blob: 0ed33945ef4074672ef22079a4d3bcf3c740b7c0 [file] [log] [blame]
Karthik Bhat76aa6622015-04-20 04:38:33 +00001//===-- LoopUtils.cpp - Loop Utility functions -------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines common loop utility functions.
11//
12//===----------------------------------------------------------------------===//
13
Adam Nemet2f2bd8c2016-07-26 17:52:02 +000014#include "llvm/Transforms/Utils/LoopUtils.h"
Chandler Carruth4a000882017-06-25 22:45:31 +000015#include "llvm/ADT/ScopeExit.h"
Chandler Carruth31088a92016-02-19 10:45:18 +000016#include "llvm/Analysis/AliasAnalysis.h"
17#include "llvm/Analysis/BasicAliasAnalysis.h"
Chandler Carruth31088a92016-02-19 10:45:18 +000018#include "llvm/Analysis/GlobalsModRef.h"
Adam Nemet2f2bd8c2016-07-26 17:52:02 +000019#include "llvm/Analysis/LoopInfo.h"
Igor Laevskyc3ccf5d2016-10-28 12:57:20 +000020#include "llvm/Analysis/LoopPass.h"
Weiming Zhao45d4cb92015-11-24 18:57:06 +000021#include "llvm/Analysis/ScalarEvolution.h"
Adam Nemet2f2bd8c2016-07-26 17:52:02 +000022#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
Elena Demikhovskyc434d092016-05-10 07:33:35 +000023#include "llvm/Analysis/ScalarEvolutionExpander.h"
Weiming Zhao45d4cb92015-11-24 18:57:06 +000024#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chandler Carruth6bda14b2017-06-06 11:49:48 +000025#include "llvm/Analysis/TargetTransformInfo.h"
Chandler Carruth31088a92016-02-19 10:45:18 +000026#include "llvm/IR/Dominators.h"
Karthik Bhat76aa6622015-04-20 04:38:33 +000027#include "llvm/IR/Instructions.h"
Weiming Zhao45d4cb92015-11-24 18:57:06 +000028#include "llvm/IR/Module.h"
Karthik Bhat76aa6622015-04-20 04:38:33 +000029#include "llvm/IR/PatternMatch.h"
30#include "llvm/IR/ValueHandle.h"
Chandler Carruth31088a92016-02-19 10:45:18 +000031#include "llvm/Pass.h"
Karthik Bhat76aa6622015-04-20 04:38:33 +000032#include "llvm/Support/Debug.h"
Chandler Carruth4a000882017-06-25 22:45:31 +000033#include "llvm/Transforms/Utils/BasicBlockUtils.h"
Karthik Bhat76aa6622015-04-20 04:38:33 +000034
35using namespace llvm;
36using namespace llvm::PatternMatch;
37
38#define DEBUG_TYPE "loop-utils"
39
Tyler Nowicki0a913102015-06-16 18:07:34 +000040bool RecurrenceDescriptor::areAllUsesIn(Instruction *I,
41 SmallPtrSetImpl<Instruction *> &Set) {
Karthik Bhat76aa6622015-04-20 04:38:33 +000042 for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use)
43 if (!Set.count(dyn_cast<Instruction>(*Use)))
44 return false;
45 return true;
46}
47
Chad Rosierc94f8e22015-08-27 14:12:17 +000048bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurrenceKind Kind) {
49 switch (Kind) {
50 default:
51 break;
52 case RK_IntegerAdd:
53 case RK_IntegerMult:
54 case RK_IntegerOr:
55 case RK_IntegerAnd:
56 case RK_IntegerXor:
57 case RK_IntegerMinMax:
58 return true;
59 }
60 return false;
61}
62
63bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurrenceKind Kind) {
64 return (Kind != RK_NoRecurrence) && !isIntegerRecurrenceKind(Kind);
65}
66
67bool RecurrenceDescriptor::isArithmeticRecurrenceKind(RecurrenceKind Kind) {
68 switch (Kind) {
69 default:
70 break;
71 case RK_IntegerAdd:
72 case RK_IntegerMult:
73 case RK_FloatAdd:
74 case RK_FloatMult:
75 return true;
76 }
77 return false;
78}
79
80Instruction *
81RecurrenceDescriptor::lookThroughAnd(PHINode *Phi, Type *&RT,
82 SmallPtrSetImpl<Instruction *> &Visited,
83 SmallPtrSetImpl<Instruction *> &CI) {
84 if (!Phi->hasOneUse())
85 return Phi;
86
87 const APInt *M = nullptr;
88 Instruction *I, *J = cast<Instruction>(Phi->use_begin()->getUser());
89
90 // Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT
91 // with a new integer type of the corresponding bit width.
Craig Topper72ee6942017-06-24 06:24:01 +000092 if (match(J, m_c_And(m_Instruction(I), m_APInt(M)))) {
Chad Rosierc94f8e22015-08-27 14:12:17 +000093 int32_t Bits = (*M + 1).exactLogBase2();
94 if (Bits > 0) {
95 RT = IntegerType::get(Phi->getContext(), Bits);
96 Visited.insert(Phi);
97 CI.insert(J);
98 return J;
99 }
100 }
101 return Phi;
102}
103
104bool RecurrenceDescriptor::getSourceExtensionKind(
105 Instruction *Start, Instruction *Exit, Type *RT, bool &IsSigned,
106 SmallPtrSetImpl<Instruction *> &Visited,
107 SmallPtrSetImpl<Instruction *> &CI) {
108
109 SmallVector<Instruction *, 8> Worklist;
110 bool FoundOneOperand = false;
Matthew Simpson29dc0f72015-09-10 21:12:57 +0000111 unsigned DstSize = RT->getPrimitiveSizeInBits();
Chad Rosierc94f8e22015-08-27 14:12:17 +0000112 Worklist.push_back(Exit);
113
114 // Traverse the instructions in the reduction expression, beginning with the
115 // exit value.
116 while (!Worklist.empty()) {
117 Instruction *I = Worklist.pop_back_val();
118 for (Use &U : I->operands()) {
119
120 // Terminate the traversal if the operand is not an instruction, or we
121 // reach the starting value.
122 Instruction *J = dyn_cast<Instruction>(U.get());
123 if (!J || J == Start)
124 continue;
125
126 // Otherwise, investigate the operation if it is also in the expression.
127 if (Visited.count(J)) {
128 Worklist.push_back(J);
129 continue;
130 }
131
132 // If the operand is not in Visited, it is not a reduction operation, but
133 // it does feed into one. Make sure it is either a single-use sign- or
Matthew Simpson29dc0f72015-09-10 21:12:57 +0000134 // zero-extend instruction.
Chad Rosierc94f8e22015-08-27 14:12:17 +0000135 CastInst *Cast = dyn_cast<CastInst>(J);
136 bool IsSExtInst = isa<SExtInst>(J);
Matthew Simpson29dc0f72015-09-10 21:12:57 +0000137 if (!Cast || !Cast->hasOneUse() || !(isa<ZExtInst>(J) || IsSExtInst))
138 return false;
139
140 // Ensure the source type of the extend is no larger than the reduction
141 // type. It is not necessary for the types to be identical.
142 unsigned SrcSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
143 if (SrcSize > DstSize)
Chad Rosierc94f8e22015-08-27 14:12:17 +0000144 return false;
145
146 // Furthermore, ensure that all such extends are of the same kind.
147 if (FoundOneOperand) {
148 if (IsSigned != IsSExtInst)
149 return false;
150 } else {
151 FoundOneOperand = true;
152 IsSigned = IsSExtInst;
153 }
154
Matthew Simpson29dc0f72015-09-10 21:12:57 +0000155 // Lastly, if the source type of the extend matches the reduction type,
156 // add the extend to CI so that we can avoid accounting for it in the
157 // cost model.
158 if (SrcSize == DstSize)
159 CI.insert(Cast);
Chad Rosierc94f8e22015-08-27 14:12:17 +0000160 }
161 }
162 return true;
163}
164
Tyler Nowicki0a913102015-06-16 18:07:34 +0000165bool RecurrenceDescriptor::AddReductionVar(PHINode *Phi, RecurrenceKind Kind,
166 Loop *TheLoop, bool HasFunNoNaNAttr,
167 RecurrenceDescriptor &RedDes) {
Karthik Bhat76aa6622015-04-20 04:38:33 +0000168 if (Phi->getNumIncomingValues() != 2)
169 return false;
170
171 // Reduction variables are only found in the loop header block.
172 if (Phi->getParent() != TheLoop->getHeader())
173 return false;
174
175 // Obtain the reduction start value from the value that comes from the loop
176 // preheader.
177 Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
178
179 // ExitInstruction is the single value which is used outside the loop.
180 // We only allow for a single reduction value to be used outside the loop.
181 // This includes users of the reduction, variables (which form a cycle
182 // which ends in the phi node).
183 Instruction *ExitInstruction = nullptr;
184 // Indicates that we found a reduction operation in our scan.
185 bool FoundReduxOp = false;
186
187 // We start with the PHI node and scan for all of the users of this
188 // instruction. All users must be instructions that can be used as reduction
189 // variables (such as ADD). We must have a single out-of-block user. The cycle
190 // must include the original PHI.
191 bool FoundStartPHI = false;
192
193 // To recognize min/max patterns formed by a icmp select sequence, we store
194 // the number of instruction we saw from the recognized min/max pattern,
195 // to make sure we only see exactly the two instructions.
196 unsigned NumCmpSelectPatternInst = 0;
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000197 InstDesc ReduxDesc(false, nullptr);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000198
Chad Rosierc94f8e22015-08-27 14:12:17 +0000199 // Data used for determining if the recurrence has been type-promoted.
200 Type *RecurrenceType = Phi->getType();
201 SmallPtrSet<Instruction *, 4> CastInsts;
202 Instruction *Start = Phi;
203 bool IsSigned = false;
204
Karthik Bhat76aa6622015-04-20 04:38:33 +0000205 SmallPtrSet<Instruction *, 8> VisitedInsts;
206 SmallVector<Instruction *, 8> Worklist;
Chad Rosierc94f8e22015-08-27 14:12:17 +0000207
208 // Return early if the recurrence kind does not match the type of Phi. If the
209 // recurrence kind is arithmetic, we attempt to look through AND operations
210 // resulting from the type promotion performed by InstCombine. Vector
211 // operations are not limited to the legal integer widths, so we may be able
212 // to evaluate the reduction in the narrower width.
213 if (RecurrenceType->isFloatingPointTy()) {
214 if (!isFloatingPointRecurrenceKind(Kind))
215 return false;
216 } else {
217 if (!isIntegerRecurrenceKind(Kind))
218 return false;
219 if (isArithmeticRecurrenceKind(Kind))
220 Start = lookThroughAnd(Phi, RecurrenceType, VisitedInsts, CastInsts);
221 }
222
223 Worklist.push_back(Start);
224 VisitedInsts.insert(Start);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000225
226 // A value in the reduction can be used:
227 // - By the reduction:
228 // - Reduction operation:
229 // - One use of reduction value (safe).
230 // - Multiple use of reduction value (not safe).
231 // - PHI:
232 // - All uses of the PHI must be the reduction (safe).
233 // - Otherwise, not safe.
Michael Kuperstein7cefb402017-01-18 19:02:52 +0000234 // - By instructions outside of the loop (safe).
235 // * One value may have several outside users, but all outside
236 // uses must be of the same value.
Karthik Bhat76aa6622015-04-20 04:38:33 +0000237 // - By an instruction that is not part of the reduction (not safe).
238 // This is either:
239 // * An instruction type other than PHI or the reduction operation.
240 // * A PHI in the header other than the initial PHI.
241 while (!Worklist.empty()) {
242 Instruction *Cur = Worklist.back();
243 Worklist.pop_back();
244
245 // No Users.
246 // If the instruction has no users then this is a broken chain and can't be
247 // a reduction variable.
248 if (Cur->use_empty())
249 return false;
250
251 bool IsAPhi = isa<PHINode>(Cur);
252
253 // A header PHI use other than the original PHI.
254 if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent())
255 return false;
256
257 // Reductions of instructions such as Div, and Sub is only possible if the
258 // LHS is the reduction variable.
259 if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) &&
260 !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) &&
261 !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0))))
262 return false;
263
Chad Rosierc94f8e22015-08-27 14:12:17 +0000264 // Any reduction instruction must be of one of the allowed kinds. We ignore
265 // the starting value (the Phi or an AND instruction if the Phi has been
266 // type-promoted).
267 if (Cur != Start) {
268 ReduxDesc = isRecurrenceInstr(Cur, Kind, ReduxDesc, HasFunNoNaNAttr);
269 if (!ReduxDesc.isRecurrence())
270 return false;
271 }
Karthik Bhat76aa6622015-04-20 04:38:33 +0000272
273 // A reduction operation must only have one use of the reduction value.
274 if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax &&
275 hasMultipleUsesOf(Cur, VisitedInsts))
276 return false;
277
278 // All inputs to a PHI node must be a reduction value.
279 if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts))
280 return false;
281
282 if (Kind == RK_IntegerMinMax &&
283 (isa<ICmpInst>(Cur) || isa<SelectInst>(Cur)))
284 ++NumCmpSelectPatternInst;
285 if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || isa<SelectInst>(Cur)))
286 ++NumCmpSelectPatternInst;
287
288 // Check whether we found a reduction operator.
Chad Rosierc94f8e22015-08-27 14:12:17 +0000289 FoundReduxOp |= !IsAPhi && Cur != Start;
Karthik Bhat76aa6622015-04-20 04:38:33 +0000290
291 // Process users of current instruction. Push non-PHI nodes after PHI nodes
292 // onto the stack. This way we are going to have seen all inputs to PHI
293 // nodes once we get to them.
294 SmallVector<Instruction *, 8> NonPHIs;
295 SmallVector<Instruction *, 8> PHIs;
296 for (User *U : Cur->users()) {
297 Instruction *UI = cast<Instruction>(U);
298
299 // Check if we found the exit user.
300 BasicBlock *Parent = UI->getParent();
301 if (!TheLoop->contains(Parent)) {
Michael Kuperstein7cefb402017-01-18 19:02:52 +0000302 // If we already know this instruction is used externally, move on to
303 // the next user.
304 if (ExitInstruction == Cur)
305 continue;
306
307 // Exit if you find multiple values used outside or if the header phi
308 // node is being used. In this case the user uses the value of the
309 // previous iteration, in which case we would loose "VF-1" iterations of
310 // the reduction operation if we vectorize.
Karthik Bhat76aa6622015-04-20 04:38:33 +0000311 if (ExitInstruction != nullptr || Cur == Phi)
312 return false;
313
314 // The instruction used by an outside user must be the last instruction
315 // before we feed back to the reduction phi. Otherwise, we loose VF-1
316 // operations on the value.
David Majnemer42531262016-08-12 03:55:06 +0000317 if (!is_contained(Phi->operands(), Cur))
Karthik Bhat76aa6622015-04-20 04:38:33 +0000318 return false;
319
320 ExitInstruction = Cur;
321 continue;
322 }
323
324 // Process instructions only once (termination). Each reduction cycle
325 // value must only be used once, except by phi nodes and min/max
326 // reductions which are represented as a cmp followed by a select.
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000327 InstDesc IgnoredVal(false, nullptr);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000328 if (VisitedInsts.insert(UI).second) {
329 if (isa<PHINode>(UI))
330 PHIs.push_back(UI);
331 else
332 NonPHIs.push_back(UI);
333 } else if (!isa<PHINode>(UI) &&
334 ((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) &&
335 !isa<SelectInst>(UI)) ||
Tyler Nowicki0a913102015-06-16 18:07:34 +0000336 !isMinMaxSelectCmpPattern(UI, IgnoredVal).isRecurrence()))
Karthik Bhat76aa6622015-04-20 04:38:33 +0000337 return false;
338
339 // Remember that we completed the cycle.
340 if (UI == Phi)
341 FoundStartPHI = true;
342 }
343 Worklist.append(PHIs.begin(), PHIs.end());
344 Worklist.append(NonPHIs.begin(), NonPHIs.end());
345 }
346
347 // This means we have seen one but not the other instruction of the
348 // pattern or more than just a select and cmp.
349 if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) &&
350 NumCmpSelectPatternInst != 2)
351 return false;
352
353 if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction)
354 return false;
355
Chad Rosierc94f8e22015-08-27 14:12:17 +0000356 // If we think Phi may have been type-promoted, we also need to ensure that
357 // all source operands of the reduction are either SExtInsts or ZEstInsts. If
358 // so, we will be able to evaluate the reduction in the narrower bit width.
359 if (Start != Phi)
360 if (!getSourceExtensionKind(Start, ExitInstruction, RecurrenceType,
361 IsSigned, VisitedInsts, CastInsts))
362 return false;
363
Karthik Bhat76aa6622015-04-20 04:38:33 +0000364 // We found a reduction var if we have reached the original phi node and we
365 // only have a single instruction with out-of-loop users.
366
367 // The ExitInstruction(Instruction which is allowed to have out-of-loop users)
Tyler Nowicki0a913102015-06-16 18:07:34 +0000368 // is saved as part of the RecurrenceDescriptor.
Karthik Bhat76aa6622015-04-20 04:38:33 +0000369
370 // Save the description of this reduction variable.
Chad Rosierc94f8e22015-08-27 14:12:17 +0000371 RecurrenceDescriptor RD(
372 RdxStart, ExitInstruction, Kind, ReduxDesc.getMinMaxKind(),
373 ReduxDesc.getUnsafeAlgebraInst(), RecurrenceType, IsSigned, CastInsts);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000374 RedDes = RD;
375
376 return true;
377}
378
379/// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
380/// pattern corresponding to a min(X, Y) or max(X, Y).
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000381RecurrenceDescriptor::InstDesc
382RecurrenceDescriptor::isMinMaxSelectCmpPattern(Instruction *I, InstDesc &Prev) {
Karthik Bhat76aa6622015-04-20 04:38:33 +0000383
384 assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) &&
385 "Expect a select instruction");
386 Instruction *Cmp = nullptr;
387 SelectInst *Select = nullptr;
388
389 // We must handle the select(cmp()) as a single instruction. Advance to the
390 // select.
391 if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) {
392 if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin())))
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000393 return InstDesc(false, I);
394 return InstDesc(Select, Prev.getMinMaxKind());
Karthik Bhat76aa6622015-04-20 04:38:33 +0000395 }
396
397 // Only handle single use cases for now.
398 if (!(Select = dyn_cast<SelectInst>(I)))
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000399 return InstDesc(false, I);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000400 if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) &&
401 !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0))))
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000402 return InstDesc(false, I);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000403 if (!Cmp->hasOneUse())
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000404 return InstDesc(false, I);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000405
406 Value *CmpLeft;
407 Value *CmpRight;
408
409 // Look for a min/max pattern.
410 if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000411 return InstDesc(Select, MRK_UIntMin);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000412 else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000413 return InstDesc(Select, MRK_UIntMax);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000414 else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000415 return InstDesc(Select, MRK_SIntMax);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000416 else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000417 return InstDesc(Select, MRK_SIntMin);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000418 else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000419 return InstDesc(Select, MRK_FloatMin);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000420 else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000421 return InstDesc(Select, MRK_FloatMax);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000422 else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000423 return InstDesc(Select, MRK_FloatMin);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000424 else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000425 return InstDesc(Select, MRK_FloatMax);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000426
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000427 return InstDesc(false, I);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000428}
429
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000430RecurrenceDescriptor::InstDesc
Tyler Nowicki0a913102015-06-16 18:07:34 +0000431RecurrenceDescriptor::isRecurrenceInstr(Instruction *I, RecurrenceKind Kind,
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000432 InstDesc &Prev, bool HasFunNoNaNAttr) {
Karthik Bhat76aa6622015-04-20 04:38:33 +0000433 bool FP = I->getType()->isFloatingPointTy();
Tyler Nowickic1a86f52015-08-10 19:51:46 +0000434 Instruction *UAI = Prev.getUnsafeAlgebraInst();
435 if (!UAI && FP && !I->hasUnsafeAlgebra())
436 UAI = I; // Found an unsafe (unvectorizable) algebra instruction.
437
Karthik Bhat76aa6622015-04-20 04:38:33 +0000438 switch (I->getOpcode()) {
439 default:
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000440 return InstDesc(false, I);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000441 case Instruction::PHI:
Tim Northover10a1e8b2016-05-27 16:40:27 +0000442 return InstDesc(I, Prev.getMinMaxKind(), Prev.getUnsafeAlgebraInst());
Karthik Bhat76aa6622015-04-20 04:38:33 +0000443 case Instruction::Sub:
444 case Instruction::Add:
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000445 return InstDesc(Kind == RK_IntegerAdd, I);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000446 case Instruction::Mul:
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000447 return InstDesc(Kind == RK_IntegerMult, I);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000448 case Instruction::And:
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000449 return InstDesc(Kind == RK_IntegerAnd, I);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000450 case Instruction::Or:
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000451 return InstDesc(Kind == RK_IntegerOr, I);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000452 case Instruction::Xor:
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000453 return InstDesc(Kind == RK_IntegerXor, I);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000454 case Instruction::FMul:
Tyler Nowickic1a86f52015-08-10 19:51:46 +0000455 return InstDesc(Kind == RK_FloatMult, I, UAI);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000456 case Instruction::FSub:
457 case Instruction::FAdd:
Tyler Nowickic1a86f52015-08-10 19:51:46 +0000458 return InstDesc(Kind == RK_FloatAdd, I, UAI);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000459 case Instruction::FCmp:
460 case Instruction::ICmp:
461 case Instruction::Select:
462 if (Kind != RK_IntegerMinMax &&
463 (!HasFunNoNaNAttr || Kind != RK_FloatMinMax))
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000464 return InstDesc(false, I);
Karthik Bhat76aa6622015-04-20 04:38:33 +0000465 return isMinMaxSelectCmpPattern(I, Prev);
466 }
467}
468
Tyler Nowicki0a913102015-06-16 18:07:34 +0000469bool RecurrenceDescriptor::hasMultipleUsesOf(
Karthik Bhat76aa6622015-04-20 04:38:33 +0000470 Instruction *I, SmallPtrSetImpl<Instruction *> &Insts) {
471 unsigned NumUses = 0;
472 for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E;
473 ++Use) {
474 if (Insts.count(dyn_cast<Instruction>(*Use)))
475 ++NumUses;
476 if (NumUses > 1)
477 return true;
478 }
479
480 return false;
481}
Tyler Nowicki0a913102015-06-16 18:07:34 +0000482bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop,
483 RecurrenceDescriptor &RedDes) {
Karthik Bhat76aa6622015-04-20 04:38:33 +0000484
Karthik Bhat76aa6622015-04-20 04:38:33 +0000485 BasicBlock *Header = TheLoop->getHeader();
486 Function &F = *Header->getParent();
Nirav Dave8dd66e52016-03-30 15:41:12 +0000487 bool HasFunNoNaNAttr =
488 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
Karthik Bhat76aa6622015-04-20 04:38:33 +0000489
490 if (AddReductionVar(Phi, RK_IntegerAdd, TheLoop, HasFunNoNaNAttr, RedDes)) {
491 DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n");
492 return true;
493 }
494 if (AddReductionVar(Phi, RK_IntegerMult, TheLoop, HasFunNoNaNAttr, RedDes)) {
495 DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n");
496 return true;
497 }
498 if (AddReductionVar(Phi, RK_IntegerOr, TheLoop, HasFunNoNaNAttr, RedDes)) {
499 DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n");
500 return true;
501 }
502 if (AddReductionVar(Phi, RK_IntegerAnd, TheLoop, HasFunNoNaNAttr, RedDes)) {
503 DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n");
504 return true;
505 }
506 if (AddReductionVar(Phi, RK_IntegerXor, TheLoop, HasFunNoNaNAttr, RedDes)) {
507 DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n");
508 return true;
509 }
510 if (AddReductionVar(Phi, RK_IntegerMinMax, TheLoop, HasFunNoNaNAttr,
511 RedDes)) {
512 DEBUG(dbgs() << "Found a MINMAX reduction PHI." << *Phi << "\n");
513 return true;
514 }
515 if (AddReductionVar(Phi, RK_FloatMult, TheLoop, HasFunNoNaNAttr, RedDes)) {
516 DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n");
517 return true;
518 }
519 if (AddReductionVar(Phi, RK_FloatAdd, TheLoop, HasFunNoNaNAttr, RedDes)) {
520 DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n");
521 return true;
522 }
523 if (AddReductionVar(Phi, RK_FloatMinMax, TheLoop, HasFunNoNaNAttr, RedDes)) {
524 DEBUG(dbgs() << "Found an float MINMAX reduction PHI." << *Phi << "\n");
525 return true;
526 }
527 // Not a reduction of known type.
528 return false;
529}
530
Matthew Simpson29c997c2016-02-19 17:56:08 +0000531bool RecurrenceDescriptor::isFirstOrderRecurrence(PHINode *Phi, Loop *TheLoop,
532 DominatorTree *DT) {
533
534 // Ensure the phi node is in the loop header and has two incoming values.
535 if (Phi->getParent() != TheLoop->getHeader() ||
536 Phi->getNumIncomingValues() != 2)
537 return false;
538
539 // Ensure the loop has a preheader and a single latch block. The loop
540 // vectorizer will need the latch to set up the next iteration of the loop.
541 auto *Preheader = TheLoop->getLoopPreheader();
542 auto *Latch = TheLoop->getLoopLatch();
543 if (!Preheader || !Latch)
544 return false;
545
546 // Ensure the phi node's incoming blocks are the loop preheader and latch.
547 if (Phi->getBasicBlockIndex(Preheader) < 0 ||
548 Phi->getBasicBlockIndex(Latch) < 0)
549 return false;
550
551 // Get the previous value. The previous value comes from the latch edge while
552 // the initial value comes form the preheader edge.
553 auto *Previous = dyn_cast<Instruction>(Phi->getIncomingValueForBlock(Latch));
Matthew Simpson53207a92016-04-11 19:48:18 +0000554 if (!Previous || !TheLoop->contains(Previous) || isa<PHINode>(Previous))
Matthew Simpson29c997c2016-02-19 17:56:08 +0000555 return false;
556
Anna Thomasdcdb3252017-04-13 18:59:25 +0000557 // Ensure every user of the phi node is dominated by the previous value.
558 // The dominance requirement ensures the loop vectorizer will not need to
559 // vectorize the initial value prior to the first iteration of the loop.
Matthew Simpson29c997c2016-02-19 17:56:08 +0000560 for (User *U : Phi->users())
Anna Thomas00dc1b72017-04-11 21:02:00 +0000561 if (auto *I = dyn_cast<Instruction>(U)) {
Matthew Simpson29c997c2016-02-19 17:56:08 +0000562 if (!DT->dominates(Previous, I))
563 return false;
Anna Thomas00dc1b72017-04-11 21:02:00 +0000564 }
Matthew Simpson29c997c2016-02-19 17:56:08 +0000565
566 return true;
567}
568
Karthik Bhat76aa6622015-04-20 04:38:33 +0000569/// This function returns the identity element (or neutral element) for
570/// the operation K.
Tyler Nowicki0a913102015-06-16 18:07:34 +0000571Constant *RecurrenceDescriptor::getRecurrenceIdentity(RecurrenceKind K,
572 Type *Tp) {
Karthik Bhat76aa6622015-04-20 04:38:33 +0000573 switch (K) {
574 case RK_IntegerXor:
575 case RK_IntegerAdd:
576 case RK_IntegerOr:
577 // Adding, Xoring, Oring zero to a number does not change it.
578 return ConstantInt::get(Tp, 0);
579 case RK_IntegerMult:
580 // Multiplying a number by 1 does not change it.
581 return ConstantInt::get(Tp, 1);
582 case RK_IntegerAnd:
583 // AND-ing a number with an all-1 value does not change it.
584 return ConstantInt::get(Tp, -1, true);
585 case RK_FloatMult:
586 // Multiplying a number by 1 does not change it.
587 return ConstantFP::get(Tp, 1.0L);
588 case RK_FloatAdd:
589 // Adding zero to a number does not change it.
590 return ConstantFP::get(Tp, 0.0L);
591 default:
Tyler Nowicki0a913102015-06-16 18:07:34 +0000592 llvm_unreachable("Unknown recurrence kind");
Karthik Bhat76aa6622015-04-20 04:38:33 +0000593 }
594}
595
Tyler Nowicki0a913102015-06-16 18:07:34 +0000596/// This function translates the recurrence kind to an LLVM binary operator.
597unsigned RecurrenceDescriptor::getRecurrenceBinOp(RecurrenceKind Kind) {
Karthik Bhat76aa6622015-04-20 04:38:33 +0000598 switch (Kind) {
599 case RK_IntegerAdd:
600 return Instruction::Add;
601 case RK_IntegerMult:
602 return Instruction::Mul;
603 case RK_IntegerOr:
604 return Instruction::Or;
605 case RK_IntegerAnd:
606 return Instruction::And;
607 case RK_IntegerXor:
608 return Instruction::Xor;
609 case RK_FloatMult:
610 return Instruction::FMul;
611 case RK_FloatAdd:
612 return Instruction::FAdd;
613 case RK_IntegerMinMax:
614 return Instruction::ICmp;
615 case RK_FloatMinMax:
616 return Instruction::FCmp;
617 default:
Tyler Nowicki0a913102015-06-16 18:07:34 +0000618 llvm_unreachable("Unknown recurrence operation");
Karthik Bhat76aa6622015-04-20 04:38:33 +0000619 }
620}
621
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000622Value *RecurrenceDescriptor::createMinMaxOp(IRBuilder<> &Builder,
623 MinMaxRecurrenceKind RK,
624 Value *Left, Value *Right) {
Karthik Bhat76aa6622015-04-20 04:38:33 +0000625 CmpInst::Predicate P = CmpInst::ICMP_NE;
626 switch (RK) {
627 default:
Tyler Nowicki0a913102015-06-16 18:07:34 +0000628 llvm_unreachable("Unknown min/max recurrence kind");
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000629 case MRK_UIntMin:
Karthik Bhat76aa6622015-04-20 04:38:33 +0000630 P = CmpInst::ICMP_ULT;
631 break;
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000632 case MRK_UIntMax:
Karthik Bhat76aa6622015-04-20 04:38:33 +0000633 P = CmpInst::ICMP_UGT;
634 break;
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000635 case MRK_SIntMin:
Karthik Bhat76aa6622015-04-20 04:38:33 +0000636 P = CmpInst::ICMP_SLT;
637 break;
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000638 case MRK_SIntMax:
Karthik Bhat76aa6622015-04-20 04:38:33 +0000639 P = CmpInst::ICMP_SGT;
640 break;
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000641 case MRK_FloatMin:
Karthik Bhat76aa6622015-04-20 04:38:33 +0000642 P = CmpInst::FCMP_OLT;
643 break;
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000644 case MRK_FloatMax:
Karthik Bhat76aa6622015-04-20 04:38:33 +0000645 P = CmpInst::FCMP_OGT;
646 break;
647 }
648
James Molloy50a4c272015-09-21 19:41:19 +0000649 // We only match FP sequences with unsafe algebra, so we can unconditionally
650 // set it on any generated instructions.
651 IRBuilder<>::FastMathFlagGuard FMFG(Builder);
652 FastMathFlags FMF;
653 FMF.setUnsafeAlgebra();
Sanjay Patela2528152016-01-12 18:03:37 +0000654 Builder.setFastMathFlags(FMF);
James Molloy50a4c272015-09-21 19:41:19 +0000655
Karthik Bhat76aa6622015-04-20 04:38:33 +0000656 Value *Cmp;
Tyler Nowicki27b2c392015-06-16 22:59:45 +0000657 if (RK == MRK_FloatMin || RK == MRK_FloatMax)
Karthik Bhat76aa6622015-04-20 04:38:33 +0000658 Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp");
659 else
660 Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp");
661
662 Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
663 return Select;
664}
Karthik Bhat24e6cc22015-04-23 08:29:20 +0000665
James Molloy1bbf15c2015-08-27 09:53:00 +0000666InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K,
Elena Demikhovsky376a18b2016-07-24 07:24:54 +0000667 const SCEV *Step, BinaryOperator *BOp)
668 : StartValue(Start), IK(K), Step(Step), InductionBinOp(BOp) {
James Molloy1bbf15c2015-08-27 09:53:00 +0000669 assert(IK != IK_NoInduction && "Not an induction");
Elena Demikhovskyc434d092016-05-10 07:33:35 +0000670
671 // Start value type should match the induction kind and the value
672 // itself should not be null.
James Molloy1bbf15c2015-08-27 09:53:00 +0000673 assert(StartValue && "StartValue is null");
James Molloy1bbf15c2015-08-27 09:53:00 +0000674 assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) &&
675 "StartValue is not a pointer for pointer induction");
676 assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) &&
677 "StartValue is not an integer for integer induction");
Elena Demikhovskyc434d092016-05-10 07:33:35 +0000678
679 // Check the Step Value. It should be non-zero integer value.
680 assert((!getConstIntStepValue() || !getConstIntStepValue()->isZero()) &&
681 "Step value is zero");
682
683 assert((IK != IK_PtrInduction || getConstIntStepValue()) &&
684 "Step value should be constant for pointer induction");
Elena Demikhovsky376a18b2016-07-24 07:24:54 +0000685 assert((IK == IK_FpInduction || Step->getType()->isIntegerTy()) &&
686 "StepValue is not an integer");
687
688 assert((IK != IK_FpInduction || Step->getType()->isFloatingPointTy()) &&
689 "StepValue is not FP for FpInduction");
690 assert((IK != IK_FpInduction || (InductionBinOp &&
691 (InductionBinOp->getOpcode() == Instruction::FAdd ||
692 InductionBinOp->getOpcode() == Instruction::FSub))) &&
693 "Binary opcode should be specified for FP induction");
James Molloy1bbf15c2015-08-27 09:53:00 +0000694}
695
696int InductionDescriptor::getConsecutiveDirection() const {
Elena Demikhovskyc434d092016-05-10 07:33:35 +0000697 ConstantInt *ConstStep = getConstIntStepValue();
698 if (ConstStep && (ConstStep->isOne() || ConstStep->isMinusOne()))
699 return ConstStep->getSExtValue();
James Molloy1bbf15c2015-08-27 09:53:00 +0000700 return 0;
701}
702
Elena Demikhovskyc434d092016-05-10 07:33:35 +0000703ConstantInt *InductionDescriptor::getConstIntStepValue() const {
704 if (isa<SCEVConstant>(Step))
705 return dyn_cast<ConstantInt>(cast<SCEVConstant>(Step)->getValue());
706 return nullptr;
707}
708
709Value *InductionDescriptor::transform(IRBuilder<> &B, Value *Index,
710 ScalarEvolution *SE,
711 const DataLayout& DL) const {
712
713 SCEVExpander Exp(*SE, DL, "induction");
Elena Demikhovsky376a18b2016-07-24 07:24:54 +0000714 assert(Index->getType() == Step->getType() &&
715 "Index type does not match StepValue type");
James Molloy1bbf15c2015-08-27 09:53:00 +0000716 switch (IK) {
Elena Demikhovskyc434d092016-05-10 07:33:35 +0000717 case IK_IntInduction: {
James Molloy1bbf15c2015-08-27 09:53:00 +0000718 assert(Index->getType() == StartValue->getType() &&
719 "Index type does not match StartValue type");
Elena Demikhovskyc434d092016-05-10 07:33:35 +0000720
721 // FIXME: Theoretically, we can call getAddExpr() of ScalarEvolution
722 // and calculate (Start + Index * Step) for all cases, without
723 // special handling for "isOne" and "isMinusOne".
724 // But in the real life the result code getting worse. We mix SCEV
725 // expressions and ADD/SUB operations and receive redundant
726 // intermediate values being calculated in different ways and
727 // Instcombine is unable to reduce them all.
728
729 if (getConstIntStepValue() &&
730 getConstIntStepValue()->isMinusOne())
James Molloy1bbf15c2015-08-27 09:53:00 +0000731 return B.CreateSub(StartValue, Index);
Elena Demikhovskyc434d092016-05-10 07:33:35 +0000732 if (getConstIntStepValue() &&
733 getConstIntStepValue()->isOne())
734 return B.CreateAdd(StartValue, Index);
735 const SCEV *S = SE->getAddExpr(SE->getSCEV(StartValue),
736 SE->getMulExpr(Step, SE->getSCEV(Index)));
737 return Exp.expandCodeFor(S, StartValue->getType(), &*B.GetInsertPoint());
738 }
739 case IK_PtrInduction: {
Elena Demikhovskyc434d092016-05-10 07:33:35 +0000740 assert(isa<SCEVConstant>(Step) &&
741 "Expected constant step for pointer induction");
742 const SCEV *S = SE->getMulExpr(SE->getSCEV(Index), Step);
743 Index = Exp.expandCodeFor(S, Index->getType(), &*B.GetInsertPoint());
James Molloy1bbf15c2015-08-27 09:53:00 +0000744 return B.CreateGEP(nullptr, StartValue, Index);
Elena Demikhovskyc434d092016-05-10 07:33:35 +0000745 }
Elena Demikhovsky376a18b2016-07-24 07:24:54 +0000746 case IK_FpInduction: {
747 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
748 assert(InductionBinOp &&
749 (InductionBinOp->getOpcode() == Instruction::FAdd ||
750 InductionBinOp->getOpcode() == Instruction::FSub) &&
751 "Original bin op should be defined for FP induction");
752
753 Value *StepValue = cast<SCEVUnknown>(Step)->getValue();
754
755 // Floating point operations had to be 'fast' to enable the induction.
756 FastMathFlags Flags;
757 Flags.setUnsafeAlgebra();
758
759 Value *MulExp = B.CreateFMul(StepValue, Index);
760 if (isa<Instruction>(MulExp))
761 // We have to check, the MulExp may be a constant.
762 cast<Instruction>(MulExp)->setFastMathFlags(Flags);
763
764 Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode() , StartValue,
765 MulExp, "induction");
766 if (isa<Instruction>(BOp))
767 cast<Instruction>(BOp)->setFastMathFlags(Flags);
768
769 return BOp;
770 }
James Molloy1bbf15c2015-08-27 09:53:00 +0000771 case IK_NoInduction:
772 return nullptr;
773 }
774 llvm_unreachable("invalid enum");
775}
776
Elena Demikhovsky376a18b2016-07-24 07:24:54 +0000777bool InductionDescriptor::isFPInductionPHI(PHINode *Phi, const Loop *TheLoop,
778 ScalarEvolution *SE,
779 InductionDescriptor &D) {
780
781 // Here we only handle FP induction variables.
782 assert(Phi->getType()->isFloatingPointTy() && "Unexpected Phi type");
783
784 if (TheLoop->getHeader() != Phi->getParent())
785 return false;
786
787 // The loop may have multiple entrances or multiple exits; we can analyze
788 // this phi if it has a unique entry value and a unique backedge value.
789 if (Phi->getNumIncomingValues() != 2)
790 return false;
791 Value *BEValue = nullptr, *StartValue = nullptr;
792 if (TheLoop->contains(Phi->getIncomingBlock(0))) {
793 BEValue = Phi->getIncomingValue(0);
794 StartValue = Phi->getIncomingValue(1);
795 } else {
796 assert(TheLoop->contains(Phi->getIncomingBlock(1)) &&
797 "Unexpected Phi node in the loop");
798 BEValue = Phi->getIncomingValue(1);
799 StartValue = Phi->getIncomingValue(0);
800 }
801
802 BinaryOperator *BOp = dyn_cast<BinaryOperator>(BEValue);
803 if (!BOp)
804 return false;
805
806 Value *Addend = nullptr;
807 if (BOp->getOpcode() == Instruction::FAdd) {
808 if (BOp->getOperand(0) == Phi)
809 Addend = BOp->getOperand(1);
810 else if (BOp->getOperand(1) == Phi)
811 Addend = BOp->getOperand(0);
812 } else if (BOp->getOpcode() == Instruction::FSub)
813 if (BOp->getOperand(0) == Phi)
814 Addend = BOp->getOperand(1);
815
816 if (!Addend)
817 return false;
818
819 // The addend should be loop invariant
820 if (auto *I = dyn_cast<Instruction>(Addend))
821 if (TheLoop->contains(I))
822 return false;
823
824 // FP Step has unknown SCEV
825 const SCEV *Step = SE->getUnknown(Addend);
826 D = InductionDescriptor(StartValue, IK_FpInduction, Step, BOp);
827 return true;
828}
829
830bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop,
Silviu Barangac05bab82016-05-05 15:20:39 +0000831 PredicatedScalarEvolution &PSE,
832 InductionDescriptor &D,
833 bool Assume) {
834 Type *PhiTy = Phi->getType();
Elena Demikhovsky376a18b2016-07-24 07:24:54 +0000835
836 // Handle integer and pointer inductions variables.
837 // Now we handle also FP induction but not trying to make a
838 // recurrent expression from the PHI node in-place.
839
840 if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy() &&
841 !PhiTy->isFloatTy() && !PhiTy->isDoubleTy() && !PhiTy->isHalfTy())
Silviu Barangac05bab82016-05-05 15:20:39 +0000842 return false;
843
Elena Demikhovsky376a18b2016-07-24 07:24:54 +0000844 if (PhiTy->isFloatingPointTy())
845 return isFPInductionPHI(Phi, TheLoop, PSE.getSE(), D);
846
Silviu Barangac05bab82016-05-05 15:20:39 +0000847 const SCEV *PhiScev = PSE.getSCEV(Phi);
848 const auto *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
849
850 // We need this expression to be an AddRecExpr.
851 if (Assume && !AR)
852 AR = PSE.getAsAddRec(Phi);
853
854 if (!AR) {
855 DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
856 return false;
857 }
858
Elena Demikhovsky376a18b2016-07-24 07:24:54 +0000859 return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR);
Silviu Barangac05bab82016-05-05 15:20:39 +0000860}
861
Elena Demikhovsky376a18b2016-07-24 07:24:54 +0000862bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop,
Silviu Barangac05bab82016-05-05 15:20:39 +0000863 ScalarEvolution *SE,
864 InductionDescriptor &D,
865 const SCEV *Expr) {
Karthik Bhat24e6cc22015-04-23 08:29:20 +0000866 Type *PhiTy = Phi->getType();
867 // We only handle integer and pointer inductions variables.
868 if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
869 return false;
870
871 // Check that the PHI is consecutive.
Silviu Barangac05bab82016-05-05 15:20:39 +0000872 const SCEV *PhiScev = Expr ? Expr : SE->getSCEV(Phi);
Karthik Bhat24e6cc22015-04-23 08:29:20 +0000873 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
Silviu Barangac05bab82016-05-05 15:20:39 +0000874
Karthik Bhat24e6cc22015-04-23 08:29:20 +0000875 if (!AR) {
876 DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
877 return false;
878 }
879
Michael Kupersteinee31cbe2017-01-10 19:32:30 +0000880 if (AR->getLoop() != TheLoop) {
881 // FIXME: We should treat this as a uniform. Unfortunately, we
882 // don't currently know how to handled uniform PHIs.
883 DEBUG(dbgs() << "LV: PHI is a recurrence with respect to an outer loop.\n");
884 return false;
885 }
886
James Molloy1bbf15c2015-08-27 09:53:00 +0000887 Value *StartValue =
888 Phi->getIncomingValueForBlock(AR->getLoop()->getLoopPreheader());
Karthik Bhat24e6cc22015-04-23 08:29:20 +0000889 const SCEV *Step = AR->getStepRecurrence(*SE);
890 // Calculate the pointer stride and check if it is consecutive.
Elena Demikhovskyc434d092016-05-10 07:33:35 +0000891 // The stride may be a constant or a loop invariant integer value.
892 const SCEVConstant *ConstStep = dyn_cast<SCEVConstant>(Step);
Elena Demikhovsky376a18b2016-07-24 07:24:54 +0000893 if (!ConstStep && !SE->isLoopInvariant(Step, TheLoop))
Karthik Bhat24e6cc22015-04-23 08:29:20 +0000894 return false;
895
Karthik Bhat24e6cc22015-04-23 08:29:20 +0000896 if (PhiTy->isIntegerTy()) {
Elena Demikhovskyc434d092016-05-10 07:33:35 +0000897 D = InductionDescriptor(StartValue, IK_IntInduction, Step);
Karthik Bhat24e6cc22015-04-23 08:29:20 +0000898 return true;
899 }
900
901 assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
Elena Demikhovskyc434d092016-05-10 07:33:35 +0000902 // Pointer induction should be a constant.
903 if (!ConstStep)
904 return false;
905
906 ConstantInt *CV = ConstStep->getValue();
Karthik Bhat24e6cc22015-04-23 08:29:20 +0000907 Type *PointerElementType = PhiTy->getPointerElementType();
908 // The pointer stride cannot be determined if the pointer element type is not
909 // sized.
910 if (!PointerElementType->isSized())
911 return false;
912
913 const DataLayout &DL = Phi->getModule()->getDataLayout();
914 int64_t Size = static_cast<int64_t>(DL.getTypeAllocSize(PointerElementType));
David Majnemerb58f32f2015-06-05 10:52:40 +0000915 if (!Size)
916 return false;
917
Karthik Bhat24e6cc22015-04-23 08:29:20 +0000918 int64_t CVSize = CV->getSExtValue();
919 if (CVSize % Size)
920 return false;
Elena Demikhovskyc434d092016-05-10 07:33:35 +0000921 auto *StepValue = SE->getConstant(CV->getType(), CVSize / Size,
922 true /* signed */);
James Molloy1bbf15c2015-08-27 09:53:00 +0000923 D = InductionDescriptor(StartValue, IK_PtrInduction, StepValue);
Karthik Bhat24e6cc22015-04-23 08:29:20 +0000924 return true;
925}
Ashutosh Nemac5b7b552015-08-19 05:40:42 +0000926
Chandler Carruth4a000882017-06-25 22:45:31 +0000927bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI,
928 bool PreserveLCSSA) {
929 bool Changed = false;
930
931 // We re-use a vector for the in-loop predecesosrs.
932 SmallVector<BasicBlock *, 4> InLoopPredecessors;
933
934 auto RewriteExit = [&](BasicBlock *BB) {
935 assert(InLoopPredecessors.empty() &&
936 "Must start with an empty predecessors list!");
937 auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); });
938
939 // See if there are any non-loop predecessors of this exit block and
940 // keep track of the in-loop predecessors.
941 bool IsDedicatedExit = true;
942 for (auto *PredBB : predecessors(BB))
943 if (L->contains(PredBB)) {
944 if (isa<IndirectBrInst>(PredBB->getTerminator()))
945 // We cannot rewrite exiting edges from an indirectbr.
946 return false;
947
948 InLoopPredecessors.push_back(PredBB);
949 } else {
950 IsDedicatedExit = false;
951 }
952
953 assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!");
954
955 // Nothing to do if this is already a dedicated exit.
956 if (IsDedicatedExit)
957 return false;
958
959 auto *NewExitBB = SplitBlockPredecessors(
960 BB, InLoopPredecessors, ".loopexit", DT, LI, PreserveLCSSA);
961
962 if (!NewExitBB)
963 DEBUG(dbgs() << "WARNING: Can't create a dedicated exit block for loop: "
964 << *L << "\n");
965 else
966 DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
967 << NewExitBB->getName() << "\n");
968 return true;
969 };
970
971 // Walk the exit blocks directly rather than building up a data structure for
972 // them, but only visit each one once.
973 SmallPtrSet<BasicBlock *, 4> Visited;
974 for (auto *BB : L->blocks())
975 for (auto *SuccBB : successors(BB)) {
976 // We're looking for exit blocks so skip in-loop successors.
977 if (L->contains(SuccBB))
978 continue;
979
980 // Visit each exit block exactly once.
981 if (!Visited.insert(SuccBB).second)
982 continue;
983
984 Changed |= RewriteExit(SuccBB);
985 }
986
987 return Changed;
988}
989
Ashutosh Nemac5b7b552015-08-19 05:40:42 +0000990/// \brief Returns the instructions that use values defined in the loop.
991SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) {
992 SmallVector<Instruction *, 8> UsedOutside;
993
994 for (auto *Block : L->getBlocks())
995 // FIXME: I believe that this could use copy_if if the Inst reference could
996 // be adapted into a pointer.
997 for (auto &Inst : *Block) {
998 auto Users = Inst.users();
David Majnemer0a16c222016-08-11 21:15:00 +0000999 if (any_of(Users, [&](User *U) {
Ashutosh Nemac5b7b552015-08-19 05:40:42 +00001000 auto *Use = cast<Instruction>(U);
1001 return !L->contains(Use->getParent());
1002 }))
1003 UsedOutside.push_back(&Inst);
1004 }
1005
1006 return UsedOutside;
1007}
Chandler Carruth31088a92016-02-19 10:45:18 +00001008
1009void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) {
1010 // By definition, all loop passes need the LoopInfo analysis and the
1011 // Dominator tree it depends on. Because they all participate in the loop
1012 // pass manager, they must also preserve these.
1013 AU.addRequired<DominatorTreeWrapperPass>();
1014 AU.addPreserved<DominatorTreeWrapperPass>();
1015 AU.addRequired<LoopInfoWrapperPass>();
1016 AU.addPreserved<LoopInfoWrapperPass>();
1017
1018 // We must also preserve LoopSimplify and LCSSA. We locally access their IDs
1019 // here because users shouldn't directly get them from this header.
1020 extern char &LoopSimplifyID;
1021 extern char &LCSSAID;
1022 AU.addRequiredID(LoopSimplifyID);
1023 AU.addPreservedID(LoopSimplifyID);
1024 AU.addRequiredID(LCSSAID);
1025 AU.addPreservedID(LCSSAID);
Igor Laevskyc3ccf5d2016-10-28 12:57:20 +00001026 // This is used in the LPPassManager to perform LCSSA verification on passes
1027 // which preserve lcssa form
1028 AU.addRequired<LCSSAVerificationPass>();
1029 AU.addPreserved<LCSSAVerificationPass>();
Chandler Carruth31088a92016-02-19 10:45:18 +00001030
1031 // Loop passes are designed to run inside of a loop pass manager which means
1032 // that any function analyses they require must be required by the first loop
1033 // pass in the manager (so that it is computed before the loop pass manager
1034 // runs) and preserved by all loop pasess in the manager. To make this
1035 // reasonably robust, the set needed for most loop passes is maintained here.
1036 // If your loop pass requires an analysis not listed here, you will need to
1037 // carefully audit the loop pass manager nesting structure that results.
1038 AU.addRequired<AAResultsWrapperPass>();
1039 AU.addPreserved<AAResultsWrapperPass>();
1040 AU.addPreserved<BasicAAWrapperPass>();
1041 AU.addPreserved<GlobalsAAWrapperPass>();
1042 AU.addPreserved<SCEVAAWrapperPass>();
1043 AU.addRequired<ScalarEvolutionWrapperPass>();
1044 AU.addPreserved<ScalarEvolutionWrapperPass>();
1045}
1046
1047/// Manually defined generic "LoopPass" dependency initialization. This is used
1048/// to initialize the exact set of passes from above in \c
1049/// getLoopAnalysisUsage. It can be used within a loop pass's initialization
1050/// with:
1051///
1052/// INITIALIZE_PASS_DEPENDENCY(LoopPass)
1053///
1054/// As-if "LoopPass" were a pass.
1055void llvm::initializeLoopPassPass(PassRegistry &Registry) {
1056 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1057 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
1058 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
Easwaran Ramane12c4872016-06-09 19:44:46 +00001059 INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
Chandler Carruth31088a92016-02-19 10:45:18 +00001060 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
1061 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
1062 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
1063 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
1064 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
1065}
Adam Nemet963341c2016-04-21 17:33:17 +00001066
Adam Nemetfe3def72016-04-22 19:10:05 +00001067/// \brief Find string metadata for loop
1068///
1069/// If it has a value (e.g. {"llvm.distribute", 1} return the value as an
1070/// operand or null otherwise. If the string metadata is not found return
1071/// Optional's not-a-value.
1072Optional<const MDOperand *> llvm::findStringMetadataForLoop(Loop *TheLoop,
1073 StringRef Name) {
Adam Nemet963341c2016-04-21 17:33:17 +00001074 MDNode *LoopID = TheLoop->getLoopID();
Adam Nemetfe3def72016-04-22 19:10:05 +00001075 // Return none if LoopID is false.
Adam Nemet963341c2016-04-21 17:33:17 +00001076 if (!LoopID)
Adam Nemetfe3def72016-04-22 19:10:05 +00001077 return None;
Adam Nemet293be662016-04-21 17:33:20 +00001078
1079 // First operand should refer to the loop id itself.
1080 assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
1081 assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
1082
Adam Nemet963341c2016-04-21 17:33:17 +00001083 // Iterate over LoopID operands and look for MDString Metadata
1084 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
1085 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
1086 if (!MD)
1087 continue;
1088 MDString *S = dyn_cast<MDString>(MD->getOperand(0));
1089 if (!S)
1090 continue;
1091 // Return true if MDString holds expected MetaData.
1092 if (Name.equals(S->getString()))
Adam Nemetfe3def72016-04-22 19:10:05 +00001093 switch (MD->getNumOperands()) {
1094 case 1:
1095 return nullptr;
1096 case 2:
1097 return &MD->getOperand(1);
1098 default:
1099 llvm_unreachable("loop metadata has 0 or 1 operand");
1100 }
Adam Nemet963341c2016-04-21 17:33:17 +00001101 }
Adam Nemetfe3def72016-04-22 19:10:05 +00001102 return None;
Adam Nemet963341c2016-04-21 17:33:17 +00001103}
Evgeniy Stepanov122f9842016-06-10 20:03:17 +00001104
1105/// Returns true if the instruction in a loop is guaranteed to execute at least
1106/// once.
1107bool llvm::isGuaranteedToExecute(const Instruction &Inst,
1108 const DominatorTree *DT, const Loop *CurLoop,
1109 const LoopSafetyInfo *SafetyInfo) {
1110 // We have to check to make sure that the instruction dominates all
Evgeniy Stepanov58ccc092017-04-24 18:25:07 +00001111 // of the exit blocks. If it doesn't, then there is a path out of the loop
1112 // which does not execute this instruction, so we can't hoist it.
1113
1114 // If the instruction is in the header block for the loop (which is very
1115 // common), it is always guaranteed to dominate the exit blocks. Since this
1116 // is a common case, and can save some work, check it now.
1117 if (Inst.getParent() == CurLoop->getHeader())
1118 // If there's a throw in the header block, we can't guarantee we'll reach
1119 // Inst.
1120 return !SafetyInfo->HeaderMayThrow;
1121
1122 // Somewhere in this loop there is an instruction which may throw and make us
1123 // exit the loop.
1124 if (SafetyInfo->MayThrow)
1125 return false;
Evgeniy Stepanov122f9842016-06-10 20:03:17 +00001126
1127 // Get the exit blocks for the current loop.
1128 SmallVector<BasicBlock *, 8> ExitBlocks;
1129 CurLoop->getExitBlocks(ExitBlocks);
1130
1131 // Verify that the block dominates each of the exit blocks of the loop.
1132 for (BasicBlock *ExitBlock : ExitBlocks)
1133 if (!DT->dominates(Inst.getParent(), ExitBlock))
1134 return false;
1135
1136 // As a degenerate case, if the loop is statically infinite then we haven't
1137 // proven anything since there are no exit blocks.
Evgeniy Stepanov58ccc092017-04-24 18:25:07 +00001138 if (ExitBlocks.empty())
Evgeniy Stepanov122f9842016-06-10 20:03:17 +00001139 return false;
1140
Eli Friedmanf1da33e2016-06-11 21:48:25 +00001141 // FIXME: In general, we have to prove that the loop isn't an infinite loop.
1142 // See http::llvm.org/PR24078 . (The "ExitBlocks.empty()" check above is
1143 // just a special case of this.)
Evgeniy Stepanov122f9842016-06-10 20:03:17 +00001144 return true;
1145}
Dehao Chen41d72a82016-11-17 01:17:02 +00001146
1147Optional<unsigned> llvm::getLoopEstimatedTripCount(Loop *L) {
1148 // Only support loops with a unique exiting block, and a latch.
1149 if (!L->getExitingBlock())
1150 return None;
1151
1152 // Get the branch weights for the the loop's backedge.
1153 BranchInst *LatchBR =
1154 dyn_cast<BranchInst>(L->getLoopLatch()->getTerminator());
1155 if (!LatchBR || LatchBR->getNumSuccessors() != 2)
1156 return None;
1157
1158 assert((LatchBR->getSuccessor(0) == L->getHeader() ||
1159 LatchBR->getSuccessor(1) == L->getHeader()) &&
1160 "At least one edge out of the latch must go to the header");
1161
1162 // To estimate the number of times the loop body was executed, we want to
1163 // know the number of times the backedge was taken, vs. the number of times
1164 // we exited the loop.
Dehao Chen41d72a82016-11-17 01:17:02 +00001165 uint64_t TrueVal, FalseVal;
Michael Kupersteinb151a642016-11-30 21:13:57 +00001166 if (!LatchBR->extractProfMetadata(TrueVal, FalseVal))
Dehao Chen41d72a82016-11-17 01:17:02 +00001167 return None;
1168
Michael Kupersteinb151a642016-11-30 21:13:57 +00001169 if (!TrueVal || !FalseVal)
1170 return 0;
Dehao Chen41d72a82016-11-17 01:17:02 +00001171
Michael Kupersteinb151a642016-11-30 21:13:57 +00001172 // Divide the count of the backedge by the count of the edge exiting the loop,
1173 // rounding to nearest.
Dehao Chen41d72a82016-11-17 01:17:02 +00001174 if (LatchBR->getSuccessor(0) == L->getHeader())
Michael Kupersteinb151a642016-11-30 21:13:57 +00001175 return (TrueVal + (FalseVal / 2)) / FalseVal;
Dehao Chen41d72a82016-11-17 01:17:02 +00001176 else
Michael Kupersteinb151a642016-11-30 21:13:57 +00001177 return (FalseVal + (TrueVal / 2)) / TrueVal;
Dehao Chen41d72a82016-11-17 01:17:02 +00001178}
Amara Emersoncf9daa32017-05-09 10:43:25 +00001179
1180/// \brief Adds a 'fast' flag to floating point operations.
1181static Value *addFastMathFlag(Value *V) {
1182 if (isa<FPMathOperator>(V)) {
1183 FastMathFlags Flags;
1184 Flags.setUnsafeAlgebra();
1185 cast<Instruction>(V)->setFastMathFlags(Flags);
1186 }
1187 return V;
1188}
1189
1190// Helper to generate a log2 shuffle reduction.
Amara Emerson836b0f42017-05-10 09:42:49 +00001191Value *
1192llvm::getShuffleReduction(IRBuilder<> &Builder, Value *Src, unsigned Op,
1193 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind,
1194 ArrayRef<Value *> RedOps) {
Amara Emersoncf9daa32017-05-09 10:43:25 +00001195 unsigned VF = Src->getType()->getVectorNumElements();
1196 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
1197 // and vector ops, reducing the set of values being computed by half each
1198 // round.
1199 assert(isPowerOf2_32(VF) &&
1200 "Reduction emission only supported for pow2 vectors!");
1201 Value *TmpVec = Src;
1202 SmallVector<Constant *, 32> ShuffleMask(VF, nullptr);
1203 for (unsigned i = VF; i != 1; i >>= 1) {
1204 // Move the upper half of the vector to the lower half.
1205 for (unsigned j = 0; j != i / 2; ++j)
1206 ShuffleMask[j] = Builder.getInt32(i / 2 + j);
1207
1208 // Fill the rest of the mask with undef.
1209 std::fill(&ShuffleMask[i / 2], ShuffleMask.end(),
1210 UndefValue::get(Builder.getInt32Ty()));
1211
1212 Value *Shuf = Builder.CreateShuffleVector(
1213 TmpVec, UndefValue::get(TmpVec->getType()),
1214 ConstantVector::get(ShuffleMask), "rdx.shuf");
1215
1216 if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
1217 // Floating point operations had to be 'fast' to enable the reduction.
1218 TmpVec = addFastMathFlag(Builder.CreateBinOp((Instruction::BinaryOps)Op,
1219 TmpVec, Shuf, "bin.rdx"));
1220 } else {
1221 assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid &&
1222 "Invalid min/max");
1223 TmpVec = RecurrenceDescriptor::createMinMaxOp(Builder, MinMaxKind, TmpVec,
1224 Shuf);
1225 }
1226 if (!RedOps.empty())
1227 propagateIRFlags(TmpVec, RedOps);
1228 }
1229 // The result is in the first element of the vector.
1230 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
1231}
1232
1233/// Create a simple vector reduction specified by an opcode and some
1234/// flags (if generating min/max reductions).
1235Value *llvm::createSimpleTargetReduction(
1236 IRBuilder<> &Builder, const TargetTransformInfo *TTI, unsigned Opcode,
1237 Value *Src, TargetTransformInfo::ReductionFlags Flags,
1238 ArrayRef<Value *> RedOps) {
1239 assert(isa<VectorType>(Src->getType()) && "Type must be a vector");
1240
1241 Value *ScalarUdf = UndefValue::get(Src->getType()->getVectorElementType());
1242 std::function<Value*()> BuildFunc;
1243 using RD = RecurrenceDescriptor;
1244 RD::MinMaxRecurrenceKind MinMaxKind = RD::MRK_Invalid;
1245 // TODO: Support creating ordered reductions.
1246 FastMathFlags FMFUnsafe;
1247 FMFUnsafe.setUnsafeAlgebra();
1248
1249 switch (Opcode) {
1250 case Instruction::Add:
1251 BuildFunc = [&]() { return Builder.CreateAddReduce(Src); };
1252 break;
1253 case Instruction::Mul:
1254 BuildFunc = [&]() { return Builder.CreateMulReduce(Src); };
1255 break;
1256 case Instruction::And:
1257 BuildFunc = [&]() { return Builder.CreateAndReduce(Src); };
1258 break;
1259 case Instruction::Or:
1260 BuildFunc = [&]() { return Builder.CreateOrReduce(Src); };
1261 break;
1262 case Instruction::Xor:
1263 BuildFunc = [&]() { return Builder.CreateXorReduce(Src); };
1264 break;
1265 case Instruction::FAdd:
1266 BuildFunc = [&]() {
1267 auto Rdx = Builder.CreateFAddReduce(ScalarUdf, Src);
1268 cast<CallInst>(Rdx)->setFastMathFlags(FMFUnsafe);
1269 return Rdx;
1270 };
1271 break;
1272 case Instruction::FMul:
1273 BuildFunc = [&]() {
1274 auto Rdx = Builder.CreateFMulReduce(ScalarUdf, Src);
1275 cast<CallInst>(Rdx)->setFastMathFlags(FMFUnsafe);
1276 return Rdx;
1277 };
1278 break;
1279 case Instruction::ICmp:
1280 if (Flags.IsMaxOp) {
1281 MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMax : RD::MRK_UIntMax;
1282 BuildFunc = [&]() {
1283 return Builder.CreateIntMaxReduce(Src, Flags.IsSigned);
1284 };
1285 } else {
1286 MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMin : RD::MRK_UIntMin;
1287 BuildFunc = [&]() {
1288 return Builder.CreateIntMinReduce(Src, Flags.IsSigned);
1289 };
1290 }
1291 break;
1292 case Instruction::FCmp:
1293 if (Flags.IsMaxOp) {
1294 MinMaxKind = RD::MRK_FloatMax;
1295 BuildFunc = [&]() { return Builder.CreateFPMaxReduce(Src, Flags.NoNaN); };
1296 } else {
1297 MinMaxKind = RD::MRK_FloatMin;
1298 BuildFunc = [&]() { return Builder.CreateFPMinReduce(Src, Flags.NoNaN); };
1299 }
1300 break;
1301 default:
1302 llvm_unreachable("Unhandled opcode");
1303 break;
1304 }
1305 if (TTI->useReductionIntrinsic(Opcode, Src->getType(), Flags))
1306 return BuildFunc();
1307 return getShuffleReduction(Builder, Src, Opcode, MinMaxKind, RedOps);
1308}
1309
1310/// Create a vector reduction using a given recurrence descriptor.
1311Value *llvm::createTargetReduction(IRBuilder<> &Builder,
1312 const TargetTransformInfo *TTI,
1313 RecurrenceDescriptor &Desc, Value *Src,
1314 bool NoNaN) {
1315 // TODO: Support in-order reductions based on the recurrence descriptor.
1316 RecurrenceDescriptor::RecurrenceKind RecKind = Desc.getRecurrenceKind();
1317 TargetTransformInfo::ReductionFlags Flags;
1318 Flags.NoNaN = NoNaN;
1319 auto getSimpleRdx = [&](unsigned Opc) {
1320 return createSimpleTargetReduction(Builder, TTI, Opc, Src, Flags);
1321 };
1322 switch (RecKind) {
1323 case RecurrenceDescriptor::RK_FloatAdd:
1324 return getSimpleRdx(Instruction::FAdd);
1325 case RecurrenceDescriptor::RK_FloatMult:
1326 return getSimpleRdx(Instruction::FMul);
1327 case RecurrenceDescriptor::RK_IntegerAdd:
1328 return getSimpleRdx(Instruction::Add);
1329 case RecurrenceDescriptor::RK_IntegerMult:
1330 return getSimpleRdx(Instruction::Mul);
1331 case RecurrenceDescriptor::RK_IntegerAnd:
1332 return getSimpleRdx(Instruction::And);
1333 case RecurrenceDescriptor::RK_IntegerOr:
1334 return getSimpleRdx(Instruction::Or);
1335 case RecurrenceDescriptor::RK_IntegerXor:
1336 return getSimpleRdx(Instruction::Xor);
1337 case RecurrenceDescriptor::RK_IntegerMinMax: {
1338 switch (Desc.getMinMaxRecurrenceKind()) {
1339 case RecurrenceDescriptor::MRK_SIntMax:
1340 Flags.IsSigned = true;
1341 Flags.IsMaxOp = true;
1342 break;
1343 case RecurrenceDescriptor::MRK_UIntMax:
1344 Flags.IsMaxOp = true;
1345 break;
1346 case RecurrenceDescriptor::MRK_SIntMin:
1347 Flags.IsSigned = true;
1348 break;
1349 case RecurrenceDescriptor::MRK_UIntMin:
1350 break;
1351 default:
1352 llvm_unreachable("Unhandled MRK");
1353 }
1354 return getSimpleRdx(Instruction::ICmp);
1355 }
1356 case RecurrenceDescriptor::RK_FloatMinMax: {
1357 Flags.IsMaxOp =
1358 Desc.getMinMaxRecurrenceKind() == RecurrenceDescriptor::MRK_FloatMax;
1359 return getSimpleRdx(Instruction::FCmp);
1360 }
1361 default:
1362 llvm_unreachable("Unhandled RecKind");
1363 }
1364}
1365
1366void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL) {
1367 if (auto *VecOp = dyn_cast<Instruction>(I)) {
1368 if (auto *I0 = dyn_cast<Instruction>(VL[0])) {
1369 // VecOVp is initialized to the 0th scalar, so start counting from index
1370 // '1'.
1371 VecOp->copyIRFlags(I0);
1372 for (int i = 1, e = VL.size(); i < e; ++i) {
1373 if (auto *Scalar = dyn_cast<Instruction>(VL[i]))
1374 VecOp->andIRFlags(Scalar);
1375 }
1376 }
1377 }
1378}