Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 1 | //===---- NewGVN.cpp - Global Value Numbering Pass --------------*- C++ -*-===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | /// \file |
| 10 | /// This file implements the new LLVM's Global Value Numbering pass. |
| 11 | /// GVN partitions values computed by a function into congruence classes. |
| 12 | /// Values ending up in the same congruence class are guaranteed to be the same |
| 13 | /// for every execution of the program. In that respect, congruency is a |
| 14 | /// compile-time approximation of equivalence of values at runtime. |
| 15 | /// The algorithm implemented here uses a sparse formulation and it's based |
| 16 | /// on the ideas described in the paper: |
| 17 | /// "A Sparse Algorithm for Predicated Global Value Numbering" from |
| 18 | /// Karthik Gargi. |
| 19 | /// |
| 20 | //===----------------------------------------------------------------------===// |
| 21 | |
| 22 | #include "llvm/Transforms/Scalar/NewGVN.h" |
| 23 | #include "llvm/ADT/BitVector.h" |
| 24 | #include "llvm/ADT/DenseMap.h" |
| 25 | #include "llvm/ADT/DenseSet.h" |
| 26 | #include "llvm/ADT/DepthFirstIterator.h" |
| 27 | #include "llvm/ADT/Hashing.h" |
| 28 | #include "llvm/ADT/MapVector.h" |
| 29 | #include "llvm/ADT/PostOrderIterator.h" |
| 30 | #include "llvm/ADT/SmallPtrSet.h" |
| 31 | #include "llvm/ADT/SmallSet.h" |
| 32 | #include "llvm/ADT/SparseBitVector.h" |
| 33 | #include "llvm/ADT/Statistic.h" |
| 34 | #include "llvm/ADT/TinyPtrVector.h" |
| 35 | #include "llvm/Analysis/AliasAnalysis.h" |
| 36 | #include "llvm/Analysis/AssumptionCache.h" |
| 37 | #include "llvm/Analysis/CFG.h" |
| 38 | #include "llvm/Analysis/CFGPrinter.h" |
| 39 | #include "llvm/Analysis/ConstantFolding.h" |
| 40 | #include "llvm/Analysis/GlobalsModRef.h" |
| 41 | #include "llvm/Analysis/InstructionSimplify.h" |
| 42 | #include "llvm/Analysis/Loads.h" |
| 43 | #include "llvm/Analysis/MemoryBuiltins.h" |
| 44 | #include "llvm/Analysis/MemoryDependenceAnalysis.h" |
| 45 | #include "llvm/Analysis/MemoryLocation.h" |
| 46 | #include "llvm/Analysis/PHITransAddr.h" |
| 47 | #include "llvm/Analysis/TargetLibraryInfo.h" |
| 48 | #include "llvm/Analysis/ValueTracking.h" |
| 49 | #include "llvm/IR/DataLayout.h" |
| 50 | #include "llvm/IR/Dominators.h" |
| 51 | #include "llvm/IR/GlobalVariable.h" |
| 52 | #include "llvm/IR/IRBuilder.h" |
| 53 | #include "llvm/IR/IntrinsicInst.h" |
| 54 | #include "llvm/IR/LLVMContext.h" |
| 55 | #include "llvm/IR/Metadata.h" |
| 56 | #include "llvm/IR/PatternMatch.h" |
| 57 | #include "llvm/IR/PredIteratorCache.h" |
| 58 | #include "llvm/IR/Type.h" |
| 59 | #include "llvm/Support/Allocator.h" |
| 60 | #include "llvm/Support/CommandLine.h" |
| 61 | #include "llvm/Support/Debug.h" |
| 62 | #include "llvm/Transforms/Scalar.h" |
| 63 | #include "llvm/Transforms/Scalar/GVNExpression.h" |
| 64 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| 65 | #include "llvm/Transforms/Utils/Local.h" |
| 66 | #include "llvm/Transforms/Utils/MemorySSA.h" |
| 67 | #include "llvm/Transforms/Utils/SSAUpdater.h" |
| 68 | #include <unordered_map> |
| 69 | #include <utility> |
| 70 | #include <vector> |
| 71 | using namespace llvm; |
| 72 | using namespace PatternMatch; |
| 73 | using namespace llvm::GVNExpression; |
| 74 | |
| 75 | #define DEBUG_TYPE "newgvn" |
| 76 | |
| 77 | STATISTIC(NumGVNInstrDeleted, "Number of instructions deleted"); |
| 78 | STATISTIC(NumGVNBlocksDeleted, "Number of blocks deleted"); |
| 79 | STATISTIC(NumGVNOpsSimplified, "Number of Expressions simplified"); |
| 80 | STATISTIC(NumGVNPhisAllSame, "Number of PHIs whos arguments are all the same"); |
| 81 | |
| 82 | //===----------------------------------------------------------------------===// |
| 83 | // GVN Pass |
| 84 | //===----------------------------------------------------------------------===// |
| 85 | |
| 86 | // Anchor methods. |
| 87 | namespace llvm { |
| 88 | namespace GVNExpression { |
| 89 | Expression::~Expression() = default; |
| 90 | BasicExpression::~BasicExpression() = default; |
| 91 | CallExpression::~CallExpression() = default; |
| 92 | LoadExpression::~LoadExpression() = default; |
| 93 | StoreExpression::~StoreExpression() = default; |
| 94 | AggregateValueExpression::~AggregateValueExpression() = default; |
| 95 | PHIExpression::~PHIExpression() = default; |
| 96 | } |
| 97 | } |
| 98 | |
| 99 | // Congruence classes represent the set of expressions/instructions |
| 100 | // that are all the same *during some scope in the function*. |
| 101 | // That is, because of the way we perform equality propagation, and |
| 102 | // because of memory value numbering, it is not correct to assume |
| 103 | // you can willy-nilly replace any member with any other at any |
| 104 | // point in the function. |
| 105 | // |
| 106 | // For any Value in the Member set, it is valid to replace any dominated member |
| 107 | // with that Value. |
| 108 | // |
| 109 | // Every congruence class has a leader, and the leader is used to |
| 110 | // symbolize instructions in a canonical way (IE every operand of an |
| 111 | // instruction that is a member of the same congruence class will |
| 112 | // always be replaced with leader during symbolization). |
| 113 | // To simplify symbolization, we keep the leader as a constant if class can be |
| 114 | // proved to be a constant value. |
| 115 | // Otherwise, the leader is a randomly chosen member of the value set, it does |
| 116 | // not matter which one is chosen. |
| 117 | // Each congruence class also has a defining expression, |
| 118 | // though the expression may be null. If it exists, it can be used for forward |
| 119 | // propagation and reassociation of values. |
| 120 | // |
| 121 | struct CongruenceClass { |
| 122 | typedef SmallPtrSet<Value *, 4> MemberSet; |
| 123 | unsigned ID; |
| 124 | // Representative leader. |
| 125 | Value *RepLeader; |
| 126 | // Defining Expression. |
| 127 | const Expression *DefiningExpr; |
| 128 | // Actual members of this class. |
| 129 | MemberSet Members; |
| 130 | |
| 131 | // True if this class has no members left. This is mainly used for assertion |
| 132 | // purposes, and for skipping empty classes. |
| 133 | bool Dead; |
| 134 | |
| 135 | explicit CongruenceClass(unsigned ID) |
| 136 | : ID(ID), RepLeader(0), DefiningExpr(0), Dead(false) {} |
| 137 | CongruenceClass(unsigned ID, Value *Leader, const Expression *E) |
| 138 | : ID(ID), RepLeader(Leader), DefiningExpr(E), Dead(false) {} |
| 139 | }; |
| 140 | |
| 141 | namespace llvm { |
| 142 | template <> struct DenseMapInfo<const Expression *> { |
| 143 | static const Expression *getEmptyKey() { |
| 144 | uintptr_t Val = static_cast<uintptr_t>(-1); |
| 145 | Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable; |
| 146 | return reinterpret_cast<const Expression *>(Val); |
| 147 | } |
| 148 | static const Expression *getTombstoneKey() { |
| 149 | uintptr_t Val = static_cast<uintptr_t>(~1U); |
| 150 | Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable; |
| 151 | return reinterpret_cast<const Expression *>(Val); |
| 152 | } |
| 153 | static unsigned getHashValue(const Expression *V) { |
| 154 | return static_cast<unsigned>(V->getHashValue()); |
| 155 | } |
| 156 | static bool isEqual(const Expression *LHS, const Expression *RHS) { |
| 157 | if (LHS == RHS) |
| 158 | return true; |
| 159 | if (LHS == getTombstoneKey() || RHS == getTombstoneKey() || |
| 160 | LHS == getEmptyKey() || RHS == getEmptyKey()) |
| 161 | return false; |
| 162 | return *LHS == *RHS; |
| 163 | } |
| 164 | }; |
| 165 | } // end namespace llvm |
| 166 | |
| 167 | class NewGVN : public FunctionPass { |
| 168 | DominatorTree *DT; |
| 169 | const DataLayout *DL; |
| 170 | const TargetLibraryInfo *TLI; |
| 171 | AssumptionCache *AC; |
| 172 | AliasAnalysis *AA; |
| 173 | MemorySSA *MSSA; |
| 174 | MemorySSAWalker *MSSAWalker; |
| 175 | BumpPtrAllocator ExpressionAllocator; |
| 176 | ArrayRecycler<Value *> ArgRecycler; |
| 177 | |
| 178 | // Congruence class info. |
| 179 | CongruenceClass *InitialClass; |
| 180 | std::vector<CongruenceClass *> CongruenceClasses; |
| 181 | unsigned NextCongruenceNum; |
| 182 | |
| 183 | // Value Mappings. |
| 184 | DenseMap<Value *, CongruenceClass *> ValueToClass; |
| 185 | DenseMap<Value *, const Expression *> ValueToExpression; |
| 186 | |
| 187 | // Expression to class mapping. |
| 188 | typedef DenseMap<const Expression *, CongruenceClass *> ExpressionClassMap; |
| 189 | ExpressionClassMap ExpressionToClass; |
| 190 | |
| 191 | // Which values have changed as a result of leader changes. |
| 192 | SmallPtrSet<Value *, 8> ChangedValues; |
| 193 | |
| 194 | // Reachability info. |
| 195 | typedef BasicBlockEdge BlockEdge; |
| 196 | DenseSet<BlockEdge> ReachableEdges; |
| 197 | SmallPtrSet<const BasicBlock *, 8> ReachableBlocks; |
| 198 | |
| 199 | // This is a bitvector because, on larger functions, we may have |
| 200 | // thousands of touched instructions at once (entire blocks, |
| 201 | // instructions with hundreds of uses, etc). Even with optimization |
| 202 | // for when we mark whole blocks as touched, when this was a |
| 203 | // SmallPtrSet or DenseSet, for some functions, we spent >20% of all |
| 204 | // the time in GVN just managing this list. The bitvector, on the |
| 205 | // other hand, efficiently supports test/set/clear of both |
| 206 | // individual and ranges, as well as "find next element" This |
| 207 | // enables us to use it as a worklist with essentially 0 cost. |
| 208 | BitVector TouchedInstructions; |
| 209 | |
| 210 | DenseMap<const BasicBlock *, std::pair<unsigned, unsigned>> BlockInstRange; |
| 211 | DenseMap<const DomTreeNode *, std::pair<unsigned, unsigned>> |
| 212 | DominatedInstRange; |
| 213 | |
| 214 | #ifndef NDEBUG |
| 215 | // Debugging for how many times each block and instruction got processed. |
| 216 | DenseMap<const Value *, unsigned> ProcessedCount; |
| 217 | #endif |
| 218 | |
| 219 | // DFS info. |
| 220 | DenseMap<const BasicBlock *, std::pair<int, int>> DFSDomMap; |
| 221 | DenseMap<const Value *, unsigned> InstrDFS; |
| 222 | std::vector<Instruction *> DFSToInstr; |
| 223 | |
| 224 | // Deletion info. |
| 225 | SmallPtrSet<Instruction *, 8> InstructionsToErase; |
| 226 | |
| 227 | public: |
| 228 | static char ID; // Pass identification, replacement for typeid. |
| 229 | NewGVN() : FunctionPass(ID) { |
| 230 | initializeNewGVNPass(*PassRegistry::getPassRegistry()); |
| 231 | } |
| 232 | |
| 233 | bool runOnFunction(Function &F) override; |
| 234 | bool runGVN(Function &F, DominatorTree *DT, AssumptionCache *AC, |
| 235 | TargetLibraryInfo *TLI, AliasAnalysis *AA, |
| 236 | MemorySSA *MSSA); |
| 237 | |
| 238 | private: |
| 239 | // This transformation requires dominator postdominator info. |
| 240 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
| 241 | AU.addRequired<AssumptionCacheTracker>(); |
| 242 | AU.addRequired<DominatorTreeWrapperPass>(); |
| 243 | AU.addRequired<TargetLibraryInfoWrapperPass>(); |
| 244 | AU.addRequired<MemorySSAWrapperPass>(); |
| 245 | AU.addRequired<AAResultsWrapperPass>(); |
| 246 | |
| 247 | AU.addPreserved<DominatorTreeWrapperPass>(); |
| 248 | AU.addPreserved<GlobalsAAWrapperPass>(); |
| 249 | } |
| 250 | |
| 251 | // Expression handling. |
| 252 | const Expression *createExpression(Instruction *, const BasicBlock *); |
| 253 | const Expression *createBinaryExpression(unsigned, Type *, Value *, Value *, |
| 254 | const BasicBlock *); |
| 255 | PHIExpression *createPHIExpression(Instruction *); |
| 256 | const VariableExpression *createVariableExpression(Value *); |
| 257 | const ConstantExpression *createConstantExpression(Constant *); |
| 258 | const Expression *createVariableOrConstant(Value *V, const BasicBlock *B); |
| 259 | const StoreExpression *createStoreExpression(StoreInst *, MemoryAccess *, |
| 260 | const BasicBlock *); |
| 261 | LoadExpression *createLoadExpression(Type *, Value *, LoadInst *, |
| 262 | MemoryAccess *, const BasicBlock *); |
| 263 | |
| 264 | const CallExpression *createCallExpression(CallInst *, MemoryAccess *, |
| 265 | const BasicBlock *); |
| 266 | const AggregateValueExpression * |
| 267 | createAggregateValueExpression(Instruction *, const BasicBlock *); |
| 268 | bool setBasicExpressionInfo(Instruction *, BasicExpression *, |
| 269 | const BasicBlock *); |
| 270 | |
| 271 | // Congruence class handling. |
| 272 | CongruenceClass *createCongruenceClass(Value *Leader, const Expression *E) { |
| 273 | CongruenceClass *result = |
| 274 | new CongruenceClass(NextCongruenceNum++, Leader, E); |
| 275 | CongruenceClasses.emplace_back(result); |
| 276 | return result; |
| 277 | } |
| 278 | |
| 279 | CongruenceClass *createSingletonCongruenceClass(Value *Member) { |
| 280 | CongruenceClass *CClass = createCongruenceClass(Member, NULL); |
| 281 | CClass->Members.insert(Member); |
| 282 | ValueToClass[Member] = CClass; |
| 283 | return CClass; |
| 284 | } |
| 285 | void initializeCongruenceClasses(Function &F); |
| 286 | |
| 287 | // Symbolic evaluation. |
| 288 | const Expression *checkSimplificationResults(Expression *, Instruction *, |
| 289 | Value *); |
| 290 | const Expression *performSymbolicEvaluation(Value *, const BasicBlock *); |
| 291 | const Expression *performSymbolicLoadEvaluation(Instruction *, |
| 292 | const BasicBlock *); |
| 293 | const Expression *performSymbolicStoreEvaluation(Instruction *, |
| 294 | const BasicBlock *); |
| 295 | const Expression *performSymbolicCallEvaluation(Instruction *, |
| 296 | const BasicBlock *); |
| 297 | const Expression *performSymbolicPHIEvaluation(Instruction *, |
| 298 | const BasicBlock *); |
| 299 | const Expression *performSymbolicAggrValueEvaluation(Instruction *, |
| 300 | const BasicBlock *); |
| 301 | |
| 302 | // Congruence finding. |
| 303 | // Templated to allow them to work both on BB's and BB-edges. |
| 304 | template <class T> |
| 305 | Value *lookupOperandLeader(Value *, const User *, const T &) const; |
| 306 | void performCongruenceFinding(Value *, const Expression *); |
| 307 | |
| 308 | // Reachability handling. |
| 309 | void updateReachableEdge(BasicBlock *, BasicBlock *); |
| 310 | void processOutgoingEdges(TerminatorInst *, BasicBlock *); |
Daniel Berlin | 8a6a861 | 2016-12-24 00:04:07 +0000 | [diff] [blame] | 311 | bool isOnlyReachableViaThisEdge(const BasicBlockEdge &) const; |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 312 | Value *findConditionEquivalence(Value *, BasicBlock *) const; |
| 313 | |
| 314 | // Elimination. |
| 315 | struct ValueDFS; |
| 316 | void convertDenseToDFSOrdered(CongruenceClass::MemberSet &, |
| 317 | std::vector<ValueDFS> &); |
| 318 | |
| 319 | bool eliminateInstructions(Function &); |
| 320 | void replaceInstruction(Instruction *, Value *); |
| 321 | void markInstructionForDeletion(Instruction *); |
| 322 | void deleteInstructionsInBlock(BasicBlock *); |
| 323 | |
| 324 | // New instruction creation. |
| 325 | void handleNewInstruction(Instruction *){}; |
| 326 | void markUsersTouched(Value *); |
| 327 | void markMemoryUsersTouched(MemoryAccess *); |
| 328 | |
| 329 | // Utilities. |
| 330 | void cleanupTables(); |
| 331 | std::pair<unsigned, unsigned> assignDFSNumbers(BasicBlock *, unsigned); |
| 332 | void updateProcessedCount(Value *V); |
| 333 | }; |
| 334 | |
| 335 | char NewGVN::ID = 0; |
| 336 | |
| 337 | // createGVNPass - The public interface to this file. |
| 338 | FunctionPass *llvm::createNewGVNPass() { return new NewGVN(); } |
| 339 | |
| 340 | bool LoadExpression::equals(const Expression &Other) const { |
| 341 | if (!isa<LoadExpression>(Other) && !isa<StoreExpression>(Other)) |
| 342 | return false; |
| 343 | if (!this->BasicExpression::equals(Other)) |
| 344 | return false; |
| 345 | if (const auto *OtherL = dyn_cast<LoadExpression>(&Other)) { |
| 346 | if (DefiningAccess != OtherL->getDefiningAccess()) |
| 347 | return false; |
| 348 | } else if (const auto *OtherS = dyn_cast<StoreExpression>(&Other)) { |
| 349 | if (DefiningAccess != OtherS->getDefiningAccess()) |
| 350 | return false; |
| 351 | } |
| 352 | |
| 353 | return true; |
| 354 | } |
| 355 | |
| 356 | bool StoreExpression::equals(const Expression &Other) const { |
| 357 | if (!isa<LoadExpression>(Other) && !isa<StoreExpression>(Other)) |
| 358 | return false; |
| 359 | if (!this->BasicExpression::equals(Other)) |
| 360 | return false; |
| 361 | if (const auto *OtherL = dyn_cast<LoadExpression>(&Other)) { |
| 362 | if (DefiningAccess != OtherL->getDefiningAccess()) |
| 363 | return false; |
| 364 | } else if (const auto *OtherS = dyn_cast<StoreExpression>(&Other)) { |
| 365 | if (DefiningAccess != OtherS->getDefiningAccess()) |
| 366 | return false; |
| 367 | } |
| 368 | |
| 369 | return true; |
| 370 | } |
| 371 | |
| 372 | #ifndef NDEBUG |
| 373 | static std::string getBlockName(const BasicBlock *B) { |
| 374 | return DOTGraphTraits<const Function *>::getSimpleNodeLabel(B, NULL); |
| 375 | } |
| 376 | #endif |
| 377 | |
| 378 | INITIALIZE_PASS_BEGIN(NewGVN, "newgvn", "Global Value Numbering", false, false) |
| 379 | INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) |
| 380 | INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) |
| 381 | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
| 382 | INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) |
| 383 | INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) |
| 384 | INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) |
| 385 | INITIALIZE_PASS_END(NewGVN, "newgvn", "Global Value Numbering", false, false) |
| 386 | |
| 387 | PHIExpression *NewGVN::createPHIExpression(Instruction *I) { |
| 388 | BasicBlock *PhiBlock = I->getParent(); |
| 389 | PHINode *PN = cast<PHINode>(I); |
| 390 | PHIExpression *E = new (ExpressionAllocator) |
| 391 | PHIExpression(PN->getNumOperands(), I->getParent()); |
| 392 | |
| 393 | E->allocateOperands(ArgRecycler, ExpressionAllocator); |
| 394 | E->setType(I->getType()); |
| 395 | E->setOpcode(I->getOpcode()); |
| 396 | for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { |
| 397 | BasicBlock *B = PN->getIncomingBlock(i); |
| 398 | if (!ReachableBlocks.count(B)) { |
| 399 | DEBUG(dbgs() << "Skipping unreachable block " << getBlockName(B) |
| 400 | << " in PHI node " << *PN << "\n"); |
| 401 | continue; |
| 402 | } |
| 403 | if (I->getOperand(i) != I) { |
| 404 | const BasicBlockEdge BBE(B, PhiBlock); |
| 405 | auto Operand = lookupOperandLeader(I->getOperand(i), I, BBE); |
| 406 | E->ops_push_back(Operand); |
| 407 | } else { |
| 408 | E->ops_push_back(I->getOperand(i)); |
| 409 | } |
| 410 | } |
| 411 | return E; |
| 412 | } |
| 413 | |
| 414 | // Set basic expression info (Arguments, type, opcode) for Expression |
| 415 | // E from Instruction I in block B. |
| 416 | bool NewGVN::setBasicExpressionInfo(Instruction *I, BasicExpression *E, |
| 417 | const BasicBlock *B) { |
| 418 | bool AllConstant = true; |
| 419 | if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) |
| 420 | E->setType(GEP->getSourceElementType()); |
| 421 | else |
| 422 | E->setType(I->getType()); |
| 423 | E->setOpcode(I->getOpcode()); |
| 424 | E->allocateOperands(ArgRecycler, ExpressionAllocator); |
| 425 | |
| 426 | for (auto &O : I->operands()) { |
| 427 | auto Operand = lookupOperandLeader(O, I, B); |
| 428 | if (!isa<Constant>(Operand)) |
| 429 | AllConstant = false; |
| 430 | E->ops_push_back(Operand); |
| 431 | } |
| 432 | return AllConstant; |
| 433 | } |
| 434 | |
| 435 | const Expression *NewGVN::createBinaryExpression(unsigned Opcode, Type *T, |
| 436 | Value *Arg1, Value *Arg2, |
| 437 | const BasicBlock *B) { |
| 438 | BasicExpression *E = new (ExpressionAllocator) BasicExpression(2); |
| 439 | |
| 440 | E->setType(T); |
| 441 | E->setOpcode(Opcode); |
| 442 | E->allocateOperands(ArgRecycler, ExpressionAllocator); |
| 443 | if (Instruction::isCommutative(Opcode)) { |
| 444 | // Ensure that commutative instructions that only differ by a permutation |
| 445 | // of their operands get the same value number by sorting the operand value |
| 446 | // numbers. Since all commutative instructions have two operands it is more |
| 447 | // efficient to sort by hand rather than using, say, std::sort. |
| 448 | if (Arg1 > Arg2) |
| 449 | std::swap(Arg1, Arg2); |
| 450 | } |
| 451 | E->ops_push_back(lookupOperandLeader(Arg1, nullptr, B)); |
| 452 | E->ops_push_back(lookupOperandLeader(Arg2, nullptr, B)); |
| 453 | |
| 454 | Value *V = SimplifyBinOp(Opcode, E->getOperand(0), E->getOperand(1), *DL, TLI, |
| 455 | DT, AC); |
| 456 | if (const Expression *SimplifiedE = checkSimplificationResults(E, nullptr, V)) |
| 457 | return SimplifiedE; |
| 458 | return E; |
| 459 | } |
| 460 | |
| 461 | // Take a Value returned by simplification of Expression E/Instruction |
| 462 | // I, and see if it resulted in a simpler expression. If so, return |
| 463 | // that expression. |
| 464 | // TODO: Once finished, this should not take an Instruction, we only |
| 465 | // use it for printing. |
| 466 | const Expression *NewGVN::checkSimplificationResults(Expression *E, |
| 467 | Instruction *I, Value *V) { |
| 468 | if (!V) |
| 469 | return nullptr; |
| 470 | if (auto *C = dyn_cast<Constant>(V)) { |
| 471 | if (I) |
| 472 | DEBUG(dbgs() << "Simplified " << *I << " to " |
| 473 | << " constant " << *C << "\n"); |
| 474 | NumGVNOpsSimplified++; |
| 475 | assert(isa<BasicExpression>(E) && |
| 476 | "We should always have had a basic expression here"); |
| 477 | |
| 478 | cast<BasicExpression>(E)->deallocateOperands(ArgRecycler); |
| 479 | ExpressionAllocator.Deallocate(E); |
| 480 | return createConstantExpression(C); |
| 481 | } else if (isa<Argument>(V) || isa<GlobalVariable>(V)) { |
| 482 | if (I) |
| 483 | DEBUG(dbgs() << "Simplified " << *I << " to " |
| 484 | << " variable " << *V << "\n"); |
| 485 | cast<BasicExpression>(E)->deallocateOperands(ArgRecycler); |
| 486 | ExpressionAllocator.Deallocate(E); |
| 487 | return createVariableExpression(V); |
| 488 | } |
| 489 | |
| 490 | CongruenceClass *CC = ValueToClass.lookup(V); |
| 491 | if (CC && CC->DefiningExpr) { |
| 492 | if (I) |
| 493 | DEBUG(dbgs() << "Simplified " << *I << " to " |
| 494 | << " expression " << *V << "\n"); |
| 495 | NumGVNOpsSimplified++; |
| 496 | assert(isa<BasicExpression>(E) && |
| 497 | "We should always have had a basic expression here"); |
| 498 | cast<BasicExpression>(E)->deallocateOperands(ArgRecycler); |
| 499 | ExpressionAllocator.Deallocate(E); |
| 500 | return CC->DefiningExpr; |
| 501 | } |
| 502 | return nullptr; |
| 503 | } |
| 504 | |
| 505 | const Expression *NewGVN::createExpression(Instruction *I, |
| 506 | const BasicBlock *B) { |
| 507 | |
| 508 | BasicExpression *E = |
| 509 | new (ExpressionAllocator) BasicExpression(I->getNumOperands()); |
| 510 | |
| 511 | bool AllConstant = setBasicExpressionInfo(I, E, B); |
| 512 | |
| 513 | if (I->isCommutative()) { |
| 514 | // Ensure that commutative instructions that only differ by a permutation |
| 515 | // of their operands get the same value number by sorting the operand value |
| 516 | // numbers. Since all commutative instructions have two operands it is more |
| 517 | // efficient to sort by hand rather than using, say, std::sort. |
| 518 | assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!"); |
| 519 | if (E->getOperand(0) > E->getOperand(1)) |
| 520 | E->swapOperands(0, 1); |
| 521 | } |
| 522 | |
| 523 | // Perform simplificaiton |
| 524 | // TODO: Right now we only check to see if we get a constant result. |
| 525 | // We may get a less than constant, but still better, result for |
| 526 | // some operations. |
| 527 | // IE |
| 528 | // add 0, x -> x |
| 529 | // and x, x -> x |
| 530 | // We should handle this by simply rewriting the expression. |
| 531 | if (auto *CI = dyn_cast<CmpInst>(I)) { |
| 532 | // Sort the operand value numbers so x<y and y>x get the same value |
| 533 | // number. |
| 534 | CmpInst::Predicate Predicate = CI->getPredicate(); |
| 535 | if (E->getOperand(0) > E->getOperand(1)) { |
| 536 | E->swapOperands(0, 1); |
| 537 | Predicate = CmpInst::getSwappedPredicate(Predicate); |
| 538 | } |
| 539 | E->setOpcode((CI->getOpcode() << 8) | Predicate); |
| 540 | // TODO: 25% of our time is spent in SimplifyCmpInst with pointer operands |
| 541 | // TODO: Since we noop bitcasts, we may need to check types before |
| 542 | // simplifying, so that we don't end up simplifying based on a wrong |
| 543 | // type assumption. We should clean this up so we can use constants of the |
| 544 | // wrong type |
| 545 | |
| 546 | assert(I->getOperand(0)->getType() == I->getOperand(1)->getType() && |
| 547 | "Wrong types on cmp instruction"); |
| 548 | if ((E->getOperand(0)->getType() == I->getOperand(0)->getType() && |
| 549 | E->getOperand(1)->getType() == I->getOperand(1)->getType())) { |
| 550 | Value *V = SimplifyCmpInst(Predicate, E->getOperand(0), E->getOperand(1), |
| 551 | *DL, TLI, DT, AC); |
| 552 | if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V)) |
| 553 | return SimplifiedE; |
| 554 | } |
| 555 | } else if (isa<SelectInst>(I)) { |
| 556 | if (isa<Constant>(E->getOperand(0)) || |
| 557 | (E->getOperand(1)->getType() == I->getOperand(1)->getType() && |
| 558 | E->getOperand(2)->getType() == I->getOperand(2)->getType())) { |
| 559 | Value *V = SimplifySelectInst(E->getOperand(0), E->getOperand(1), |
| 560 | E->getOperand(2), *DL, TLI, DT, AC); |
| 561 | if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V)) |
| 562 | return SimplifiedE; |
| 563 | } |
| 564 | } else if (I->isBinaryOp()) { |
| 565 | Value *V = SimplifyBinOp(E->getOpcode(), E->getOperand(0), E->getOperand(1), |
| 566 | *DL, TLI, DT, AC); |
| 567 | if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V)) |
| 568 | return SimplifiedE; |
| 569 | } else if (auto *BI = dyn_cast<BitCastInst>(I)) { |
| 570 | Value *V = SimplifyInstruction(BI, *DL, TLI, DT, AC); |
| 571 | if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V)) |
| 572 | return SimplifiedE; |
| 573 | } else if (isa<GetElementPtrInst>(I)) { |
| 574 | Value *V = SimplifyGEPInst(E->getType(), |
| 575 | ArrayRef<Value *>(E->ops_begin(), E->ops_end()), |
| 576 | *DL, TLI, DT, AC); |
| 577 | if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V)) |
| 578 | return SimplifiedE; |
| 579 | } else if (AllConstant) { |
| 580 | // We don't bother trying to simplify unless all of the operands |
| 581 | // were constant. |
| 582 | // TODO: There are a lot of Simplify*'s we could call here, if we |
| 583 | // wanted to. The original motivating case for this code was a |
| 584 | // zext i1 false to i8, which we don't have an interface to |
| 585 | // simplify (IE there is no SimplifyZExt). |
| 586 | |
| 587 | SmallVector<Constant *, 8> C; |
| 588 | for (Value *Arg : E->operands()) |
| 589 | C.emplace_back(cast<Constant>(Arg)); |
| 590 | |
| 591 | if (Value *V = ConstantFoldInstOperands(I, C, *DL, TLI)) |
| 592 | if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V)) |
| 593 | return SimplifiedE; |
| 594 | } |
| 595 | return E; |
| 596 | } |
| 597 | |
| 598 | const AggregateValueExpression * |
| 599 | NewGVN::createAggregateValueExpression(Instruction *I, const BasicBlock *B) { |
| 600 | if (auto *II = dyn_cast<InsertValueInst>(I)) { |
| 601 | AggregateValueExpression *E = new (ExpressionAllocator) |
| 602 | AggregateValueExpression(I->getNumOperands(), II->getNumIndices()); |
| 603 | setBasicExpressionInfo(I, E, B); |
| 604 | E->allocateIntOperands(ExpressionAllocator); |
| 605 | |
| 606 | for (auto &Index : II->indices()) |
| 607 | E->int_ops_push_back(Index); |
| 608 | return E; |
| 609 | |
| 610 | } else if (auto *EI = dyn_cast<ExtractValueInst>(I)) { |
| 611 | AggregateValueExpression *E = new (ExpressionAllocator) |
| 612 | AggregateValueExpression(I->getNumOperands(), EI->getNumIndices()); |
| 613 | setBasicExpressionInfo(EI, E, B); |
| 614 | E->allocateIntOperands(ExpressionAllocator); |
| 615 | |
| 616 | for (auto &Index : EI->indices()) |
| 617 | E->int_ops_push_back(Index); |
| 618 | return E; |
| 619 | } |
| 620 | llvm_unreachable("Unhandled type of aggregate value operation"); |
| 621 | } |
| 622 | |
| 623 | const VariableExpression * |
| 624 | NewGVN::createVariableExpression(Value *V) { |
| 625 | VariableExpression *E = new (ExpressionAllocator) VariableExpression(V); |
| 626 | E->setOpcode(V->getValueID()); |
| 627 | return E; |
| 628 | } |
| 629 | |
| 630 | const Expression *NewGVN::createVariableOrConstant(Value *V, |
| 631 | const BasicBlock *B) { |
| 632 | auto Leader = lookupOperandLeader(V, nullptr, B); |
| 633 | if (auto *C = dyn_cast<Constant>(Leader)) |
| 634 | return createConstantExpression(C); |
| 635 | return createVariableExpression(Leader); |
| 636 | } |
| 637 | |
| 638 | const ConstantExpression * |
| 639 | NewGVN::createConstantExpression(Constant *C) { |
| 640 | ConstantExpression *E = new (ExpressionAllocator) ConstantExpression(C); |
| 641 | E->setOpcode(C->getValueID()); |
| 642 | return E; |
| 643 | } |
| 644 | |
| 645 | const CallExpression *NewGVN::createCallExpression(CallInst *CI, |
| 646 | MemoryAccess *HV, |
| 647 | const BasicBlock *B) { |
| 648 | // FIXME: Add operand bundles for calls. |
| 649 | CallExpression *E = |
| 650 | new (ExpressionAllocator) CallExpression(CI->getNumOperands(), CI, HV); |
| 651 | setBasicExpressionInfo(CI, E, B); |
| 652 | return E; |
| 653 | } |
| 654 | |
| 655 | // See if we have a congruence class and leader for this operand, and if so, |
| 656 | // return it. Otherwise, return the operand itself. |
| 657 | template <class T> |
| 658 | Value *NewGVN::lookupOperandLeader(Value *V, const User *U, |
| 659 | const T &B) const { |
| 660 | CongruenceClass *CC = ValueToClass.lookup(V); |
| 661 | if (CC && (CC != InitialClass)) |
| 662 | return CC->RepLeader; |
| 663 | return V; |
| 664 | } |
| 665 | |
| 666 | LoadExpression *NewGVN::createLoadExpression(Type *LoadType, Value *PointerOp, |
| 667 | LoadInst *LI, MemoryAccess *DA, |
| 668 | const BasicBlock *B) { |
| 669 | LoadExpression *E = new (ExpressionAllocator) LoadExpression(1, LI, DA); |
| 670 | E->allocateOperands(ArgRecycler, ExpressionAllocator); |
| 671 | E->setType(LoadType); |
| 672 | |
| 673 | // Give store and loads same opcode so they value number together. |
| 674 | E->setOpcode(0); |
| 675 | auto Operand = lookupOperandLeader(PointerOp, LI, B); |
| 676 | E->ops_push_back(Operand); |
| 677 | if (LI) |
| 678 | E->setAlignment(LI->getAlignment()); |
| 679 | |
| 680 | // TODO: Value number heap versions. We may be able to discover |
| 681 | // things alias analysis can't on it's own (IE that a store and a |
| 682 | // load have the same value, and thus, it isn't clobbering the load). |
| 683 | return E; |
| 684 | } |
| 685 | |
| 686 | const StoreExpression *NewGVN::createStoreExpression(StoreInst *SI, |
| 687 | MemoryAccess *DA, |
| 688 | const BasicBlock *B) { |
| 689 | StoreExpression *E = |
| 690 | new (ExpressionAllocator) StoreExpression(SI->getNumOperands(), SI, DA); |
| 691 | E->allocateOperands(ArgRecycler, ExpressionAllocator); |
| 692 | E->setType(SI->getValueOperand()->getType()); |
| 693 | |
| 694 | // Give store and loads same opcode so they value number together. |
| 695 | E->setOpcode(0); |
| 696 | E->ops_push_back(lookupOperandLeader(SI->getPointerOperand(), SI, B)); |
| 697 | |
| 698 | // TODO: Value number heap versions. We may be able to discover |
| 699 | // things alias analysis can't on it's own (IE that a store and a |
| 700 | // load have the same value, and thus, it isn't clobbering the load). |
| 701 | return E; |
| 702 | } |
| 703 | |
| 704 | const Expression *NewGVN::performSymbolicStoreEvaluation(Instruction *I, |
| 705 | const BasicBlock *B) { |
| 706 | StoreInst *SI = cast<StoreInst>(I); |
| 707 | const Expression *E = createStoreExpression(SI, MSSA->getMemoryAccess(SI), B); |
| 708 | return E; |
| 709 | } |
| 710 | |
| 711 | const Expression *NewGVN::performSymbolicLoadEvaluation(Instruction *I, |
| 712 | const BasicBlock *B) { |
| 713 | LoadInst *LI = cast<LoadInst>(I); |
| 714 | |
| 715 | // We can eliminate in favor of non-simple loads, but we won't be able to |
| 716 | // eliminate them. |
| 717 | if (!LI->isSimple()) |
| 718 | return nullptr; |
| 719 | |
| 720 | Value *LoadAddressLeader = |
| 721 | lookupOperandLeader(LI->getPointerOperand(), I, B); |
| 722 | // Load of undef is undef. |
| 723 | if (isa<UndefValue>(LoadAddressLeader)) |
| 724 | return createConstantExpression(UndefValue::get(LI->getType())); |
| 725 | |
| 726 | MemoryAccess *DefiningAccess = MSSAWalker->getClobberingMemoryAccess(I); |
| 727 | |
| 728 | if (!MSSA->isLiveOnEntryDef(DefiningAccess)) { |
| 729 | if (auto *MD = dyn_cast<MemoryDef>(DefiningAccess)) { |
| 730 | Instruction *DefiningInst = MD->getMemoryInst(); |
| 731 | // If the defining instruction is not reachable, replace with undef. |
| 732 | if (!ReachableBlocks.count(DefiningInst->getParent())) |
| 733 | return createConstantExpression(UndefValue::get(LI->getType())); |
| 734 | } |
| 735 | } |
| 736 | |
| 737 | const Expression *E = createLoadExpression( |
| 738 | LI->getType(), LI->getPointerOperand(), LI, DefiningAccess, B); |
| 739 | return E; |
| 740 | } |
| 741 | |
| 742 | // Evaluate read only and pure calls, and create an expression result. |
| 743 | const Expression *NewGVN::performSymbolicCallEvaluation(Instruction *I, |
| 744 | const BasicBlock *B) { |
| 745 | CallInst *CI = cast<CallInst>(I); |
| 746 | if (AA->doesNotAccessMemory(CI)) |
| 747 | return createCallExpression(CI, nullptr, B); |
| 748 | else if (AA->onlyReadsMemory(CI)) |
| 749 | return createCallExpression(CI, MSSAWalker->getClobberingMemoryAccess(CI), |
| 750 | B); |
| 751 | else |
| 752 | return nullptr; |
| 753 | } |
| 754 | |
| 755 | // Evaluate PHI nodes symbolically, and create an expression result. |
| 756 | const Expression *NewGVN::performSymbolicPHIEvaluation(Instruction *I, |
| 757 | const BasicBlock *B) { |
| 758 | PHIExpression *E = cast<PHIExpression>(createPHIExpression(I)); |
| 759 | if (E->ops_empty()) { |
| 760 | DEBUG(dbgs() << "Simplified PHI node " << *I << " to undef" |
| 761 | << "\n"); |
| 762 | E->deallocateOperands(ArgRecycler); |
| 763 | ExpressionAllocator.Deallocate(E); |
| 764 | return createConstantExpression(UndefValue::get(I->getType())); |
| 765 | } |
| 766 | |
| 767 | Value *AllSameValue = E->getOperand(0); |
| 768 | |
| 769 | // See if all arguments are the same, ignoring undef arguments, because we can |
| 770 | // choose a value that is the same for them. |
| 771 | for (const Value *Arg : E->operands()) |
| 772 | if (Arg != AllSameValue && !isa<UndefValue>(Arg)) { |
| 773 | AllSameValue = NULL; |
| 774 | break; |
| 775 | } |
| 776 | |
| 777 | if (AllSameValue) { |
| 778 | // It's possible to have phi nodes with cycles (IE dependent on |
| 779 | // other phis that are .... dependent on the original phi node), |
| 780 | // especially in weird CFG's where some arguments are unreachable, or |
| 781 | // uninitialized along certain paths. |
| 782 | // This can cause infinite loops during evaluation (even if you disable |
| 783 | // the recursion below, you will simply ping-pong between congruence |
| 784 | // classes). If a phi node symbolically evaluates to another phi node, |
| 785 | // just leave it alone. If they are really the same, we will still |
| 786 | // eliminate them in favor of each other. |
| 787 | if (isa<PHINode>(AllSameValue)) |
| 788 | return E; |
| 789 | NumGVNPhisAllSame++; |
| 790 | DEBUG(dbgs() << "Simplified PHI node " << *I << " to " << *AllSameValue |
| 791 | << "\n"); |
| 792 | E->deallocateOperands(ArgRecycler); |
| 793 | ExpressionAllocator.Deallocate(E); |
| 794 | if (auto *C = dyn_cast<Constant>(AllSameValue)) |
| 795 | return createConstantExpression(C); |
| 796 | return createVariableExpression(AllSameValue); |
| 797 | } |
| 798 | return E; |
| 799 | } |
| 800 | |
| 801 | const Expression * |
| 802 | NewGVN::performSymbolicAggrValueEvaluation(Instruction *I, |
| 803 | const BasicBlock *B) { |
| 804 | if (auto *EI = dyn_cast<ExtractValueInst>(I)) { |
| 805 | auto *II = dyn_cast<IntrinsicInst>(EI->getAggregateOperand()); |
| 806 | if (II && EI->getNumIndices() == 1 && *EI->idx_begin() == 0) { |
| 807 | unsigned Opcode = 0; |
| 808 | // EI might be an extract from one of our recognised intrinsics. If it |
| 809 | // is we'll synthesize a semantically equivalent expression instead on |
| 810 | // an extract value expression. |
| 811 | switch (II->getIntrinsicID()) { |
| 812 | case Intrinsic::sadd_with_overflow: |
| 813 | case Intrinsic::uadd_with_overflow: |
| 814 | Opcode = Instruction::Add; |
| 815 | break; |
| 816 | case Intrinsic::ssub_with_overflow: |
| 817 | case Intrinsic::usub_with_overflow: |
| 818 | Opcode = Instruction::Sub; |
| 819 | break; |
| 820 | case Intrinsic::smul_with_overflow: |
| 821 | case Intrinsic::umul_with_overflow: |
| 822 | Opcode = Instruction::Mul; |
| 823 | break; |
| 824 | default: |
| 825 | break; |
| 826 | } |
| 827 | |
| 828 | if (Opcode != 0) { |
| 829 | // Intrinsic recognized. Grab its args to finish building the |
| 830 | // expression. |
| 831 | assert(II->getNumArgOperands() == 2 && |
| 832 | "Expect two args for recognised intrinsics."); |
| 833 | return createBinaryExpression(Opcode, EI->getType(), |
| 834 | II->getArgOperand(0), |
| 835 | II->getArgOperand(1), B); |
| 836 | } |
| 837 | } |
| 838 | } |
| 839 | |
| 840 | return createAggregateValueExpression(I, B); |
| 841 | } |
| 842 | |
| 843 | // Substitute and symbolize the value before value numbering. |
| 844 | const Expression *NewGVN::performSymbolicEvaluation(Value *V, |
| 845 | const BasicBlock *B) { |
| 846 | const Expression *E = NULL; |
| 847 | if (auto *C = dyn_cast<Constant>(V)) |
| 848 | E = createConstantExpression(C); |
| 849 | else if (isa<Argument>(V) || isa<GlobalVariable>(V)) { |
| 850 | E = createVariableExpression(V); |
| 851 | } else { |
| 852 | // TODO: memory intrinsics. |
| 853 | // TODO: Some day, we should do the forward propagation and reassociation |
| 854 | // parts of the algorithm. |
| 855 | Instruction *I = cast<Instruction>(V); |
| 856 | switch (I->getOpcode()) { |
| 857 | case Instruction::ExtractValue: |
| 858 | case Instruction::InsertValue: |
| 859 | E = performSymbolicAggrValueEvaluation(I, B); |
| 860 | break; |
| 861 | case Instruction::PHI: |
| 862 | E = performSymbolicPHIEvaluation(I, B); |
| 863 | break; |
| 864 | case Instruction::Call: |
| 865 | E = performSymbolicCallEvaluation(I, B); |
| 866 | break; |
| 867 | case Instruction::Store: |
| 868 | E = performSymbolicStoreEvaluation(I, B); |
| 869 | break; |
| 870 | case Instruction::Load: |
| 871 | E = performSymbolicLoadEvaluation(I, B); |
| 872 | break; |
| 873 | case Instruction::BitCast: { |
| 874 | E = createExpression(I, B); |
| 875 | } break; |
| 876 | |
| 877 | case Instruction::Add: |
| 878 | case Instruction::FAdd: |
| 879 | case Instruction::Sub: |
| 880 | case Instruction::FSub: |
| 881 | case Instruction::Mul: |
| 882 | case Instruction::FMul: |
| 883 | case Instruction::UDiv: |
| 884 | case Instruction::SDiv: |
| 885 | case Instruction::FDiv: |
| 886 | case Instruction::URem: |
| 887 | case Instruction::SRem: |
| 888 | case Instruction::FRem: |
| 889 | case Instruction::Shl: |
| 890 | case Instruction::LShr: |
| 891 | case Instruction::AShr: |
| 892 | case Instruction::And: |
| 893 | case Instruction::Or: |
| 894 | case Instruction::Xor: |
| 895 | case Instruction::ICmp: |
| 896 | case Instruction::FCmp: |
| 897 | case Instruction::Trunc: |
| 898 | case Instruction::ZExt: |
| 899 | case Instruction::SExt: |
| 900 | case Instruction::FPToUI: |
| 901 | case Instruction::FPToSI: |
| 902 | case Instruction::UIToFP: |
| 903 | case Instruction::SIToFP: |
| 904 | case Instruction::FPTrunc: |
| 905 | case Instruction::FPExt: |
| 906 | case Instruction::PtrToInt: |
| 907 | case Instruction::IntToPtr: |
| 908 | case Instruction::Select: |
| 909 | case Instruction::ExtractElement: |
| 910 | case Instruction::InsertElement: |
| 911 | case Instruction::ShuffleVector: |
| 912 | case Instruction::GetElementPtr: |
| 913 | E = createExpression(I, B); |
| 914 | break; |
| 915 | default: |
| 916 | return nullptr; |
| 917 | } |
| 918 | } |
| 919 | if (!E) |
| 920 | return nullptr; |
| 921 | return E; |
| 922 | } |
| 923 | |
| 924 | // There is an edge from 'Src' to 'Dst'. Return true if every path from |
| 925 | // the entry block to 'Dst' passes via this edge. In particular 'Dst' |
| 926 | // must not be reachable via another edge from 'Src'. |
Daniel Berlin | 8a6a861 | 2016-12-24 00:04:07 +0000 | [diff] [blame] | 927 | bool NewGVN::isOnlyReachableViaThisEdge(const BasicBlockEdge &E) const { |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 928 | |
| 929 | // While in theory it is interesting to consider the case in which Dst has |
| 930 | // more than one predecessor, because Dst might be part of a loop which is |
| 931 | // only reachable from Src, in practice it is pointless since at the time |
| 932 | // GVN runs all such loops have preheaders, which means that Dst will have |
| 933 | // been changed to have only one predecessor, namely Src. |
| 934 | const BasicBlock *Pred = E.getEnd()->getSinglePredecessor(); |
| 935 | const BasicBlock *Src = E.getStart(); |
| 936 | assert((!Pred || Pred == Src) && "No edge between these basic blocks!"); |
| 937 | (void)Src; |
| 938 | return Pred != nullptr; |
| 939 | } |
| 940 | |
| 941 | void NewGVN::markUsersTouched(Value *V) { |
| 942 | // Now mark the users as touched. |
| 943 | for (auto &U : V->uses()) { |
| 944 | auto *User = dyn_cast<Instruction>(U.getUser()); |
| 945 | assert(User && "Use of value not within an instruction?"); |
| 946 | TouchedInstructions.set(InstrDFS[User]); |
| 947 | } |
| 948 | } |
| 949 | |
| 950 | void NewGVN::markMemoryUsersTouched(MemoryAccess *MA) { |
| 951 | for (auto U : MA->users()) { |
| 952 | if (auto *MUD = dyn_cast<MemoryUseOrDef>(U)) |
| 953 | TouchedInstructions.set(InstrDFS[MUD->getMemoryInst()]); |
| 954 | else |
| 955 | TouchedInstructions.set(InstrDFS[MA]); |
| 956 | } |
| 957 | } |
| 958 | |
| 959 | // Perform congruence finding on a given value numbering expression. |
| 960 | void NewGVN::performCongruenceFinding(Value *V, const Expression *E) { |
| 961 | |
| 962 | ValueToExpression[V] = E; |
| 963 | // This is guaranteed to return something, since it will at least find |
| 964 | // INITIAL. |
| 965 | CongruenceClass *VClass = ValueToClass[V]; |
| 966 | assert(VClass && "Should have found a vclass"); |
| 967 | // Dead classes should have been eliminated from the mapping. |
| 968 | assert(!VClass->Dead && "Found a dead class"); |
| 969 | |
| 970 | CongruenceClass *EClass; |
| 971 | // Expressions we can't symbolize are always in their own unique |
| 972 | // congruence class. |
| 973 | if (E == NULL) { |
| 974 | // We may have already made a unique class. |
| 975 | if (VClass->Members.size() != 1 || VClass->RepLeader != V) { |
| 976 | CongruenceClass *NewClass = createCongruenceClass(V, NULL); |
| 977 | // We should always be adding the member in the below code. |
| 978 | EClass = NewClass; |
| 979 | DEBUG(dbgs() << "Created new congruence class for " << *V |
| 980 | << " due to NULL expression\n"); |
| 981 | } else { |
| 982 | EClass = VClass; |
| 983 | } |
| 984 | } else if (const auto *VE = dyn_cast<VariableExpression>(E)) { |
| 985 | EClass = ValueToClass[VE->getVariableValue()]; |
| 986 | } else { |
| 987 | auto lookupResult = ExpressionToClass.insert({E, nullptr}); |
| 988 | |
| 989 | // If it's not in the value table, create a new congruence class. |
| 990 | if (lookupResult.second) { |
| 991 | CongruenceClass *NewClass = createCongruenceClass(NULL, E); |
| 992 | auto place = lookupResult.first; |
| 993 | place->second = NewClass; |
| 994 | |
| 995 | // Constants and variables should always be made the leader. |
| 996 | if (const auto *CE = dyn_cast<ConstantExpression>(E)) |
| 997 | NewClass->RepLeader = CE->getConstantValue(); |
| 998 | else if (const auto *VE = dyn_cast<VariableExpression>(E)) |
| 999 | NewClass->RepLeader = VE->getVariableValue(); |
| 1000 | else if (const auto *SE = dyn_cast<StoreExpression>(E)) |
| 1001 | NewClass->RepLeader = SE->getStoreInst()->getValueOperand(); |
| 1002 | else |
| 1003 | NewClass->RepLeader = V; |
| 1004 | |
| 1005 | EClass = NewClass; |
| 1006 | DEBUG(dbgs() << "Created new congruence class for " << *V |
| 1007 | << " using expression " << *E << " at " << NewClass->ID |
| 1008 | << "\n"); |
| 1009 | DEBUG(dbgs() << "Hash value was " << E->getHashValue() << "\n"); |
| 1010 | } else { |
| 1011 | EClass = lookupResult.first->second; |
| 1012 | assert(EClass && "Somehow don't have an eclass"); |
| 1013 | |
| 1014 | assert(!EClass->Dead && "We accidentally looked up a dead class"); |
| 1015 | } |
| 1016 | } |
| 1017 | bool WasInChanged = ChangedValues.erase(V); |
| 1018 | if (VClass != EClass || WasInChanged) { |
| 1019 | DEBUG(dbgs() << "Found class " << EClass->ID << " for expression " << E |
| 1020 | << "\n"); |
| 1021 | |
| 1022 | if (VClass != EClass) { |
| 1023 | DEBUG(dbgs() << "New congruence class for " << V << " is " << EClass->ID |
| 1024 | << "\n"); |
| 1025 | |
| 1026 | VClass->Members.erase(V); |
| 1027 | EClass->Members.insert(V); |
| 1028 | ValueToClass[V] = EClass; |
| 1029 | // See if we destroyed the class or need to swap leaders. |
| 1030 | if (VClass->Members.empty() && VClass != InitialClass) { |
| 1031 | if (VClass->DefiningExpr) { |
| 1032 | VClass->Dead = true; |
| 1033 | DEBUG(dbgs() << "Erasing expression " << *E << " from table\n"); |
| 1034 | ExpressionToClass.erase(VClass->DefiningExpr); |
| 1035 | } |
| 1036 | } else if (VClass->RepLeader == V) { |
| 1037 | // FIXME: When the leader changes, the value numbering of |
| 1038 | // everything may change, so we need to reprocess. |
| 1039 | VClass->RepLeader = *(VClass->Members.begin()); |
| 1040 | for (auto M : VClass->Members) { |
| 1041 | if (auto *I = dyn_cast<Instruction>(M)) |
| 1042 | TouchedInstructions.set(InstrDFS[I]); |
| 1043 | ChangedValues.insert(M); |
| 1044 | } |
| 1045 | } |
| 1046 | } |
| 1047 | markUsersTouched(V); |
Davide Italiano | 463c32e | 2016-12-24 17:17:21 +0000 | [diff] [blame^] | 1048 | if (auto *I = dyn_cast<Instruction>(V)) |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 1049 | if (MemoryAccess *MA = MSSA->getMemoryAccess(I)) |
| 1050 | markMemoryUsersTouched(MA); |
| 1051 | } |
| 1052 | } |
| 1053 | |
| 1054 | // Process the fact that Edge (from, to) is reachable, including marking |
| 1055 | // any newly reachable blocks and instructions for processing. |
| 1056 | void NewGVN::updateReachableEdge(BasicBlock *From, BasicBlock *To) { |
| 1057 | // Check if the Edge was reachable before. |
| 1058 | if (ReachableEdges.insert({From, To}).second) { |
| 1059 | // If this block wasn't reachable before, all instructions are touched. |
| 1060 | if (ReachableBlocks.insert(To).second) { |
| 1061 | DEBUG(dbgs() << "Block " << getBlockName(To) << " marked reachable\n"); |
| 1062 | const auto &InstRange = BlockInstRange.lookup(To); |
| 1063 | TouchedInstructions.set(InstRange.first, InstRange.second); |
| 1064 | } else { |
| 1065 | DEBUG(dbgs() << "Block " << getBlockName(To) |
| 1066 | << " was reachable, but new edge {" << getBlockName(From) |
| 1067 | << "," << getBlockName(To) << "} to it found\n"); |
| 1068 | |
| 1069 | // We've made an edge reachable to an existing block, which may |
| 1070 | // impact predicates. Otherwise, only mark the phi nodes as touched, as |
| 1071 | // they are the only thing that depend on new edges. Anything using their |
| 1072 | // values will get propagated to if necessary. |
| 1073 | auto BI = To->begin(); |
| 1074 | while (isa<PHINode>(BI)) { |
| 1075 | TouchedInstructions.set(InstrDFS[&*BI]); |
| 1076 | ++BI; |
| 1077 | } |
| 1078 | } |
| 1079 | } |
| 1080 | } |
| 1081 | |
| 1082 | // Given a predicate condition (from a switch, cmp, or whatever) and a block, |
| 1083 | // see if we know some constant value for it already. |
| 1084 | Value *NewGVN::findConditionEquivalence(Value *Cond, BasicBlock *B) const { |
| 1085 | auto Result = lookupOperandLeader(Cond, nullptr, B); |
| 1086 | if (isa<Constant>(Result)) |
| 1087 | return Result; |
| 1088 | return nullptr; |
| 1089 | } |
| 1090 | |
| 1091 | // Process the outgoing edges of a block for reachability. |
| 1092 | void NewGVN::processOutgoingEdges(TerminatorInst *TI, BasicBlock *B) { |
| 1093 | // Evaluate reachability of terminator instruction. |
| 1094 | BranchInst *BR; |
| 1095 | if ((BR = dyn_cast<BranchInst>(TI)) && BR->isConditional()) { |
| 1096 | Value *Cond = BR->getCondition(); |
| 1097 | Value *CondEvaluated = findConditionEquivalence(Cond, B); |
| 1098 | if (!CondEvaluated) { |
| 1099 | if (auto *I = dyn_cast<Instruction>(Cond)) { |
| 1100 | const Expression *E = createExpression(I, B); |
| 1101 | if (const auto *CE = dyn_cast<ConstantExpression>(E)) { |
| 1102 | CondEvaluated = CE->getConstantValue(); |
| 1103 | } |
| 1104 | } else if (isa<ConstantInt>(Cond)) { |
| 1105 | CondEvaluated = Cond; |
| 1106 | } |
| 1107 | } |
| 1108 | ConstantInt *CI; |
| 1109 | BasicBlock *TrueSucc = BR->getSuccessor(0); |
| 1110 | BasicBlock *FalseSucc = BR->getSuccessor(1); |
| 1111 | if (CondEvaluated && (CI = dyn_cast<ConstantInt>(CondEvaluated))) { |
| 1112 | if (CI->isOne()) { |
| 1113 | DEBUG(dbgs() << "Condition for Terminator " << *TI |
| 1114 | << " evaluated to true\n"); |
| 1115 | updateReachableEdge(B, TrueSucc); |
| 1116 | } else if (CI->isZero()) { |
| 1117 | DEBUG(dbgs() << "Condition for Terminator " << *TI |
| 1118 | << " evaluated to false\n"); |
| 1119 | updateReachableEdge(B, FalseSucc); |
| 1120 | } |
| 1121 | } else { |
| 1122 | updateReachableEdge(B, TrueSucc); |
| 1123 | updateReachableEdge(B, FalseSucc); |
| 1124 | } |
| 1125 | } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { |
| 1126 | // For switches, propagate the case values into the case |
| 1127 | // destinations. |
| 1128 | |
| 1129 | // Remember how many outgoing edges there are to every successor. |
| 1130 | SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges; |
| 1131 | |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 1132 | Value *SwitchCond = SI->getCondition(); |
| 1133 | Value *CondEvaluated = findConditionEquivalence(SwitchCond, B); |
| 1134 | // See if we were able to turn this switch statement into a constant. |
| 1135 | if (CondEvaluated && isa<ConstantInt>(CondEvaluated)) { |
| 1136 | ConstantInt *CondVal = cast<ConstantInt>(CondEvaluated); |
| 1137 | // We should be able to get case value for this. |
| 1138 | auto CaseVal = SI->findCaseValue(CondVal); |
| 1139 | if (CaseVal.getCaseSuccessor() == SI->getDefaultDest()) { |
| 1140 | // We proved the value is outside of the range of the case. |
| 1141 | // We can't do anything other than mark the default dest as reachable, |
| 1142 | // and go home. |
| 1143 | updateReachableEdge(B, SI->getDefaultDest()); |
| 1144 | return; |
| 1145 | } |
| 1146 | // Now get where it goes and mark it reachable. |
| 1147 | BasicBlock *TargetBlock = CaseVal.getCaseSuccessor(); |
| 1148 | updateReachableEdge(B, TargetBlock); |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 1149 | } else { |
| 1150 | for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) { |
| 1151 | BasicBlock *TargetBlock = SI->getSuccessor(i); |
| 1152 | ++SwitchEdges[TargetBlock]; |
| 1153 | updateReachableEdge(B, TargetBlock); |
| 1154 | } |
| 1155 | } |
| 1156 | } else { |
| 1157 | // Otherwise this is either unconditional, or a type we have no |
| 1158 | // idea about. Just mark successors as reachable. |
| 1159 | for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) { |
| 1160 | BasicBlock *TargetBlock = TI->getSuccessor(i); |
| 1161 | updateReachableEdge(B, TargetBlock); |
| 1162 | } |
| 1163 | } |
| 1164 | } |
| 1165 | |
| 1166 | // The algorithm initially places the values of the routine in the INITIAL congruence |
| 1167 | // class. The leader of INITIAL is the undetermined value `TOP`. |
| 1168 | // When the algorithm has finished, values still in INITIAL are unreachable. |
| 1169 | void NewGVN::initializeCongruenceClasses(Function &F) { |
| 1170 | // FIXME now i can't remember why this is 2 |
| 1171 | NextCongruenceNum = 2; |
| 1172 | // Initialize all other instructions to be in INITIAL class. |
| 1173 | CongruenceClass::MemberSet InitialValues; |
| 1174 | for (auto &B : F) |
| 1175 | for (auto &I : B) |
| 1176 | InitialValues.insert(&I); |
| 1177 | |
| 1178 | InitialClass = createCongruenceClass(NULL, NULL); |
| 1179 | for (auto L : InitialValues) |
| 1180 | ValueToClass[L] = InitialClass; |
| 1181 | InitialClass->Members.swap(InitialValues); |
| 1182 | |
| 1183 | // Initialize arguments to be in their own unique congruence classes |
| 1184 | for (auto &FA : F.args()) |
| 1185 | createSingletonCongruenceClass(&FA); |
| 1186 | } |
| 1187 | |
| 1188 | void NewGVN::cleanupTables() { |
| 1189 | for (unsigned i = 0, e = CongruenceClasses.size(); i != e; ++i) { |
| 1190 | DEBUG(dbgs() << "Congruence class " << CongruenceClasses[i]->ID << " has " |
| 1191 | << CongruenceClasses[i]->Members.size() << " members\n"); |
| 1192 | // Make sure we delete the congruence class (probably worth switching to |
| 1193 | // a unique_ptr at some point. |
| 1194 | delete CongruenceClasses[i]; |
| 1195 | CongruenceClasses[i] = NULL; |
| 1196 | } |
| 1197 | |
| 1198 | ValueToClass.clear(); |
| 1199 | ArgRecycler.clear(ExpressionAllocator); |
| 1200 | ExpressionAllocator.Reset(); |
| 1201 | CongruenceClasses.clear(); |
| 1202 | ExpressionToClass.clear(); |
| 1203 | ValueToExpression.clear(); |
| 1204 | ReachableBlocks.clear(); |
| 1205 | ReachableEdges.clear(); |
| 1206 | #ifndef NDEBUG |
| 1207 | ProcessedCount.clear(); |
| 1208 | #endif |
| 1209 | DFSDomMap.clear(); |
| 1210 | InstrDFS.clear(); |
| 1211 | InstructionsToErase.clear(); |
| 1212 | |
| 1213 | DFSToInstr.clear(); |
| 1214 | BlockInstRange.clear(); |
| 1215 | TouchedInstructions.clear(); |
| 1216 | DominatedInstRange.clear(); |
| 1217 | } |
| 1218 | |
| 1219 | std::pair<unsigned, unsigned> NewGVN::assignDFSNumbers(BasicBlock *B, |
| 1220 | unsigned Start) { |
| 1221 | unsigned End = Start; |
| 1222 | for (auto &I : *B) { |
| 1223 | InstrDFS[&I] = End++; |
| 1224 | DFSToInstr.emplace_back(&I); |
| 1225 | } |
| 1226 | |
| 1227 | // All of the range functions taken half-open ranges (open on the end side). |
| 1228 | // So we do not subtract one from count, because at this point it is one |
| 1229 | // greater than the last instruction. |
| 1230 | return std::make_pair(Start, End); |
| 1231 | } |
| 1232 | |
| 1233 | void NewGVN::updateProcessedCount(Value *V) { |
| 1234 | #ifndef NDEBUG |
| 1235 | if (ProcessedCount.count(V) == 0) { |
| 1236 | ProcessedCount.insert({V, 1}); |
| 1237 | } else { |
| 1238 | ProcessedCount[V] += 1; |
| 1239 | assert(ProcessedCount[V] < 100 && |
| 1240 | "Seem to have processed the same Value a lot\n"); |
| 1241 | } |
| 1242 | #endif |
| 1243 | } |
| 1244 | |
| 1245 | // This is the main transformation entry point. |
| 1246 | bool NewGVN::runGVN(Function &F, DominatorTree *_DT, AssumptionCache *_AC, |
| 1247 | TargetLibraryInfo *_TLI, AliasAnalysis *_AA, |
| 1248 | MemorySSA *_MSSA) { |
| 1249 | bool Changed = false; |
| 1250 | DT = _DT; |
| 1251 | AC = _AC; |
| 1252 | TLI = _TLI; |
| 1253 | AA = _AA; |
| 1254 | MSSA = _MSSA; |
| 1255 | DL = &F.getParent()->getDataLayout(); |
| 1256 | MSSAWalker = MSSA->getWalker(); |
| 1257 | |
| 1258 | // Count number of instructions for sizing of hash tables, and come |
| 1259 | // up with a global dfs numbering for instructions. |
| 1260 | unsigned ICount = 0; |
| 1261 | SmallPtrSet<BasicBlock *, 16> VisitedBlocks; |
| 1262 | |
| 1263 | // Note: We want RPO traversal of the blocks, which is not quite the same as |
| 1264 | // dominator tree order, particularly with regard whether backedges get |
| 1265 | // visited first or second, given a block with multiple successors. |
| 1266 | // If we visit in the wrong order, we will end up performing N times as many |
| 1267 | // iterations. |
| 1268 | ReversePostOrderTraversal<Function *> RPOT(&F); |
| 1269 | for (auto &B : RPOT) { |
| 1270 | VisitedBlocks.insert(B); |
| 1271 | const auto &BlockRange = assignDFSNumbers(B, ICount); |
| 1272 | BlockInstRange.insert({B, BlockRange}); |
| 1273 | ICount += BlockRange.second - BlockRange.first; |
| 1274 | } |
| 1275 | |
| 1276 | // Handle forward unreachable blocks and figure out which blocks |
| 1277 | // have single preds. |
| 1278 | for (auto &B : F) { |
| 1279 | // Assign numbers to unreachable blocks. |
| 1280 | if (!VisitedBlocks.count(&B)) { |
| 1281 | const auto &BlockRange = assignDFSNumbers(&B, ICount); |
| 1282 | BlockInstRange.insert({&B, BlockRange}); |
| 1283 | ICount += BlockRange.second - BlockRange.first; |
| 1284 | } |
| 1285 | } |
| 1286 | |
| 1287 | TouchedInstructions.resize(ICount + 1); |
| 1288 | DominatedInstRange.reserve(F.size()); |
| 1289 | // Ensure we don't end up resizing the expressionToClass map, as |
| 1290 | // that can be quite expensive. At most, we have one expression per |
| 1291 | // instruction. |
| 1292 | ExpressionToClass.reserve(ICount + 1); |
| 1293 | |
| 1294 | // Initialize the touched instructions to include the entry block. |
| 1295 | const auto &InstRange = BlockInstRange.lookup(&F.getEntryBlock()); |
| 1296 | TouchedInstructions.set(InstRange.first, InstRange.second); |
| 1297 | ReachableBlocks.insert(&F.getEntryBlock()); |
| 1298 | |
| 1299 | initializeCongruenceClasses(F); |
| 1300 | |
| 1301 | // We start out in the entry block. |
| 1302 | BasicBlock *LastBlock = &F.getEntryBlock(); |
| 1303 | while (TouchedInstructions.any()) { |
| 1304 | // Walk through all the instructions in all the blocks in RPO. |
| 1305 | for (int InstrNum = TouchedInstructions.find_first(); InstrNum != -1; |
| 1306 | InstrNum = TouchedInstructions.find_next(InstrNum)) { |
| 1307 | Instruction *I = DFSToInstr[InstrNum]; |
| 1308 | BasicBlock *CurrBlock = I->getParent(); |
| 1309 | |
| 1310 | // If we hit a new block, do reachability processing. |
| 1311 | if (CurrBlock != LastBlock) { |
| 1312 | LastBlock = CurrBlock; |
| 1313 | bool BlockReachable = ReachableBlocks.count(CurrBlock); |
| 1314 | const auto &CurrInstRange = BlockInstRange.lookup(CurrBlock); |
| 1315 | |
| 1316 | // If it's not reachable, erase any touched instructions and move on. |
| 1317 | if (!BlockReachable) { |
| 1318 | TouchedInstructions.reset(CurrInstRange.first, CurrInstRange.second); |
| 1319 | DEBUG(dbgs() << "Skipping instructions in block " |
| 1320 | << getBlockName(CurrBlock) |
| 1321 | << " because it is unreachable\n"); |
| 1322 | continue; |
| 1323 | } |
| 1324 | updateProcessedCount(CurrBlock); |
| 1325 | } |
| 1326 | DEBUG(dbgs() << "Processing instruction " << *I << "\n"); |
| 1327 | if (I->use_empty() && !I->getType()->isVoidTy()) { |
| 1328 | DEBUG(dbgs() << "Skipping unused instruction\n"); |
| 1329 | if (isInstructionTriviallyDead(I, TLI)) |
| 1330 | markInstructionForDeletion(I); |
| 1331 | TouchedInstructions.reset(InstrNum); |
| 1332 | continue; |
| 1333 | } |
| 1334 | updateProcessedCount(I); |
| 1335 | |
| 1336 | if (!I->isTerminator()) { |
| 1337 | const Expression *Symbolized = performSymbolicEvaluation(I, CurrBlock); |
| 1338 | performCongruenceFinding(I, Symbolized); |
| 1339 | } else { |
| 1340 | processOutgoingEdges(dyn_cast<TerminatorInst>(I), CurrBlock); |
| 1341 | } |
| 1342 | // Reset after processing (because we may mark ourselves as touched when |
| 1343 | // we propagate equalities). |
| 1344 | TouchedInstructions.reset(InstrNum); |
| 1345 | } |
| 1346 | } |
| 1347 | |
| 1348 | Changed |= eliminateInstructions(F); |
| 1349 | |
| 1350 | // Delete all instructions marked for deletion. |
| 1351 | for (Instruction *ToErase : InstructionsToErase) { |
| 1352 | if (!ToErase->use_empty()) |
| 1353 | ToErase->replaceAllUsesWith(UndefValue::get(ToErase->getType())); |
| 1354 | |
| 1355 | ToErase->eraseFromParent(); |
| 1356 | } |
| 1357 | |
| 1358 | // Delete all unreachable blocks. |
| 1359 | for (auto &B : F) { |
| 1360 | BasicBlock *BB = &B; |
| 1361 | if (!ReachableBlocks.count(BB)) { |
| 1362 | DEBUG(dbgs() << "We believe block " << getBlockName(BB) |
| 1363 | << " is unreachable\n"); |
| 1364 | deleteInstructionsInBlock(BB); |
| 1365 | Changed = true; |
| 1366 | } |
| 1367 | } |
| 1368 | |
| 1369 | cleanupTables(); |
| 1370 | return Changed; |
| 1371 | } |
| 1372 | |
| 1373 | bool NewGVN::runOnFunction(Function &F) { |
| 1374 | if (skipFunction(F)) |
| 1375 | return false; |
| 1376 | return runGVN(F, &getAnalysis<DominatorTreeWrapperPass>().getDomTree(), |
| 1377 | &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), |
| 1378 | &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(), |
| 1379 | &getAnalysis<AAResultsWrapperPass>().getAAResults(), |
| 1380 | &getAnalysis<MemorySSAWrapperPass>().getMSSA()); |
| 1381 | } |
| 1382 | |
| 1383 | PreservedAnalyses NewGVNPass::run(Function &F, |
| 1384 | AnalysisManager<Function> &AM) { |
| 1385 | NewGVN Impl; |
| 1386 | |
| 1387 | // Apparently the order in which we get these results matter for |
| 1388 | // the old GVN (see Chandler's comment in GVN.cpp). I'll keep |
| 1389 | // the same order here, just in case. |
| 1390 | auto &AC = AM.getResult<AssumptionAnalysis>(F); |
| 1391 | auto &DT = AM.getResult<DominatorTreeAnalysis>(F); |
| 1392 | auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); |
| 1393 | auto &AA = AM.getResult<AAManager>(F); |
| 1394 | auto &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA(); |
| 1395 | bool Changed = Impl.runGVN(F, &DT, &AC, &TLI, &AA, &MSSA); |
| 1396 | if (!Changed) |
| 1397 | return PreservedAnalyses::all(); |
| 1398 | PreservedAnalyses PA; |
| 1399 | PA.preserve<DominatorTreeAnalysis>(); |
| 1400 | PA.preserve<GlobalsAA>(); |
| 1401 | return PA; |
| 1402 | } |
| 1403 | |
| 1404 | // Return true if V is a value that will always be available (IE can |
| 1405 | // be placed anywhere) in the function. We don't do globals here |
| 1406 | // because they are often worse to put in place. |
| 1407 | // TODO: Separate cost from availability |
| 1408 | static bool alwaysAvailable(Value *V) { |
| 1409 | return isa<Constant>(V) || isa<Argument>(V); |
| 1410 | } |
| 1411 | |
| 1412 | // Get the basic block from an instruction/value. |
| 1413 | static BasicBlock *getBlockForValue(Value *V) { |
| 1414 | if (auto *I = dyn_cast<Instruction>(V)) |
| 1415 | return I->getParent(); |
| 1416 | return nullptr; |
| 1417 | } |
| 1418 | |
| 1419 | struct NewGVN::ValueDFS { |
| 1420 | int DFSIn; |
| 1421 | int DFSOut; |
| 1422 | int LocalNum; |
| 1423 | // Only one of these will be set. |
| 1424 | Value *Val; |
| 1425 | Use *U; |
| 1426 | ValueDFS() |
| 1427 | : DFSIn(0), DFSOut(0), LocalNum(0), Val(nullptr), U(nullptr) {} |
| 1428 | |
| 1429 | bool operator<(const ValueDFS &Other) const { |
| 1430 | // It's not enough that any given field be less than - we have sets |
| 1431 | // of fields that need to be evaluated together to give a proper ordering. |
| 1432 | // For example, if you have; |
| 1433 | // DFS (1, 3) |
| 1434 | // Val 0 |
| 1435 | // DFS (1, 2) |
| 1436 | // Val 50 |
| 1437 | // We want the second to be less than the first, but if we just go field |
| 1438 | // by field, we will get to Val 0 < Val 50 and say the first is less than |
| 1439 | // the second. We only want it to be less than if the DFS orders are equal. |
| 1440 | // |
| 1441 | // Each LLVM instruction only produces one value, and thus the lowest-level |
| 1442 | // differentiator that really matters for the stack (and what we use as as a |
| 1443 | // replacement) is the local dfs number. |
| 1444 | // Everything else in the structure is instruction level, and only affects the |
| 1445 | // order in which we will replace operands of a given instruction. |
| 1446 | // |
| 1447 | // For a given instruction (IE things with equal dfsin, dfsout, localnum), |
| 1448 | // the order of replacement of uses does not matter. |
| 1449 | // IE given, |
| 1450 | // a = 5 |
| 1451 | // b = a + a |
| 1452 | // When you hit b, you will have two valuedfs with the same dfsin, out, and localnum. |
| 1453 | // The .val will be the same as well. |
| 1454 | // The .u's will be different. |
| 1455 | // You will replace both, and it does not matter what order you replace them in |
| 1456 | // (IE whether you replace operand 2, then operand 1, or operand 1, then operand 2). |
| 1457 | // Similarly for the case of same dfsin, dfsout, localnum, but different .val's |
| 1458 | // a = 5 |
| 1459 | // b = 6 |
| 1460 | // c = a + b |
| 1461 | // in c, we will a valuedfs for a, and one for b,with everything the same but |
| 1462 | // .val and .u. |
| 1463 | // It does not matter what order we replace these operands in. |
| 1464 | // You will always end up with the same IR, and this is guaranteed. |
| 1465 | return std::tie(DFSIn, DFSOut, LocalNum, Val, U) < |
| 1466 | std::tie(Other.DFSIn, Other.DFSOut, Other.LocalNum, Other.Val, |
| 1467 | Other.U); |
| 1468 | } |
| 1469 | }; |
| 1470 | |
| 1471 | void NewGVN::convertDenseToDFSOrdered(CongruenceClass::MemberSet &Dense, |
| 1472 | std::vector<ValueDFS> &DFSOrderedSet) { |
| 1473 | for (auto D : Dense) { |
| 1474 | // First add the value. |
| 1475 | BasicBlock *BB = getBlockForValue(D); |
| 1476 | // Constants are handled prior to ever calling this function, so |
| 1477 | // we should only be left with instructions as members. |
Chandler Carruth | ee08676 | 2016-12-23 01:38:06 +0000 | [diff] [blame] | 1478 | assert(BB && "Should have figured out a basic block for value"); |
Davide Italiano | 7e274e0 | 2016-12-22 16:03:48 +0000 | [diff] [blame] | 1479 | ValueDFS VD; |
| 1480 | |
| 1481 | std::pair<int, int> DFSPair = DFSDomMap[BB]; |
| 1482 | assert(DFSPair.first != -1 && DFSPair.second != -1 && "Invalid DFS Pair"); |
| 1483 | VD.DFSIn = DFSPair.first; |
| 1484 | VD.DFSOut = DFSPair.second; |
| 1485 | VD.Val = D; |
| 1486 | // If it's an instruction, use the real local dfs number. |
| 1487 | if (auto *I = dyn_cast<Instruction>(D)) |
| 1488 | VD.LocalNum = InstrDFS[I]; |
| 1489 | else |
| 1490 | llvm_unreachable("Should have been an instruction"); |
| 1491 | |
| 1492 | DFSOrderedSet.emplace_back(VD); |
| 1493 | |
| 1494 | // Now add the users. |
| 1495 | for (auto &U : D->uses()) { |
| 1496 | if (auto *I = dyn_cast<Instruction>(U.getUser())) { |
| 1497 | ValueDFS VD; |
| 1498 | // Put the phi node uses in the incoming block. |
| 1499 | BasicBlock *IBlock; |
| 1500 | if (auto *P = dyn_cast<PHINode>(I)) { |
| 1501 | IBlock = P->getIncomingBlock(U); |
| 1502 | // Make phi node users appear last in the incoming block |
| 1503 | // they are from. |
| 1504 | VD.LocalNum = InstrDFS.size() + 1; |
| 1505 | } else { |
| 1506 | IBlock = I->getParent(); |
| 1507 | VD.LocalNum = InstrDFS[I]; |
| 1508 | } |
| 1509 | std::pair<int, int> DFSPair = DFSDomMap[IBlock]; |
| 1510 | VD.DFSIn = DFSPair.first; |
| 1511 | VD.DFSOut = DFSPair.second; |
| 1512 | VD.U = &U; |
| 1513 | DFSOrderedSet.emplace_back(VD); |
| 1514 | } |
| 1515 | } |
| 1516 | } |
| 1517 | } |
| 1518 | |
| 1519 | static void patchReplacementInstruction(Instruction *I, Value *Repl) { |
| 1520 | // Patch the replacement so that it is not more restrictive than the value |
| 1521 | // being replaced. |
| 1522 | auto *Op = dyn_cast<BinaryOperator>(I); |
| 1523 | auto *ReplOp = dyn_cast<BinaryOperator>(Repl); |
| 1524 | |
| 1525 | if (Op && ReplOp) |
| 1526 | ReplOp->andIRFlags(Op); |
| 1527 | |
| 1528 | if (auto *ReplInst = dyn_cast<Instruction>(Repl)) { |
| 1529 | // FIXME: If both the original and replacement value are part of the |
| 1530 | // same control-flow region (meaning that the execution of one |
| 1531 | // guarentees the executation of the other), then we can combine the |
| 1532 | // noalias scopes here and do better than the general conservative |
| 1533 | // answer used in combineMetadata(). |
| 1534 | |
| 1535 | // In general, GVN unifies expressions over different control-flow |
| 1536 | // regions, and so we need a conservative combination of the noalias |
| 1537 | // scopes. |
| 1538 | unsigned KnownIDs[] = { |
| 1539 | LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, |
| 1540 | LLVMContext::MD_noalias, LLVMContext::MD_range, |
| 1541 | LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load, |
| 1542 | LLVMContext::MD_invariant_group}; |
| 1543 | combineMetadata(ReplInst, I, KnownIDs); |
| 1544 | } |
| 1545 | } |
| 1546 | |
| 1547 | static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) { |
| 1548 | patchReplacementInstruction(I, Repl); |
| 1549 | I->replaceAllUsesWith(Repl); |
| 1550 | } |
| 1551 | |
| 1552 | void NewGVN::deleteInstructionsInBlock(BasicBlock *BB) { |
| 1553 | DEBUG(dbgs() << " BasicBlock Dead:" << *BB); |
| 1554 | ++NumGVNBlocksDeleted; |
| 1555 | |
| 1556 | // Check to see if there are non-terminating instructions to delete. |
| 1557 | if (isa<TerminatorInst>(BB->begin())) |
| 1558 | return; |
| 1559 | |
| 1560 | // Delete the instructions backwards, as it has a reduced likelihood of having |
| 1561 | // to update as many def-use and use-def chains. Start after the terminator. |
| 1562 | auto StartPoint = BB->rbegin(); |
| 1563 | ++StartPoint; |
| 1564 | // Note that we explicitly recalculate BB->rend() on each iteration, |
| 1565 | // as it may change when we remove the first instruction. |
| 1566 | for (BasicBlock::reverse_iterator I(StartPoint); I != BB->rend();) { |
| 1567 | Instruction &Inst = *I++; |
| 1568 | if (!Inst.use_empty()) |
| 1569 | Inst.replaceAllUsesWith(UndefValue::get(Inst.getType())); |
| 1570 | if (isa<LandingPadInst>(Inst)) |
| 1571 | continue; |
| 1572 | |
| 1573 | Inst.eraseFromParent(); |
| 1574 | ++NumGVNInstrDeleted; |
| 1575 | } |
| 1576 | } |
| 1577 | |
| 1578 | void NewGVN::markInstructionForDeletion(Instruction *I) { |
| 1579 | DEBUG(dbgs() << "Marking " << *I << " for deletion\n"); |
| 1580 | InstructionsToErase.insert(I); |
| 1581 | } |
| 1582 | |
| 1583 | void NewGVN::replaceInstruction(Instruction *I, Value *V) { |
| 1584 | |
| 1585 | DEBUG(dbgs() << "Replacing " << *I << " with " << *V << "\n"); |
| 1586 | patchAndReplaceAllUsesWith(I, V); |
| 1587 | // We save the actual erasing to avoid invalidating memory |
| 1588 | // dependencies until we are done with everything. |
| 1589 | markInstructionForDeletion(I); |
| 1590 | } |
| 1591 | |
| 1592 | namespace { |
| 1593 | |
| 1594 | // This is a stack that contains both the value and dfs info of where |
| 1595 | // that value is valid. |
| 1596 | class ValueDFSStack { |
| 1597 | public: |
| 1598 | Value *back() const { return ValueStack.back(); } |
| 1599 | std::pair<int, int> dfs_back() const { return DFSStack.back(); } |
| 1600 | |
| 1601 | void push_back(Value *V, int DFSIn, int DFSOut) { |
| 1602 | ValueStack.emplace_back(V); |
| 1603 | DFSStack.emplace_back(DFSIn, DFSOut); |
| 1604 | } |
| 1605 | bool empty() const { return DFSStack.empty(); } |
| 1606 | bool isInScope(int DFSIn, int DFSOut) const { |
| 1607 | if (empty()) |
| 1608 | return false; |
| 1609 | return DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second; |
| 1610 | } |
| 1611 | |
| 1612 | void popUntilDFSScope(int DFSIn, int DFSOut) { |
| 1613 | |
| 1614 | // These two should always be in sync at this point. |
| 1615 | assert(ValueStack.size() == DFSStack.size() && |
| 1616 | "Mismatch between ValueStack and DFSStack"); |
| 1617 | while ( |
| 1618 | !DFSStack.empty() && |
| 1619 | !(DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second)) { |
| 1620 | DFSStack.pop_back(); |
| 1621 | ValueStack.pop_back(); |
| 1622 | } |
| 1623 | } |
| 1624 | |
| 1625 | private: |
| 1626 | SmallVector<Value *, 8> ValueStack; |
| 1627 | SmallVector<std::pair<int, int>, 8> DFSStack; |
| 1628 | }; |
| 1629 | } |
| 1630 | |
| 1631 | bool NewGVN::eliminateInstructions(Function &F) { |
| 1632 | // This is a non-standard eliminator. The normal way to eliminate is |
| 1633 | // to walk the dominator tree in order, keeping track of available |
| 1634 | // values, and eliminating them. However, this is mildly |
| 1635 | // pointless. It requires doing lookups on every instruction, |
| 1636 | // regardless of whether we will ever eliminate it. For |
| 1637 | // instructions part of most singleton congruence class, we know we |
| 1638 | // will never eliminate it. |
| 1639 | |
| 1640 | // Instead, this eliminator looks at the congruence classes directly, sorts |
| 1641 | // them into a DFS ordering of the dominator tree, and then we just |
| 1642 | // perform eliminate straight on the sets by walking the congruence |
| 1643 | // class member uses in order, and eliminate the ones dominated by the |
| 1644 | // last member. This is technically O(N log N) where N = number of |
| 1645 | // instructions (since in theory all instructions may be in the same |
| 1646 | // congruence class). |
| 1647 | // When we find something not dominated, it becomes the new leader |
| 1648 | // for elimination purposes |
| 1649 | |
| 1650 | bool AnythingReplaced = false; |
| 1651 | |
| 1652 | // Since we are going to walk the domtree anyway, and we can't guarantee the |
| 1653 | // DFS numbers are updated, we compute some ourselves. |
| 1654 | DT->updateDFSNumbers(); |
| 1655 | |
| 1656 | for (auto &B : F) { |
| 1657 | if (!ReachableBlocks.count(&B)) { |
| 1658 | for (const auto S : successors(&B)) { |
| 1659 | for (auto II = S->begin(); isa<PHINode>(II); ++II) { |
| 1660 | PHINode &Phi = cast<PHINode>(*II); |
| 1661 | DEBUG(dbgs() << "Replacing incoming value of " << *II << " for block " |
| 1662 | << getBlockName(&B) |
| 1663 | << " with undef due to it being unreachable\n"); |
| 1664 | for (auto &Operand : Phi.incoming_values()) |
| 1665 | if (Phi.getIncomingBlock(Operand) == &B) |
| 1666 | Operand.set(UndefValue::get(Phi.getType())); |
| 1667 | } |
| 1668 | } |
| 1669 | } |
| 1670 | DomTreeNode *Node = DT->getNode(&B); |
| 1671 | if (Node) |
| 1672 | DFSDomMap[&B] = {Node->getDFSNumIn(), Node->getDFSNumOut()}; |
| 1673 | } |
| 1674 | |
| 1675 | for (CongruenceClass *CC : CongruenceClasses) { |
| 1676 | // FIXME: We should eventually be able to replace everything still |
| 1677 | // in the initial class with undef, as they should be unreachable. |
| 1678 | // Right now, initial still contains some things we skip value |
| 1679 | // numbering of (UNREACHABLE's, for example). |
| 1680 | if (CC == InitialClass || CC->Dead) |
| 1681 | continue; |
| 1682 | assert(CC->RepLeader && "We should have had a leader"); |
| 1683 | |
| 1684 | // If this is a leader that is always available, and it's a |
| 1685 | // constant or has no equivalences, just replace everything with |
| 1686 | // it. We then update the congruence class with whatever members |
| 1687 | // are left. |
| 1688 | if (alwaysAvailable(CC->RepLeader)) { |
| 1689 | SmallPtrSet<Value *, 4> MembersLeft; |
| 1690 | for (auto M : CC->Members) { |
| 1691 | |
| 1692 | Value *Member = M; |
| 1693 | |
| 1694 | // Void things have no uses we can replace. |
| 1695 | if (Member == CC->RepLeader || Member->getType()->isVoidTy()) { |
| 1696 | MembersLeft.insert(Member); |
| 1697 | continue; |
| 1698 | } |
| 1699 | |
| 1700 | DEBUG(dbgs() << "Found replacement " << *(CC->RepLeader) << " for " |
| 1701 | << *Member << "\n"); |
| 1702 | // Due to equality propagation, these may not always be |
| 1703 | // instructions, they may be real values. We don't really |
| 1704 | // care about trying to replace the non-instructions. |
| 1705 | if (auto *I = dyn_cast<Instruction>(Member)) { |
| 1706 | assert(CC->RepLeader != I && |
| 1707 | "About to accidentally remove our leader"); |
| 1708 | replaceInstruction(I, CC->RepLeader); |
| 1709 | AnythingReplaced = true; |
| 1710 | |
| 1711 | continue; |
| 1712 | } else { |
| 1713 | MembersLeft.insert(I); |
| 1714 | } |
| 1715 | } |
| 1716 | CC->Members.swap(MembersLeft); |
| 1717 | |
| 1718 | } else { |
| 1719 | DEBUG(dbgs() << "Eliminating in congruence class " << CC->ID << "\n"); |
| 1720 | // If this is a singleton, we can skip it. |
| 1721 | if (CC->Members.size() != 1) { |
| 1722 | |
| 1723 | // This is a stack because equality replacement/etc may place |
| 1724 | // constants in the middle of the member list, and we want to use |
| 1725 | // those constant values in preference to the current leader, over |
| 1726 | // the scope of those constants. |
| 1727 | ValueDFSStack EliminationStack; |
| 1728 | |
| 1729 | // Convert the members to DFS ordered sets and then merge them. |
| 1730 | std::vector<ValueDFS> DFSOrderedSet; |
| 1731 | convertDenseToDFSOrdered(CC->Members, DFSOrderedSet); |
| 1732 | |
| 1733 | // Sort the whole thing. |
| 1734 | sort(DFSOrderedSet.begin(), DFSOrderedSet.end()); |
| 1735 | |
| 1736 | for (auto &C : DFSOrderedSet) { |
| 1737 | int MemberDFSIn = C.DFSIn; |
| 1738 | int MemberDFSOut = C.DFSOut; |
| 1739 | Value *Member = C.Val; |
| 1740 | Use *MemberUse = C.U; |
| 1741 | |
| 1742 | // We ignore void things because we can't get a value from them. |
| 1743 | if (Member && Member->getType()->isVoidTy()) |
| 1744 | continue; |
| 1745 | |
| 1746 | if (EliminationStack.empty()) { |
| 1747 | DEBUG(dbgs() << "Elimination Stack is empty\n"); |
| 1748 | } else { |
| 1749 | DEBUG(dbgs() << "Elimination Stack Top DFS numbers are (" |
| 1750 | << EliminationStack.dfs_back().first << "," |
| 1751 | << EliminationStack.dfs_back().second << ")\n"); |
| 1752 | } |
| 1753 | if (Member && isa<Constant>(Member)) |
| 1754 | assert(isa<Constant>(CC->RepLeader)); |
| 1755 | |
| 1756 | DEBUG(dbgs() << "Current DFS numbers are (" << MemberDFSIn << "," |
| 1757 | << MemberDFSOut << ")\n"); |
| 1758 | // First, we see if we are out of scope or empty. If so, |
| 1759 | // and there equivalences, we try to replace the top of |
| 1760 | // stack with equivalences (if it's on the stack, it must |
| 1761 | // not have been eliminated yet). |
| 1762 | // Then we synchronize to our current scope, by |
| 1763 | // popping until we are back within a DFS scope that |
| 1764 | // dominates the current member. |
| 1765 | // Then, what happens depends on a few factors |
| 1766 | // If the stack is now empty, we need to push |
| 1767 | // If we have a constant or a local equivalence we want to |
| 1768 | // start using, we also push. |
| 1769 | // Otherwise, we walk along, processing members who are |
| 1770 | // dominated by this scope, and eliminate them. |
| 1771 | bool ShouldPush = |
| 1772 | Member && (EliminationStack.empty() || isa<Constant>(Member)); |
| 1773 | bool OutOfScope = |
| 1774 | !EliminationStack.isInScope(MemberDFSIn, MemberDFSOut); |
| 1775 | |
| 1776 | if (OutOfScope || ShouldPush) { |
| 1777 | // Sync to our current scope. |
| 1778 | EliminationStack.popUntilDFSScope(MemberDFSIn, MemberDFSOut); |
| 1779 | ShouldPush |= Member && EliminationStack.empty(); |
| 1780 | if (ShouldPush) { |
| 1781 | EliminationStack.push_back(Member, MemberDFSIn, MemberDFSOut); |
| 1782 | } |
| 1783 | } |
| 1784 | |
| 1785 | // If we get to this point, and the stack is empty we must have a use |
| 1786 | // with nothing we can use to eliminate it, just skip it. |
| 1787 | if (EliminationStack.empty()) |
| 1788 | continue; |
| 1789 | |
| 1790 | // Skip the Value's, we only want to eliminate on their uses. |
| 1791 | if (Member) |
| 1792 | continue; |
| 1793 | Value *Result = EliminationStack.back(); |
| 1794 | |
| 1795 | // Don't replace our existing users with ourselves. |
| 1796 | if (MemberUse->get() == Result) |
| 1797 | continue; |
| 1798 | |
| 1799 | DEBUG(dbgs() << "Found replacement " << *Result << " for " |
| 1800 | << *MemberUse->get() << " in " << *(MemberUse->getUser()) |
| 1801 | << "\n"); |
| 1802 | |
| 1803 | // If we replaced something in an instruction, handle the patching of |
| 1804 | // metadata. |
| 1805 | if (auto *ReplacedInst = |
| 1806 | dyn_cast<Instruction>(MemberUse->get())) |
| 1807 | patchReplacementInstruction(ReplacedInst, Result); |
| 1808 | |
| 1809 | assert(isa<Instruction>(MemberUse->getUser())); |
| 1810 | MemberUse->set(Result); |
| 1811 | AnythingReplaced = true; |
| 1812 | } |
| 1813 | } |
| 1814 | } |
| 1815 | |
| 1816 | // Cleanup the congruence class. |
| 1817 | SmallPtrSet<Value *, 4> MembersLeft; |
| 1818 | for (auto MI = CC->Members.begin(), ME = CC->Members.end(); MI != ME;) { |
| 1819 | auto CurrIter = MI; |
| 1820 | ++MI; |
| 1821 | Value *Member = *CurrIter; |
| 1822 | if (Member->getType()->isVoidTy()) { |
| 1823 | MembersLeft.insert(Member); |
| 1824 | continue; |
| 1825 | } |
| 1826 | |
| 1827 | if (auto *MemberInst = dyn_cast<Instruction>(Member)) { |
| 1828 | if (isInstructionTriviallyDead(MemberInst)) { |
| 1829 | // TODO: Don't mark loads of undefs. |
| 1830 | markInstructionForDeletion(MemberInst); |
| 1831 | continue; |
| 1832 | } |
| 1833 | } |
| 1834 | MembersLeft.insert(Member); |
| 1835 | } |
| 1836 | CC->Members.swap(MembersLeft); |
| 1837 | } |
| 1838 | |
| 1839 | return AnythingReplaced; |
| 1840 | } |
| 1841 | |