blob: 79e07cd98977a68a5e3e0f0fad96168213cfc248 [file] [log] [blame]
Nick Kledzikf60a9272012-12-12 20:46:15 +00001=====================
2YAML I/O
3=====================
4
5.. contents::
6 :local:
7
8Introduction to YAML
9====================
10
11YAML is a human readable data serialization language. The full YAML language
12spec can be read at `yaml.org
13<http://www.yaml.org/spec/1.2/spec.html#Introduction>`_. The simplest form of
14yaml is just "scalars", "mappings", and "sequences". A scalar is any number
15or string. The pound/hash symbol (#) begins a comment line. A mapping is
16a set of key-value pairs where the key ends with a colon. For example:
17
18.. code-block:: yaml
19
20 # a mapping
21 name: Tom
22 hat-size: 7
23
24A sequence is a list of items where each item starts with a leading dash ('-').
25For example:
26
27.. code-block:: yaml
28
29 # a sequence
30 - x86
31 - x86_64
32 - PowerPC
33
34You can combine mappings and sequences by indenting. For example a sequence
35of mappings in which one of the mapping values is itself a sequence:
36
37.. code-block:: yaml
38
39 # a sequence of mappings with one key's value being a sequence
40 - name: Tom
41 cpus:
42 - x86
43 - x86_64
44 - name: Bob
45 cpus:
46 - x86
47 - name: Dan
48 cpus:
49 - PowerPC
50 - x86
51
52Sometime sequences are known to be short and the one entry per line is too
53verbose, so YAML offers an alternate syntax for sequences called a "Flow
54Sequence" in which you put comma separated sequence elements into square
55brackets. The above example could then be simplified to :
56
57
58.. code-block:: yaml
59
60 # a sequence of mappings with one key's value being a flow sequence
61 - name: Tom
62 cpus: [ x86, x86_64 ]
63 - name: Bob
64 cpus: [ x86 ]
65 - name: Dan
66 cpus: [ PowerPC, x86 ]
67
68
69Introduction to YAML I/O
70========================
71
72The use of indenting makes the YAML easy for a human to read and understand,
73but having a program read and write YAML involves a lot of tedious details.
74The YAML I/O library structures and simplifies reading and writing YAML
75documents.
76
77YAML I/O assumes you have some "native" data structures which you want to be
78able to dump as YAML and recreate from YAML. The first step is to try
79writing example YAML for your data structures. You may find after looking at
80possible YAML representations that a direct mapping of your data structures
81to YAML is not very readable. Often the fields are not in the order that
82a human would find readable. Or the same information is replicated in multiple
83locations, making it hard for a human to write such YAML correctly.
84
85In relational database theory there is a design step called normalization in
86which you reorganize fields and tables. The same considerations need to
87go into the design of your YAML encoding. But, you may not want to change
Alex Rosenberg7f5af7f2013-02-18 02:44:09 +000088your existing native data structures. Therefore, when writing out YAML
Nick Kledzikf60a9272012-12-12 20:46:15 +000089there may be a normalization step, and when reading YAML there would be a
90corresponding denormalization step.
91
92YAML I/O uses a non-invasive, traits based design. YAML I/O defines some
93abstract base templates. You specialize those templates on your data types.
Alex Rosenberg7f5af7f2013-02-18 02:44:09 +000094For instance, if you have an enumerated type FooBar you could specialize
Nick Kledzikf60a9272012-12-12 20:46:15 +000095ScalarEnumerationTraits on that type and define the enumeration() method:
96
97.. code-block:: c++
98
99 using llvm::yaml::ScalarEnumerationTraits;
100 using llvm::yaml::IO;
101
102 template <>
103 struct ScalarEnumerationTraits<FooBar> {
104 static void enumeration(IO &io, FooBar &value) {
105 ...
106 }
107 };
108
109
110As with all YAML I/O template specializations, the ScalarEnumerationTraits is used for
111both reading and writing YAML. That is, the mapping between in-memory enum
Daniel Dunbarbf2e7b52013-05-20 22:39:48 +0000112values and the YAML string representation is only in one place.
Nick Kledzikf60a9272012-12-12 20:46:15 +0000113This assures that the code for writing and parsing of YAML stays in sync.
114
115To specify a YAML mappings, you define a specialization on
Alex Rosenberg7f5af7f2013-02-18 02:44:09 +0000116llvm::yaml::MappingTraits.
Nick Kledzikf60a9272012-12-12 20:46:15 +0000117If your native data structure happens to be a struct that is already normalized,
118then the specialization is simple. For example:
119
120.. code-block:: c++
121
Alex Rosenberg7f5af7f2013-02-18 02:44:09 +0000122 using llvm::yaml::MappingTraits;
Nick Kledzikf60a9272012-12-12 20:46:15 +0000123 using llvm::yaml::IO;
124
125 template <>
Alex Rosenberg7f5af7f2013-02-18 02:44:09 +0000126 struct MappingTraits<Person> {
Nick Kledzikf60a9272012-12-12 20:46:15 +0000127 static void mapping(IO &io, Person &info) {
128 io.mapRequired("name", info.name);
129 io.mapOptional("hat-size", info.hatSize);
130 }
131 };
132
133
Alex Rosenberg7f5af7f2013-02-18 02:44:09 +0000134A YAML sequence is automatically inferred if you data type has begin()/end()
Nick Kledzikf60a9272012-12-12 20:46:15 +0000135iterators and a push_back() method. Therefore any of the STL containers
136(such as std::vector<>) will automatically translate to YAML sequences.
137
138Once you have defined specializations for your data types, you can
139programmatically use YAML I/O to write a YAML document:
140
141.. code-block:: c++
142
143 using llvm::yaml::Output;
144
145 Person tom;
146 tom.name = "Tom";
147 tom.hatSize = 8;
148 Person dan;
149 dan.name = "Dan";
150 dan.hatSize = 7;
151 std::vector<Person> persons;
152 persons.push_back(tom);
153 persons.push_back(dan);
154
155 Output yout(llvm::outs());
156 yout << persons;
157
158This would write the following:
159
160.. code-block:: yaml
161
162 - name: Tom
163 hat-size: 8
164 - name: Dan
165 hat-size: 7
166
167And you can also read such YAML documents with the following code:
168
169.. code-block:: c++
170
171 using llvm::yaml::Input;
172
173 typedef std::vector<Person> PersonList;
174 std::vector<PersonList> docs;
175
176 Input yin(document.getBuffer());
177 yin >> docs;
178
179 if ( yin.error() )
180 return;
181
182 // Process read document
183 for ( PersonList &pl : docs ) {
184 for ( Person &person : pl ) {
185 cout << "name=" << person.name;
186 }
187 }
188
189One other feature of YAML is the ability to define multiple documents in a
190single file. That is why reading YAML produces a vector of your document type.
191
192
193
194Error Handling
195==============
196
197When parsing a YAML document, if the input does not match your schema (as
198expressed in your XxxTraits<> specializations). YAML I/O
199will print out an error message and your Input object's error() method will
200return true. For instance the following document:
201
202.. code-block:: yaml
203
204 - name: Tom
205 shoe-size: 12
206 - name: Dan
207 hat-size: 7
208
209Has a key (shoe-size) that is not defined in the schema. YAML I/O will
210automatically generate this error:
211
212.. code-block:: yaml
213
214 YAML:2:2: error: unknown key 'shoe-size'
215 shoe-size: 12
216 ^~~~~~~~~
217
218Similar errors are produced for other input not conforming to the schema.
219
220
221Scalars
222=======
223
224YAML scalars are just strings (i.e. not a sequence or mapping). The YAML I/O
225library provides support for translating between YAML scalars and specific
226C++ types.
227
228
229Built-in types
230--------------
231The following types have built-in support in YAML I/O:
232
233* bool
234* float
235* double
236* StringRef
237* int64_t
238* int32_t
239* int16_t
240* int8_t
241* uint64_t
242* uint32_t
243* uint16_t
244* uint8_t
245
Alex Rosenberg7f5af7f2013-02-18 02:44:09 +0000246That is, you can use those types in fields of MappingTraits or as element type
Nick Kledzikf60a9272012-12-12 20:46:15 +0000247in sequence. When reading, YAML I/O will validate that the string found
248is convertible to that type and error out if not.
249
250
251Unique types
252------------
253Given that YAML I/O is trait based, the selection of how to convert your data
254to YAML is based on the type of your data. But in C++ type matching, typedefs
255do not generate unique type names. That means if you have two typedefs of
256unsigned int, to YAML I/O both types look exactly like unsigned int. To
257facilitate make unique type names, YAML I/O provides a macro which is used
258like a typedef on built-in types, but expands to create a class with conversion
259operators to and from the base type. For example:
260
261.. code-block:: c++
262
263 LLVM_YAML_STRONG_TYPEDEF(uint32_t, MyFooFlags)
264 LLVM_YAML_STRONG_TYPEDEF(uint32_t, MyBarFlags)
265
266This generates two classes MyFooFlags and MyBarFlags which you can use in your
267native data structures instead of uint32_t. They are implicitly
268converted to and from uint32_t. The point of creating these unique types
269is that you can now specify traits on them to get different YAML conversions.
270
271Hex types
272---------
273An example use of a unique type is that YAML I/O provides fixed sized unsigned
274integers that are written with YAML I/O as hexadecimal instead of the decimal
275format used by the built-in integer types:
276
277* Hex64
278* Hex32
279* Hex16
280* Hex8
281
282You can use llvm::yaml::Hex32 instead of uint32_t and the only different will
283be that when YAML I/O writes out that type it will be formatted in hexadecimal.
284
285
286ScalarEnumerationTraits
287-----------------------
288YAML I/O supports translating between in-memory enumerations and a set of string
289values in YAML documents. This is done by specializing ScalarEnumerationTraits<>
290on your enumeration type and define a enumeration() method.
291For instance, suppose you had an enumeration of CPUs and a struct with it as
292a field:
293
294.. code-block:: c++
295
296 enum CPUs {
297 cpu_x86_64 = 5,
298 cpu_x86 = 7,
299 cpu_PowerPC = 8
300 };
301
302 struct Info {
303 CPUs cpu;
304 uint32_t flags;
305 };
306
307To support reading and writing of this enumeration, you can define a
308ScalarEnumerationTraits specialization on CPUs, which can then be used
309as a field type:
310
311.. code-block:: c++
312
313 using llvm::yaml::ScalarEnumerationTraits;
Alex Rosenberg7f5af7f2013-02-18 02:44:09 +0000314 using llvm::yaml::MappingTraits;
Nick Kledzikf60a9272012-12-12 20:46:15 +0000315 using llvm::yaml::IO;
316
317 template <>
318 struct ScalarEnumerationTraits<CPUs> {
319 static void enumeration(IO &io, CPUs &value) {
320 io.enumCase(value, "x86_64", cpu_x86_64);
321 io.enumCase(value, "x86", cpu_x86);
322 io.enumCase(value, "PowerPC", cpu_PowerPC);
323 }
324 };
325
326 template <>
Alex Rosenberg7f5af7f2013-02-18 02:44:09 +0000327 struct MappingTraits<Info> {
Nick Kledzikf60a9272012-12-12 20:46:15 +0000328 static void mapping(IO &io, Info &info) {
329 io.mapRequired("cpu", info.cpu);
330 io.mapOptional("flags", info.flags, 0);
331 }
332 };
333
334When reading YAML, if the string found does not match any of the the strings
335specified by enumCase() methods, an error is automatically generated.
336When writing YAML, if the value being written does not match any of the values
337specified by the enumCase() methods, a runtime assertion is triggered.
338
339
340BitValue
341--------
342Another common data structure in C++ is a field where each bit has a unique
343meaning. This is often used in a "flags" field. YAML I/O has support for
344converting such fields to a flow sequence. For instance suppose you
345had the following bit flags defined:
346
347.. code-block:: c++
348
349 enum {
350 flagsPointy = 1
351 flagsHollow = 2
352 flagsFlat = 4
353 flagsRound = 8
354 };
355
Sean Silva0d65a762013-06-04 23:36:41 +0000356 LLVM_YAML_STRONG_TYPEDEF(uint32_t, MyFlags)
Nick Kledzikf60a9272012-12-12 20:46:15 +0000357
358To support reading and writing of MyFlags, you specialize ScalarBitSetTraits<>
359on MyFlags and provide the bit values and their names.
360
361.. code-block:: c++
362
363 using llvm::yaml::ScalarBitSetTraits;
Alex Rosenberg7f5af7f2013-02-18 02:44:09 +0000364 using llvm::yaml::MappingTraits;
Nick Kledzikf60a9272012-12-12 20:46:15 +0000365 using llvm::yaml::IO;
366
367 template <>
368 struct ScalarBitSetTraits<MyFlags> {
369 static void bitset(IO &io, MyFlags &value) {
370 io.bitSetCase(value, "hollow", flagHollow);
371 io.bitSetCase(value, "flat", flagFlat);
372 io.bitSetCase(value, "round", flagRound);
373 io.bitSetCase(value, "pointy", flagPointy);
374 }
375 };
376
377 struct Info {
378 StringRef name;
379 MyFlags flags;
380 };
381
382 template <>
Alex Rosenberg7f5af7f2013-02-18 02:44:09 +0000383 struct MappingTraits<Info> {
Nick Kledzikf60a9272012-12-12 20:46:15 +0000384 static void mapping(IO &io, Info& info) {
385 io.mapRequired("name", info.name);
386 io.mapRequired("flags", info.flags);
387 }
388 };
389
390With the above, YAML I/O (when writing) will test mask each value in the
391bitset trait against the flags field, and each that matches will
392cause the corresponding string to be added to the flow sequence. The opposite
393is done when reading and any unknown string values will result in a error. With
394the above schema, a same valid YAML document is:
395
396.. code-block:: yaml
397
398 name: Tom
399 flags: [ pointy, flat ]
400
401
402Custom Scalar
403-------------
404Sometimes for readability a scalar needs to be formatted in a custom way. For
405instance your internal data structure may use a integer for time (seconds since
406some epoch), but in YAML it would be much nicer to express that integer in
407some time format (e.g. 4-May-2012 10:30pm). YAML I/O has a way to support
408custom formatting and parsing of scalar types by specializing ScalarTraits<> on
409your data type. When writing, YAML I/O will provide the native type and
410your specialization must create a temporary llvm::StringRef. When reading,
Daniel Dunbar06b9f9e2013-08-16 23:30:19 +0000411YAML I/O will provide an llvm::StringRef of scalar and your specialization
Nick Kledzikf60a9272012-12-12 20:46:15 +0000412must convert that to your native data type. An outline of a custom scalar type
413looks like:
414
415.. code-block:: c++
416
417 using llvm::yaml::ScalarTraits;
418 using llvm::yaml::IO;
419
420 template <>
421 struct ScalarTraits<MyCustomType> {
422 static void output(const T &value, llvm::raw_ostream &out) {
423 out << value; // do custom formatting here
424 }
425 static StringRef input(StringRef scalar, T &value) {
426 // do custom parsing here. Return the empty string on success,
427 // or an error message on failure.
428 return StringRef();
429 }
430 };
431
432
433Mappings
434========
435
436To be translated to or from a YAML mapping for your type T you must specialize
Alex Rosenberg7f5af7f2013-02-18 02:44:09 +0000437llvm::yaml::MappingTraits on T and implement the "void mapping(IO &io, T&)"
Nick Kledzikf60a9272012-12-12 20:46:15 +0000438method. If your native data structures use pointers to a class everywhere,
439you can specialize on the class pointer. Examples:
440
441.. code-block:: c++
442
Alex Rosenberg7f5af7f2013-02-18 02:44:09 +0000443 using llvm::yaml::MappingTraits;
Nick Kledzikf60a9272012-12-12 20:46:15 +0000444 using llvm::yaml::IO;
445
446 // Example of struct Foo which is used by value
447 template <>
Alex Rosenberg7f5af7f2013-02-18 02:44:09 +0000448 struct MappingTraits<Foo> {
Nick Kledzikf60a9272012-12-12 20:46:15 +0000449 static void mapping(IO &io, Foo &foo) {
450 io.mapOptional("size", foo.size);
451 ...
452 }
453 };
454
455 // Example of struct Bar which is natively always a pointer
456 template <>
Alex Rosenberg7f5af7f2013-02-18 02:44:09 +0000457 struct MappingTraits<Bar*> {
Nick Kledzikf60a9272012-12-12 20:46:15 +0000458 static void mapping(IO &io, Bar *&bar) {
459 io.mapOptional("size", bar->size);
460 ...
461 }
462 };
463
464
465No Normalization
466----------------
467
468The mapping() method is responsible, if needed, for normalizing and
469denormalizing. In a simple case where the native data structure requires no
470normalization, the mapping method just uses mapOptional() or mapRequired() to
471bind the struct's fields to YAML key names. For example:
472
473.. code-block:: c++
474
Alex Rosenberg7f5af7f2013-02-18 02:44:09 +0000475 using llvm::yaml::MappingTraits;
Nick Kledzikf60a9272012-12-12 20:46:15 +0000476 using llvm::yaml::IO;
477
478 template <>
Alex Rosenberg7f5af7f2013-02-18 02:44:09 +0000479 struct MappingTraits<Person> {
Nick Kledzikf60a9272012-12-12 20:46:15 +0000480 static void mapping(IO &io, Person &info) {
481 io.mapRequired("name", info.name);
482 io.mapOptional("hat-size", info.hatSize);
483 }
484 };
485
486
487Normalization
488----------------
489
490When [de]normalization is required, the mapping() method needs a way to access
491normalized values as fields. To help with this, there is
492a template MappingNormalization<> which you can then use to automatically
493do the normalization and denormalization. The template is used to create
494a local variable in your mapping() method which contains the normalized keys.
495
496Suppose you have native data type
497Polar which specifies a position in polar coordinates (distance, angle):
498
499.. code-block:: c++
500
501 struct Polar {
502 float distance;
503 float angle;
504 };
505
506but you've decided the normalized YAML for should be in x,y coordinates. That
507is, you want the yaml to look like:
508
509.. code-block:: yaml
510
511 x: 10.3
512 y: -4.7
513
Alex Rosenberg7f5af7f2013-02-18 02:44:09 +0000514You can support this by defining a MappingTraits that normalizes the polar
Nick Kledzikf60a9272012-12-12 20:46:15 +0000515coordinates to x,y coordinates when writing YAML and denormalizes x,y
Alex Rosenberg7f5af7f2013-02-18 02:44:09 +0000516coordinates into polar when reading YAML.
Nick Kledzikf60a9272012-12-12 20:46:15 +0000517
518.. code-block:: c++
519
Alex Rosenberg7f5af7f2013-02-18 02:44:09 +0000520 using llvm::yaml::MappingTraits;
Nick Kledzikf60a9272012-12-12 20:46:15 +0000521 using llvm::yaml::IO;
522
523 template <>
Alex Rosenberg7f5af7f2013-02-18 02:44:09 +0000524 struct MappingTraits<Polar> {
Nick Kledzikf60a9272012-12-12 20:46:15 +0000525
526 class NormalizedPolar {
527 public:
528 NormalizedPolar(IO &io)
529 : x(0.0), y(0.0) {
530 }
531 NormalizedPolar(IO &, Polar &polar)
532 : x(polar.distance * cos(polar.angle)),
533 y(polar.distance * sin(polar.angle)) {
534 }
535 Polar denormalize(IO &) {
Daniel Dunbarbf2e7b52013-05-20 22:39:48 +0000536 return Polar(sqrt(x*x+y*y), arctan(x,y));
Nick Kledzikf60a9272012-12-12 20:46:15 +0000537 }
538
539 float x;
540 float y;
541 };
542
543 static void mapping(IO &io, Polar &polar) {
544 MappingNormalization<NormalizedPolar, Polar> keys(io, polar);
545
546 io.mapRequired("x", keys->x);
547 io.mapRequired("y", keys->y);
548 }
549 };
550
551When writing YAML, the local variable "keys" will be a stack allocated
Rui Ueyama0ad114c2013-09-11 05:22:01 +0000552instance of NormalizedPolar, constructed from the supplied polar object which
Nick Kledzikf60a9272012-12-12 20:46:15 +0000553initializes it x and y fields. The mapRequired() methods then write out the x
554and y values as key/value pairs.
555
556When reading YAML, the local variable "keys" will be a stack allocated instance
557of NormalizedPolar, constructed by the empty constructor. The mapRequired
558methods will find the matching key in the YAML document and fill in the x and y
559fields of the NormalizedPolar object keys. At the end of the mapping() method
560when the local keys variable goes out of scope, the denormalize() method will
561automatically be called to convert the read values back to polar coordinates,
562and then assigned back to the second parameter to mapping().
563
564In some cases, the normalized class may be a subclass of the native type and
565could be returned by the denormalize() method, except that the temporary
566normalized instance is stack allocated. In these cases, the utility template
567MappingNormalizationHeap<> can be used instead. It just like
568MappingNormalization<> except that it heap allocates the normalized object
Alex Rosenberg7f5af7f2013-02-18 02:44:09 +0000569when reading YAML. It never destroys the normalized object. The denormalize()
Nick Kledzikf60a9272012-12-12 20:46:15 +0000570method can this return "this".
571
572
573Default values
574--------------
575Within a mapping() method, calls to io.mapRequired() mean that that key is
576required to exist when parsing YAML documents, otherwise YAML I/O will issue an
577error.
578
579On the other hand, keys registered with io.mapOptional() are allowed to not
580exist in the YAML document being read. So what value is put in the field
581for those optional keys?
582There are two steps to how those optional fields are filled in. First, the
583second parameter to the mapping() method is a reference to a native class. That
584native class must have a default constructor. Whatever value the default
585constructor initially sets for an optional field will be that field's value.
586Second, the mapOptional() method has an optional third parameter. If provided
587it is the value that mapOptional() should set that field to if the YAML document
588does not have that key.
589
590There is one important difference between those two ways (default constructor
591and third parameter to mapOptional). When YAML I/O generates a YAML document,
592if the mapOptional() third parameter is used, if the actual value being written
593is the same as (using ==) the default value, then that key/value is not written.
594
595
596Order of Keys
597--------------
598
599When writing out a YAML document, the keys are written in the order that the
600calls to mapRequired()/mapOptional() are made in the mapping() method. This
601gives you a chance to write the fields in an order that a human reader of
602the YAML document would find natural. This may be different that the order
603of the fields in the native class.
604
605When reading in a YAML document, the keys in the document can be in any order,
606but they are processed in the order that the calls to mapRequired()/mapOptional()
607are made in the mapping() method. That enables some interesting
608functionality. For instance, if the first field bound is the cpu and the second
609field bound is flags, and the flags are cpu specific, you can programmatically
610switch how the flags are converted to and from YAML based on the cpu.
611This works for both reading and writing. For example:
612
613.. code-block:: c++
614
Alex Rosenberg7f5af7f2013-02-18 02:44:09 +0000615 using llvm::yaml::MappingTraits;
Nick Kledzikf60a9272012-12-12 20:46:15 +0000616 using llvm::yaml::IO;
617
618 struct Info {
619 CPUs cpu;
620 uint32_t flags;
621 };
622
623 template <>
Alex Rosenberg7f5af7f2013-02-18 02:44:09 +0000624 struct MappingTraits<Info> {
Nick Kledzikf60a9272012-12-12 20:46:15 +0000625 static void mapping(IO &io, Info &info) {
626 io.mapRequired("cpu", info.cpu);
627 // flags must come after cpu for this to work when reading yaml
628 if ( info.cpu == cpu_x86_64 )
629 io.mapRequired("flags", *(My86_64Flags*)info.flags);
630 else
631 io.mapRequired("flags", *(My86Flags*)info.flags);
632 }
633 };
634
635
636Sequence
637========
638
639To be translated to or from a YAML sequence for your type T you must specialize
640llvm::yaml::SequenceTraits on T and implement two methods:
Dmitri Gribenkoe8131122013-01-19 20:34:20 +0000641``size_t size(IO &io, T&)`` and
642``T::value_type& element(IO &io, T&, size_t indx)``. For example:
Nick Kledzikf60a9272012-12-12 20:46:15 +0000643
644.. code-block:: c++
645
646 template <>
647 struct SequenceTraits<MySeq> {
648 static size_t size(IO &io, MySeq &list) { ... }
Rui Ueyama539b1df2013-09-12 01:43:21 +0000649 static MySeqEl &element(IO &io, MySeq &list, size_t index) { ... }
Nick Kledzikf60a9272012-12-12 20:46:15 +0000650 };
651
652The size() method returns how many elements are currently in your sequence.
653The element() method returns a reference to the i'th element in the sequence.
654When parsing YAML, the element() method may be called with an index one bigger
655than the current size. Your element() method should allocate space for one
656more element (using default constructor if element is a C++ object) and returns
657a reference to that new allocated space.
658
659
660Flow Sequence
661-------------
662A YAML "flow sequence" is a sequence that when written to YAML it uses the
663inline notation (e.g [ foo, bar ] ). To specify that a sequence type should
664be written in YAML as a flow sequence, your SequenceTraits specialization should
665add "static const bool flow = true;". For instance:
666
667.. code-block:: c++
668
669 template <>
670 struct SequenceTraits<MyList> {
671 static size_t size(IO &io, MyList &list) { ... }
Rui Ueyama539b1df2013-09-12 01:43:21 +0000672 static MyListEl &element(IO &io, MyList &list, size_t index) { ... }
Nick Kledzikf60a9272012-12-12 20:46:15 +0000673
674 // The existence of this member causes YAML I/O to use a flow sequence
675 static const bool flow = true;
676 };
677
678With the above, if you used MyList as the data type in your native data
Alex Rosenberg7f5af7f2013-02-18 02:44:09 +0000679structures, then then when converted to YAML, a flow sequence of integers
Nick Kledzikf60a9272012-12-12 20:46:15 +0000680will be used (e.g. [ 10, -3, 4 ]).
681
682
683Utility Macros
684--------------
Alex Rosenberg7f5af7f2013-02-18 02:44:09 +0000685Since a common source of sequences is std::vector<>, YAML I/O provides macros:
Nick Kledzikf60a9272012-12-12 20:46:15 +0000686LLVM_YAML_IS_SEQUENCE_VECTOR() and LLVM_YAML_IS_FLOW_SEQUENCE_VECTOR() which
687can be used to easily specify SequenceTraits<> on a std::vector type. YAML
688I/O does not partial specialize SequenceTraits on std::vector<> because that
689would force all vectors to be sequences. An example use of the macros:
690
691.. code-block:: c++
692
693 std::vector<MyType1>;
694 std::vector<MyType2>;
695 LLVM_YAML_IS_SEQUENCE_VECTOR(MyType1)
696 LLVM_YAML_IS_FLOW_SEQUENCE_VECTOR(MyType2)
697
698
699
700Document List
701=============
702
703YAML allows you to define multiple "documents" in a single YAML file. Each
704new document starts with a left aligned "---" token. The end of all documents
705is denoted with a left aligned "..." token. Many users of YAML will never
706have need for multiple documents. The top level node in their YAML schema
707will be a mapping or sequence. For those cases, the following is not needed.
708But for cases where you do want multiple documents, you can specify a
709trait for you document list type. The trait has the same methods as
710SequenceTraits but is named DocumentListTraits. For example:
711
712.. code-block:: c++
713
714 template <>
715 struct DocumentListTraits<MyDocList> {
716 static size_t size(IO &io, MyDocList &list) { ... }
717 static MyDocType element(IO &io, MyDocList &list, size_t index) { ... }
718 };
719
720
721User Context Data
722=================
723When an llvm::yaml::Input or llvm::yaml::Output object is created their
724constructors take an optional "context" parameter. This is a pointer to
725whatever state information you might need.
726
727For instance, in a previous example we showed how the conversion type for a
728flags field could be determined at runtime based on the value of another field
729in the mapping. But what if an inner mapping needs to know some field value
730of an outer mapping? That is where the "context" parameter comes in. You
731can set values in the context in the outer map's mapping() method and
732retrieve those values in the inner map's mapping() method.
733
734The context value is just a void*. All your traits which use the context
735and operate on your native data types, need to agree what the context value
736actually is. It could be a pointer to an object or struct which your various
737traits use to shared context sensitive information.
738
739
740Output
741======
742
743The llvm::yaml::Output class is used to generate a YAML document from your
744in-memory data structures, using traits defined on your data types.
745To instantiate an Output object you need an llvm::raw_ostream, and optionally
746a context pointer:
747
748.. code-block:: c++
749
750 class Output : public IO {
751 public:
752 Output(llvm::raw_ostream &, void *context=NULL);
753
754Once you have an Output object, you can use the C++ stream operator on it
755to write your native data as YAML. One thing to recall is that a YAML file
756can contain multiple "documents". If the top level data structure you are
757streaming as YAML is a mapping, scalar, or sequence, then Output assumes you
758are generating one document and wraps the mapping output
759with "``---``" and trailing "``...``".
760
761.. code-block:: c++
762
763 using llvm::yaml::Output;
764
765 void dumpMyMapDoc(const MyMapType &info) {
766 Output yout(llvm::outs());
767 yout << info;
768 }
769
770The above could produce output like:
771
772.. code-block:: yaml
773
774 ---
775 name: Tom
776 hat-size: 7
777 ...
778
779On the other hand, if the top level data structure you are streaming as YAML
780has a DocumentListTraits specialization, then Output walks through each element
781of your DocumentList and generates a "---" before the start of each element
782and ends with a "...".
783
784.. code-block:: c++
785
786 using llvm::yaml::Output;
787
788 void dumpMyMapDoc(const MyDocListType &docList) {
789 Output yout(llvm::outs());
790 yout << docList;
791 }
792
793The above could produce output like:
794
795.. code-block:: yaml
796
797 ---
798 name: Tom
799 hat-size: 7
800 ---
801 name: Tom
802 shoe-size: 11
803 ...
804
805Input
806=====
807
808The llvm::yaml::Input class is used to parse YAML document(s) into your native
809data structures. To instantiate an Input
810object you need a StringRef to the entire YAML file, and optionally a context
811pointer:
812
813.. code-block:: c++
814
815 class Input : public IO {
816 public:
817 Input(StringRef inputContent, void *context=NULL);
818
819Once you have an Input object, you can use the C++ stream operator to read
820the document(s). If you expect there might be multiple YAML documents in
821one file, you'll need to specialize DocumentListTraits on a list of your
822document type and stream in that document list type. Otherwise you can
823just stream in the document type. Also, you can check if there was
824any syntax errors in the YAML be calling the error() method on the Input
825object. For example:
826
827.. code-block:: c++
828
829 // Reading a single document
830 using llvm::yaml::Input;
831
832 Input yin(mb.getBuffer());
833
834 // Parse the YAML file
835 MyDocType theDoc;
836 yin >> theDoc;
837
838 // Check for error
839 if ( yin.error() )
840 return;
841
842
843.. code-block:: c++
844
845 // Reading multiple documents in one file
846 using llvm::yaml::Input;
847
848 LLVM_YAML_IS_DOCUMENT_LIST_VECTOR(std::vector<MyDocType>)
849
850 Input yin(mb.getBuffer());
851
852 // Parse the YAML file
853 std::vector<MyDocType> theDocList;
854 yin >> theDocList;
855
856 // Check for error
857 if ( yin.error() )
858 return;
859
860