Chris Lattner | 530d4bf | 2003-05-29 15:11:31 +0000 | [diff] [blame^] | 1 | //===- InlineFunction.cpp - Code to perform function inlining -------------===// |
| 2 | // |
| 3 | // This file implements inlining of a function into a call site, resolving |
| 4 | // parameters and the return value as appropriate. |
| 5 | // |
| 6 | // FIXME: This pass should transform alloca instructions in the called function |
| 7 | // into malloc/free pairs! Or perhaps it should refuse to inline them! |
| 8 | // |
| 9 | //===----------------------------------------------------------------------===// |
| 10 | |
| 11 | #include "llvm/Transforms/Utils/Cloning.h" |
| 12 | #include "llvm/Module.h" |
| 13 | #include "llvm/iTerminators.h" |
| 14 | #include "llvm/iPHINode.h" |
| 15 | #include "llvm/iMemory.h" |
| 16 | #include "llvm/iOther.h" |
| 17 | #include "llvm/DerivedTypes.h" |
| 18 | |
| 19 | // InlineFunction - This function inlines the called function into the basic |
| 20 | // block of the caller. This returns false if it is not possible to inline this |
| 21 | // call. The program is still in a well defined state if this occurs though. |
| 22 | // |
| 23 | // Note that this only does one level of inlining. For example, if the |
| 24 | // instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now |
| 25 | // exists in the instruction stream. Similiarly this will inline a recursive |
| 26 | // function by one level. |
| 27 | // |
| 28 | bool InlineFunction(CallInst *CI) { |
| 29 | assert(isa<CallInst>(CI) && "InlineFunction only works on CallInst nodes"); |
| 30 | assert(CI->getParent() && "Instruction not embedded in basic block!"); |
| 31 | assert(CI->getParent()->getParent() && "Instruction not in function!"); |
| 32 | |
| 33 | const Function *CalledFunc = CI->getCalledFunction(); |
| 34 | if (CalledFunc == 0 || // Can't inline external function or indirect |
| 35 | CalledFunc->isExternal() || // call, or call to a vararg function! |
| 36 | CalledFunc->getFunctionType()->isVarArg()) return false; |
| 37 | |
| 38 | BasicBlock *OrigBB = CI->getParent(); |
| 39 | Function *Caller = OrigBB->getParent(); |
| 40 | |
| 41 | // Call splitBasicBlock - The original basic block now ends at the instruction |
| 42 | // immediately before the call. The original basic block now ends with an |
| 43 | // unconditional branch to NewBB, and NewBB starts with the call instruction. |
| 44 | // |
| 45 | BasicBlock *NewBB = OrigBB->splitBasicBlock(CI); |
| 46 | NewBB->setName(OrigBB->getName()+".split"); |
| 47 | |
| 48 | // Remove (unlink) the CallInst from the start of the new basic block. |
| 49 | NewBB->getInstList().remove(CI); |
| 50 | |
| 51 | // If we have a return value generated by this call, convert it into a PHI |
| 52 | // node that gets values from each of the old RET instructions in the original |
| 53 | // function. |
| 54 | // |
| 55 | PHINode *PHI = 0; |
| 56 | if (!CI->use_empty()) { |
| 57 | // The PHI node should go at the front of the new basic block to merge all |
| 58 | // possible incoming values. |
| 59 | // |
| 60 | PHI = new PHINode(CalledFunc->getReturnType(), CI->getName(), |
| 61 | NewBB->begin()); |
| 62 | |
| 63 | // Anything that used the result of the function call should now use the PHI |
| 64 | // node as their operand. |
| 65 | // |
| 66 | CI->replaceAllUsesWith(PHI); |
| 67 | } |
| 68 | |
| 69 | // Get an iterator to the last basic block in the function, which will have |
| 70 | // the new function inlined after it. |
| 71 | // |
| 72 | Function::iterator LastBlock = &Caller->back(); |
| 73 | |
| 74 | // Calculate the vector of arguments to pass into the function cloner... |
| 75 | std::map<const Value*, Value*> ValueMap; |
| 76 | assert((unsigned)std::distance(CalledFunc->abegin(), CalledFunc->aend()) == |
| 77 | CI->getNumOperands()-1 && "No varargs calls can be inlined yet!"); |
| 78 | |
| 79 | unsigned i = 1; |
| 80 | for (Function::const_aiterator I = CalledFunc->abegin(), E=CalledFunc->aend(); |
| 81 | I != E; ++I, ++i) |
| 82 | ValueMap[I] = CI->getOperand(i); |
| 83 | |
| 84 | // Since we are now done with the CallInst, we can delete it. |
| 85 | delete CI; |
| 86 | |
| 87 | // Make a vector to capture the return instructions in the cloned function... |
| 88 | std::vector<ReturnInst*> Returns; |
| 89 | |
| 90 | // Populate the value map with all of the globals in the program. |
| 91 | Module &M = *Caller->getParent(); |
| 92 | for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) |
| 93 | ValueMap[I] = I; |
| 94 | for (Module::giterator I = M.gbegin(), E = M.gend(); I != E; ++I) |
| 95 | ValueMap[I] = I; |
| 96 | |
| 97 | // Do all of the hard part of cloning the callee into the caller... |
| 98 | CloneFunctionInto(Caller, CalledFunc, ValueMap, Returns, ".i"); |
| 99 | |
| 100 | // Loop over all of the return instructions, turning them into unconditional |
| 101 | // branches to the merge point now... |
| 102 | for (unsigned i = 0, e = Returns.size(); i != e; ++i) { |
| 103 | ReturnInst *RI = Returns[i]; |
| 104 | BasicBlock *BB = RI->getParent(); |
| 105 | |
| 106 | // Add a branch to the merge point where the PHI node would live... |
| 107 | new BranchInst(NewBB, RI); |
| 108 | |
| 109 | if (PHI) { // The PHI node should include this value! |
| 110 | assert(RI->getReturnValue() && "Ret should have value!"); |
| 111 | assert(RI->getReturnValue()->getType() == PHI->getType() && |
| 112 | "Ret value not consistent in function!"); |
| 113 | PHI->addIncoming(RI->getReturnValue(), BB); |
| 114 | } |
| 115 | |
| 116 | // Delete the return instruction now |
| 117 | BB->getInstList().erase(RI); |
| 118 | } |
| 119 | |
| 120 | // Check to see if the PHI node only has one argument. This is a common |
| 121 | // case resulting from there only being a single return instruction in the |
| 122 | // function call. Because this is so common, eliminate the PHI node. |
| 123 | // |
| 124 | if (PHI && PHI->getNumIncomingValues() == 1) { |
| 125 | PHI->replaceAllUsesWith(PHI->getIncomingValue(0)); |
| 126 | PHI->getParent()->getInstList().erase(PHI); |
| 127 | } |
| 128 | |
| 129 | // Change the branch that used to go to NewBB to branch to the first basic |
| 130 | // block of the inlined function. |
| 131 | // |
| 132 | TerminatorInst *Br = OrigBB->getTerminator(); |
| 133 | assert(Br && Br->getOpcode() == Instruction::Br && |
| 134 | "splitBasicBlock broken!"); |
| 135 | Br->setOperand(0, ++LastBlock); |
| 136 | |
| 137 | // If there are any alloca instructions in the block that used to be the entry |
| 138 | // block for the callee, move them to the entry block of the caller. First |
| 139 | // calculate which instruction they should be inserted before. We insert the |
| 140 | // instructions at the end of the current alloca list. |
| 141 | // |
| 142 | BasicBlock::iterator InsertPoint = Caller->begin()->begin(); |
| 143 | while (isa<AllocaInst>(InsertPoint)) ++InsertPoint; |
| 144 | |
| 145 | for (BasicBlock::iterator I = LastBlock->begin(), E = LastBlock->end(); |
| 146 | I != E; ) |
| 147 | if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) { |
| 148 | ++I; // Move to the next instruction |
| 149 | LastBlock->getInstList().remove(AI); |
| 150 | Caller->front().getInstList().insert(InsertPoint, AI); |
| 151 | |
| 152 | } else { |
| 153 | ++I; |
| 154 | } |
| 155 | |
| 156 | // Now that the function is correct, make it a little bit nicer. In |
| 157 | // particular, move the basic blocks inserted from the end of the function |
| 158 | // into the space made by splitting the source basic block. |
| 159 | // |
| 160 | Caller->getBasicBlockList().splice(NewBB, Caller->getBasicBlockList(), |
| 161 | LastBlock, Caller->end()); |
| 162 | |
| 163 | return true; |
| 164 | } |