blob: f1861033cc795cd0ed83efc05c9df669b186dffe [file] [log] [blame]
Lang Hamese038aae2016-06-06 18:35:44 +00001=====================================================================
2Building a JIT: Adding Optimizations -- An introduction to ORC Layers
3=====================================================================
Lang Hamesbe84d2be2016-05-26 00:38:04 +00004
5.. contents::
6 :local:
7
8**This tutorial is under active development. It is incomplete and details may
9change frequently.** Nonetheless we invite you to try it out as it stands, and
10we welcome any feedback.
11
12Chapter 2 Introduction
13======================
14
Lang Hamesc499d2a2016-06-06 03:28:12 +000015Welcome to Chapter 2 of the "Building an ORC-based JIT in LLVM" tutorial. In
16`Chapter 1 <BuildingAJIT1.html>`_ of this series we examined a basic JIT
17class, KaleidoscopeJIT, that could take LLVM IR modules as input and produce
18executable code in memory. KaleidoscopeJIT was able to do this with relatively
19little code by composing two off-the-shelf *ORC layers*: IRCompileLayer and
20ObjectLinkingLayer, to do much of the heavy lifting.
Lang Hamesbe84d2be2016-05-26 00:38:04 +000021
Lang Hamesc499d2a2016-06-06 03:28:12 +000022In this layer we'll learn more about the ORC layer concept by using a new layer,
23IRTransformLayer, to add IR optimization support to KaleidoscopeJIT.
Lang Hamesbe84d2be2016-05-26 00:38:04 +000024
Lang Hamesc499d2a2016-06-06 03:28:12 +000025Optimizing Modules using the IRTransformLayer
26=============================================
Lang Hamesbe84d2be2016-05-26 00:38:04 +000027
Kirill Bobyreve4364832017-07-10 09:07:23 +000028In `Chapter 4 <LangImpl04.html>`_ of the "Implementing a language with LLVM"
Lang Hamesc499d2a2016-06-06 03:28:12 +000029tutorial series the llvm *FunctionPassManager* is introduced as a means for
30optimizing LLVM IR. Interested readers may read that chapter for details, but
Lang Hames8705d112016-06-20 18:34:46 +000031in short: to optimize a Module we create an llvm::FunctionPassManager
Lang Hamesc499d2a2016-06-06 03:28:12 +000032instance, configure it with a set of optimizations, then run the PassManager on
33a Module to mutate it into a (hopefully) more optimized but semantically
34equivalent form. In the original tutorial series the FunctionPassManager was
Lang Hames11c43d52016-06-20 18:37:52 +000035created outside the KaleidoscopeJIT and modules were optimized before being
Lang Hamesc499d2a2016-06-06 03:28:12 +000036added to it. In this Chapter we will make optimization a phase of our JIT
Lang Hames11c43d52016-06-20 18:37:52 +000037instead. For now this will provide us a motivation to learn more about ORC
Lang Hamesc499d2a2016-06-06 03:28:12 +000038layers, but in the long term making optimization part of our JIT will yield an
39important benefit: When we begin lazily compiling code (i.e. deferring
40compilation of each function until the first time it's run), having
41optimization managed by our JIT will allow us to optimize lazily too, rather
42than having to do all our optimization up-front.
Lang Hamesbe84d2be2016-05-26 00:38:04 +000043
Lang Hamesc499d2a2016-06-06 03:28:12 +000044To add optimization support to our JIT we will take the KaleidoscopeJIT from
45Chapter 1 and compose an ORC *IRTransformLayer* on top. We will look at how the
46IRTransformLayer works in more detail below, but the interface is simple: the
47constructor for this layer takes a reference to the layer below (as all layers
48do) plus an *IR optimization function* that it will apply to each Module that
Don Hinton4b93d232017-09-17 00:24:43 +000049is added via addModule:
Lang Hamesc499d2a2016-06-06 03:28:12 +000050
Lang Hames38eb0312016-06-06 04:53:59 +000051.. code-block:: c++
Lang Hamesc499d2a2016-06-06 03:28:12 +000052
53 class KaleidoscopeJIT {
54 private:
55 std::unique_ptr<TargetMachine> TM;
56 const DataLayout DL;
Don Hinton4b93d232017-09-17 00:24:43 +000057 RTDyldObjectLinkingLayer<> ObjectLayer;
Lang Hamesc499d2a2016-06-06 03:28:12 +000058 IRCompileLayer<decltype(ObjectLayer)> CompileLayer;
59
Don Hinton4b93d232017-09-17 00:24:43 +000060 using OptimizeFunction =
61 std::function<std::shared_ptr<Module>(std::shared_ptr<Module>)>;
Lang Hamesc499d2a2016-06-06 03:28:12 +000062
63 IRTransformLayer<decltype(CompileLayer), OptimizeFunction> OptimizeLayer;
64
65 public:
Don Hinton4b93d232017-09-17 00:24:43 +000066 using ModuleHandle = decltype(OptimizeLayer)::ModuleHandleT;
Lang Hamesc499d2a2016-06-06 03:28:12 +000067
68 KaleidoscopeJIT()
69 : TM(EngineBuilder().selectTarget()), DL(TM->createDataLayout()),
Don Hinton4b93d232017-09-17 00:24:43 +000070 ObjectLayer([]() { return std::make_shared<SectionMemoryManager>(); }),
Lang Hamesc499d2a2016-06-06 03:28:12 +000071 CompileLayer(ObjectLayer, SimpleCompiler(*TM)),
72 OptimizeLayer(CompileLayer,
73 [this](std::unique_ptr<Module> M) {
74 return optimizeModule(std::move(M));
75 }) {
76 llvm::sys::DynamicLibrary::LoadLibraryPermanently(nullptr);
77 }
78
79Our extended KaleidoscopeJIT class starts out the same as it did in Chapter 1,
80but after the CompileLayer we introduce a typedef for our optimization function.
81In this case we use a std::function (a handy wrapper for "function-like" things)
82from a single unique_ptr<Module> input to a std::unique_ptr<Module> output. With
83our optimization function typedef in place we can declare our OptimizeLayer,
84which sits on top of our CompileLayer.
85
86To initialize our OptimizeLayer we pass it a reference to the CompileLayer
87below (standard practice for layers), and we initialize the OptimizeFunction
Lang Hames706db2e2016-06-06 18:07:23 +000088using a lambda that calls out to an "optimizeModule" function that we will
89define below.
Lang Hamesc499d2a2016-06-06 03:28:12 +000090
Lang Hames38eb0312016-06-06 04:53:59 +000091.. code-block:: c++
Lang Hamesc499d2a2016-06-06 03:28:12 +000092
93 // ...
94 auto Resolver = createLambdaResolver(
95 [&](const std::string &Name) {
96 if (auto Sym = OptimizeLayer.findSymbol(Name, false))
Lang Hamesad4a9112016-08-01 20:49:11 +000097 return Sym;
98 return JITSymbol(nullptr);
Lang Hamesc499d2a2016-06-06 03:28:12 +000099 },
100 // ...
Lang Hames3242f652016-06-06 05:07:52 +0000101
102.. code-block:: c++
103
104 // ...
Don Hinton4b93d232017-09-17 00:24:43 +0000105 return cantFail(OptimizeLayer.addModule(std::move(M),
106 std::move(Resolver)));
Lang Hamesc499d2a2016-06-06 03:28:12 +0000107 // ...
108
Lang Hames3242f652016-06-06 05:07:52 +0000109.. code-block:: c++
110
Lang Hamesc499d2a2016-06-06 03:28:12 +0000111 // ...
112 return OptimizeLayer.findSymbol(MangledNameStream.str(), true);
113 // ...
114
Lang Hames3242f652016-06-06 05:07:52 +0000115.. code-block:: c++
116
Lang Hamesc499d2a2016-06-06 03:28:12 +0000117 // ...
Don Hinton4b93d232017-09-17 00:24:43 +0000118 cantFail(OptimizeLayer.removeModule(H));
Lang Hamesc499d2a2016-06-06 03:28:12 +0000119 // ...
120
121Next we need to replace references to 'CompileLayer' with references to
122OptimizeLayer in our key methods: addModule, findSymbol, and removeModule. In
123addModule we need to be careful to replace both references: the findSymbol call
Don Hinton4b93d232017-09-17 00:24:43 +0000124inside our resolver, and the call through to addModule.
Lang Hamesc499d2a2016-06-06 03:28:12 +0000125
Lang Hames38eb0312016-06-06 04:53:59 +0000126.. code-block:: c++
Lang Hamesc499d2a2016-06-06 03:28:12 +0000127
Don Hinton4b93d232017-09-17 00:24:43 +0000128 std::shared_ptr<Module> optimizeModule(std::shared_ptr<Module> M) {
Lang Hamesc499d2a2016-06-06 03:28:12 +0000129 // Create a function pass manager.
130 auto FPM = llvm::make_unique<legacy::FunctionPassManager>(M.get());
131
132 // Add some optimizations.
133 FPM->add(createInstructionCombiningPass());
134 FPM->add(createReassociatePass());
135 FPM->add(createGVNPass());
136 FPM->add(createCFGSimplificationPass());
137 FPM->doInitialization();
138
139 // Run the optimizations over all functions in the module being added to
140 // the JIT.
141 for (auto &F : *M)
142 FPM->run(F);
143
144 return M;
145 }
146
147At the bottom of our JIT we add a private method to do the actual optimization:
148*optimizeModule*. This function sets up a FunctionPassManager, adds some passes
149to it, runs it over every function in the module, and then returns the mutated
Lang Hamesd29ee532016-06-06 18:22:47 +0000150module. The specific optimizations are the same ones used in
Kirill Bobyreve4364832017-07-10 09:07:23 +0000151`Chapter 4 <LangImpl04.html>`_ of the "Implementing a language with LLVM"
Lang Hamesd29ee532016-06-06 18:22:47 +0000152tutorial series. Readers may visit that chapter for a more in-depth
153discussion of these, and of IR optimization in general.
Lang Hamesc499d2a2016-06-06 03:28:12 +0000154
Lang Hamesd29ee532016-06-06 18:22:47 +0000155And that's it in terms of changes to KaleidoscopeJIT: When a module is added via
156addModule the OptimizeLayer will call our optimizeModule function before passing
157the transformed module on to the CompileLayer below. Of course, we could have
158called optimizeModule directly in our addModule function and not gone to the
159bother of using the IRTransformLayer, but doing so gives us another opportunity
160to see how layers compose. It also provides a neat entry point to the *layer*
161concept itself, because IRTransformLayer turns out to be one of the simplest
162implementations of the layer concept that can be devised:
Lang Hamesc499d2a2016-06-06 03:28:12 +0000163
Lang Hames38eb0312016-06-06 04:53:59 +0000164.. code-block:: c++
Lang Hamesc499d2a2016-06-06 03:28:12 +0000165
166 template <typename BaseLayerT, typename TransformFtor>
167 class IRTransformLayer {
168 public:
Don Hinton4b93d232017-09-17 00:24:43 +0000169 using ModuleHandleT = typename BaseLayerT::ModuleHandleT;
Lang Hamesc499d2a2016-06-06 03:28:12 +0000170
171 IRTransformLayer(BaseLayerT &BaseLayer,
172 TransformFtor Transform = TransformFtor())
173 : BaseLayer(BaseLayer), Transform(std::move(Transform)) {}
174
Don Hinton4b93d232017-09-17 00:24:43 +0000175 Expected<ModuleHandleT>
176 addModule(std::shared_ptr<Module> M,
177 std::shared_ptr<JITSymbolResolver> Resolver) {
178 return BaseLayer.addModule(Transform(std::move(M)), std::move(Resolver));
Lang Hamesc499d2a2016-06-06 03:28:12 +0000179 }
180
Don Hinton4b93d232017-09-17 00:24:43 +0000181 void removeModule(ModuleHandleT H) { BaseLayer.removeModule(H); }
Lang Hamesc499d2a2016-06-06 03:28:12 +0000182
183 JITSymbol findSymbol(const std::string &Name, bool ExportedSymbolsOnly) {
184 return BaseLayer.findSymbol(Name, ExportedSymbolsOnly);
185 }
186
Don Hinton4b93d232017-09-17 00:24:43 +0000187 JITSymbol findSymbolIn(ModuleHandleT H, const std::string &Name,
Lang Hamesc499d2a2016-06-06 03:28:12 +0000188 bool ExportedSymbolsOnly) {
189 return BaseLayer.findSymbolIn(H, Name, ExportedSymbolsOnly);
190 }
191
Don Hinton4b93d232017-09-17 00:24:43 +0000192 void emitAndFinalize(ModuleHandleT H) {
Lang Hamesc499d2a2016-06-06 03:28:12 +0000193 BaseLayer.emitAndFinalize(H);
194 }
195
196 TransformFtor& getTransform() { return Transform; }
197
198 const TransformFtor& getTransform() const { return Transform; }
199
200 private:
201 BaseLayerT &BaseLayer;
202 TransformFtor Transform;
203 };
204
205This is the whole definition of IRTransformLayer, from
206``llvm/include/llvm/ExecutionEngine/Orc/IRTransformLayer.h``, stripped of its
207comments. It is a template class with two template arguments: ``BaesLayerT`` and
Lang Hamesd29ee532016-06-06 18:22:47 +0000208``TransformFtor`` that provide the type of the base layer and the type of the
209"transform functor" (in our case a std::function) respectively. This class is
210concerned with two very simple jobs: (1) Running every IR Module that is added
Don Hinton4b93d232017-09-17 00:24:43 +0000211with addModule through the transform functor, and (2) conforming to the ORC
Lang Hamesd29ee532016-06-06 18:22:47 +0000212layer interface. The interface consists of one typedef and five methods:
Lang Hamesc499d2a2016-06-06 03:28:12 +0000213
Lang Hamesd29ee532016-06-06 18:22:47 +0000214+------------------+-----------------------------------------------------------+
Lang Hamesc499d2a2016-06-06 03:28:12 +0000215| Interface | Description |
216+==================+===========================================================+
217| | Provides a handle that can be used to identify a module |
Don Hinton4b93d232017-09-17 00:24:43 +0000218| ModuleHandleT | set when calling findSymbolIn, removeModule, or |
Lang Hamesc499d2a2016-06-06 03:28:12 +0000219| | emitAndFinalize. |
220+------------------+-----------------------------------------------------------+
221| | Takes a given set of Modules and makes them "available |
222| | for execution. This means that symbols in those modules |
223| | should be searchable via findSymbol and findSymbolIn, and |
224| | the address of the symbols should be read/writable (for |
225| | data symbols), or executable (for function symbols) after |
226| | JITSymbol::getAddress() is called. Note: This means that |
Don Hinton4b93d232017-09-17 00:24:43 +0000227| addModule | addModule doesn't have to compile (or do any other |
Lang Hamesc499d2a2016-06-06 03:28:12 +0000228| | work) up-front. It *can*, like IRCompileLayer, act |
229| | eagerly, but it can also simply record the module and |
230| | take no further action until somebody calls |
231| | JITSymbol::getAddress(). In IRTransformLayer's case |
Don Hinton4b93d232017-09-17 00:24:43 +0000232| | addModule eagerly applies the transform functor to |
Lang Hamesc499d2a2016-06-06 03:28:12 +0000233| | each module in the set, then passes the resulting set |
234| | of mutated modules down to the layer below. |
235+------------------+-----------------------------------------------------------+
236| | Removes a set of modules from the JIT. Code or data |
Don Hinton4b93d232017-09-17 00:24:43 +0000237| removeModule | defined in these modules will no longer be available, and |
Lang Hamesc499d2a2016-06-06 03:28:12 +0000238| | the memory holding the JIT'd definitions will be freed. |
239+------------------+-----------------------------------------------------------+
240| | Searches for the named symbol in all modules that have |
Don Hinton4b93d232017-09-17 00:24:43 +0000241| | previously been added via addModule (and not yet |
242| findSymbol | removed by a call to removeModule). In |
Lang Hamesc499d2a2016-06-06 03:28:12 +0000243| | IRTransformLayer we just pass the query on to the layer |
244| | below. In our REPL this is our default way to search for |
245| | function definitions. |
246+------------------+-----------------------------------------------------------+
247| | Searches for the named symbol in the module set indicated |
Don Hinton4b93d232017-09-17 00:24:43 +0000248| | by the given ModuleHandleT. This is just an optimized |
Lang Hamesc499d2a2016-06-06 03:28:12 +0000249| | search, better for lookup-speed when you know exactly |
250| | a symbol definition should be found. In IRTransformLayer |
251| findSymbolIn | we just pass this query on to the layer below. In our |
252| | REPL we use this method to search for functions |
253| | representing top-level expressions, since we know exactly |
254| | where we'll find them: in the top-level expression module |
255| | we just added. |
256+------------------+-----------------------------------------------------------+
257| | Forces all of the actions required to make the code and |
Don Hinton4b93d232017-09-17 00:24:43 +0000258| | data in a module set (represented by a ModuleHandleT) |
Lang Hamesc499d2a2016-06-06 03:28:12 +0000259| | accessible. Behaves as if some symbol in the set had been |
260| | searched for and JITSymbol::getSymbolAddress called. This |
261| emitAndFinalize | is rarely needed, but can be useful when dealing with |
262| | layers that usually behave lazily if the user wants to |
263| | trigger early compilation (for example, to use idle CPU |
264| | time to eagerly compile code in the background). |
265+------------------+-----------------------------------------------------------+
266
267This interface attempts to capture the natural operations of a JIT (with some
268wrinkles like emitAndFinalize for performance), similar to the basic JIT API
269operations we identified in Chapter 1. Conforming to the layer concept allows
270classes to compose neatly by implementing their behaviors in terms of the these
271same operations, carried out on the layer below. For example, an eager layer
Don Hinton4b93d232017-09-17 00:24:43 +0000272(like IRTransformLayer) can implement addModule by running each module in the
Lang Hamesc499d2a2016-06-06 03:28:12 +0000273set through its transform up-front and immediately passing the result to the
Don Hinton4b93d232017-09-17 00:24:43 +0000274layer below. A lazy layer, by contrast, could implement addModule by
Lang Hamesc499d2a2016-06-06 03:28:12 +0000275squirreling away the modules doing no other up-front work, but applying the
Don Hinton4b93d232017-09-17 00:24:43 +0000276transform (and calling addModule on the layer below) when the client calls
Lang Hamesc499d2a2016-06-06 03:28:12 +0000277findSymbol instead. The JIT'd program behavior will be the same either way, but
278these choices will have different performance characteristics: Doing work
279eagerly means the JIT takes longer up-front, but proceeds smoothly once this is
280done. Deferring work allows the JIT to get up-and-running quickly, but will
281force the JIT to pause and wait whenever some code or data is needed that hasn't
Sylvestre Ledru7d540502016-07-02 19:28:40 +0000282already been processed.
Lang Hamesc499d2a2016-06-06 03:28:12 +0000283
284Our current REPL is eager: Each function definition is optimized and compiled as
285soon as it's typed in. If we were to make the transform layer lazy (but not
286change things otherwise) we could defer optimization until the first time we
287reference a function in a top-level expression (see if you can figure out why,
288then check out the answer below [1]_). In the next chapter, however we'll
289introduce fully lazy compilation, in which function's aren't compiled until
290they're first called at run-time. At this point the trade-offs get much more
291interesting: the lazier we are, the quicker we can start executing the first
292function, but the more often we'll have to pause to compile newly encountered
293functions. If we only code-gen lazily, but optimize eagerly, we'll have a slow
294startup (which everything is optimized) but relatively short pauses as each
295function just passes through code-gen. If we both optimize and code-gen lazily
296we can start executing the first function more quickly, but we'll have longer
297pauses as each function has to be both optimized and code-gen'd when it's first
298executed. Things become even more interesting if we consider interproceedural
299optimizations like inlining, which must be performed eagerly. These are
300complex trade-offs, and there is no one-size-fits all solution to them, but by
301providing composable layers we leave the decisions to the person implementing
302the JIT, and make it easy for them to experiment with different configurations.
303
304`Next: Adding Per-function Lazy Compilation <BuildingAJIT3.html>`_
Lang Hamesbe84d2be2016-05-26 00:38:04 +0000305
306Full Code Listing
307=================
308
309Here is the complete code listing for our running example with an
310IRTransformLayer added to enable optimization. To build this example, use:
311
312.. code-block:: bash
313
314 # Compile
Don Hinton4b93d232017-09-17 00:24:43 +0000315 clang++ -g toy.cpp `llvm-config --cxxflags --ldflags --system-libs --libs core orcjit native` -O3 -o toy
Lang Hamesbe84d2be2016-05-26 00:38:04 +0000316 # Run
317 ./toy
318
319Here is the code:
320
321.. literalinclude:: ../../examples/Kaleidoscope/BuildingAJIT/Chapter2/KaleidoscopeJIT.h
322 :language: c++
323
Lang Hamesc499d2a2016-06-06 03:28:12 +0000324.. [1] When we add our top-level expression to the JIT, any calls to functions
Don Hinton4b93d232017-09-17 00:24:43 +0000325 that we defined earlier will appear to the RTDyldObjectLinkingLayer as
326 external symbols. The RTDyldObjectLinkingLayer will call the SymbolResolver
327 that we defined in addModule, which in turn calls findSymbol on the
Lang Hamesc499d2a2016-06-06 03:28:12 +0000328 OptimizeLayer, at which point even a lazy transform layer will have to
329 do its work.