blob: b15ec06441fb9260f3346fd4ef00030460287338 [file] [log] [blame]
Reed Kotler5bf80202013-02-27 04:20:14 +00001//===-- MipsConstantIslandPass.cpp - Emit Pc Relative loads----------------===//
Reed Kotlerbb3094a2013-02-27 03:33:58 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//
11// This pass is used to make Pc relative loads of constants.
Reed Kotler4d0313d2013-11-05 12:04:37 +000012// For now, only Mips16 will use this.
Reed Kotlerbb3094a2013-02-27 03:33:58 +000013//
14// Loading constants inline is expensive on Mips16 and it's in general better
15// to place the constant nearby in code space and then it can be loaded with a
16// simple 16 bit load instruction.
17//
18// The constants can be not just numbers but addresses of functions and labels.
19// This can be particularly helpful in static relocation mode for embedded
20// non linux targets.
21//
22//
23
24#define DEBUG_TYPE "mips-constant-islands"
25
26#include "Mips.h"
27#include "MCTargetDesc/MipsBaseInfo.h"
Reed Kotler0f007fc2013-11-05 08:14:14 +000028#include "MipsMachineFunction.h"
Reed Kotlerbb3094a2013-02-27 03:33:58 +000029#include "MipsTargetMachine.h"
30#include "llvm/ADT/Statistic.h"
Reed Kotler91ae9822013-10-27 21:57:36 +000031#include "llvm/CodeGen/MachineBasicBlock.h"
Reed Kotlerbb3094a2013-02-27 03:33:58 +000032#include "llvm/CodeGen/MachineFunctionPass.h"
33#include "llvm/CodeGen/MachineInstrBuilder.h"
Reed Kotler91ae9822013-10-27 21:57:36 +000034#include "llvm/CodeGen/MachineRegisterInfo.h"
Reed Kotlerbb3094a2013-02-27 03:33:58 +000035#include "llvm/IR/Function.h"
36#include "llvm/Support/CommandLine.h"
Reed Kotler91ae9822013-10-27 21:57:36 +000037#include "llvm/Support/Debug.h"
38#include "llvm/Support/InstIterator.h"
Reed Kotlerbb3094a2013-02-27 03:33:58 +000039#include "llvm/Support/MathExtras.h"
Reed Kotler91ae9822013-10-27 21:57:36 +000040#include "llvm/Support/raw_ostream.h"
Reed Kotlerbb3094a2013-02-27 03:33:58 +000041#include "llvm/Target/TargetInstrInfo.h"
42#include "llvm/Target/TargetMachine.h"
43#include "llvm/Target/TargetRegisterInfo.h"
Reed Kotler0f007fc2013-11-05 08:14:14 +000044#include "llvm/Support/Format.h"
Reed Kotler91ae9822013-10-27 21:57:36 +000045#include <algorithm>
Reed Kotlerbb3094a2013-02-27 03:33:58 +000046
47using namespace llvm;
48
Reed Kotler91ae9822013-10-27 21:57:36 +000049STATISTIC(NumCPEs, "Number of constpool entries");
Reed Kotler0f007fc2013-11-05 08:14:14 +000050STATISTIC(NumSplit, "Number of uncond branches inserted");
51STATISTIC(NumCBrFixed, "Number of cond branches fixed");
52STATISTIC(NumUBrFixed, "Number of uncond branches fixed");
Reed Kotler91ae9822013-10-27 21:57:36 +000053
54// FIXME: This option should be removed once it has received sufficient testing.
55static cl::opt<bool>
56AlignConstantIslands("mips-align-constant-islands", cl::Hidden, cl::init(true),
57 cl::desc("Align constant islands in code"));
58
Reed Kotler0f007fc2013-11-05 08:14:14 +000059
60// Rather than do make check tests with huge amounts of code, we force
61// the test to use this amount.
62//
63static cl::opt<int> ConstantIslandsSmallOffset(
64 "mips-constant-islands-small-offset",
65 cl::init(0),
66 cl::desc("Make small offsets be this amount for testing purposes"),
67 cl::Hidden);
68
69/// UnknownPadding - Return the worst case padding that could result from
70/// unknown offset bits. This does not include alignment padding caused by
71/// known offset bits.
72///
73/// @param LogAlign log2(alignment)
74/// @param KnownBits Number of known low offset bits.
75static inline unsigned UnknownPadding(unsigned LogAlign, unsigned KnownBits) {
76 if (KnownBits < LogAlign)
77 return (1u << LogAlign) - (1u << KnownBits);
78 return 0;
79}
80
Reed Kotlerbb3094a2013-02-27 03:33:58 +000081namespace {
Reed Kotler0f007fc2013-11-05 08:14:14 +000082
83
Reed Kotlerbb3094a2013-02-27 03:33:58 +000084 typedef MachineBasicBlock::iterator Iter;
85 typedef MachineBasicBlock::reverse_iterator ReverseIter;
86
Reed Kotler0f007fc2013-11-05 08:14:14 +000087 /// MipsConstantIslands - Due to limited PC-relative displacements, Mips
88 /// requires constant pool entries to be scattered among the instructions
89 /// inside a function. To do this, it completely ignores the normal LLVM
90 /// constant pool; instead, it places constants wherever it feels like with
91 /// special instructions.
92 ///
93 /// The terminology used in this pass includes:
94 /// Islands - Clumps of constants placed in the function.
95 /// Water - Potential places where an island could be formed.
96 /// CPE - A constant pool entry that has been placed somewhere, which
97 /// tracks a list of users.
98
Reed Kotlerbb3094a2013-02-27 03:33:58 +000099 class MipsConstantIslands : public MachineFunctionPass {
100
Reed Kotler0f007fc2013-11-05 08:14:14 +0000101 /// BasicBlockInfo - Information about the offset and size of a single
102 /// basic block.
103 struct BasicBlockInfo {
104 /// Offset - Distance from the beginning of the function to the beginning
105 /// of this basic block.
106 ///
107 /// Offsets are computed assuming worst case padding before an aligned
108 /// block. This means that subtracting basic block offsets always gives a
109 /// conservative estimate of the real distance which may be smaller.
110 ///
111 /// Because worst case padding is used, the computed offset of an aligned
112 /// block may not actually be aligned.
113 unsigned Offset;
114
115 /// Size - Size of the basic block in bytes. If the block contains
116 /// inline assembly, this is a worst case estimate.
117 ///
118 /// The size does not include any alignment padding whether from the
119 /// beginning of the block, or from an aligned jump table at the end.
120 unsigned Size;
121
122 /// KnownBits - The number of low bits in Offset that are known to be
123 /// exact. The remaining bits of Offset are an upper bound.
124 uint8_t KnownBits;
125
126 /// Unalign - When non-zero, the block contains instructions (inline asm)
127 /// of unknown size. The real size may be smaller than Size bytes by a
128 /// multiple of 1 << Unalign.
129 uint8_t Unalign;
130
131 /// PostAlign - When non-zero, the block terminator contains a .align
132 /// directive, so the end of the block is aligned to 1 << PostAlign
133 /// bytes.
134 uint8_t PostAlign;
135
136 BasicBlockInfo() : Offset(0), Size(0), KnownBits(0), Unalign(0),
137 PostAlign(0) {}
138
139 /// Compute the number of known offset bits internally to this block.
140 /// This number should be used to predict worst case padding when
141 /// splitting the block.
142 unsigned internalKnownBits() const {
143 unsigned Bits = Unalign ? Unalign : KnownBits;
144 // If the block size isn't a multiple of the known bits, assume the
145 // worst case padding.
146 if (Size & ((1u << Bits) - 1))
147 Bits = countTrailingZeros(Size);
148 return Bits;
149 }
150
151 /// Compute the offset immediately following this block. If LogAlign is
152 /// specified, return the offset the successor block will get if it has
153 /// this alignment.
154 unsigned postOffset(unsigned LogAlign = 0) const {
155 unsigned PO = Offset + Size;
156 return PO;
157 }
158
159 /// Compute the number of known low bits of postOffset. If this block
160 /// contains inline asm, the number of known bits drops to the
161 /// instruction alignment. An aligned terminator may increase the number
162 /// of know bits.
163 /// If LogAlign is given, also consider the alignment of the next block.
164 unsigned postKnownBits(unsigned LogAlign = 0) const {
165 return std::max(std::max(unsigned(PostAlign), LogAlign),
166 internalKnownBits());
167 }
168 };
169
170 std::vector<BasicBlockInfo> BBInfo;
171
172 /// WaterList - A sorted list of basic blocks where islands could be placed
173 /// (i.e. blocks that don't fall through to the following block, due
174 /// to a return, unreachable, or unconditional branch).
175 std::vector<MachineBasicBlock*> WaterList;
176
177 /// NewWaterList - The subset of WaterList that was created since the
178 /// previous iteration by inserting unconditional branches.
179 SmallSet<MachineBasicBlock*, 4> NewWaterList;
180
181 typedef std::vector<MachineBasicBlock*>::iterator water_iterator;
182
183 /// CPUser - One user of a constant pool, keeping the machine instruction
184 /// pointer, the constant pool being referenced, and the max displacement
185 /// allowed from the instruction to the CP. The HighWaterMark records the
186 /// highest basic block where a new CPEntry can be placed. To ensure this
187 /// pass terminates, the CP entries are initially placed at the end of the
188 /// function and then move monotonically to lower addresses. The
189 /// exception to this rule is when the current CP entry for a particular
190 /// CPUser is out of range, but there is another CP entry for the same
191 /// constant value in range. We want to use the existing in-range CP
192 /// entry, but if it later moves out of range, the search for new water
193 /// should resume where it left off. The HighWaterMark is used to record
194 /// that point.
195 struct CPUser {
196 MachineInstr *MI;
197 MachineInstr *CPEMI;
198 MachineBasicBlock *HighWaterMark;
199 private:
200 unsigned MaxDisp;
201 unsigned LongFormMaxDisp; // mips16 has 16/32 bit instructions
202 // with different displacements
203 unsigned LongFormOpcode;
204 public:
205 bool NegOk;
206 bool IsSoImm;
207 bool KnownAlignment;
208 CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp,
209 bool neg, bool soimm,
210 unsigned longformmaxdisp, unsigned longformopcode)
211 : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp),
212 LongFormMaxDisp(longformmaxdisp), LongFormOpcode(longformopcode),
213 NegOk(neg), IsSoImm(soimm), KnownAlignment(false) {
214 HighWaterMark = CPEMI->getParent();
215 }
216 /// getMaxDisp - Returns the maximum displacement supported by MI.
217 /// Correct for unknown alignment.
218 /// Conservatively subtract 2 bytes to handle weird alignment effects.
219 unsigned getMaxDisp() const {
220 unsigned xMaxDisp = ConstantIslandsSmallOffset?
221 ConstantIslandsSmallOffset: MaxDisp;
222 return (KnownAlignment ? xMaxDisp : xMaxDisp - 2) - 2;
223 }
224 unsigned getLongFormMaxDisp() const {
225 return (KnownAlignment ? LongFormMaxDisp : LongFormMaxDisp - 2) - 2;
226 }
227 unsigned getLongFormOpcode() const {
228 return LongFormOpcode;
229 }
230 };
231
232 /// CPUsers - Keep track of all of the machine instructions that use various
233 /// constant pools and their max displacement.
234 std::vector<CPUser> CPUsers;
Reed Kotler91ae9822013-10-27 21:57:36 +0000235
236 /// CPEntry - One per constant pool entry, keeping the machine instruction
237 /// pointer, the constpool index, and the number of CPUser's which
238 /// reference this entry.
239 struct CPEntry {
240 MachineInstr *CPEMI;
241 unsigned CPI;
242 unsigned RefCount;
243 CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0)
244 : CPEMI(cpemi), CPI(cpi), RefCount(rc) {}
245 };
246
247 /// CPEntries - Keep track of all of the constant pool entry machine
248 /// instructions. For each original constpool index (i.e. those that
249 /// existed upon entry to this pass), it keeps a vector of entries.
250 /// Original elements are cloned as we go along; the clones are
251 /// put in the vector of the original element, but have distinct CPIs.
252 std::vector<std::vector<CPEntry> > CPEntries;
253
Reed Kotler0f007fc2013-11-05 08:14:14 +0000254 /// ImmBranch - One per immediate branch, keeping the machine instruction
255 /// pointer, conditional or unconditional, the max displacement,
256 /// and (if isCond is true) the corresponding unconditional branch
257 /// opcode.
258 struct ImmBranch {
259 MachineInstr *MI;
260 unsigned MaxDisp : 31;
261 bool isCond : 1;
262 int UncondBr;
263 ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, int ubr)
264 : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {}
265 };
266
267 /// ImmBranches - Keep track of all the immediate branch instructions.
268 ///
269 std::vector<ImmBranch> ImmBranches;
270
271 /// HasFarJump - True if any far jump instruction has been emitted during
272 /// the branch fix up pass.
273 bool HasFarJump;
274
275 const TargetMachine &TM;
276 bool IsPIC;
277 unsigned ABI;
278 const MipsSubtarget *STI;
279 const MipsInstrInfo *TII;
280 MipsFunctionInfo *MFI;
281 MachineFunction *MF;
282 MachineConstantPool *MCP;
283
284 unsigned PICLabelUId;
285 bool PrescannedForConstants;
286
287 void initPICLabelUId(unsigned UId) {
288 PICLabelUId = UId;
289 }
290
291
292 unsigned createPICLabelUId() {
293 return PICLabelUId++;
294 }
295
Reed Kotlerbb3094a2013-02-27 03:33:58 +0000296 public:
297 static char ID;
298 MipsConstantIslands(TargetMachine &tm)
299 : MachineFunctionPass(ID), TM(tm),
Reed Kotlerbb3094a2013-02-27 03:33:58 +0000300 IsPIC(TM.getRelocationModel() == Reloc::PIC_),
Reed Kotler91ae9822013-10-27 21:57:36 +0000301 ABI(TM.getSubtarget<MipsSubtarget>().getTargetABI()),
Reed Kotler0f007fc2013-11-05 08:14:14 +0000302 STI(&TM.getSubtarget<MipsSubtarget>()), MF(0), MCP(0),
303 PrescannedForConstants(false){}
Reed Kotlerbb3094a2013-02-27 03:33:58 +0000304
305 virtual const char *getPassName() const {
306 return "Mips Constant Islands";
307 }
308
309 bool runOnMachineFunction(MachineFunction &F);
310
Reed Kotler91ae9822013-10-27 21:57:36 +0000311 void doInitialPlacement(std::vector<MachineInstr*> &CPEMIs);
Reed Kotler0f007fc2013-11-05 08:14:14 +0000312 CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI);
313 unsigned getCPELogAlign(const MachineInstr *CPEMI);
314 void initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs);
315 unsigned getOffsetOf(MachineInstr *MI) const;
316 unsigned getUserOffset(CPUser&) const;
317 void dumpBBs();
318 void verify();
319
320 bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
321 unsigned Disp, bool NegativeOK, bool IsSoImm = false);
322 bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
323 const CPUser &U);
324
325 bool isLongFormOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
326 const CPUser &U);
327
328 void computeBlockSize(MachineBasicBlock *MBB);
329 MachineBasicBlock *splitBlockBeforeInstr(MachineInstr *MI);
330 void updateForInsertedWaterBlock(MachineBasicBlock *NewBB);
331 void adjustBBOffsetsAfter(MachineBasicBlock *BB);
332 bool decrementCPEReferenceCount(unsigned CPI, MachineInstr* CPEMI);
333 int findInRangeCPEntry(CPUser& U, unsigned UserOffset);
334 int findLongFormInRangeCPEntry(CPUser& U, unsigned UserOffset);
335 bool findAvailableWater(CPUser&U, unsigned UserOffset,
336 water_iterator &WaterIter);
337 void createNewWater(unsigned CPUserIndex, unsigned UserOffset,
338 MachineBasicBlock *&NewMBB);
339 bool handleConstantPoolUser(unsigned CPUserIndex);
340 void removeDeadCPEMI(MachineInstr *CPEMI);
341 bool removeUnusedCPEntries();
342 bool isCPEntryInRange(MachineInstr *MI, unsigned UserOffset,
343 MachineInstr *CPEMI, unsigned Disp, bool NegOk,
344 bool DoDump = false);
345 bool isWaterInRange(unsigned UserOffset, MachineBasicBlock *Water,
346 CPUser &U, unsigned &Growth);
347 bool isBBInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp);
348 bool fixupImmediateBr(ImmBranch &Br);
349 bool fixupConditionalBr(ImmBranch &Br);
350 bool fixupUnconditionalBr(ImmBranch &Br);
Reed Kotler91ae9822013-10-27 21:57:36 +0000351
352 void prescanForConstants();
353
Reed Kotlerbb3094a2013-02-27 03:33:58 +0000354 private:
Reed Kotler91ae9822013-10-27 21:57:36 +0000355
Reed Kotlerbb3094a2013-02-27 03:33:58 +0000356 };
357
358 char MipsConstantIslands::ID = 0;
359} // end of anonymous namespace
360
Reed Kotler0f007fc2013-11-05 08:14:14 +0000361
362bool MipsConstantIslands::isLongFormOffsetInRange
363 (unsigned UserOffset, unsigned TrialOffset,
364 const CPUser &U) {
365 return isOffsetInRange(UserOffset, TrialOffset,
366 U.getLongFormMaxDisp(), U.NegOk, U.IsSoImm);
367}
368
369bool MipsConstantIslands::isOffsetInRange
370 (unsigned UserOffset, unsigned TrialOffset,
371 const CPUser &U) {
372 return isOffsetInRange(UserOffset, TrialOffset,
373 U.getMaxDisp(), U.NegOk, U.IsSoImm);
374}
375/// print block size and offset information - debugging
376void MipsConstantIslands::dumpBBs() {
377 DEBUG({
378 for (unsigned J = 0, E = BBInfo.size(); J !=E; ++J) {
379 const BasicBlockInfo &BBI = BBInfo[J];
380 dbgs() << format("%08x BB#%u\t", BBI.Offset, J)
381 << " kb=" << unsigned(BBI.KnownBits)
382 << " ua=" << unsigned(BBI.Unalign)
383 << " pa=" << unsigned(BBI.PostAlign)
384 << format(" size=%#x\n", BBInfo[J].Size);
385 }
386 });
387}
Reed Kotlerbb3094a2013-02-27 03:33:58 +0000388/// createMipsLongBranchPass - Returns a pass that converts branches to long
389/// branches.
390FunctionPass *llvm::createMipsConstantIslandPass(MipsTargetMachine &tm) {
391 return new MipsConstantIslands(tm);
392}
393
Reed Kotler91ae9822013-10-27 21:57:36 +0000394bool MipsConstantIslands::runOnMachineFunction(MachineFunction &mf) {
Reed Kotler1595f362013-04-09 19:46:01 +0000395 // The intention is for this to be a mips16 only pass for now
396 // FIXME:
Reed Kotler91ae9822013-10-27 21:57:36 +0000397 MF = &mf;
398 MCP = mf.getConstantPool();
399 DEBUG(dbgs() << "constant island machine function " << "\n");
400 if (!TM.getSubtarget<MipsSubtarget>().inMips16Mode() ||
401 !MipsSubtarget::useConstantIslands()) {
402 return false;
403 }
404 TII = (const MipsInstrInfo*)MF->getTarget().getInstrInfo();
Reed Kotler0f007fc2013-11-05 08:14:14 +0000405 MFI = MF->getInfo<MipsFunctionInfo>();
Reed Kotler91ae9822013-10-27 21:57:36 +0000406 DEBUG(dbgs() << "constant island processing " << "\n");
407 //
408 // will need to make predermination if there is any constants we need to
409 // put in constant islands. TBD.
410 //
Reed Kotler0f007fc2013-11-05 08:14:14 +0000411 if (!PrescannedForConstants) prescanForConstants();
Reed Kotler91ae9822013-10-27 21:57:36 +0000412
Reed Kotler0f007fc2013-11-05 08:14:14 +0000413 HasFarJump = false;
Reed Kotler91ae9822013-10-27 21:57:36 +0000414 // This pass invalidates liveness information when it splits basic blocks.
415 MF->getRegInfo().invalidateLiveness();
416
417 // Renumber all of the machine basic blocks in the function, guaranteeing that
418 // the numbers agree with the position of the block in the function.
419 MF->RenumberBlocks();
420
Reed Kotler0f007fc2013-11-05 08:14:14 +0000421 bool MadeChange = false;
422
Reed Kotler91ae9822013-10-27 21:57:36 +0000423 // Perform the initial placement of the constant pool entries. To start with,
424 // we put them all at the end of the function.
425 std::vector<MachineInstr*> CPEMIs;
426 if (!MCP->isEmpty())
427 doInitialPlacement(CPEMIs);
428
Reed Kotler0f007fc2013-11-05 08:14:14 +0000429 /// The next UID to take is the first unused one.
430 initPICLabelUId(CPEMIs.size());
431
432 // Do the initial scan of the function, building up information about the
433 // sizes of each block, the location of all the water, and finding all of the
434 // constant pool users.
435 initializeFunctionInfo(CPEMIs);
436 CPEMIs.clear();
437 DEBUG(dumpBBs());
438
439 /// Remove dead constant pool entries.
440 MadeChange |= removeUnusedCPEntries();
441
442 // Iteratively place constant pool entries and fix up branches until there
443 // is no change.
444 unsigned NoCPIters = 0, NoBRIters = 0;
445 (void)NoBRIters;
446 while (true) {
447 DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters << '\n');
448 bool CPChange = false;
449 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i)
450 CPChange |= handleConstantPoolUser(i);
451 if (CPChange && ++NoCPIters > 30)
452 report_fatal_error("Constant Island pass failed to converge!");
453 DEBUG(dumpBBs());
454
455 // Clear NewWaterList now. If we split a block for branches, it should
456 // appear as "new water" for the next iteration of constant pool placement.
457 NewWaterList.clear();
458
459 DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters << '\n');
460 bool BRChange = false;
461#ifdef IN_PROGRESS
462 for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i)
463 BRChange |= fixupImmediateBr(ImmBranches[i]);
464 if (BRChange && ++NoBRIters > 30)
465 report_fatal_error("Branch Fix Up pass failed to converge!");
466 DEBUG(dumpBBs());
467#endif
468 if (!CPChange && !BRChange)
469 break;
470 MadeChange = true;
471 }
472
473 DEBUG(dbgs() << '\n'; dumpBBs());
474
475 BBInfo.clear();
476 WaterList.clear();
477 CPUsers.clear();
478 CPEntries.clear();
479 ImmBranches.clear();
480 return MadeChange;
Reed Kotlerbb3094a2013-02-27 03:33:58 +0000481}
482
Reed Kotler91ae9822013-10-27 21:57:36 +0000483/// doInitialPlacement - Perform the initial placement of the constant pool
484/// entries. To start with, we put them all at the end of the function.
485void
486MipsConstantIslands::doInitialPlacement(std::vector<MachineInstr*> &CPEMIs) {
487 // Create the basic block to hold the CPE's.
488 MachineBasicBlock *BB = MF->CreateMachineBasicBlock();
489 MF->push_back(BB);
490
491
492 // MachineConstantPool measures alignment in bytes. We measure in log2(bytes).
493 unsigned MaxAlign = Log2_32(MCP->getConstantPoolAlignment());
494
495 // Mark the basic block as required by the const-pool.
496 // If AlignConstantIslands isn't set, use 4-byte alignment for everything.
497 BB->setAlignment(AlignConstantIslands ? MaxAlign : 2);
498
499 // The function needs to be as aligned as the basic blocks. The linker may
500 // move functions around based on their alignment.
501 MF->ensureAlignment(BB->getAlignment());
502
503 // Order the entries in BB by descending alignment. That ensures correct
504 // alignment of all entries as long as BB is sufficiently aligned. Keep
505 // track of the insertion point for each alignment. We are going to bucket
506 // sort the entries as they are created.
507 SmallVector<MachineBasicBlock::iterator, 8> InsPoint(MaxAlign + 1, BB->end());
508
509 // Add all of the constants from the constant pool to the end block, use an
510 // identity mapping of CPI's to CPE's.
511 const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants();
512
513 const DataLayout &TD = *MF->getTarget().getDataLayout();
514 for (unsigned i = 0, e = CPs.size(); i != e; ++i) {
515 unsigned Size = TD.getTypeAllocSize(CPs[i].getType());
516 assert(Size >= 4 && "Too small constant pool entry");
517 unsigned Align = CPs[i].getAlignment();
518 assert(isPowerOf2_32(Align) && "Invalid alignment");
519 // Verify that all constant pool entries are a multiple of their alignment.
520 // If not, we would have to pad them out so that instructions stay aligned.
521 assert((Size % Align) == 0 && "CP Entry not multiple of 4 bytes!");
522
523 // Insert CONSTPOOL_ENTRY before entries with a smaller alignment.
524 unsigned LogAlign = Log2_32(Align);
525 MachineBasicBlock::iterator InsAt = InsPoint[LogAlign];
526
527 MachineInstr *CPEMI =
528 BuildMI(*BB, InsAt, DebugLoc(), TII->get(Mips::CONSTPOOL_ENTRY))
529 .addImm(i).addConstantPoolIndex(i).addImm(Size);
530
531 CPEMIs.push_back(CPEMI);
532
533 // Ensure that future entries with higher alignment get inserted before
534 // CPEMI. This is bucket sort with iterators.
535 for (unsigned a = LogAlign + 1; a <= MaxAlign; ++a)
536 if (InsPoint[a] == InsAt)
537 InsPoint[a] = CPEMI;
538 // Add a new CPEntry, but no corresponding CPUser yet.
539 std::vector<CPEntry> CPEs;
540 CPEs.push_back(CPEntry(CPEMI, i));
541 CPEntries.push_back(CPEs);
542 ++NumCPEs;
543 DEBUG(dbgs() << "Moved CPI#" << i << " to end of function, size = "
544 << Size << ", align = " << Align <<'\n');
545 }
546 DEBUG(BB->dump());
547}
548
Reed Kotler0f007fc2013-11-05 08:14:14 +0000549/// BBHasFallthrough - Return true if the specified basic block can fallthrough
550/// into the block immediately after it.
551static bool BBHasFallthrough(MachineBasicBlock *MBB) {
552 // Get the next machine basic block in the function.
553 MachineFunction::iterator MBBI = MBB;
554 // Can't fall off end of function.
555 if (llvm::next(MBBI) == MBB->getParent()->end())
556 return false;
557
558 MachineBasicBlock *NextBB = llvm::next(MBBI);
559 for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
560 E = MBB->succ_end(); I != E; ++I)
561 if (*I == NextBB)
562 return true;
563
564 return false;
565}
566
567/// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI,
568/// look up the corresponding CPEntry.
569MipsConstantIslands::CPEntry
570*MipsConstantIslands::findConstPoolEntry(unsigned CPI,
571 const MachineInstr *CPEMI) {
572 std::vector<CPEntry> &CPEs = CPEntries[CPI];
573 // Number of entries per constpool index should be small, just do a
574 // linear search.
575 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
576 if (CPEs[i].CPEMI == CPEMI)
577 return &CPEs[i];
578 }
579 return NULL;
580}
581
582/// getCPELogAlign - Returns the required alignment of the constant pool entry
583/// represented by CPEMI. Alignment is measured in log2(bytes) units.
584unsigned MipsConstantIslands::getCPELogAlign(const MachineInstr *CPEMI) {
585 assert(CPEMI && CPEMI->getOpcode() == Mips::CONSTPOOL_ENTRY);
586
587 // Everything is 4-byte aligned unless AlignConstantIslands is set.
588 if (!AlignConstantIslands)
589 return 2;
590
591 unsigned CPI = CPEMI->getOperand(1).getIndex();
592 assert(CPI < MCP->getConstants().size() && "Invalid constant pool index.");
593 unsigned Align = MCP->getConstants()[CPI].getAlignment();
594 assert(isPowerOf2_32(Align) && "Invalid CPE alignment");
595 return Log2_32(Align);
596}
597
598/// initializeFunctionInfo - Do the initial scan of the function, building up
599/// information about the sizes of each block, the location of all the water,
600/// and finding all of the constant pool users.
601void MipsConstantIslands::
602initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs) {
603 BBInfo.clear();
604 BBInfo.resize(MF->getNumBlockIDs());
605
606 // First thing, compute the size of all basic blocks, and see if the function
607 // has any inline assembly in it. If so, we have to be conservative about
608 // alignment assumptions, as we don't know for sure the size of any
609 // instructions in the inline assembly.
610 for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I)
611 computeBlockSize(I);
612
613 // The known bits of the entry block offset are determined by the function
614 // alignment.
615 BBInfo.front().KnownBits = MF->getAlignment();
616
617 // Compute block offsets.
618 adjustBBOffsetsAfter(MF->begin());
619
620 // Now go back through the instructions and build up our data structures.
621 for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end();
622 MBBI != E; ++MBBI) {
623 MachineBasicBlock &MBB = *MBBI;
624
625 // If this block doesn't fall through into the next MBB, then this is
626 // 'water' that a constant pool island could be placed.
627 if (!BBHasFallthrough(&MBB))
628 WaterList.push_back(&MBB);
629 for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
630 I != E; ++I) {
631 if (I->isDebugValue())
632 continue;
633
634 int Opc = I->getOpcode();
635 if (I->isBranch()) {
636 bool isCond = false;
637 unsigned Bits = 0;
638 unsigned Scale = 1;
639 int UOpc = Opc;
640
641 switch (Opc) {
642 default:
643 continue; // Ignore other JT branches
644 }
645 // Record this immediate branch.
646 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
647 ImmBranches.push_back(ImmBranch(I, MaxOffs, isCond, UOpc));
648
649 }
650
651
652 if (Opc == Mips::CONSTPOOL_ENTRY)
653 continue;
654
655
656 // Scan the instructions for constant pool operands.
657 for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op)
658 if (I->getOperand(op).isCPI()) {
659
660 // We found one. The addressing mode tells us the max displacement
661 // from the PC that this instruction permits.
662
663 // Basic size info comes from the TSFlags field.
664 unsigned Bits = 0;
665 unsigned Scale = 1;
666 bool NegOk = false;
667 bool IsSoImm = false;
668 unsigned LongFormBits = 0;
669 unsigned LongFormScale = 0;
670 unsigned LongFormOpcode = 0;
671 switch (Opc) {
672 default:
673 llvm_unreachable("Unknown addressing mode for CP reference!");
674 case Mips::LwRxPcTcp16:
675 Bits = 8;
676 Scale = 2;
677 LongFormOpcode = Mips::LwRxPcTcpX16;
678 break;
679 case Mips::LwRxPcTcpX16:
680 Bits = 16;
681 Scale = 2;
682 break;
683 }
684 // Remember that this is a user of a CP entry.
685 unsigned CPI = I->getOperand(op).getIndex();
686 MachineInstr *CPEMI = CPEMIs[CPI];
687 unsigned MaxOffs = ((1 << Bits)-1) * Scale;
688 unsigned LongFormMaxOffs = ((1 << LongFormBits)-1) * LongFormScale;
689 CPUsers.push_back(CPUser(I, CPEMI, MaxOffs, NegOk,
690 IsSoImm, LongFormMaxOffs,
691 LongFormOpcode));
692
693 // Increment corresponding CPEntry reference count.
694 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
695 assert(CPE && "Cannot find a corresponding CPEntry!");
696 CPE->RefCount++;
697
698 // Instructions can only use one CP entry, don't bother scanning the
699 // rest of the operands.
700 break;
701
702 }
703
704 }
705 }
706
707}
708
709/// computeBlockSize - Compute the size and some alignment information for MBB.
710/// This function updates BBInfo directly.
711void MipsConstantIslands::computeBlockSize(MachineBasicBlock *MBB) {
712 BasicBlockInfo &BBI = BBInfo[MBB->getNumber()];
713 BBI.Size = 0;
714 BBI.Unalign = 0;
715 BBI.PostAlign = 0;
716
717 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;
718 ++I)
719 BBI.Size += TII->GetInstSizeInBytes(I);
720
721}
722
723/// getOffsetOf - Return the current offset of the specified machine instruction
724/// from the start of the function. This offset changes as stuff is moved
725/// around inside the function.
726unsigned MipsConstantIslands::getOffsetOf(MachineInstr *MI) const {
727 MachineBasicBlock *MBB = MI->getParent();
728
729 // The offset is composed of two things: the sum of the sizes of all MBB's
730 // before this instruction's block, and the offset from the start of the block
731 // it is in.
732 unsigned Offset = BBInfo[MBB->getNumber()].Offset;
733
734 // Sum instructions before MI in MBB.
735 for (MachineBasicBlock::iterator I = MBB->begin(); &*I != MI; ++I) {
736 assert(I != MBB->end() && "Didn't find MI in its own basic block?");
737 Offset += TII->GetInstSizeInBytes(I);
738 }
739 return Offset;
740}
741
742/// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB
743/// ID.
744static bool CompareMBBNumbers(const MachineBasicBlock *LHS,
745 const MachineBasicBlock *RHS) {
746 return LHS->getNumber() < RHS->getNumber();
747}
748
749/// updateForInsertedWaterBlock - When a block is newly inserted into the
750/// machine function, it upsets all of the block numbers. Renumber the blocks
751/// and update the arrays that parallel this numbering.
752void MipsConstantIslands::updateForInsertedWaterBlock
753 (MachineBasicBlock *NewBB) {
754 // Renumber the MBB's to keep them consecutive.
755 NewBB->getParent()->RenumberBlocks(NewBB);
756
757 // Insert an entry into BBInfo to align it properly with the (newly
758 // renumbered) block numbers.
759 BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
760
761 // Next, update WaterList. Specifically, we need to add NewMBB as having
762 // available water after it.
763 water_iterator IP =
764 std::lower_bound(WaterList.begin(), WaterList.end(), NewBB,
765 CompareMBBNumbers);
766 WaterList.insert(IP, NewBB);
767}
768
769/// getUserOffset - Compute the offset of U.MI as seen by the hardware
770/// displacement computation. Update U.KnownAlignment to match its current
771/// basic block location.
772unsigned MipsConstantIslands::getUserOffset(CPUser &U) const {
773 unsigned UserOffset = getOffsetOf(U.MI);
774 const BasicBlockInfo &BBI = BBInfo[U.MI->getParent()->getNumber()];
775 unsigned KnownBits = BBI.internalKnownBits();
776
777 // The value read from PC is offset from the actual instruction address.
778
779
780 // Because of inline assembly, we may not know the alignment (mod 4) of U.MI.
781 // Make sure U.getMaxDisp() returns a constrained range.
782 U.KnownAlignment = (KnownBits >= 2);
783
Reed Kotler0f007fc2013-11-05 08:14:14 +0000784
785 return UserOffset;
786}
787
788/// Split the basic block containing MI into two blocks, which are joined by
789/// an unconditional branch. Update data structures and renumber blocks to
790/// account for this change and returns the newly created block.
791MachineBasicBlock *MipsConstantIslands::splitBlockBeforeInstr
792 (MachineInstr *MI) {
793 MachineBasicBlock *OrigBB = MI->getParent();
794
795 // Create a new MBB for the code after the OrigBB.
796 MachineBasicBlock *NewBB =
797 MF->CreateMachineBasicBlock(OrigBB->getBasicBlock());
798 MachineFunction::iterator MBBI = OrigBB; ++MBBI;
799 MF->insert(MBBI, NewBB);
800
801 // Splice the instructions starting with MI over to NewBB.
802 NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end());
803
804 // Add an unconditional branch from OrigBB to NewBB.
805 // Note the new unconditional branch is not being recorded.
806 // There doesn't seem to be meaningful DebugInfo available; this doesn't
807 // correspond to anything in the source.
808 BuildMI(OrigBB, DebugLoc(), TII->get(Mips::BimmX16)).addMBB(NewBB);
809 ++NumSplit;
810
811 // Update the CFG. All succs of OrigBB are now succs of NewBB.
812 NewBB->transferSuccessors(OrigBB);
813
814 // OrigBB branches to NewBB.
815 OrigBB->addSuccessor(NewBB);
816
817 // Update internal data structures to account for the newly inserted MBB.
818 // This is almost the same as updateForInsertedWaterBlock, except that
819 // the Water goes after OrigBB, not NewBB.
820 MF->RenumberBlocks(NewBB);
821
822 // Insert an entry into BBInfo to align it properly with the (newly
823 // renumbered) block numbers.
824 BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
825
826 // Next, update WaterList. Specifically, we need to add OrigMBB as having
827 // available water after it (but not if it's already there, which happens
828 // when splitting before a conditional branch that is followed by an
829 // unconditional branch - in that case we want to insert NewBB).
830 water_iterator IP =
831 std::lower_bound(WaterList.begin(), WaterList.end(), OrigBB,
832 CompareMBBNumbers);
833 MachineBasicBlock* WaterBB = *IP;
834 if (WaterBB == OrigBB)
835 WaterList.insert(llvm::next(IP), NewBB);
836 else
837 WaterList.insert(IP, OrigBB);
838 NewWaterList.insert(OrigBB);
839
840 // Figure out how large the OrigBB is. As the first half of the original
841 // block, it cannot contain a tablejump. The size includes
842 // the new jump we added. (It should be possible to do this without
843 // recounting everything, but it's very confusing, and this is rarely
844 // executed.)
845 computeBlockSize(OrigBB);
846
847 // Figure out how large the NewMBB is. As the second half of the original
848 // block, it may contain a tablejump.
849 computeBlockSize(NewBB);
850
851 // All BBOffsets following these blocks must be modified.
852 adjustBBOffsetsAfter(OrigBB);
853
854 return NewBB;
855}
856
857
858
859/// isOffsetInRange - Checks whether UserOffset (the location of a constant pool
860/// reference) is within MaxDisp of TrialOffset (a proposed location of a
861/// constant pool entry).
862/// UserOffset is computed by getUserOffset above to include PC adjustments. If
863/// the mod 4 alignment of UserOffset is not known, the uncertainty must be
864/// subtracted from MaxDisp instead. CPUser::getMaxDisp() does that.
865bool MipsConstantIslands::isOffsetInRange(unsigned UserOffset,
866 unsigned TrialOffset, unsigned MaxDisp,
867 bool NegativeOK, bool IsSoImm) {
868 if (UserOffset <= TrialOffset) {
869 // User before the Trial.
870 if (TrialOffset - UserOffset <= MaxDisp)
871 return true;
872 // FIXME: Make use full range of soimm values.
873 } else if (NegativeOK) {
874 if (UserOffset - TrialOffset <= MaxDisp)
875 return true;
876 // FIXME: Make use full range of soimm values.
877 }
878 return false;
879}
880
881/// isWaterInRange - Returns true if a CPE placed after the specified
882/// Water (a basic block) will be in range for the specific MI.
883///
884/// Compute how much the function will grow by inserting a CPE after Water.
885bool MipsConstantIslands::isWaterInRange(unsigned UserOffset,
886 MachineBasicBlock* Water, CPUser &U,
887 unsigned &Growth) {
888 unsigned CPELogAlign = getCPELogAlign(U.CPEMI);
889 unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset(CPELogAlign);
890 unsigned NextBlockOffset, NextBlockAlignment;
891 MachineFunction::const_iterator NextBlock = Water;
892 if (++NextBlock == MF->end()) {
893 NextBlockOffset = BBInfo[Water->getNumber()].postOffset();
894 NextBlockAlignment = 0;
895 } else {
896 NextBlockOffset = BBInfo[NextBlock->getNumber()].Offset;
897 NextBlockAlignment = NextBlock->getAlignment();
898 }
899 unsigned Size = U.CPEMI->getOperand(2).getImm();
900 unsigned CPEEnd = CPEOffset + Size;
901
902 // The CPE may be able to hide in the alignment padding before the next
903 // block. It may also cause more padding to be required if it is more aligned
904 // that the next block.
905 if (CPEEnd > NextBlockOffset) {
906 Growth = CPEEnd - NextBlockOffset;
907 // Compute the padding that would go at the end of the CPE to align the next
908 // block.
909 Growth += OffsetToAlignment(CPEEnd, 1u << NextBlockAlignment);
910
911 // If the CPE is to be inserted before the instruction, that will raise
912 // the offset of the instruction. Also account for unknown alignment padding
913 // in blocks between CPE and the user.
914 if (CPEOffset < UserOffset)
915 UserOffset += Growth + UnknownPadding(MF->getAlignment(), CPELogAlign);
916 } else
917 // CPE fits in existing padding.
918 Growth = 0;
919
920 return isOffsetInRange(UserOffset, CPEOffset, U);
921}
922
923/// isCPEntryInRange - Returns true if the distance between specific MI and
924/// specific ConstPool entry instruction can fit in MI's displacement field.
925bool MipsConstantIslands::isCPEntryInRange
926 (MachineInstr *MI, unsigned UserOffset,
927 MachineInstr *CPEMI, unsigned MaxDisp,
928 bool NegOk, bool DoDump) {
929 unsigned CPEOffset = getOffsetOf(CPEMI);
930
931 if (DoDump) {
932 DEBUG({
933 unsigned Block = MI->getParent()->getNumber();
934 const BasicBlockInfo &BBI = BBInfo[Block];
935 dbgs() << "User of CPE#" << CPEMI->getOperand(0).getImm()
936 << " max delta=" << MaxDisp
937 << format(" insn address=%#x", UserOffset)
938 << " in BB#" << Block << ": "
939 << format("%#x-%x\t", BBI.Offset, BBI.postOffset()) << *MI
940 << format("CPE address=%#x offset=%+d: ", CPEOffset,
941 int(CPEOffset-UserOffset));
942 });
943 }
944
945 return isOffsetInRange(UserOffset, CPEOffset, MaxDisp, NegOk);
946}
947
948#ifndef NDEBUG
949/// BBIsJumpedOver - Return true of the specified basic block's only predecessor
950/// unconditionally branches to its only successor.
951static bool BBIsJumpedOver(MachineBasicBlock *MBB) {
952 if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
953 return false;
954 MachineBasicBlock *Succ = *MBB->succ_begin();
955 MachineBasicBlock *Pred = *MBB->pred_begin();
956 MachineInstr *PredMI = &Pred->back();
957 if (PredMI->getOpcode() == Mips::BimmX16)
958 return PredMI->getOperand(0).getMBB() == Succ;
959 return false;
960}
961#endif
962
963void MipsConstantIslands::adjustBBOffsetsAfter(MachineBasicBlock *BB) {
964 unsigned BBNum = BB->getNumber();
965 for(unsigned i = BBNum + 1, e = MF->getNumBlockIDs(); i < e; ++i) {
966 // Get the offset and known bits at the end of the layout predecessor.
967 // Include the alignment of the current block.
968 unsigned Offset = BBInfo[i - 1].postOffset();
969 BBInfo[i].Offset = Offset;
970 }
971}
972
973/// decrementCPEReferenceCount - find the constant pool entry with index CPI
974/// and instruction CPEMI, and decrement its refcount. If the refcount
975/// becomes 0 remove the entry and instruction. Returns true if we removed
976/// the entry, false if we didn't.
977
978bool MipsConstantIslands::decrementCPEReferenceCount(unsigned CPI,
979 MachineInstr *CPEMI) {
980 // Find the old entry. Eliminate it if it is no longer used.
981 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
982 assert(CPE && "Unexpected!");
983 if (--CPE->RefCount == 0) {
984 removeDeadCPEMI(CPEMI);
985 CPE->CPEMI = NULL;
986 --NumCPEs;
987 return true;
988 }
989 return false;
990}
991
992/// LookForCPEntryInRange - see if the currently referenced CPE is in range;
993/// if not, see if an in-range clone of the CPE is in range, and if so,
994/// change the data structures so the user references the clone. Returns:
995/// 0 = no existing entry found
996/// 1 = entry found, and there were no code insertions or deletions
997/// 2 = entry found, and there were code insertions or deletions
998int MipsConstantIslands::findInRangeCPEntry(CPUser& U, unsigned UserOffset)
999{
1000 MachineInstr *UserMI = U.MI;
1001 MachineInstr *CPEMI = U.CPEMI;
1002
1003 // Check to see if the CPE is already in-range.
1004 if (isCPEntryInRange(UserMI, UserOffset, CPEMI, U.getMaxDisp(), U.NegOk,
1005 true)) {
1006 DEBUG(dbgs() << "In range\n");
1007 return 1;
1008 }
1009
1010 // No. Look for previously created clones of the CPE that are in range.
1011 unsigned CPI = CPEMI->getOperand(1).getIndex();
1012 std::vector<CPEntry> &CPEs = CPEntries[CPI];
1013 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
1014 // We already tried this one
1015 if (CPEs[i].CPEMI == CPEMI)
1016 continue;
1017 // Removing CPEs can leave empty entries, skip
1018 if (CPEs[i].CPEMI == NULL)
1019 continue;
1020 if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.getMaxDisp(),
1021 U.NegOk)) {
1022 DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#"
1023 << CPEs[i].CPI << "\n");
1024 // Point the CPUser node to the replacement
1025 U.CPEMI = CPEs[i].CPEMI;
1026 // Change the CPI in the instruction operand to refer to the clone.
1027 for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j)
1028 if (UserMI->getOperand(j).isCPI()) {
1029 UserMI->getOperand(j).setIndex(CPEs[i].CPI);
1030 break;
1031 }
1032 // Adjust the refcount of the clone...
1033 CPEs[i].RefCount++;
1034 // ...and the original. If we didn't remove the old entry, none of the
1035 // addresses changed, so we don't need another pass.
1036 return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1;
1037 }
1038 }
1039 return 0;
1040}
1041
1042/// LookForCPEntryInRange - see if the currently referenced CPE is in range;
1043/// This version checks if the longer form of the instruction can be used to
1044/// to satisfy things.
1045/// if not, see if an in-range clone of the CPE is in range, and if so,
1046/// change the data structures so the user references the clone. Returns:
1047/// 0 = no existing entry found
1048/// 1 = entry found, and there were no code insertions or deletions
1049/// 2 = entry found, and there were code insertions or deletions
1050int MipsConstantIslands::findLongFormInRangeCPEntry
1051 (CPUser& U, unsigned UserOffset)
1052{
1053 MachineInstr *UserMI = U.MI;
1054 MachineInstr *CPEMI = U.CPEMI;
1055
1056 // Check to see if the CPE is already in-range.
1057 if (isCPEntryInRange(UserMI, UserOffset, CPEMI,
1058 U.getLongFormMaxDisp(), U.NegOk,
1059 true)) {
1060 DEBUG(dbgs() << "In range\n");
1061 UserMI->setDesc(TII->get(U.getLongFormOpcode()));
1062 return 2; // instruction is longer length now
1063 }
1064
1065 // No. Look for previously created clones of the CPE that are in range.
1066 unsigned CPI = CPEMI->getOperand(1).getIndex();
1067 std::vector<CPEntry> &CPEs = CPEntries[CPI];
1068 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
1069 // We already tried this one
1070 if (CPEs[i].CPEMI == CPEMI)
1071 continue;
1072 // Removing CPEs can leave empty entries, skip
1073 if (CPEs[i].CPEMI == NULL)
1074 continue;
1075 if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI,
1076 U.getLongFormMaxDisp(), U.NegOk)) {
1077 DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#"
1078 << CPEs[i].CPI << "\n");
1079 // Point the CPUser node to the replacement
1080 U.CPEMI = CPEs[i].CPEMI;
1081 // Change the CPI in the instruction operand to refer to the clone.
1082 for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j)
1083 if (UserMI->getOperand(j).isCPI()) {
1084 UserMI->getOperand(j).setIndex(CPEs[i].CPI);
1085 break;
1086 }
1087 // Adjust the refcount of the clone...
1088 CPEs[i].RefCount++;
1089 // ...and the original. If we didn't remove the old entry, none of the
1090 // addresses changed, so we don't need another pass.
1091 return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1;
1092 }
1093 }
1094 return 0;
1095}
1096
1097/// getUnconditionalBrDisp - Returns the maximum displacement that can fit in
1098/// the specific unconditional branch instruction.
1099static inline unsigned getUnconditionalBrDisp(int Opc) {
1100 switch (Opc) {
1101 case Mips::BimmX16:
1102 return ((1<<16)-1)*2;
1103 default:
1104 break;
1105 }
1106 return ((1<<16)-1)*2;
1107}
1108
1109/// findAvailableWater - Look for an existing entry in the WaterList in which
1110/// we can place the CPE referenced from U so it's within range of U's MI.
1111/// Returns true if found, false if not. If it returns true, WaterIter
Reed Kotler4d0313d2013-11-05 12:04:37 +00001112/// is set to the WaterList entry.
1113/// To ensure that this pass
Reed Kotler0f007fc2013-11-05 08:14:14 +00001114/// terminates, the CPE location for a particular CPUser is only allowed to
1115/// move to a lower address, so search backward from the end of the list and
1116/// prefer the first water that is in range.
1117bool MipsConstantIslands::findAvailableWater(CPUser &U, unsigned UserOffset,
1118 water_iterator &WaterIter) {
1119 if (WaterList.empty())
1120 return false;
1121
1122 unsigned BestGrowth = ~0u;
1123 for (water_iterator IP = prior(WaterList.end()), B = WaterList.begin();;
1124 --IP) {
1125 MachineBasicBlock* WaterBB = *IP;
1126 // Check if water is in range and is either at a lower address than the
1127 // current "high water mark" or a new water block that was created since
1128 // the previous iteration by inserting an unconditional branch. In the
1129 // latter case, we want to allow resetting the high water mark back to
1130 // this new water since we haven't seen it before. Inserting branches
1131 // should be relatively uncommon and when it does happen, we want to be
1132 // sure to take advantage of it for all the CPEs near that block, so that
1133 // we don't insert more branches than necessary.
1134 unsigned Growth;
1135 if (isWaterInRange(UserOffset, WaterBB, U, Growth) &&
1136 (WaterBB->getNumber() < U.HighWaterMark->getNumber() ||
1137 NewWaterList.count(WaterBB)) && Growth < BestGrowth) {
1138 // This is the least amount of required padding seen so far.
1139 BestGrowth = Growth;
1140 WaterIter = IP;
1141 DEBUG(dbgs() << "Found water after BB#" << WaterBB->getNumber()
1142 << " Growth=" << Growth << '\n');
1143
1144 // Keep looking unless it is perfect.
1145 if (BestGrowth == 0)
1146 return true;
1147 }
1148 if (IP == B)
1149 break;
1150 }
1151 return BestGrowth != ~0u;
1152}
1153
1154/// createNewWater - No existing WaterList entry will work for
1155/// CPUsers[CPUserIndex], so create a place to put the CPE. The end of the
1156/// block is used if in range, and the conditional branch munged so control
1157/// flow is correct. Otherwise the block is split to create a hole with an
1158/// unconditional branch around it. In either case NewMBB is set to a
1159/// block following which the new island can be inserted (the WaterList
1160/// is not adjusted).
1161void MipsConstantIslands::createNewWater(unsigned CPUserIndex,
1162 unsigned UserOffset,
1163 MachineBasicBlock *&NewMBB) {
1164 CPUser &U = CPUsers[CPUserIndex];
1165 MachineInstr *UserMI = U.MI;
1166 MachineInstr *CPEMI = U.CPEMI;
1167 unsigned CPELogAlign = getCPELogAlign(CPEMI);
1168 MachineBasicBlock *UserMBB = UserMI->getParent();
1169 const BasicBlockInfo &UserBBI = BBInfo[UserMBB->getNumber()];
1170
1171 // If the block does not end in an unconditional branch already, and if the
Reed Kotler4d0313d2013-11-05 12:04:37 +00001172 // end of the block is within range, make new water there.
Reed Kotler0f007fc2013-11-05 08:14:14 +00001173 if (BBHasFallthrough(UserMBB)) {
1174 // Size of branch to insert.
1175 unsigned Delta = 2;
1176 // Compute the offset where the CPE will begin.
1177 unsigned CPEOffset = UserBBI.postOffset(CPELogAlign) + Delta;
1178
1179 if (isOffsetInRange(UserOffset, CPEOffset, U)) {
1180 DEBUG(dbgs() << "Split at end of BB#" << UserMBB->getNumber()
1181 << format(", expected CPE offset %#x\n", CPEOffset));
1182 NewMBB = llvm::next(MachineFunction::iterator(UserMBB));
1183 // Add an unconditional branch from UserMBB to fallthrough block. Record
1184 // it for branch lengthening; this new branch will not get out of range,
1185 // but if the preceding conditional branch is out of range, the targets
1186 // will be exchanged, and the altered branch may be out of range, so the
1187 // machinery has to know about it.
1188 int UncondBr = Mips::BimmX16;
1189 BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB);
1190 unsigned MaxDisp = getUnconditionalBrDisp(UncondBr);
1191 ImmBranches.push_back(ImmBranch(&UserMBB->back(),
1192 MaxDisp, false, UncondBr));
1193 BBInfo[UserMBB->getNumber()].Size += Delta;
1194 adjustBBOffsetsAfter(UserMBB);
1195 return;
1196 }
1197 }
1198
Reed Kotler4d0313d2013-11-05 12:04:37 +00001199 // What a big block. Find a place within the block to split it.
Reed Kotler0f007fc2013-11-05 08:14:14 +00001200
1201 // Try to split the block so it's fully aligned. Compute the latest split
1202 // point where we can add a 4-byte branch instruction, and then align to
1203 // LogAlign which is the largest possible alignment in the function.
1204 unsigned LogAlign = MF->getAlignment();
1205 assert(LogAlign >= CPELogAlign && "Over-aligned constant pool entry");
1206 unsigned KnownBits = UserBBI.internalKnownBits();
1207 unsigned UPad = UnknownPadding(LogAlign, KnownBits);
1208 unsigned BaseInsertOffset = UserOffset + U.getMaxDisp() - UPad;
1209 DEBUG(dbgs() << format("Split in middle of big block before %#x",
1210 BaseInsertOffset));
1211
1212 // The 4 in the following is for the unconditional branch we'll be inserting
Reed Kotler4d0313d2013-11-05 12:04:37 +00001213 // Alignment of the island is handled
Reed Kotler0f007fc2013-11-05 08:14:14 +00001214 // inside isOffsetInRange.
1215 BaseInsertOffset -= 4;
1216
1217 DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset)
1218 << " la=" << LogAlign
1219 << " kb=" << KnownBits
1220 << " up=" << UPad << '\n');
1221
1222 // This could point off the end of the block if we've already got constant
1223 // pool entries following this block; only the last one is in the water list.
1224 // Back past any possible branches (allow for a conditional and a maximally
1225 // long unconditional).
1226 if (BaseInsertOffset + 8 >= UserBBI.postOffset()) {
1227 BaseInsertOffset = UserBBI.postOffset() - UPad - 8;
1228 DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset));
1229 }
1230 unsigned EndInsertOffset = BaseInsertOffset + 4 + UPad +
1231 CPEMI->getOperand(2).getImm();
1232 MachineBasicBlock::iterator MI = UserMI;
1233 ++MI;
1234 unsigned CPUIndex = CPUserIndex+1;
1235 unsigned NumCPUsers = CPUsers.size();
1236 //MachineInstr *LastIT = 0;
1237 for (unsigned Offset = UserOffset+TII->GetInstSizeInBytes(UserMI);
1238 Offset < BaseInsertOffset;
1239 Offset += TII->GetInstSizeInBytes(MI),
1240 MI = llvm::next(MI)) {
1241 assert(MI != UserMBB->end() && "Fell off end of block");
1242 if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == MI) {
1243 CPUser &U = CPUsers[CPUIndex];
1244 if (!isOffsetInRange(Offset, EndInsertOffset, U)) {
1245 // Shift intertion point by one unit of alignment so it is within reach.
1246 BaseInsertOffset -= 1u << LogAlign;
1247 EndInsertOffset -= 1u << LogAlign;
1248 }
1249 // This is overly conservative, as we don't account for CPEMIs being
1250 // reused within the block, but it doesn't matter much. Also assume CPEs
1251 // are added in order with alignment padding. We may eventually be able
1252 // to pack the aligned CPEs better.
1253 EndInsertOffset += U.CPEMI->getOperand(2).getImm();
1254 CPUIndex++;
1255 }
1256 }
1257
1258 --MI;
1259 NewMBB = splitBlockBeforeInstr(MI);
1260}
1261
1262/// handleConstantPoolUser - Analyze the specified user, checking to see if it
1263/// is out-of-range. If so, pick up the constant pool value and move it some
1264/// place in-range. Return true if we changed any addresses (thus must run
1265/// another pass of branch lengthening), false otherwise.
1266bool MipsConstantIslands::handleConstantPoolUser(unsigned CPUserIndex) {
1267 CPUser &U = CPUsers[CPUserIndex];
1268 MachineInstr *UserMI = U.MI;
1269 MachineInstr *CPEMI = U.CPEMI;
1270 unsigned CPI = CPEMI->getOperand(1).getIndex();
1271 unsigned Size = CPEMI->getOperand(2).getImm();
1272 // Compute this only once, it's expensive.
1273 unsigned UserOffset = getUserOffset(U);
1274
1275 // See if the current entry is within range, or there is a clone of it
1276 // in range.
1277 int result = findInRangeCPEntry(U, UserOffset);
1278 if (result==1) return false;
1279 else if (result==2) return true;
1280
1281
1282 // Look for water where we can place this CPE.
1283 MachineBasicBlock *NewIsland = MF->CreateMachineBasicBlock();
1284 MachineBasicBlock *NewMBB;
1285 water_iterator IP;
1286 if (findAvailableWater(U, UserOffset, IP)) {
1287 DEBUG(dbgs() << "Found water in range\n");
1288 MachineBasicBlock *WaterBB = *IP;
1289
1290 // If the original WaterList entry was "new water" on this iteration,
1291 // propagate that to the new island. This is just keeping NewWaterList
1292 // updated to match the WaterList, which will be updated below.
1293 if (NewWaterList.erase(WaterBB))
1294 NewWaterList.insert(NewIsland);
1295
1296 // The new CPE goes before the following block (NewMBB).
1297 NewMBB = llvm::next(MachineFunction::iterator(WaterBB));
1298
1299 } else {
1300 // No water found.
1301 // we first see if a longer form of the instrucion could have reached
1302 // the constant. in that case we won't bother to split
1303#ifdef IN_PROGRESS
1304 result = findLongFormInRangeCPEntry(U, UserOffset);
1305#endif
1306 DEBUG(dbgs() << "No water found\n");
1307 createNewWater(CPUserIndex, UserOffset, NewMBB);
1308
1309 // splitBlockBeforeInstr adds to WaterList, which is important when it is
1310 // called while handling branches so that the water will be seen on the
1311 // next iteration for constant pools, but in this context, we don't want
1312 // it. Check for this so it will be removed from the WaterList.
1313 // Also remove any entry from NewWaterList.
1314 MachineBasicBlock *WaterBB = prior(MachineFunction::iterator(NewMBB));
1315 IP = std::find(WaterList.begin(), WaterList.end(), WaterBB);
1316 if (IP != WaterList.end())
1317 NewWaterList.erase(WaterBB);
1318
1319 // We are adding new water. Update NewWaterList.
1320 NewWaterList.insert(NewIsland);
1321 }
1322
1323 // Remove the original WaterList entry; we want subsequent insertions in
1324 // this vicinity to go after the one we're about to insert. This
1325 // considerably reduces the number of times we have to move the same CPE
1326 // more than once and is also important to ensure the algorithm terminates.
1327 if (IP != WaterList.end())
1328 WaterList.erase(IP);
1329
1330 // Okay, we know we can put an island before NewMBB now, do it!
1331 MF->insert(NewMBB, NewIsland);
1332
1333 // Update internal data structures to account for the newly inserted MBB.
1334 updateForInsertedWaterBlock(NewIsland);
1335
1336 // Decrement the old entry, and remove it if refcount becomes 0.
1337 decrementCPEReferenceCount(CPI, CPEMI);
1338
1339 // Now that we have an island to add the CPE to, clone the original CPE and
1340 // add it to the island.
1341 U.HighWaterMark = NewIsland;
1342 U.CPEMI = BuildMI(NewIsland, DebugLoc(), TII->get(Mips::CONSTPOOL_ENTRY))
1343 .addImm(ID).addConstantPoolIndex(CPI).addImm(Size);
1344 CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1));
1345 ++NumCPEs;
1346
1347 // Mark the basic block as aligned as required by the const-pool entry.
1348 NewIsland->setAlignment(getCPELogAlign(U.CPEMI));
1349
1350 // Increase the size of the island block to account for the new entry.
1351 BBInfo[NewIsland->getNumber()].Size += Size;
1352 adjustBBOffsetsAfter(llvm::prior(MachineFunction::iterator(NewIsland)));
1353
1354 // No existing clone of this CPE is within range.
1355 // We will be generating a new clone. Get a UID for it.
1356 unsigned ID = createPICLabelUId();
1357
1358 // Finally, change the CPI in the instruction operand to be ID.
1359 for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i)
1360 if (UserMI->getOperand(i).isCPI()) {
1361 UserMI->getOperand(i).setIndex(ID);
1362 break;
1363 }
1364
1365 DEBUG(dbgs() << " Moved CPE to #" << ID << " CPI=" << CPI
1366 << format(" offset=%#x\n", BBInfo[NewIsland->getNumber()].Offset));
1367
1368 return true;
1369}
1370
1371/// removeDeadCPEMI - Remove a dead constant pool entry instruction. Update
1372/// sizes and offsets of impacted basic blocks.
1373void MipsConstantIslands::removeDeadCPEMI(MachineInstr *CPEMI) {
1374 MachineBasicBlock *CPEBB = CPEMI->getParent();
1375 unsigned Size = CPEMI->getOperand(2).getImm();
1376 CPEMI->eraseFromParent();
1377 BBInfo[CPEBB->getNumber()].Size -= Size;
1378 // All succeeding offsets have the current size value added in, fix this.
1379 if (CPEBB->empty()) {
1380 BBInfo[CPEBB->getNumber()].Size = 0;
1381
1382 // This block no longer needs to be aligned.
1383 CPEBB->setAlignment(0);
1384 } else
1385 // Entries are sorted by descending alignment, so realign from the front.
1386 CPEBB->setAlignment(getCPELogAlign(CPEBB->begin()));
1387
1388 adjustBBOffsetsAfter(CPEBB);
1389 // An island has only one predecessor BB and one successor BB. Check if
1390 // this BB's predecessor jumps directly to this BB's successor. This
1391 // shouldn't happen currently.
1392 assert(!BBIsJumpedOver(CPEBB) && "How did this happen?");
1393 // FIXME: remove the empty blocks after all the work is done?
1394}
1395
1396/// removeUnusedCPEntries - Remove constant pool entries whose refcounts
1397/// are zero.
1398bool MipsConstantIslands::removeUnusedCPEntries() {
1399 unsigned MadeChange = false;
1400 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) {
1401 std::vector<CPEntry> &CPEs = CPEntries[i];
1402 for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) {
1403 if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) {
1404 removeDeadCPEMI(CPEs[j].CPEMI);
1405 CPEs[j].CPEMI = NULL;
1406 MadeChange = true;
1407 }
1408 }
1409 }
1410 return MadeChange;
1411}
1412
1413/// isBBInRange - Returns true if the distance between specific MI and
1414/// specific BB can fit in MI's displacement field.
1415bool MipsConstantIslands::isBBInRange
1416 (MachineInstr *MI,MachineBasicBlock *DestBB, unsigned MaxDisp) {
1417
1418unsigned PCAdj = 4;
1419
1420 unsigned BrOffset = getOffsetOf(MI) + PCAdj;
1421 unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset;
1422
1423 DEBUG(dbgs() << "Branch of destination BB#" << DestBB->getNumber()
1424 << " from BB#" << MI->getParent()->getNumber()
1425 << " max delta=" << MaxDisp
1426 << " from " << getOffsetOf(MI) << " to " << DestOffset
1427 << " offset " << int(DestOffset-BrOffset) << "\t" << *MI);
1428
1429 if (BrOffset <= DestOffset) {
1430 // Branch before the Dest.
1431 if (DestOffset-BrOffset <= MaxDisp)
1432 return true;
1433 } else {
1434 if (BrOffset-DestOffset <= MaxDisp)
1435 return true;
1436 }
1437 return false;
1438}
1439
1440/// fixupImmediateBr - Fix up an immediate branch whose destination is too far
1441/// away to fit in its displacement field.
1442bool MipsConstantIslands::fixupImmediateBr(ImmBranch &Br) {
1443 MachineInstr *MI = Br.MI;
1444 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
1445
1446 // Check to see if the DestBB is already in-range.
1447 if (isBBInRange(MI, DestBB, Br.MaxDisp))
1448 return false;
1449
1450 if (!Br.isCond)
1451 return fixupUnconditionalBr(Br);
1452 return fixupConditionalBr(Br);
1453}
1454
1455/// fixupUnconditionalBr - Fix up an unconditional branch whose destination is
1456/// too far away to fit in its displacement field. If the LR register has been
1457/// spilled in the epilogue, then we can use BL to implement a far jump.
1458/// Otherwise, add an intermediate branch instruction to a branch.
1459bool
1460MipsConstantIslands::fixupUnconditionalBr(ImmBranch &Br) {
1461 MachineInstr *MI = Br.MI;
1462 MachineBasicBlock *MBB = MI->getParent();
1463 // Use BL to implement far jump.
1464 Br.MaxDisp = ((1 << 16)-1) * 2;
1465 MI->setDesc(TII->get(Mips::BimmX16));
1466 BBInfo[MBB->getNumber()].Size += 2;
1467 adjustBBOffsetsAfter(MBB);
1468 HasFarJump = true;
1469 ++NumUBrFixed;
1470
1471 DEBUG(dbgs() << " Changed B to long jump " << *MI);
1472
1473 return true;
1474}
1475
1476/// fixupConditionalBr - Fix up a conditional branch whose destination is too
1477/// far away to fit in its displacement field. It is converted to an inverse
1478/// conditional branch + an unconditional branch to the destination.
1479bool
1480MipsConstantIslands::fixupConditionalBr(ImmBranch &Br) {
1481 MachineInstr *MI = Br.MI;
1482 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
1483
1484 // Add an unconditional branch to the destination and invert the branch
1485 // condition to jump over it:
1486 // blt L1
1487 // =>
1488 // bge L2
1489 // b L1
1490 // L2:
1491 unsigned CCReg = 0; // FIXME
1492 unsigned CC=0; //FIXME
1493
1494 // If the branch is at the end of its MBB and that has a fall-through block,
1495 // direct the updated conditional branch to the fall-through block. Otherwise,
1496 // split the MBB before the next instruction.
1497 MachineBasicBlock *MBB = MI->getParent();
1498 MachineInstr *BMI = &MBB->back();
1499 bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB);
1500
1501 ++NumCBrFixed;
1502 if (BMI != MI) {
1503 if (llvm::next(MachineBasicBlock::iterator(MI)) == prior(MBB->end()) &&
1504 BMI->getOpcode() == Br.UncondBr) {
1505 // Last MI in the BB is an unconditional branch. Can we simply invert the
1506 // condition and swap destinations:
1507 // beq L1
1508 // b L2
1509 // =>
1510 // bne L2
1511 // b L1
1512 MachineBasicBlock *NewDest = BMI->getOperand(0).getMBB();
1513 if (isBBInRange(MI, NewDest, Br.MaxDisp)) {
1514 DEBUG(dbgs() << " Invert Bcc condition and swap its destination with "
1515 << *BMI);
1516 BMI->getOperand(0).setMBB(DestBB);
1517 MI->getOperand(0).setMBB(NewDest);
1518 return true;
1519 }
1520 }
1521 }
1522
1523 if (NeedSplit) {
1524 splitBlockBeforeInstr(MI);
1525 // No need for the branch to the next block. We're adding an unconditional
1526 // branch to the destination.
1527 int delta = TII->GetInstSizeInBytes(&MBB->back());
1528 BBInfo[MBB->getNumber()].Size -= delta;
1529 MBB->back().eraseFromParent();
1530 // BBInfo[SplitBB].Offset is wrong temporarily, fixed below
1531 }
1532 MachineBasicBlock *NextBB = llvm::next(MachineFunction::iterator(MBB));
1533
1534 DEBUG(dbgs() << " Insert B to BB#" << DestBB->getNumber()
1535 << " also invert condition and change dest. to BB#"
1536 << NextBB->getNumber() << "\n");
1537
1538 // Insert a new conditional branch and a new unconditional branch.
1539 // Also update the ImmBranch as well as adding a new entry for the new branch.
1540 BuildMI(MBB, DebugLoc(), TII->get(MI->getOpcode()))
1541 .addMBB(NextBB).addImm(CC).addReg(CCReg);
1542 Br.MI = &MBB->back();
1543 BBInfo[MBB->getNumber()].Size += TII->GetInstSizeInBytes(&MBB->back());
1544 BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB);
1545 BBInfo[MBB->getNumber()].Size += TII->GetInstSizeInBytes(&MBB->back());
1546 unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr);
1547 ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr));
1548
1549 // Remove the old conditional branch. It may or may not still be in MBB.
1550 BBInfo[MI->getParent()->getNumber()].Size -= TII->GetInstSizeInBytes(MI);
1551 MI->eraseFromParent();
1552 adjustBBOffsetsAfter(MBB);
1553 return true;
1554}
1555
Reed Kotler91ae9822013-10-27 21:57:36 +00001556
1557void MipsConstantIslands::prescanForConstants() {
Reed Kotler0f007fc2013-11-05 08:14:14 +00001558 unsigned J = 0;
1559 (void)J;
1560 PrescannedForConstants = true;
Reed Kotler91ae9822013-10-27 21:57:36 +00001561 for (MachineFunction::iterator B =
1562 MF->begin(), E = MF->end(); B != E; ++B) {
1563 for (MachineBasicBlock::instr_iterator I =
1564 B->instr_begin(), EB = B->instr_end(); I != EB; ++I) {
1565 switch(I->getDesc().getOpcode()) {
1566 case Mips::LwConstant32: {
1567 DEBUG(dbgs() << "constant island constant " << *I << "\n");
1568 J = I->getNumOperands();
1569 DEBUG(dbgs() << "num operands " << J << "\n");
1570 MachineOperand& Literal = I->getOperand(1);
1571 if (Literal.isImm()) {
1572 int64_t V = Literal.getImm();
1573 DEBUG(dbgs() << "literal " << V << "\n");
1574 Type *Int32Ty =
1575 Type::getInt32Ty(MF->getFunction()->getContext());
1576 const Constant *C = ConstantInt::get(Int32Ty, V);
1577 unsigned index = MCP->getConstantPoolIndex(C, 4);
1578 I->getOperand(2).ChangeToImmediate(index);
1579 DEBUG(dbgs() << "constant island constant " << *I << "\n");
Reed Kotler0f007fc2013-11-05 08:14:14 +00001580 I->setDesc(TII->get(Mips::LwRxPcTcp16));
Reed Kotler91ae9822013-10-27 21:57:36 +00001581 I->RemoveOperand(1);
1582 I->RemoveOperand(1);
1583 I->addOperand(MachineOperand::CreateCPI(index, 0));
Reed Kotler0f007fc2013-11-05 08:14:14 +00001584 I->addOperand(MachineOperand::CreateImm(4));
Reed Kotler91ae9822013-10-27 21:57:36 +00001585 }
1586 break;
1587 }
1588 default:
1589 break;
1590 }
1591 }
1592 }
1593}
Reed Kotler0f007fc2013-11-05 08:14:14 +00001594