = true;
1665 // Translate a "$Rx:y = CONST64(#imm)" to "$Rx:y = memd(gp+#LABEL) "
1666 case Hexagon::CONST64_Float_Real:
1667 case Hexagon::CONST64_Int_Real:
1668
1669 // FIXME: need better way to detect AsmStreamer (upstream removed getKind())
1670 if (!Parser.getStreamer().hasRawTextSupport()) {
1671 MCELFStreamer *MES = static_cast<MCELFStreamer *>(&Parser.getStreamer());
1672 MCOperand &MO_1 = Inst.getOperand(1);
1673 MCOperand &MO_0 = Inst.getOperand(0);
1674
1675 // push section onto section stack
1676 MES->PushSection();
1677
1678 std::string myCharStr;
1679 MCSectionELF *mySection;
1680
1681 // check if this as an immediate or a symbol
1682 int64_t Value;
1683 bool Absolute = MO_1.getExpr()->evaluateAsAbsolute(Value);
1684 if (Absolute) {
1685 // Create a new section - one for each constant
1686 // Some or all of the zeros are replaced with the given immediate.
1687 if (is32bit) {
1688 std::string myImmStr = utohexstr(static_cast<uint32_t>(Value));
1689 myCharStr = StringRef(".gnu.linkonce.l4.CONST_00000000")
1690 .drop_back(myImmStr.size())
1691 .str() +
1692 myImmStr;
1693 } else {
1694 std::string myImmStr = utohexstr(Value);
1695 myCharStr = StringRef(".gnu.linkonce.l8.CONST_0000000000000000")
1696 .drop_back(myImmStr.size())
1697 .str() +
1698 myImmStr;
1699 }
1700
1701 mySection = getContext().getELFSection(myCharStr, ELF::SHT_PROGBITS,
1702 ELF::SHF_ALLOC | ELF::SHF_WRITE);
1703 } else if (MO_1.isExpr()) {
1704 // .lita - for expressions
1705 myCharStr = ".lita";
1706 mySection = getContext().getELFSection(myCharStr, ELF::SHT_PROGBITS,
1707 ELF::SHF_ALLOC | ELF::SHF_WRITE);
1708 } else
1709 llvm_unreachable("unexpected type of machine operand!");
1710
1711 MES->SwitchSection(mySection);
1712 unsigned byteSize = is32bit ? 4 : 8;
1713 getStreamer().EmitCodeAlignment(byteSize, byteSize);
1714
1715 MCSymbol *Sym;
1716
1717 // for symbols, get rid of prepended ".gnu.linkonce.lx."
1718
1719 // emit symbol if needed
1720 if (Absolute) {
1721 Sym = getContext().getOrCreateSymbol(StringRef(myCharStr.c_str() + 16));
1722 if (Sym->isUndefined()) {
1723 getStreamer().EmitLabel(Sym);
1724 getStreamer().EmitSymbolAttribute(Sym, MCSA_Global);
1725 getStreamer().EmitIntValue(Value, byteSize);
1726 }
1727 } else if (MO_1.isExpr()) {
1728 const char *StringStart = 0;
1729 const char *StringEnd = 0;
1730 if (*Operands[4]->getStartLoc().getPointer() == '#') {
1731 StringStart = Operands[5]->getStartLoc().getPointer();
1732 StringEnd = Operands[6]->getStartLoc().getPointer();
1733 } else { // no pound
1734 StringStart = Operands[4]->getStartLoc().getPointer();
1735 StringEnd = Operands[5]->getStartLoc().getPointer();
1736 }
1737
1738 unsigned size = StringEnd - StringStart;
1739 std::string DotConst = ".CONST_";
1740 Sym = getContext().getOrCreateSymbol(DotConst +
1741 StringRef(StringStart, size));
1742
1743 if (Sym->isUndefined()) {
1744 // case where symbol is not yet defined: emit symbol
1745 getStreamer().EmitLabel(Sym);
1746 getStreamer().EmitSymbolAttribute(Sym, MCSA_Local);
1747 getStreamer().EmitValue(MO_1.getExpr(), 4);
1748 }
1749 } else
1750 llvm_unreachable("unexpected type of machine operand!");
1751
1752 MES->PopSection();
1753
1754 if (Sym) {
1755 MCInst TmpInst;
1756 if (is32bit) // 32 bit
1757 TmpInst.setOpcode(Hexagon::L2_loadrigp);
1758 else // 64 bit
1759 TmpInst.setOpcode(Hexagon::L2_loadrdgp);
1760
1761 TmpInst.addOperand(MO_0);
1762 TmpInst.addOperand(
1763 MCOperand::createExpr(MCSymbolRefExpr::create(Sym, getContext())));
1764 Inst = TmpInst;
1765 }
1766 }
1767 break;
1768
1769 // Translate a "$Rdd = #-imm" to "$Rdd = combine(#[-1,0], #-imm)"
1770 case Hexagon::A2_tfrpi: {
1771 MCOperand &Rdd = Inst.getOperand(0);
1772 MCOperand &MO = Inst.getOperand(1);
1773 int64_t Value;
1774 int sVal = (MO.getExpr()->evaluateAsAbsolute(Value) && Value < 0) ? -1 : 0;
1775 MCOperand imm(MCOperand::createExpr(MCConstantExpr::create(sVal, Context)));
1776 Inst = makeCombineInst(Hexagon::A2_combineii, Rdd, imm, MO);
1777 break;
1778 }
1779
1780 // Translate a "$Rdd = [#]#imm" to "$Rdd = combine(#, [#]#imm)"
1781 case Hexagon::TFRI64_V4: {
1782 MCOperand &Rdd = Inst.getOperand(0);
1783 MCOperand &MO = Inst.getOperand(1);
1784 int64_t Value;
1785 if (MO.getExpr()->evaluateAsAbsolute(Value)) {
1786 unsigned long long u64 = Value;
1787 signed int s8 = (u64 >> 32) & 0xFFFFFFFF;
1788 if (s8 < -128 || s8 > 127)
1789 OutOfRange(IDLoc, s8, -128);
1790 MCOperand imm(MCOperand::createExpr(
1791 MCConstantExpr::create(s8, Context))); // upper 32
1792 MCOperand imm2(MCOperand::createExpr(
1793 MCConstantExpr::create(u64 & 0xFFFFFFFF, Context))); // lower 32
1794 Inst = makeCombineInst(Hexagon::A4_combineii, Rdd, imm, imm2);
1795 } else {
1796 MCOperand imm(MCOperand::createExpr(
1797 MCConstantExpr::create(0, Context))); // upper 32
1798 Inst = makeCombineInst(Hexagon::A4_combineii, Rdd, imm, MO);
1799 }
1800 break;
1801 }
1802
1803 // Handle $Rdd = combine(##imm, #imm)"
1804 case Hexagon::TFRI64_V2_ext: {
1805 MCOperand &Rdd = Inst.getOperand(0);
1806 MCOperand &MO1 = Inst.getOperand(1);
1807 MCOperand &MO2 = Inst.getOperand(2);
1808 int64_t Value;
1809 if (MO2.getExpr()->evaluateAsAbsolute(Value)) {
1810 int s8 = Value;
1811 if (s8 < -128 || s8 > 127)
1812 OutOfRange(IDLoc, s8, -128);
1813 }
1814 Inst = makeCombineInst(Hexagon::A2_combineii, Rdd, MO1, MO2);
1815 break;
1816 }
1817
1818 // Handle $Rdd = combine(#imm, ##imm)"
1819 case Hexagon::A4_combineii: {
1820 MCOperand &Rdd = Inst.getOperand(0);
1821 MCOperand &MO1 = Inst.getOperand(1);
1822 int64_t Value;
1823 if (MO1.getExpr()->evaluateAsAbsolute(Value)) {
1824 int s8 = Value;
1825 if (s8 < -128 || s8 > 127)
1826 OutOfRange(IDLoc, s8, -128);
1827 }
1828 MCOperand &MO2 = Inst.getOperand(2);
1829 Inst = makeCombineInst(Hexagon::A4_combineii, Rdd, MO1, MO2);
1830 break;
1831 }
1832
1833 case Hexagon::S2_tableidxb_goodsyntax: {
1834 Inst.setOpcode(Hexagon::S2_tableidxb);
1835 break;
1836 }
1837
1838 case Hexagon::S2_tableidxh_goodsyntax: {
1839 MCInst TmpInst;
1840 MCOperand &Rx = Inst.getOperand(0);
1841 MCOperand &_dst_ = Inst.getOperand(1);
1842 MCOperand &Rs = Inst.getOperand(2);
1843 MCOperand &Imm4 = Inst.getOperand(3);
1844 MCOperand &Imm6 = Inst.getOperand(4);
1845 Imm6.setExpr(MCBinaryExpr::createSub(
1846 Imm6.getExpr(), MCConstantExpr::create(1, Context), Context));
1847 TmpInst.setOpcode(Hexagon::S2_tableidxh);
1848 TmpInst.addOperand(Rx);
1849 TmpInst.addOperand(_dst_);
1850 TmpInst.addOperand(Rs);
1851 TmpInst.addOperand(Imm4);
1852 TmpInst.addOperand(Imm6);
1853 Inst = TmpInst;
1854 break;
1855 }
1856
1857 case Hexagon::S2_tableidxw_goodsyntax: {
1858 MCInst TmpInst;
1859 MCOperand &Rx = Inst.getOperand(0);
1860 MCOperand &_dst_ = Inst.getOperand(1);
1861 MCOperand &Rs = Inst.getOperand(2);
1862 MCOperand &Imm4 = Inst.getOperand(3);
1863 MCOperand &Imm6 = Inst.getOperand(4);
1864 Imm6.setExpr(MCBinaryExpr::createSub(
1865 Imm6.getExpr(), MCConstantExpr::create(2, Context), Context));
1866 TmpInst.setOpcode(Hexagon::S2_tableidxw);
1867 TmpInst.addOperand(Rx);
1868 TmpInst.addOperand(_dst_);
1869 TmpInst.addOperand(Rs);
1870 TmpInst.addOperand(Imm4);
1871 TmpInst.addOperand(Imm6);
1872 Inst = TmpInst;
1873 break;
1874 }
1875
1876 case Hexagon::S2_tableidxd_goodsyntax: {
1877 MCInst TmpInst;
1878 MCOperand &Rx = Inst.getOperand(0);
1879 MCOperand &_dst_ = Inst.getOperand(1);
1880 MCOperand &Rs = Inst.getOperand(2);
1881 MCOperand &Imm4 = Inst.getOperand(3);
1882 MCOperand &Imm6 = Inst.getOperand(4);
1883 Imm6.setExpr(MCBinaryExpr::createSub(
1884 Imm6.getExpr(), MCConstantExpr::create(3, Context), Context));
1885 TmpInst.setOpcode(Hexagon::S2_tableidxd);
1886 TmpInst.addOperand(Rx);
1887 TmpInst.addOperand(_dst_);
1888 TmpInst.addOperand(Rs);
1889 TmpInst.addOperand(Imm4);
1890 TmpInst.addOperand(Imm6);
1891 Inst = TmpInst;
1892 break;
1893 }
1894
1895 case Hexagon::M2_mpyui: {
1896 Inst.setOpcode(Hexagon::M2_mpyi);
1897 break;
1898 }
1899 case Hexagon::M2_mpysmi: {
1900 MCInst TmpInst;
1901 MCOperand &Rd = Inst.getOperand(0);
1902 MCOperand &Rs = Inst.getOperand(1);
1903 MCOperand &Imm = Inst.getOperand(2);
1904 int64_t Value;
1905 bool Absolute = Imm.getExpr()->evaluateAsAbsolute(Value);
1906 assert(Absolute);
1907 (void)Absolute;
1908 if (!MustExtend) {
1909 if (Value < 0 && Value > -256) {
1910 Imm.setExpr(MCConstantExpr::create(Value * -1, Context));
1911 TmpInst.setOpcode(Hexagon::M2_mpysin);
1912 } else if (Value < 256 && Value >= 0)
1913 TmpInst.setOpcode(Hexagon::M2_mpysip);
1914 else
1915 return Match_InvalidOperand;
1916 } else {
1917 if (Value >= 0)
1918 TmpInst.setOpcode(Hexagon::M2_mpysip);
1919 else
1920 return Match_InvalidOperand;
1921 }
1922 TmpInst.addOperand(Rd);
1923 TmpInst.addOperand(Rs);
1924 TmpInst.addOperand(Imm);
1925 Inst = TmpInst;
1926 break;
1927 }
1928
1929 case Hexagon::S2_asr_i_r_rnd_goodsyntax: {
1930 MCOperand &Imm = Inst.getOperand(2);
1931 MCInst TmpInst;
1932 int64_t Value;
1933 bool Absolute = Imm.getExpr()->evaluateAsAbsolute(Value);
1934 assert(Absolute);
1935 (void)Absolute;
1936 if (Value == 0) { // convert to $Rd = $Rs
1937 TmpInst.setOpcode(Hexagon::A2_tfr);
1938 MCOperand &Rd = Inst.getOperand(0);
1939 MCOperand &Rs = Inst.getOperand(1);
1940 TmpInst.addOperand(Rd);
1941 TmpInst.addOperand(Rs);
1942 } else {
1943 Imm.setExpr(MCBinaryExpr::createSub(
1944 Imm.getExpr(), MCConstantExpr::create(1, Context), Context));
1945 TmpInst.setOpcode(Hexagon::S2_asr_i_r_rnd);
1946 MCOperand &Rd = Inst.getOperand(0);
1947 MCOperand &Rs = Inst.getOperand(1);
1948 TmpInst.addOperand(Rd);
1949 TmpInst.addOperand(Rs);
1950 TmpInst.addOperand(Imm);
1951 }
1952 Inst = TmpInst;
1953 break;
1954 }
1955
1956 case Hexagon::S2_asr_i_p_rnd_goodsyntax: {
1957 MCOperand &Rdd = Inst.getOperand(0);
1958 MCOperand &Rss = Inst.getOperand(1);
1959 MCOperand &Imm = Inst.getOperand(2);
1960 int64_t Value;
1961 bool Absolute = Imm.getExpr()->evaluateAsAbsolute(Value);
1962 assert(Absolute);
1963 (void)Absolute;
1964 if (Value == 0) { // convert to $Rdd = combine ($Rs[0], $Rs[1])
1965 MCInst TmpInst;
1966 unsigned int RegPairNum = RI->getEncodingValue(Rss.getReg());
1967 std::string R1 = r + llvm::utostr_32(RegPairNum + 1);
1968 StringRef Reg1(R1);
1969 Rss.setReg(MatchRegisterName(Reg1));
1970 // Add a new operand for the second register in the pair.
1971 std::string R2 = r + llvm::utostr_32(RegPairNum);
1972 StringRef Reg2(R2);
1973 TmpInst.setOpcode(Hexagon::A2_combinew);
1974 TmpInst.addOperand(Rdd);
1975 TmpInst.addOperand(Rss);
1976 TmpInst.addOperand(MCOperand::createReg(MatchRegisterName(Reg2)));
1977 Inst = TmpInst;
1978 } else {
1979 Imm.setExpr(MCBinaryExpr::createSub(
1980 Imm.getExpr(), MCConstantExpr::create(1, Context), Context));
1981 Inst.setOpcode(Hexagon::S2_asr_i_p_rnd);
1982 }
1983 break;
1984 }
1985
1986 case Hexagon::A4_boundscheck: {
1987 MCOperand &Rs = Inst.getOperand(1);
1988 unsigned int RegNum = RI->getEncodingValue(Rs.getReg());
1989 if (RegNum & 1) { // Odd mapped to raw:hi, regpair is rodd:odd-1, like r3:2
1990 Inst.setOpcode(Hexagon::A4_boundscheck_hi);
1991 std::string Name =
1992 r + llvm::utostr_32(RegNum) + Colon + llvm::utostr_32(RegNum - 1);
1993 StringRef RegPair = Name;
1994 Rs.setReg(MatchRegisterName(RegPair));
1995 } else { // raw:lo
1996 Inst.setOpcode(Hexagon::A4_boundscheck_lo);
1997 std::string Name =
1998 r + llvm::utostr_32(RegNum + 1) + Colon + llvm::utostr_32(RegNum);
1999 StringRef RegPair = Name;
2000 Rs.setReg(MatchRegisterName(RegPair));
2001 }
2002 break;
2003 }
2004
2005 case Hexagon::A2_addsp: {
2006 MCOperand &Rs = Inst.getOperand(1);
2007 unsigned int RegNum = RI->getEncodingValue(Rs.getReg());
2008 if (RegNum & 1) { // Odd mapped to raw:hi
2009 Inst.setOpcode(Hexagon::A2_addsph);
2010 std::string Name =
2011 r + llvm::utostr_32(RegNum) + Colon + llvm::utostr_32(RegNum - 1);
2012 StringRef RegPair = Name;
2013 Rs.setReg(MatchRegisterName(RegPair));
2014 } else { // Even mapped raw:lo
2015 Inst.setOpcode(Hexagon::A2_addspl);
2016 std::string Name =
2017 r + llvm::utostr_32(RegNum + 1) + Colon + llvm::utostr_32(RegNum);
2018 StringRef RegPair = Name;
2019 Rs.setReg(MatchRegisterName(RegPair));
2020 }
2021 break;
2022 }
2023
2024 case Hexagon::M2_vrcmpys_s1: {
2025 MCOperand &Rt = Inst.getOperand(2);
2026 unsigned int RegNum = RI->getEncodingValue(Rt.getReg());
2027 if (RegNum & 1) { // Odd mapped to sat:raw:hi
2028 Inst.setOpcode(Hexagon::M2_vrcmpys_s1_h);
2029 std::string Name =
2030 r + llvm::utostr_32(RegNum) + Colon + llvm::utostr_32(RegNum - 1);
2031 StringRef RegPair = Name;
2032 Rt.setReg(MatchRegisterName(RegPair));
2033 } else { // Even mapped sat:raw:lo
2034 Inst.setOpcode(Hexagon::M2_vrcmpys_s1_l);
2035 std::string Name =
2036 r + llvm::utostr_32(RegNum + 1) + Colon + llvm::utostr_32(RegNum);
2037 StringRef RegPair = Name;
2038 Rt.setReg(MatchRegisterName(RegPair));
2039 }
2040 break;
2041 }
2042
2043 case Hexagon::M2_vrcmpys_acc_s1: {
2044 MCInst TmpInst;
2045 MCOperand &Rxx = Inst.getOperand(0);
2046 MCOperand &Rss = Inst.getOperand(2);
2047 MCOperand &Rt = Inst.getOperand(3);
2048 unsigned int RegNum = RI->getEncodingValue(Rt.getReg());
2049 if (RegNum & 1) { // Odd mapped to sat:raw:hi
2050 TmpInst.setOpcode(Hexagon::M2_vrcmpys_acc_s1_h);
2051 std::string Name =
2052 r + llvm::utostr_32(RegNum) + Colon + llvm::utostr_32(RegNum - 1);
2053 StringRef RegPair = Name;
2054 Rt.setReg(MatchRegisterName(RegPair));
2055 } else { // Even mapped sat:raw:lo
2056 TmpInst.setOpcode(Hexagon::M2_vrcmpys_acc_s1_l);
2057 std::string Name =
2058 r + llvm::utostr_32(RegNum + 1) + Colon + llvm::utostr_32(RegNum);
2059 StringRef RegPair = Name;
2060 Rt.setReg(MatchRegisterName(RegPair));
2061 }
2062 // Registers are in different positions
2063 TmpInst.addOperand(Rxx);
2064 TmpInst.addOperand(Rxx);
2065 TmpInst.addOperand(Rss);
2066 TmpInst.addOperand(Rt);
2067 Inst = TmpInst;
2068 break;
2069 }
2070
2071 case Hexagon::M2_vrcmpys_s1rp: {
2072 MCOperand &Rt = Inst.getOperand(2);
2073 unsigned int RegNum = RI->getEncodingValue(Rt.getReg());
2074 if (RegNum & 1) { // Odd mapped to rnd:sat:raw:hi
2075 Inst.setOpcode(Hexagon::M2_vrcmpys_s1rp_h);
2076 std::string Name =
2077 r + llvm::utostr_32(RegNum) + Colon + llvm::utostr_32(RegNum - 1);
2078 StringRef RegPair = Name;
2079 Rt.setReg(MatchRegisterName(RegPair));
2080 } else { // Even mapped rnd:sat:raw:lo
2081 Inst.setOpcode(Hexagon::M2_vrcmpys_s1rp_l);
2082 std::string Name =
2083 r + llvm::utostr_32(RegNum + 1) + Colon + llvm::utostr_32(RegNum);
2084 StringRef RegPair = Name;
2085 Rt.setReg(MatchRegisterName(RegPair));
2086 }
2087 break;
2088 }
2089
2090 case Hexagon::S5_asrhub_rnd_sat_goodsyntax: {
2091 MCOperand &Imm = Inst.getOperand(2);
2092 int64_t Value;
2093 bool Absolute = Imm.getExpr()->evaluateAsAbsolute(Value);
2094 assert(Absolute);
2095 (void)Absolute;
2096 if (Value == 0)
2097 Inst.setOpcode(Hexagon::S2_vsathub);
2098 else {
2099 Imm.setExpr(MCBinaryExpr::createSub(
2100 Imm.getExpr(), MCConstantExpr::create(1, Context), Context));
2101 Inst.setOpcode(Hexagon::S5_asrhub_rnd_sat);
2102 }
2103 break;
2104 }
2105
2106 case Hexagon::S5_vasrhrnd_goodsyntax: {
2107 MCOperand &Rdd = Inst.getOperand(0);
2108 MCOperand &Rss = Inst.getOperand(1);
2109 MCOperand &Imm = Inst.getOperand(2);
2110 int64_t Value;
2111 bool Absolute = Imm.getExpr()->evaluateAsAbsolute(Value);
2112 assert(Absolute);
2113 (void)Absolute;
2114 if (Value == 0) {
2115 MCInst TmpInst;
2116 unsigned int RegPairNum = RI->getEncodingValue(Rss.getReg());
2117 std::string R1 = r + llvm::utostr_32(RegPairNum + 1);
2118 StringRef Reg1(R1);
2119 Rss.setReg(MatchRegisterName(Reg1));
2120 // Add a new operand for the second register in the pair.
2121 std::string R2 = r + llvm::utostr_32(RegPairNum);
2122 StringRef Reg2(R2);
2123 TmpInst.setOpcode(Hexagon::A2_combinew);
2124 TmpInst.addOperand(Rdd);
2125 TmpInst.addOperand(Rss);
2126 TmpInst.addOperand(MCOperand::createReg(MatchRegisterName(Reg2)));
2127 Inst = TmpInst;
2128 } else {
2129 Imm.setExpr(MCBinaryExpr::createSub(
2130 Imm.getExpr(), MCConstantExpr::create(1, Context), Context));
2131 Inst.setOpcode(Hexagon::S5_vasrhrnd);
2132 }
2133 break;
2134 }
2135
2136 case Hexagon::A2_not: {
2137 MCInst TmpInst;
2138 MCOperand &Rd = Inst.getOperand(0);
2139 MCOperand &Rs = Inst.getOperand(1);
2140 TmpInst.setOpcode(Hexagon::A2_subri);
2141 TmpInst.addOperand(Rd);
2142 TmpInst.addOperand(
2143 MCOperand::createExpr(MCConstantExpr::create(-1, Context)));
2144 TmpInst.addOperand(Rs);
2145 Inst = TmpInst;
2146 break;
2147 }
2148 } // switch
2149
2150 return Match_Success;
2151}