blob: d6f98141e7f1b9577855e990e1300959db0a0f37 [file] [log] [blame]
Sjoerd Meijerc89ca552018-06-28 12:55:29 +00001//===- ParallelDSP.cpp - Parallel DSP Pass --------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10/// \file
11/// Armv6 introduced instructions to perform 32-bit SIMD operations. The
12/// purpose of this pass is do some IR pattern matching to create ACLE
13/// DSP intrinsics, which map on these 32-bit SIMD operations.
Sjoerd Meijer53449da2018-07-11 12:36:25 +000014/// This pass runs only when unaligned accesses is supported/enabled.
Sjoerd Meijerc89ca552018-06-28 12:55:29 +000015//
16//===----------------------------------------------------------------------===//
17
Sjoerd Meijerb3e06fa2018-07-06 14:47:09 +000018#include "llvm/ADT/Statistic.h"
Sjoerd Meijerc89ca552018-06-28 12:55:29 +000019#include "llvm/ADT/SmallPtrSet.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/LoopAccessAnalysis.h"
22#include "llvm/Analysis/LoopPass.h"
23#include "llvm/Analysis/LoopInfo.h"
24#include "llvm/IR/Instructions.h"
25#include "llvm/IR/NoFolder.h"
26#include "llvm/Transforms/Scalar.h"
27#include "llvm/Transforms/Utils/BasicBlockUtils.h"
28#include "llvm/Transforms/Utils/LoopUtils.h"
29#include "llvm/Pass.h"
30#include "llvm/PassRegistry.h"
31#include "llvm/PassSupport.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/IR/PatternMatch.h"
34#include "llvm/CodeGen/TargetPassConfig.h"
35#include "ARM.h"
36#include "ARMSubtarget.h"
37
38using namespace llvm;
39using namespace PatternMatch;
40
Sjoerd Meijerb3e06fa2018-07-06 14:47:09 +000041#define DEBUG_TYPE "arm-parallel-dsp"
42
43STATISTIC(NumSMLAD , "Number of smlad instructions generated");
Sjoerd Meijerc89ca552018-06-28 12:55:29 +000044
45namespace {
46 struct ParallelMAC;
47 struct Reduction;
48
49 using ParallelMACList = SmallVector<ParallelMAC, 8>;
50 using ReductionList = SmallVector<Reduction, 8>;
51 using ValueList = SmallVector<Value*, 8>;
Sam Parkerffc16812018-07-03 12:44:16 +000052 using MemInstList = SmallVector<Instruction*, 8>;
Sjoerd Meijerc89ca552018-06-28 12:55:29 +000053 using PMACPair = std::pair<ParallelMAC*,ParallelMAC*>;
54 using PMACPairList = SmallVector<PMACPair, 8>;
55 using Instructions = SmallVector<Instruction*,16>;
56 using MemLocList = SmallVector<MemoryLocation, 4>;
57
58 // 'ParallelMAC' and 'Reduction' are just some bookkeeping data structures.
59 // 'Reduction' contains the phi-node and accumulator statement from where we
60 // start pattern matching, and 'ParallelMAC' the multiplication
61 // instructions that are candidates for parallel execution.
62 struct ParallelMAC {
63 Instruction *Mul;
64 ValueList VL; // List of all (narrow) operands of this Mul
Sam Parkerffc16812018-07-03 12:44:16 +000065 MemInstList VecLd; // List of all load instructions of this Mul
Sjoerd Meijerc89ca552018-06-28 12:55:29 +000066 MemLocList MemLocs; // All memory locations read by this Mul
67
Sjoerd Meijer53449da2018-07-11 12:36:25 +000068 // The MAC-chains we currently recognise are simple chains that accumulate
69 // their results with a reducing integer add statement, and consist of
70 // a chain of adds and muls, which have only sext and load instructions as
71 // operands. Thus, these chains don't write memory. We check that this is
72 // true when we collect the operands, and use this in alias analysis checks
73 // that different parallel MACs don't interfere with each other.
74 bool ReadOnly;
75
76 ParallelMAC(Instruction *I, ValueList &V, bool RdOnly)
77 : Mul(I), VL(V), ReadOnly(RdOnly) {};
Sjoerd Meijerc89ca552018-06-28 12:55:29 +000078 };
79
80 struct Reduction {
81 PHINode *Phi; // The Phi-node from where we start
82 // pattern matching.
83 Instruction *AccIntAdd; // The accumulating integer add statement,
84 // i.e, the reduction statement.
85
Sjoerd Meijer53449da2018-07-11 12:36:25 +000086 ParallelMACList MACCandidates; // The MAC candidates associated with
87 // this reduction statement.
Sjoerd Meijerc89ca552018-06-28 12:55:29 +000088 Reduction (PHINode *P, Instruction *Acc) : Phi(P), AccIntAdd(Acc) { };
89 };
90
91 class ARMParallelDSP : public LoopPass {
92 ScalarEvolution *SE;
93 AliasAnalysis *AA;
94 TargetLibraryInfo *TLI;
95 DominatorTree *DT;
96 LoopInfo *LI;
97 Loop *L;
98 const DataLayout *DL;
99 Module *M;
100
101 bool InsertParallelMACs(Reduction &Reduction, PMACPairList &PMACPairs);
Fangrui Song68169342018-07-03 19:12:27 +0000102 bool AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1, MemInstList &VecMem);
Sjoerd Meijerc89ca552018-06-28 12:55:29 +0000103 PMACPairList CreateParallelMACPairs(ParallelMACList &Candidates);
104 Instruction *CreateSMLADCall(LoadInst *VecLd0, LoadInst *VecLd1,
105 Instruction *Acc, Instruction *InsertAfter);
106
107 /// Try to match and generate: SMLAD, SMLADX - Signed Multiply Accumulate
108 /// Dual performs two signed 16x16-bit multiplications. It adds the
109 /// products to a 32-bit accumulate operand. Optionally, the instruction can
110 /// exchange the halfwords of the second operand before performing the
111 /// arithmetic.
112 bool MatchSMLAD(Function &F);
113
114 public:
115 static char ID;
116
117 ARMParallelDSP() : LoopPass(ID) { }
118
119 void getAnalysisUsage(AnalysisUsage &AU) const override {
120 LoopPass::getAnalysisUsage(AU);
121 AU.addRequired<AssumptionCacheTracker>();
122 AU.addRequired<ScalarEvolutionWrapperPass>();
123 AU.addRequired<AAResultsWrapperPass>();
124 AU.addRequired<TargetLibraryInfoWrapperPass>();
125 AU.addRequired<LoopInfoWrapperPass>();
126 AU.addRequired<DominatorTreeWrapperPass>();
127 AU.addRequired<TargetPassConfig>();
128 AU.addPreserved<LoopInfoWrapperPass>();
129 AU.setPreservesCFG();
130 }
131
132 bool runOnLoop(Loop *TheLoop, LPPassManager &) override {
133 L = TheLoop;
134 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
135 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
136 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
137 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
138 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
139 auto &TPC = getAnalysis<TargetPassConfig>();
140
141 BasicBlock *Header = TheLoop->getHeader();
142 if (!Header)
143 return false;
144
145 // TODO: We assume the loop header and latch to be the same block.
146 // This is not a fundamental restriction, but lifting this would just
147 // require more work to do the transformation and then patch up the CFG.
148 if (Header != TheLoop->getLoopLatch()) {
149 LLVM_DEBUG(dbgs() << "The loop header is not the loop latch: not "
150 "running pass ARMParallelDSP\n");
151 return false;
152 }
153
154 Function &F = *Header->getParent();
155 M = F.getParent();
156 DL = &M->getDataLayout();
157
158 auto &TM = TPC.getTM<TargetMachine>();
159 auto *ST = &TM.getSubtarget<ARMSubtarget>(F);
160
161 if (!ST->allowsUnalignedMem()) {
162 LLVM_DEBUG(dbgs() << "Unaligned memory access not supported: not "
163 "running pass ARMParallelDSP\n");
164 return false;
165 }
166
167 if (!ST->hasDSP()) {
168 LLVM_DEBUG(dbgs() << "DSP extension not enabled: not running pass "
169 "ARMParallelDSP\n");
170 return false;
171 }
172
173 LoopAccessInfo LAI(L, SE, TLI, AA, DT, LI);
174 bool Changes = false;
175
176 LLVM_DEBUG(dbgs() << "\n== Parallel DSP pass ==\n\n");
177 Changes = MatchSMLAD(F);
178 return Changes;
179 }
180 };
181}
182
Sjoerd Meijer27be58b2018-07-05 08:21:40 +0000183// MaxBitwidth: the maximum supported bitwidth of the elements in the DSP
184// instructions, which is set to 16. So here we should collect all i8 and i16
185// narrow operations.
186// TODO: we currently only collect i16, and will support i8 later, so that's
187// why we check that types are equal to MaxBitWidth, and not <= MaxBitWidth.
188template<unsigned MaxBitWidth>
Sjoerd Meijerc89ca552018-06-28 12:55:29 +0000189static bool IsNarrowSequence(Value *V, ValueList &VL) {
Sjoerd Meijer27be58b2018-07-05 08:21:40 +0000190 LLVM_DEBUG(dbgs() << "Is narrow sequence? "; V->dump());
Sjoerd Meijerc89ca552018-06-28 12:55:29 +0000191 ConstantInt *CInt;
192
193 if (match(V, m_ConstantInt(CInt))) {
194 // TODO: if a constant is used, it needs to fit within the bit width.
195 return false;
196 }
197
198 auto *I = dyn_cast<Instruction>(V);
199 if (!I)
200 return false;
201
202 Value *Val, *LHS, *RHS;
Sjoerd Meijerc89ca552018-06-28 12:55:29 +0000203 if (match(V, m_Trunc(m_Value(Val)))) {
Sjoerd Meijer27be58b2018-07-05 08:21:40 +0000204 if (cast<TruncInst>(I)->getDestTy()->getIntegerBitWidth() == MaxBitWidth)
205 return IsNarrowSequence<MaxBitWidth>(Val, VL);
Sjoerd Meijerc89ca552018-06-28 12:55:29 +0000206 } else if (match(V, m_Add(m_Value(LHS), m_Value(RHS)))) {
207 // TODO: we need to implement sadd16/sadd8 for this, which enables to
208 // also do the rewrite for smlad8.ll, but it is unsupported for now.
Sjoerd Meijer27be58b2018-07-05 08:21:40 +0000209 LLVM_DEBUG(dbgs() << "No, unsupported Op:\t"; I->dump());
210 return false;
Sjoerd Meijerc89ca552018-06-28 12:55:29 +0000211 } else if (match(V, m_ZExtOrSExt(m_Value(Val)))) {
Sjoerd Meijer27be58b2018-07-05 08:21:40 +0000212 if (cast<CastInst>(I)->getSrcTy()->getIntegerBitWidth() != MaxBitWidth) {
213 LLVM_DEBUG(dbgs() << "No, wrong SrcTy size: " <<
214 cast<CastInst>(I)->getSrcTy()->getIntegerBitWidth() << "\n");
215 return false;
216 }
Sjoerd Meijerc89ca552018-06-28 12:55:29 +0000217
Sjoerd Meijer27be58b2018-07-05 08:21:40 +0000218 if (match(Val, m_Load(m_Value()))) {
219 LLVM_DEBUG(dbgs() << "Yes, found narrow Load:\t"; Val->dump());
220 VL.push_back(Val);
221 VL.push_back(I);
222 return true;
223 }
Sjoerd Meijerc89ca552018-06-28 12:55:29 +0000224 }
Sjoerd Meijer27be58b2018-07-05 08:21:40 +0000225 LLVM_DEBUG(dbgs() << "No, unsupported Op:\t"; I->dump());
226 return false;
Sjoerd Meijerc89ca552018-06-28 12:55:29 +0000227}
228
229// Element-by-element comparison of Value lists returning true if they are
230// instructions with the same opcode or constants with the same value.
231static bool AreSymmetrical(const ValueList &VL0,
232 const ValueList &VL1) {
233 if (VL0.size() != VL1.size()) {
234 LLVM_DEBUG(dbgs() << "Muls are mismatching operand list lengths: "
235 << VL0.size() << " != " << VL1.size() << "\n");
236 return false;
237 }
238
239 const unsigned Pairs = VL0.size();
240 LLVM_DEBUG(dbgs() << "Number of operand pairs: " << Pairs << "\n");
241
242 for (unsigned i = 0; i < Pairs; ++i) {
243 const Value *V0 = VL0[i];
244 const Value *V1 = VL1[i];
245 const auto *Inst0 = dyn_cast<Instruction>(V0);
246 const auto *Inst1 = dyn_cast<Instruction>(V1);
247
248 LLVM_DEBUG(dbgs() << "Pair " << i << ":\n";
249 dbgs() << "mul1: "; V0->dump();
250 dbgs() << "mul2: "; V1->dump());
251
252 if (!Inst0 || !Inst1)
253 return false;
254
255 if (Inst0->isSameOperationAs(Inst1)) {
256 LLVM_DEBUG(dbgs() << "OK: same operation found!\n");
257 continue;
258 }
259
260 const APInt *C0, *C1;
261 if (!(match(V0, m_APInt(C0)) && match(V1, m_APInt(C1)) && C0 == C1))
262 return false;
263 }
264
265 LLVM_DEBUG(dbgs() << "OK: found symmetrical operand lists.\n");
266 return true;
267}
268
Sam Parkerffc16812018-07-03 12:44:16 +0000269template<typename MemInst>
270static bool AreSequentialAccesses(MemInst *MemOp0, MemInst *MemOp1,
271 MemInstList &VecMem, const DataLayout &DL,
272 ScalarEvolution &SE) {
273 if (!MemOp0->isSimple() || !MemOp1->isSimple()) {
274 LLVM_DEBUG(dbgs() << "No, not touching volatile access\n");
275 return false;
276 }
277 if (isConsecutiveAccess(MemOp0, MemOp1, DL, SE)) {
278 VecMem.push_back(MemOp0);
279 VecMem.push_back(MemOp1);
280 LLVM_DEBUG(dbgs() << "OK: accesses are consecutive.\n");
281 return true;
282 }
283 LLVM_DEBUG(dbgs() << "No, accesses aren't consecutive.\n");
284 return false;
285}
286
Sjoerd Meijerc89ca552018-06-28 12:55:29 +0000287bool ARMParallelDSP::AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1,
Sam Parkerffc16812018-07-03 12:44:16 +0000288 MemInstList &VecMem) {
Sjoerd Meijerc89ca552018-06-28 12:55:29 +0000289 if (!Ld0 || !Ld1)
290 return false;
291
292 LLVM_DEBUG(dbgs() << "Are consecutive loads:\n";
293 dbgs() << "Ld0:"; Ld0->dump();
294 dbgs() << "Ld1:"; Ld1->dump();
295 );
296
Sjoerd Meijerc89ca552018-06-28 12:55:29 +0000297 if (!Ld0->hasOneUse() || !Ld1->hasOneUse()) {
298 LLVM_DEBUG(dbgs() << "No, load has more than one use.\n");
299 return false;
300 }
Sam Parkerffc16812018-07-03 12:44:16 +0000301
302 return AreSequentialAccesses<LoadInst>(Ld0, Ld1, VecMem, *DL, *SE);
Sjoerd Meijerc89ca552018-06-28 12:55:29 +0000303}
304
305PMACPairList
306ARMParallelDSP::CreateParallelMACPairs(ParallelMACList &Candidates) {
307 const unsigned Elems = Candidates.size();
308 PMACPairList PMACPairs;
309
310 if (Elems < 2)
311 return PMACPairs;
312
313 // TODO: for now we simply try to match consecutive pairs i and i+1.
314 // We can compare all elements, but then we need to compare and evaluate
315 // different solutions.
316 for(unsigned i=0; i<Elems-1; i+=2) {
317 ParallelMAC &PMul0 = Candidates[i];
318 ParallelMAC &PMul1 = Candidates[i+1];
319 const Instruction *Mul0 = PMul0.Mul;
320 const Instruction *Mul1 = PMul1.Mul;
321
322 if (Mul0 == Mul1)
323 continue;
324
325 LLVM_DEBUG(dbgs() << "\nCheck parallel muls:\n";
326 dbgs() << "- "; Mul0->dump();
327 dbgs() << "- "; Mul1->dump());
328
329 const ValueList &VL0 = PMul0.VL;
330 const ValueList &VL1 = PMul1.VL;
331
332 if (!AreSymmetrical(VL0, VL1))
333 continue;
334
335 LLVM_DEBUG(dbgs() << "OK: mul operands list match:\n");
336 // The first elements of each vector should be loads with sexts. If we find
337 // that its two pairs of consecutive loads, then these can be transformed
338 // into two wider loads and the users can be replaced with DSP
339 // intrinsics.
340 for (unsigned x = 0; x < VL0.size(); x += 4) {
341 auto *Ld0 = dyn_cast<LoadInst>(VL0[x]);
342 auto *Ld1 = dyn_cast<LoadInst>(VL1[x]);
343 auto *Ld2 = dyn_cast<LoadInst>(VL0[x+2]);
344 auto *Ld3 = dyn_cast<LoadInst>(VL1[x+2]);
345
346 LLVM_DEBUG(dbgs() << "Looking at operands " << x << ":\n";
347 dbgs() << "\t mul1: "; VL0[x]->dump();
348 dbgs() << "\t mul2: "; VL1[x]->dump();
349 dbgs() << "and operands " << x + 2 << ":\n";
350 dbgs() << "\t mul1: "; VL0[x+2]->dump();
351 dbgs() << "\t mul2: "; VL1[x+2]->dump());
352
353 if (AreSequentialLoads(Ld0, Ld1, Candidates[i].VecLd) &&
354 AreSequentialLoads(Ld2, Ld3, Candidates[i+1].VecLd)) {
355 LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n");
356 PMACPairs.push_back(std::make_pair(&PMul0, &PMul1));
357 }
358 }
359 }
360 return PMACPairs;
361}
362
363bool ARMParallelDSP::InsertParallelMACs(Reduction &Reduction,
364 PMACPairList &PMACPairs) {
365 Instruction *Acc = Reduction.Phi;
366 Instruction *InsertAfter = Reduction.AccIntAdd;
367
368 for (auto &Pair : PMACPairs) {
369 LLVM_DEBUG(dbgs() << "Found parallel MACs!!\n";
370 dbgs() << "- "; Pair.first->Mul->dump();
371 dbgs() << "- "; Pair.second->Mul->dump());
Sam Parkerffc16812018-07-03 12:44:16 +0000372 auto *VecLd0 = cast<LoadInst>(Pair.first->VecLd[0]);
373 auto *VecLd1 = cast<LoadInst>(Pair.second->VecLd[0]);
374 Acc = CreateSMLADCall(VecLd0, VecLd1, Acc, InsertAfter);
Sjoerd Meijerc89ca552018-06-28 12:55:29 +0000375 InsertAfter = Acc;
376 }
377
378 if (Acc != Reduction.Phi) {
379 LLVM_DEBUG(dbgs() << "Replace Accumulate: "; Acc->dump());
380 Reduction.AccIntAdd->replaceAllUsesWith(Acc);
381 return true;
382 }
383 return false;
384}
385
386static ReductionList MatchReductions(Function &F, Loop *TheLoop,
387 BasicBlock *Header) {
388 ReductionList Reductions;
389 RecurrenceDescriptor RecDesc;
390 const bool HasFnNoNaNAttr =
391 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
392 const BasicBlock *Latch = TheLoop->getLoopLatch();
393
394 // We need a preheader as getIncomingValueForBlock assumes there is one.
Sjoerd Meijer53449da2018-07-11 12:36:25 +0000395 if (!TheLoop->getLoopPreheader()) {
396 LLVM_DEBUG(dbgs() << "No preheader found, bailing out\n");
Sjoerd Meijerc89ca552018-06-28 12:55:29 +0000397 return Reductions;
Sjoerd Meijer53449da2018-07-11 12:36:25 +0000398 }
Sjoerd Meijerc89ca552018-06-28 12:55:29 +0000399
400 for (PHINode &Phi : Header->phis()) {
401 const auto *Ty = Phi.getType();
402 if (!Ty->isIntegerTy(32))
403 continue;
404
405 const bool IsReduction =
406 RecurrenceDescriptor::AddReductionVar(&Phi,
407 RecurrenceDescriptor::RK_IntegerAdd,
408 TheLoop, HasFnNoNaNAttr, RecDesc);
409 if (!IsReduction)
410 continue;
411
412 Instruction *Acc = dyn_cast<Instruction>(Phi.getIncomingValueForBlock(Latch));
413 if (!Acc)
414 continue;
415
416 Reductions.push_back(Reduction(&Phi, Acc));
417 }
418
419 LLVM_DEBUG(
420 dbgs() << "\nAccumulating integer additions (reductions) found:\n";
421 for (auto R : Reductions) {
422 dbgs() << "- "; R.Phi->dump();
423 dbgs() << "-> "; R.AccIntAdd->dump();
424 }
425 );
426 return Reductions;
427}
428
Sjoerd Meijer53449da2018-07-11 12:36:25 +0000429static void AddMACCandidate(ParallelMACList &Candidates, const Instruction *Acc,
Sjoerd Meijerc89ca552018-06-28 12:55:29 +0000430 Value *MulOp0, Value *MulOp1, int MulOpNum) {
431 Instruction *Mul = dyn_cast<Instruction>(Acc->getOperand(MulOpNum));
432 LLVM_DEBUG(dbgs() << "OK, found acc mul:\t"; Mul->dump());
433 ValueList VL;
434 if (IsNarrowSequence<16>(MulOp0, VL) &&
435 IsNarrowSequence<16>(MulOp1, VL)) {
436 LLVM_DEBUG(dbgs() << "OK, found narrow mul: "; Mul->dump());
Sjoerd Meijer53449da2018-07-11 12:36:25 +0000437
438 bool MayWriteMem = false;
439 for (auto &V : VL) {
440 if (dyn_cast<Instruction>(V)->mayWriteToMemory()) {
441 MayWriteMem = true;
442 break;
443 }
444 }
445 Candidates.push_back(ParallelMAC(Mul, VL, !MayWriteMem));
Sjoerd Meijerc89ca552018-06-28 12:55:29 +0000446 }
447}
448
449static ParallelMACList MatchParallelMACs(Reduction &R) {
450 ParallelMACList Candidates;
451 const Instruction *Acc = R.AccIntAdd;
452 Value *A, *MulOp0, *MulOp1;
453 LLVM_DEBUG(dbgs() << "\n- Analysing:\t"; Acc->dump());
454
455 // Pattern 1: the accumulator is the RHS of the mul.
456 while(match(Acc, m_Add(m_Mul(m_Value(MulOp0), m_Value(MulOp1)),
457 m_Value(A)))){
Sjoerd Meijer53449da2018-07-11 12:36:25 +0000458 AddMACCandidate(Candidates, Acc, MulOp0, MulOp1, 0);
Sjoerd Meijerc89ca552018-06-28 12:55:29 +0000459 Acc = dyn_cast<Instruction>(A);
460 }
461 // Pattern 2: the accumulator is the LHS of the mul.
462 while(match(Acc, m_Add(m_Value(A),
463 m_Mul(m_Value(MulOp0), m_Value(MulOp1))))) {
Sjoerd Meijer53449da2018-07-11 12:36:25 +0000464 AddMACCandidate(Candidates, Acc, MulOp0, MulOp1, 1);
Sjoerd Meijerc89ca552018-06-28 12:55:29 +0000465 Acc = dyn_cast<Instruction>(A);
466 }
467
468 // The last mul in the chain has a slightly different pattern:
469 // the mul is the first operand
470 if (match(Acc, m_Add(m_Mul(m_Value(MulOp0), m_Value(MulOp1)), m_Value(A))))
Sjoerd Meijer53449da2018-07-11 12:36:25 +0000471 AddMACCandidate(Candidates, Acc, MulOp0, MulOp1, 0);
Sjoerd Meijerc89ca552018-06-28 12:55:29 +0000472
473 // Because we start at the bottom of the chain, and we work our way up,
474 // the muls are added in reverse program order to the list.
475 std::reverse(Candidates.begin(), Candidates.end());
476 return Candidates;
477}
478
479// Collects all instructions that are not part of the MAC chains, which is the
480// set of instructions that can potentially alias with the MAC operands.
Sjoerd Meijer53449da2018-07-11 12:36:25 +0000481static void AliasCandidates(BasicBlock *Header, Instructions &Reads,
482 Instructions &Writes) {
483 for (auto &I : *Header) {
484 if (I.mayReadFromMemory())
485 Reads.push_back(&I);
486 if (I.mayWriteToMemory())
487 Writes.push_back(&I);
488 }
Sjoerd Meijerc89ca552018-06-28 12:55:29 +0000489}
490
Sjoerd Meijer53449da2018-07-11 12:36:25 +0000491// Check whether statements in the basic block that write to memory alias with
492// the memory locations accessed by the MAC-chains.
493// TODO: we need the read statements when we accept more complicated chains.
494static bool AreAliased(AliasAnalysis *AA, Instructions &Reads,
495 Instructions &Writes, ParallelMACList &MACCandidates) {
Sjoerd Meijerc89ca552018-06-28 12:55:29 +0000496 LLVM_DEBUG(dbgs() << "Alias checks:\n");
Sjoerd Meijer53449da2018-07-11 12:36:25 +0000497 for (auto &MAC : MACCandidates) {
498 LLVM_DEBUG(dbgs() << "mul: "; MAC.Mul->dump());
499
500 // At the moment, we allow only simple chains that only consist of reads,
501 // accumulate their result with an integer add, and thus that don't write
502 // memory, and simply bail if they do.
503 if (!MAC.ReadOnly)
504 return true;
505
506 // Now for all writes in the basic block, check that they don't alias with
507 // the memory locations accessed by our MAC-chain:
508 for (auto *I : Writes) {
509 LLVM_DEBUG(dbgs() << "- "; I->dump());
Sjoerd Meijerc89ca552018-06-28 12:55:29 +0000510 assert(MAC.MemLocs.size() >= 2 && "expecting at least 2 memlocs");
511 for (auto &MemLoc : MAC.MemLocs) {
512 if (isModOrRefSet(intersectModRef(AA->getModRefInfo(I, MemLoc),
513 ModRefInfo::ModRef))) {
514 LLVM_DEBUG(dbgs() << "Yes, aliases found\n");
515 return true;
516 }
517 }
518 }
519 }
Sjoerd Meijer53449da2018-07-11 12:36:25 +0000520
Sjoerd Meijerc89ca552018-06-28 12:55:29 +0000521 LLVM_DEBUG(dbgs() << "OK: no aliases found!\n");
522 return false;
523}
524
525static bool SetMemoryLocations(ParallelMACList &Candidates) {
526 const auto Size = MemoryLocation::UnknownSize;
527 for (auto &C : Candidates) {
528 // A mul has 2 operands, and a narrow op consist of sext and a load; thus
529 // we expect at least 4 items in this operand value list.
530 if (C.VL.size() < 4) {
531 LLVM_DEBUG(dbgs() << "Operand list too short.\n");
532 return false;
533 }
534
535 for (unsigned i = 0; i < C.VL.size(); i += 4) {
536 auto *LdOp0 = dyn_cast<LoadInst>(C.VL[i]);
537 auto *LdOp1 = dyn_cast<LoadInst>(C.VL[i+2]);
538 if (!LdOp0 || !LdOp1)
539 return false;
540
541 C.MemLocs.push_back(MemoryLocation(LdOp0->getPointerOperand(), Size));
542 C.MemLocs.push_back(MemoryLocation(LdOp1->getPointerOperand(), Size));
543 }
544 }
545 return true;
546}
547
548// Loop Pass that needs to identify integer add/sub reductions of 16-bit vector
549// multiplications.
550// To use SMLAD:
551// 1) we first need to find integer add reduction PHIs,
552// 2) then from the PHI, look for this pattern:
553//
554// acc0 = phi i32 [0, %entry], [%acc1, %loop.body]
555// ld0 = load i16
556// sext0 = sext i16 %ld0 to i32
557// ld1 = load i16
558// sext1 = sext i16 %ld1 to i32
559// mul0 = mul %sext0, %sext1
560// ld2 = load i16
561// sext2 = sext i16 %ld2 to i32
562// ld3 = load i16
563// sext3 = sext i16 %ld3 to i32
564// mul1 = mul i32 %sext2, %sext3
565// add0 = add i32 %mul0, %acc0
566// acc1 = add i32 %add0, %mul1
567//
568// Which can be selected to:
569//
570// ldr.h r0
571// ldr.h r1
572// smlad r2, r0, r1, r2
573//
574// If constants are used instead of loads, these will need to be hoisted
575// out and into a register.
576//
577// If loop invariants are used instead of loads, these need to be packed
578// before the loop begins.
579//
Sjoerd Meijerc89ca552018-06-28 12:55:29 +0000580bool ARMParallelDSP::MatchSMLAD(Function &F) {
581 BasicBlock *Header = L->getHeader();
582 LLVM_DEBUG(dbgs() << "= Matching SMLAD =\n";
583 dbgs() << "Header block:\n"; Header->dump();
584 dbgs() << "Loop info:\n\n"; L->dump());
585
586 bool Changed = false;
587 ReductionList Reductions = MatchReductions(F, L, Header);
588
589 for (auto &R : Reductions) {
590 ParallelMACList MACCandidates = MatchParallelMACs(R);
591 if (!SetMemoryLocations(MACCandidates))
592 continue;
Sjoerd Meijer53449da2018-07-11 12:36:25 +0000593 R.MACCandidates = MACCandidates;
594
595 LLVM_DEBUG(dbgs() << "MAC candidates:\n";
596 for (auto &M : R.MACCandidates)
597 M.Mul->dump();
598 dbgs() << "\n";);
599 }
600
601 // Collect all instructions that may read or write memory. Our alias
602 // analysis checks bail out if any of these instructions aliases with an
603 // instruction from the MAC-chain.
604 Instructions Reads, Writes;
605 AliasCandidates(Header, Reads, Writes);
606
607 for (auto &R : Reductions) {
608 if (AreAliased(AA, Reads, Writes, R.MACCandidates))
609 return false;
610 PMACPairList PMACPairs = CreateParallelMACPairs(R.MACCandidates);
611 Changed |= InsertParallelMACs(R, PMACPairs);
Sjoerd Meijerc89ca552018-06-28 12:55:29 +0000612 }
613
614 LLVM_DEBUG(if (Changed) dbgs() << "Header block:\n"; Header->dump(););
615 return Changed;
616}
617
618static void CreateLoadIns(IRBuilder<NoFolder> &IRB, Instruction *Acc,
619 LoadInst **VecLd) {
620 const Type *AccTy = Acc->getType();
621 const unsigned AddrSpace = (*VecLd)->getPointerAddressSpace();
622
623 Value *VecPtr = IRB.CreateBitCast((*VecLd)->getPointerOperand(),
624 AccTy->getPointerTo(AddrSpace));
625 *VecLd = IRB.CreateAlignedLoad(VecPtr, (*VecLd)->getAlignment());
626}
627
628Instruction *ARMParallelDSP::CreateSMLADCall(LoadInst *VecLd0, LoadInst *VecLd1,
629 Instruction *Acc,
630 Instruction *InsertAfter) {
631 LLVM_DEBUG(dbgs() << "Create SMLAD intrinsic using:\n";
632 dbgs() << "- "; VecLd0->dump();
633 dbgs() << "- "; VecLd1->dump();
634 dbgs() << "- "; Acc->dump());
635
636 IRBuilder<NoFolder> Builder(InsertAfter->getParent(),
637 ++BasicBlock::iterator(InsertAfter));
638
639 // Replace the reduction chain with an intrinsic call
640 CreateLoadIns(Builder, Acc, &VecLd0);
641 CreateLoadIns(Builder, Acc, &VecLd1);
642 Value* Args[] = { VecLd0, VecLd1, Acc };
643 Function *SMLAD = Intrinsic::getDeclaration(M, Intrinsic::arm_smlad);
644 CallInst *Call = Builder.CreateCall(SMLAD, Args);
Sjoerd Meijerb3e06fa2018-07-06 14:47:09 +0000645 NumSMLAD++;
Sjoerd Meijerc89ca552018-06-28 12:55:29 +0000646 return Call;
647}
648
649Pass *llvm::createARMParallelDSPPass() {
650 return new ARMParallelDSP();
651}
652
653char ARMParallelDSP::ID = 0;
654
Sjoerd Meijerb3e06fa2018-07-06 14:47:09 +0000655INITIALIZE_PASS_BEGIN(ARMParallelDSP, "arm-parallel-dsp",
Simon Pilgrimc09b5e32018-06-28 18:37:16 +0000656 "Transform loops to use DSP intrinsics", false, false)
Sjoerd Meijerb3e06fa2018-07-06 14:47:09 +0000657INITIALIZE_PASS_END(ARMParallelDSP, "arm-parallel-dsp",
Simon Pilgrimc09b5e32018-06-28 18:37:16 +0000658 "Transform loops to use DSP intrinsics", false, false)