| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1 | //====- X86SpeculativeLoadHardening.cpp - A Spectre v1 mitigation ---------===// | 
|  | 2 | // | 
|  | 3 | //                     The LLVM Compiler Infrastructure | 
|  | 4 | // | 
|  | 5 | // This file is distributed under the University of Illinois Open Source | 
|  | 6 | // License. See LICENSE.TXT for details. | 
|  | 7 | // | 
|  | 8 | //===----------------------------------------------------------------------===// | 
|  | 9 | /// \file | 
|  | 10 | /// | 
|  | 11 | /// Provide a pass which mitigates speculative execution attacks which operate | 
|  | 12 | /// by speculating incorrectly past some predicate (a type check, bounds check, | 
|  | 13 | /// or other condition) to reach a load with invalid inputs and leak the data | 
|  | 14 | /// accessed by that load using a side channel out of the speculative domain. | 
|  | 15 | /// | 
|  | 16 | /// For details on the attacks, see the first variant in both the Project Zero | 
|  | 17 | /// writeup and the Spectre paper: | 
|  | 18 | /// https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html | 
|  | 19 | /// https://spectreattack.com/spectre.pdf | 
|  | 20 | /// | 
|  | 21 | //===----------------------------------------------------------------------===// | 
|  | 22 |  | 
|  | 23 | #include "X86.h" | 
|  | 24 | #include "X86InstrBuilder.h" | 
|  | 25 | #include "X86InstrInfo.h" | 
|  | 26 | #include "X86Subtarget.h" | 
|  | 27 | #include "llvm/ADT/ArrayRef.h" | 
|  | 28 | #include "llvm/ADT/DenseMap.h" | 
| Chandler Carruth | 4b0028a | 2018-07-19 11:13:58 +0000 | [diff] [blame] | 29 | #include "llvm/ADT/Optional.h" | 
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 30 | #include "llvm/ADT/STLExtras.h" | 
|  | 31 | #include "llvm/ADT/ScopeExit.h" | 
|  | 32 | #include "llvm/ADT/SmallPtrSet.h" | 
|  | 33 | #include "llvm/ADT/SmallSet.h" | 
|  | 34 | #include "llvm/ADT/SmallVector.h" | 
|  | 35 | #include "llvm/ADT/SparseBitVector.h" | 
|  | 36 | #include "llvm/ADT/Statistic.h" | 
|  | 37 | #include "llvm/CodeGen/MachineBasicBlock.h" | 
|  | 38 | #include "llvm/CodeGen/MachineConstantPool.h" | 
|  | 39 | #include "llvm/CodeGen/MachineFunction.h" | 
|  | 40 | #include "llvm/CodeGen/MachineFunctionPass.h" | 
|  | 41 | #include "llvm/CodeGen/MachineInstr.h" | 
|  | 42 | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | 43 | #include "llvm/CodeGen/MachineModuleInfo.h" | 
|  | 44 | #include "llvm/CodeGen/MachineOperand.h" | 
|  | 45 | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | 46 | #include "llvm/CodeGen/MachineSSAUpdater.h" | 
|  | 47 | #include "llvm/CodeGen/TargetInstrInfo.h" | 
|  | 48 | #include "llvm/CodeGen/TargetRegisterInfo.h" | 
|  | 49 | #include "llvm/CodeGen/TargetSchedule.h" | 
|  | 50 | #include "llvm/CodeGen/TargetSubtargetInfo.h" | 
|  | 51 | #include "llvm/IR/DebugLoc.h" | 
|  | 52 | #include "llvm/MC/MCSchedule.h" | 
|  | 53 | #include "llvm/Pass.h" | 
|  | 54 | #include "llvm/Support/CommandLine.h" | 
|  | 55 | #include "llvm/Support/Debug.h" | 
|  | 56 | #include "llvm/Support/raw_ostream.h" | 
|  | 57 | #include <algorithm> | 
|  | 58 | #include <cassert> | 
|  | 59 | #include <iterator> | 
|  | 60 | #include <utility> | 
|  | 61 |  | 
|  | 62 | using namespace llvm; | 
|  | 63 |  | 
|  | 64 | #define PASS_KEY "x86-speculative-load-hardening" | 
|  | 65 | #define DEBUG_TYPE PASS_KEY | 
|  | 66 |  | 
|  | 67 | STATISTIC(NumCondBranchesTraced, "Number of conditional branches traced"); | 
|  | 68 | STATISTIC(NumBranchesUntraced, "Number of branches unable to trace"); | 
|  | 69 | STATISTIC(NumAddrRegsHardened, | 
|  | 70 | "Number of address mode used registers hardaned"); | 
|  | 71 | STATISTIC(NumPostLoadRegsHardened, | 
|  | 72 | "Number of post-load register values hardened"); | 
|  | 73 | STATISTIC(NumInstsInserted, "Number of instructions inserted"); | 
|  | 74 | STATISTIC(NumLFENCEsInserted, "Number of lfence instructions inserted"); | 
|  | 75 |  | 
|  | 76 | static cl::opt<bool> HardenEdgesWithLFENCE( | 
|  | 77 | PASS_KEY "-lfence", | 
|  | 78 | cl::desc( | 
|  | 79 | "Use LFENCE along each conditional edge to harden against speculative " | 
|  | 80 | "loads rather than conditional movs and poisoned pointers."), | 
|  | 81 | cl::init(false), cl::Hidden); | 
|  | 82 |  | 
|  | 83 | static cl::opt<bool> EnablePostLoadHardening( | 
|  | 84 | PASS_KEY "-post-load", | 
|  | 85 | cl::desc("Harden the value loaded *after* it is loaded by " | 
|  | 86 | "flushing the loaded bits to 1. This is hard to do " | 
|  | 87 | "in general but can be done easily for GPRs."), | 
|  | 88 | cl::init(true), cl::Hidden); | 
|  | 89 |  | 
|  | 90 | static cl::opt<bool> FenceCallAndRet( | 
|  | 91 | PASS_KEY "-fence-call-and-ret", | 
|  | 92 | cl::desc("Use a full speculation fence to harden both call and ret edges " | 
|  | 93 | "rather than a lighter weight mitigation."), | 
|  | 94 | cl::init(false), cl::Hidden); | 
|  | 95 |  | 
|  | 96 | static cl::opt<bool> HardenInterprocedurally( | 
|  | 97 | PASS_KEY "-ip", | 
|  | 98 | cl::desc("Harden interprocedurally by passing our state in and out of " | 
|  | 99 | "functions in the high bits of the stack pointer."), | 
|  | 100 | cl::init(true), cl::Hidden); | 
|  | 101 |  | 
|  | 102 | static cl::opt<bool> | 
|  | 103 | HardenLoads(PASS_KEY "-loads", | 
|  | 104 | cl::desc("Sanitize loads from memory. When disable, no " | 
|  | 105 | "significant security is provided."), | 
|  | 106 | cl::init(true), cl::Hidden); | 
|  | 107 |  | 
|  | 108 | namespace llvm { | 
|  | 109 |  | 
|  | 110 | void initializeX86SpeculativeLoadHardeningPassPass(PassRegistry &); | 
|  | 111 |  | 
|  | 112 | } // end namespace llvm | 
|  | 113 |  | 
|  | 114 | namespace { | 
|  | 115 |  | 
|  | 116 | class X86SpeculativeLoadHardeningPass : public MachineFunctionPass { | 
|  | 117 | public: | 
|  | 118 | X86SpeculativeLoadHardeningPass() : MachineFunctionPass(ID) { | 
|  | 119 | initializeX86SpeculativeLoadHardeningPassPass( | 
|  | 120 | *PassRegistry::getPassRegistry()); | 
|  | 121 | } | 
|  | 122 |  | 
|  | 123 | StringRef getPassName() const override { | 
|  | 124 | return "X86 speculative load hardening"; | 
|  | 125 | } | 
|  | 126 | bool runOnMachineFunction(MachineFunction &MF) override; | 
|  | 127 | void getAnalysisUsage(AnalysisUsage &AU) const override; | 
|  | 128 |  | 
|  | 129 | /// Pass identification, replacement for typeid. | 
|  | 130 | static char ID; | 
|  | 131 |  | 
|  | 132 | private: | 
|  | 133 | /// The information about a block's conditional terminators needed to trace | 
|  | 134 | /// our predicate state through the exiting edges. | 
|  | 135 | struct BlockCondInfo { | 
|  | 136 | MachineBasicBlock *MBB; | 
|  | 137 |  | 
|  | 138 | // We mostly have one conditional branch, and in extremely rare cases have | 
|  | 139 | // two. Three and more are so rare as to be unimportant for compile time. | 
|  | 140 | SmallVector<MachineInstr *, 2> CondBrs; | 
|  | 141 |  | 
|  | 142 | MachineInstr *UncondBr; | 
|  | 143 | }; | 
|  | 144 |  | 
| Chandler Carruth | 4b0028a | 2018-07-19 11:13:58 +0000 | [diff] [blame] | 145 | /// Manages the predicate state traced through the program. | 
|  | 146 | struct PredState { | 
|  | 147 | unsigned InitialReg; | 
|  | 148 | unsigned PoisonReg; | 
|  | 149 |  | 
|  | 150 | const TargetRegisterClass *RC; | 
|  | 151 | MachineSSAUpdater SSA; | 
|  | 152 |  | 
|  | 153 | PredState(MachineFunction &MF, const TargetRegisterClass *RC) | 
|  | 154 | : RC(RC), SSA(MF) {} | 
|  | 155 | }; | 
|  | 156 |  | 
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 157 | const X86Subtarget *Subtarget; | 
|  | 158 | MachineRegisterInfo *MRI; | 
|  | 159 | const X86InstrInfo *TII; | 
|  | 160 | const TargetRegisterInfo *TRI; | 
| Chandler Carruth | 4b0028a | 2018-07-19 11:13:58 +0000 | [diff] [blame] | 161 |  | 
|  | 162 | Optional<PredState> PS; | 
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 163 |  | 
|  | 164 | void hardenEdgesWithLFENCE(MachineFunction &MF); | 
|  | 165 |  | 
|  | 166 | SmallVector<BlockCondInfo, 16> collectBlockCondInfo(MachineFunction &MF); | 
|  | 167 |  | 
| Chandler Carruth | 4b0028a | 2018-07-19 11:13:58 +0000 | [diff] [blame] | 168 | SmallVector<MachineInstr *, 16> | 
|  | 169 | tracePredStateThroughCFG(MachineFunction &MF, ArrayRef<BlockCondInfo> Infos); | 
|  | 170 |  | 
| Chandler Carruth | 0477b40 | 2018-07-23 04:01:34 +0000 | [diff] [blame] | 171 | void hardenAllLoads(MachineFunction &MF); | 
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 172 |  | 
|  | 173 | unsigned saveEFLAGS(MachineBasicBlock &MBB, | 
|  | 174 | MachineBasicBlock::iterator InsertPt, DebugLoc Loc); | 
|  | 175 | void restoreEFLAGS(MachineBasicBlock &MBB, | 
|  | 176 | MachineBasicBlock::iterator InsertPt, DebugLoc Loc, | 
|  | 177 | unsigned OFReg); | 
|  | 178 |  | 
|  | 179 | void mergePredStateIntoSP(MachineBasicBlock &MBB, | 
|  | 180 | MachineBasicBlock::iterator InsertPt, DebugLoc Loc, | 
|  | 181 | unsigned PredStateReg); | 
|  | 182 | unsigned extractPredStateFromSP(MachineBasicBlock &MBB, | 
|  | 183 | MachineBasicBlock::iterator InsertPt, | 
|  | 184 | DebugLoc Loc); | 
|  | 185 |  | 
|  | 186 | void | 
|  | 187 | hardenLoadAddr(MachineInstr &MI, MachineOperand &BaseMO, | 
| Chandler Carruth | 4b0028a | 2018-07-19 11:13:58 +0000 | [diff] [blame] | 188 | MachineOperand &IndexMO, | 
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 189 | SmallDenseMap<unsigned, unsigned, 32> &AddrRegToHardenedReg); | 
|  | 190 | MachineInstr * | 
|  | 191 | sinkPostLoadHardenedInst(MachineInstr &MI, | 
| Chandler Carruth | fa065aa | 2018-07-16 14:58:32 +0000 | [diff] [blame] | 192 | SmallPtrSetImpl<MachineInstr *> &HardenedInstrs); | 
|  | 193 | bool canHardenRegister(unsigned Reg); | 
| Chandler Carruth | 4b0028a | 2018-07-19 11:13:58 +0000 | [diff] [blame] | 194 | void hardenPostLoad(MachineInstr &MI); | 
| Chandler Carruth | a3a03ac | 2018-07-19 23:46:24 +0000 | [diff] [blame] | 195 | void hardenReturnInstr(MachineInstr &MI); | 
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 196 | }; | 
|  | 197 |  | 
|  | 198 | } // end anonymous namespace | 
|  | 199 |  | 
|  | 200 | char X86SpeculativeLoadHardeningPass::ID = 0; | 
|  | 201 |  | 
|  | 202 | void X86SpeculativeLoadHardeningPass::getAnalysisUsage( | 
|  | 203 | AnalysisUsage &AU) const { | 
|  | 204 | MachineFunctionPass::getAnalysisUsage(AU); | 
|  | 205 | } | 
|  | 206 |  | 
|  | 207 | static MachineBasicBlock &splitEdge(MachineBasicBlock &MBB, | 
|  | 208 | MachineBasicBlock &Succ, int SuccCount, | 
|  | 209 | MachineInstr *Br, MachineInstr *&UncondBr, | 
|  | 210 | const X86InstrInfo &TII) { | 
|  | 211 | assert(!Succ.isEHPad() && "Shouldn't get edges to EH pads!"); | 
|  | 212 |  | 
|  | 213 | MachineFunction &MF = *MBB.getParent(); | 
|  | 214 |  | 
|  | 215 | MachineBasicBlock &NewMBB = *MF.CreateMachineBasicBlock(); | 
|  | 216 |  | 
|  | 217 | // We have to insert the new block immediately after the current one as we | 
|  | 218 | // don't know what layout-successor relationships the successor has and we | 
|  | 219 | // may not be able to (and generally don't want to) try to fix those up. | 
|  | 220 | MF.insert(std::next(MachineFunction::iterator(&MBB)), &NewMBB); | 
|  | 221 |  | 
|  | 222 | // Update the branch instruction if necessary. | 
|  | 223 | if (Br) { | 
|  | 224 | assert(Br->getOperand(0).getMBB() == &Succ && | 
|  | 225 | "Didn't start with the right target!"); | 
|  | 226 | Br->getOperand(0).setMBB(&NewMBB); | 
|  | 227 |  | 
|  | 228 | // If this successor was reached through a branch rather than fallthrough, | 
|  | 229 | // we might have *broken* fallthrough and so need to inject a new | 
|  | 230 | // unconditional branch. | 
|  | 231 | if (!UncondBr) { | 
|  | 232 | MachineBasicBlock &OldLayoutSucc = | 
|  | 233 | *std::next(MachineFunction::iterator(&NewMBB)); | 
|  | 234 | assert(MBB.isSuccessor(&OldLayoutSucc) && | 
|  | 235 | "Without an unconditional branch, the old layout successor should " | 
|  | 236 | "be an actual successor!"); | 
|  | 237 | auto BrBuilder = | 
|  | 238 | BuildMI(&MBB, DebugLoc(), TII.get(X86::JMP_1)).addMBB(&OldLayoutSucc); | 
|  | 239 | // Update the unconditional branch now that we've added one. | 
|  | 240 | UncondBr = &*BrBuilder; | 
|  | 241 | } | 
|  | 242 |  | 
|  | 243 | // Insert unconditional "jump Succ" instruction in the new block if | 
|  | 244 | // necessary. | 
|  | 245 | if (!NewMBB.isLayoutSuccessor(&Succ)) { | 
|  | 246 | SmallVector<MachineOperand, 4> Cond; | 
|  | 247 | TII.insertBranch(NewMBB, &Succ, nullptr, Cond, Br->getDebugLoc()); | 
|  | 248 | } | 
|  | 249 | } else { | 
|  | 250 | assert(!UncondBr && | 
|  | 251 | "Cannot have a branchless successor and an unconditional branch!"); | 
|  | 252 | assert(NewMBB.isLayoutSuccessor(&Succ) && | 
|  | 253 | "A non-branch successor must have been a layout successor before " | 
|  | 254 | "and now is a layout successor of the new block."); | 
|  | 255 | } | 
|  | 256 |  | 
|  | 257 | // If this is the only edge to the successor, we can just replace it in the | 
|  | 258 | // CFG. Otherwise we need to add a new entry in the CFG for the new | 
|  | 259 | // successor. | 
|  | 260 | if (SuccCount == 1) { | 
|  | 261 | MBB.replaceSuccessor(&Succ, &NewMBB); | 
|  | 262 | } else { | 
|  | 263 | MBB.splitSuccessor(&Succ, &NewMBB); | 
|  | 264 | } | 
|  | 265 |  | 
|  | 266 | // Hook up the edge from the new basic block to the old successor in the CFG. | 
|  | 267 | NewMBB.addSuccessor(&Succ); | 
|  | 268 |  | 
|  | 269 | // Fix PHI nodes in Succ so they refer to NewMBB instead of MBB. | 
|  | 270 | for (MachineInstr &MI : Succ) { | 
|  | 271 | if (!MI.isPHI()) | 
|  | 272 | break; | 
|  | 273 | for (int OpIdx = 1, NumOps = MI.getNumOperands(); OpIdx < NumOps; | 
|  | 274 | OpIdx += 2) { | 
|  | 275 | MachineOperand &OpV = MI.getOperand(OpIdx); | 
|  | 276 | MachineOperand &OpMBB = MI.getOperand(OpIdx + 1); | 
|  | 277 | assert(OpMBB.isMBB() && "Block operand to a PHI is not a block!"); | 
|  | 278 | if (OpMBB.getMBB() != &MBB) | 
|  | 279 | continue; | 
|  | 280 |  | 
|  | 281 | // If this is the last edge to the succesor, just replace MBB in the PHI | 
|  | 282 | if (SuccCount == 1) { | 
|  | 283 | OpMBB.setMBB(&NewMBB); | 
|  | 284 | break; | 
|  | 285 | } | 
|  | 286 |  | 
|  | 287 | // Otherwise, append a new pair of operands for the new incoming edge. | 
|  | 288 | MI.addOperand(MF, OpV); | 
|  | 289 | MI.addOperand(MF, MachineOperand::CreateMBB(&NewMBB)); | 
|  | 290 | break; | 
|  | 291 | } | 
|  | 292 | } | 
|  | 293 |  | 
|  | 294 | // Inherit live-ins from the successor | 
|  | 295 | for (auto &LI : Succ.liveins()) | 
|  | 296 | NewMBB.addLiveIn(LI); | 
|  | 297 |  | 
|  | 298 | LLVM_DEBUG(dbgs() << "  Split edge from '" << MBB.getName() << "' to '" | 
|  | 299 | << Succ.getName() << "'.\n"); | 
|  | 300 | return NewMBB; | 
|  | 301 | } | 
|  | 302 |  | 
| Chandler Carruth | 3ffcc03 | 2018-07-15 23:46:36 +0000 | [diff] [blame] | 303 | /// Removing duplicate PHI operands to leave the PHI in a canonical and | 
|  | 304 | /// predictable form. | 
|  | 305 | /// | 
|  | 306 | /// FIXME: It's really frustrating that we have to do this, but SSA-form in MIR | 
|  | 307 | /// isn't what you might expect. We may have multiple entries in PHI nodes for | 
|  | 308 | /// a single predecessor. This makes CFG-updating extremely complex, so here we | 
|  | 309 | /// simplify all PHI nodes to a model even simpler than the IR's model: exactly | 
|  | 310 | /// one entry per predecessor, regardless of how many edges there are. | 
|  | 311 | static void canonicalizePHIOperands(MachineFunction &MF) { | 
|  | 312 | SmallPtrSet<MachineBasicBlock *, 4> Preds; | 
|  | 313 | SmallVector<int, 4> DupIndices; | 
|  | 314 | for (auto &MBB : MF) | 
|  | 315 | for (auto &MI : MBB) { | 
|  | 316 | if (!MI.isPHI()) | 
|  | 317 | break; | 
|  | 318 |  | 
|  | 319 | // First we scan the operands of the PHI looking for duplicate entries | 
|  | 320 | // a particular predecessor. We retain the operand index of each duplicate | 
|  | 321 | // entry found. | 
|  | 322 | for (int OpIdx = 1, NumOps = MI.getNumOperands(); OpIdx < NumOps; | 
|  | 323 | OpIdx += 2) | 
|  | 324 | if (!Preds.insert(MI.getOperand(OpIdx + 1).getMBB()).second) | 
|  | 325 | DupIndices.push_back(OpIdx); | 
|  | 326 |  | 
|  | 327 | // Now walk the duplicate indices, removing both the block and value. Note | 
|  | 328 | // that these are stored as a vector making this element-wise removal | 
|  | 329 | // :w | 
|  | 330 | // potentially quadratic. | 
|  | 331 | // | 
|  | 332 | // FIXME: It is really frustrating that we have to use a quadratic | 
|  | 333 | // removal algorithm here. There should be a better way, but the use-def | 
|  | 334 | // updates required make that impossible using the public API. | 
|  | 335 | // | 
|  | 336 | // Note that we have to process these backwards so that we don't | 
|  | 337 | // invalidate other indices with each removal. | 
|  | 338 | while (!DupIndices.empty()) { | 
|  | 339 | int OpIdx = DupIndices.pop_back_val(); | 
|  | 340 | // Remove both the block and value operand, again in reverse order to | 
|  | 341 | // preserve indices. | 
|  | 342 | MI.RemoveOperand(OpIdx + 1); | 
|  | 343 | MI.RemoveOperand(OpIdx); | 
|  | 344 | } | 
|  | 345 |  | 
|  | 346 | Preds.clear(); | 
|  | 347 | } | 
|  | 348 | } | 
|  | 349 |  | 
| Chandler Carruth | 3620b99 | 2018-07-16 10:46:16 +0000 | [diff] [blame] | 350 | /// Helper to scan a function for loads vulnerable to misspeculation that we | 
|  | 351 | /// want to harden. | 
|  | 352 | /// | 
|  | 353 | /// We use this to avoid making changes to functions where there is nothing we | 
|  | 354 | /// need to do to harden against misspeculation. | 
|  | 355 | static bool hasVulnerableLoad(MachineFunction &MF) { | 
|  | 356 | for (MachineBasicBlock &MBB : MF) { | 
|  | 357 | for (MachineInstr &MI : MBB) { | 
|  | 358 | // Loads within this basic block after an LFENCE are not at risk of | 
|  | 359 | // speculatively executing with invalid predicates from prior control | 
|  | 360 | // flow. So break out of this block but continue scanning the function. | 
|  | 361 | if (MI.getOpcode() == X86::LFENCE) | 
|  | 362 | break; | 
|  | 363 |  | 
|  | 364 | // Looking for loads only. | 
|  | 365 | if (!MI.mayLoad()) | 
|  | 366 | continue; | 
|  | 367 |  | 
|  | 368 | // An MFENCE is modeled as a load but isn't vulnerable to misspeculation. | 
|  | 369 | if (MI.getOpcode() == X86::MFENCE) | 
|  | 370 | continue; | 
|  | 371 |  | 
|  | 372 | // We found a load. | 
|  | 373 | return true; | 
|  | 374 | } | 
|  | 375 | } | 
|  | 376 |  | 
|  | 377 | // No loads found. | 
|  | 378 | return false; | 
|  | 379 | } | 
|  | 380 |  | 
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 381 | bool X86SpeculativeLoadHardeningPass::runOnMachineFunction( | 
|  | 382 | MachineFunction &MF) { | 
|  | 383 | LLVM_DEBUG(dbgs() << "********** " << getPassName() << " : " << MF.getName() | 
|  | 384 | << " **********\n"); | 
|  | 385 |  | 
|  | 386 | Subtarget = &MF.getSubtarget<X86Subtarget>(); | 
|  | 387 | MRI = &MF.getRegInfo(); | 
|  | 388 | TII = Subtarget->getInstrInfo(); | 
|  | 389 | TRI = Subtarget->getRegisterInfo(); | 
| Chandler Carruth | 4b0028a | 2018-07-19 11:13:58 +0000 | [diff] [blame] | 390 |  | 
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 391 | // FIXME: Support for 32-bit. | 
| Chandler Carruth | 4b0028a | 2018-07-19 11:13:58 +0000 | [diff] [blame] | 392 | PS.emplace(MF, &X86::GR64_NOSPRegClass); | 
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 393 |  | 
|  | 394 | if (MF.begin() == MF.end()) | 
|  | 395 | // Nothing to do for a degenerate empty function... | 
|  | 396 | return false; | 
|  | 397 |  | 
|  | 398 | // We support an alternative hardening technique based on a debug flag. | 
|  | 399 | if (HardenEdgesWithLFENCE) { | 
|  | 400 | hardenEdgesWithLFENCE(MF); | 
|  | 401 | return true; | 
|  | 402 | } | 
|  | 403 |  | 
|  | 404 | // Create a dummy debug loc to use for all the generated code here. | 
|  | 405 | DebugLoc Loc; | 
|  | 406 |  | 
|  | 407 | MachineBasicBlock &Entry = *MF.begin(); | 
|  | 408 | auto EntryInsertPt = Entry.SkipPHIsLabelsAndDebug(Entry.begin()); | 
|  | 409 |  | 
|  | 410 | // Do a quick scan to see if we have any checkable loads. | 
| Chandler Carruth | 3620b99 | 2018-07-16 10:46:16 +0000 | [diff] [blame] | 411 | bool HasVulnerableLoad = hasVulnerableLoad(MF); | 
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 412 |  | 
|  | 413 | // See if we have any conditional branching blocks that we will need to trace | 
|  | 414 | // predicate state through. | 
|  | 415 | SmallVector<BlockCondInfo, 16> Infos = collectBlockCondInfo(MF); | 
|  | 416 |  | 
|  | 417 | // If we have no interesting conditions or loads, nothing to do here. | 
| Chandler Carruth | 3620b99 | 2018-07-16 10:46:16 +0000 | [diff] [blame] | 418 | if (!HasVulnerableLoad && Infos.empty()) | 
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 419 | return true; | 
|  | 420 |  | 
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 421 | // The poison value is required to be an all-ones value for many aspects of | 
|  | 422 | // this mitigation. | 
|  | 423 | const int PoisonVal = -1; | 
| Chandler Carruth | 4b0028a | 2018-07-19 11:13:58 +0000 | [diff] [blame] | 424 | PS->PoisonReg = MRI->createVirtualRegister(PS->RC); | 
|  | 425 | BuildMI(Entry, EntryInsertPt, Loc, TII->get(X86::MOV64ri32), PS->PoisonReg) | 
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 426 | .addImm(PoisonVal); | 
|  | 427 | ++NumInstsInserted; | 
|  | 428 |  | 
|  | 429 | // If we have loads being hardened and we've asked for call and ret edges to | 
|  | 430 | // get a full fence-based mitigation, inject that fence. | 
| Chandler Carruth | 3620b99 | 2018-07-16 10:46:16 +0000 | [diff] [blame] | 431 | if (HasVulnerableLoad && FenceCallAndRet) { | 
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 432 | // We need to insert an LFENCE at the start of the function to suspend any | 
|  | 433 | // incoming misspeculation from the caller. This helps two-fold: the caller | 
|  | 434 | // may not have been protected as this code has been, and this code gets to | 
|  | 435 | // not take any specific action to protect across calls. | 
|  | 436 | // FIXME: We could skip this for functions which unconditionally return | 
|  | 437 | // a constant. | 
|  | 438 | BuildMI(Entry, EntryInsertPt, Loc, TII->get(X86::LFENCE)); | 
|  | 439 | ++NumInstsInserted; | 
|  | 440 | ++NumLFENCEsInserted; | 
|  | 441 | } | 
|  | 442 |  | 
| Chandler Carruth | fb503ac | 2018-07-14 09:32:37 +0000 | [diff] [blame] | 443 | // If we guarded the entry with an LFENCE and have no conditionals to protect | 
|  | 444 | // in blocks, then we're done. | 
|  | 445 | if (FenceCallAndRet && Infos.empty()) | 
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 446 | // We may have changed the function's code at this point to insert fences. | 
|  | 447 | return true; | 
|  | 448 |  | 
|  | 449 | // For every basic block in the function which can b | 
|  | 450 | if (HardenInterprocedurally && !FenceCallAndRet) { | 
|  | 451 | // Set up the predicate state by extracting it from the incoming stack | 
|  | 452 | // pointer so we pick up any misspeculation in our caller. | 
| Chandler Carruth | 4b0028a | 2018-07-19 11:13:58 +0000 | [diff] [blame] | 453 | PS->InitialReg = extractPredStateFromSP(Entry, EntryInsertPt, Loc); | 
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 454 | } else { | 
|  | 455 | // Otherwise, just build the predicate state itself by zeroing a register | 
|  | 456 | // as we don't need any initial state. | 
| Chandler Carruth | 4b0028a | 2018-07-19 11:13:58 +0000 | [diff] [blame] | 457 | PS->InitialReg = MRI->createVirtualRegister(PS->RC); | 
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 458 | unsigned PredStateSubReg = MRI->createVirtualRegister(&X86::GR32RegClass); | 
|  | 459 | auto ZeroI = BuildMI(Entry, EntryInsertPt, Loc, TII->get(X86::MOV32r0), | 
|  | 460 | PredStateSubReg); | 
|  | 461 | ++NumInstsInserted; | 
|  | 462 | MachineOperand *ZeroEFLAGSDefOp = | 
|  | 463 | ZeroI->findRegisterDefOperand(X86::EFLAGS); | 
|  | 464 | assert(ZeroEFLAGSDefOp && ZeroEFLAGSDefOp->isImplicit() && | 
|  | 465 | "Must have an implicit def of EFLAGS!"); | 
|  | 466 | ZeroEFLAGSDefOp->setIsDead(true); | 
|  | 467 | BuildMI(Entry, EntryInsertPt, Loc, TII->get(X86::SUBREG_TO_REG), | 
| Chandler Carruth | 4b0028a | 2018-07-19 11:13:58 +0000 | [diff] [blame] | 468 | PS->InitialReg) | 
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 469 | .addImm(0) | 
|  | 470 | .addReg(PredStateSubReg) | 
|  | 471 | .addImm(X86::sub_32bit); | 
|  | 472 | } | 
|  | 473 |  | 
|  | 474 | // We're going to need to trace predicate state throughout the function's | 
|  | 475 | // CFG. Prepare for this by setting up our initial state of PHIs with unique | 
|  | 476 | // predecessor entries and all the initial predicate state. | 
| Chandler Carruth | 3ffcc03 | 2018-07-15 23:46:36 +0000 | [diff] [blame] | 477 | canonicalizePHIOperands(MF); | 
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 478 |  | 
|  | 479 | // Track the updated values in an SSA updater to rewrite into SSA form at the | 
|  | 480 | // end. | 
| Chandler Carruth | 4b0028a | 2018-07-19 11:13:58 +0000 | [diff] [blame] | 481 | PS->SSA.Initialize(PS->InitialReg); | 
|  | 482 | PS->SSA.AddAvailableValue(&Entry, PS->InitialReg); | 
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 483 |  | 
| Chandler Carruth | 4b0028a | 2018-07-19 11:13:58 +0000 | [diff] [blame] | 484 | // Trace through the CFG. | 
|  | 485 | auto CMovs = tracePredStateThroughCFG(MF, Infos); | 
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 486 |  | 
|  | 487 | // We may also enter basic blocks in this function via exception handling | 
|  | 488 | // control flow. Here, if we are hardening interprocedurally, we need to | 
|  | 489 | // re-capture the predicate state from the throwing code. In the Itanium ABI, | 
|  | 490 | // the throw will always look like a call to __cxa_throw and will have the | 
|  | 491 | // predicate state in the stack pointer, so extract fresh predicate state from | 
|  | 492 | // the stack pointer and make it available in SSA. | 
|  | 493 | // FIXME: Handle non-itanium ABI EH models. | 
|  | 494 | if (HardenInterprocedurally) { | 
|  | 495 | for (MachineBasicBlock &MBB : MF) { | 
|  | 496 | assert(!MBB.isEHScopeEntry() && "Only Itanium ABI EH supported!"); | 
|  | 497 | assert(!MBB.isEHFuncletEntry() && "Only Itanium ABI EH supported!"); | 
|  | 498 | assert(!MBB.isCleanupFuncletEntry() && "Only Itanium ABI EH supported!"); | 
|  | 499 | if (!MBB.isEHPad()) | 
|  | 500 | continue; | 
| Chandler Carruth | 4b0028a | 2018-07-19 11:13:58 +0000 | [diff] [blame] | 501 | PS->SSA.AddAvailableValue( | 
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 502 | &MBB, | 
|  | 503 | extractPredStateFromSP(MBB, MBB.SkipPHIsAndLabels(MBB.begin()), Loc)); | 
|  | 504 | } | 
|  | 505 | } | 
|  | 506 |  | 
| Chandler Carruth | 0477b40 | 2018-07-23 04:01:34 +0000 | [diff] [blame] | 507 | // Now harden all of the loads in the function using the predicate state. | 
|  | 508 | hardenAllLoads(MF); | 
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 509 |  | 
|  | 510 | // Now rewrite all the uses of the pred state using the SSA updater so that | 
|  | 511 | // we track updates through the CFG. | 
|  | 512 | for (MachineInstr *CMovI : CMovs) | 
|  | 513 | for (MachineOperand &Op : CMovI->operands()) { | 
| Chandler Carruth | 4b0028a | 2018-07-19 11:13:58 +0000 | [diff] [blame] | 514 | if (!Op.isReg() || Op.getReg() != PS->InitialReg) | 
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 515 | continue; | 
|  | 516 |  | 
| Chandler Carruth | 4b0028a | 2018-07-19 11:13:58 +0000 | [diff] [blame] | 517 | PS->SSA.RewriteUse(Op); | 
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 518 | } | 
|  | 519 |  | 
|  | 520 | // If we are hardening interprocedurally, find each returning block and | 
|  | 521 | // protect the caller from being returned to through misspeculation. | 
|  | 522 | if (HardenInterprocedurally) | 
|  | 523 | for (MachineBasicBlock &MBB : MF) { | 
|  | 524 | if (MBB.empty()) | 
|  | 525 | continue; | 
|  | 526 |  | 
|  | 527 | MachineInstr &MI = MBB.back(); | 
| Chandler Carruth | 1d926fb | 2018-07-23 07:56:15 +0000 | [diff] [blame] | 528 |  | 
|  | 529 | // We only care about returns that are not also calls. For calls, that | 
|  | 530 | // happen to also be returns (tail calls) we will have already handled | 
|  | 531 | // them as calls. | 
|  | 532 | if (!MI.isReturn() || MI.isCall()) | 
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 533 | continue; | 
|  | 534 |  | 
| Chandler Carruth | a3a03ac | 2018-07-19 23:46:24 +0000 | [diff] [blame] | 535 | hardenReturnInstr(MI); | 
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 536 | } | 
|  | 537 |  | 
|  | 538 | LLVM_DEBUG(dbgs() << "Final speculative load hardened function:\n"; MF.dump(); | 
|  | 539 | dbgs() << "\n"; MF.verify(this)); | 
|  | 540 | return true; | 
|  | 541 | } | 
|  | 542 |  | 
|  | 543 | /// Implements the naive hardening approach of putting an LFENCE after every | 
|  | 544 | /// potentially mis-predicted control flow construct. | 
|  | 545 | /// | 
|  | 546 | /// We include this as an alternative mostly for the purpose of comparison. The | 
|  | 547 | /// performance impact of this is expected to be extremely severe and not | 
|  | 548 | /// practical for any real-world users. | 
|  | 549 | void X86SpeculativeLoadHardeningPass::hardenEdgesWithLFENCE( | 
|  | 550 | MachineFunction &MF) { | 
|  | 551 | // First, we scan the function looking for blocks that are reached along edges | 
|  | 552 | // that we might want to harden. | 
|  | 553 | SmallSetVector<MachineBasicBlock *, 8> Blocks; | 
|  | 554 | for (MachineBasicBlock &MBB : MF) { | 
|  | 555 | // If there are no or only one successor, nothing to do here. | 
|  | 556 | if (MBB.succ_size() <= 1) | 
|  | 557 | continue; | 
|  | 558 |  | 
|  | 559 | // Skip blocks unless their terminators start with a branch. Other | 
|  | 560 | // terminators don't seem interesting for guarding against misspeculation. | 
|  | 561 | auto TermIt = MBB.getFirstTerminator(); | 
|  | 562 | if (TermIt == MBB.end() || !TermIt->isBranch()) | 
|  | 563 | continue; | 
|  | 564 |  | 
|  | 565 | // Add all the non-EH-pad succossors to the blocks we want to harden. We | 
|  | 566 | // skip EH pads because there isn't really a condition of interest on | 
|  | 567 | // entering. | 
|  | 568 | for (MachineBasicBlock *SuccMBB : MBB.successors()) | 
|  | 569 | if (!SuccMBB->isEHPad()) | 
|  | 570 | Blocks.insert(SuccMBB); | 
|  | 571 | } | 
|  | 572 |  | 
|  | 573 | for (MachineBasicBlock *MBB : Blocks) { | 
|  | 574 | auto InsertPt = MBB->SkipPHIsAndLabels(MBB->begin()); | 
|  | 575 | BuildMI(*MBB, InsertPt, DebugLoc(), TII->get(X86::LFENCE)); | 
|  | 576 | ++NumInstsInserted; | 
|  | 577 | ++NumLFENCEsInserted; | 
|  | 578 | } | 
|  | 579 | } | 
|  | 580 |  | 
|  | 581 | SmallVector<X86SpeculativeLoadHardeningPass::BlockCondInfo, 16> | 
|  | 582 | X86SpeculativeLoadHardeningPass::collectBlockCondInfo(MachineFunction &MF) { | 
|  | 583 | SmallVector<BlockCondInfo, 16> Infos; | 
|  | 584 |  | 
|  | 585 | // Walk the function and build up a summary for each block's conditions that | 
|  | 586 | // we need to trace through. | 
|  | 587 | for (MachineBasicBlock &MBB : MF) { | 
|  | 588 | // If there are no or only one successor, nothing to do here. | 
|  | 589 | if (MBB.succ_size() <= 1) | 
|  | 590 | continue; | 
|  | 591 |  | 
|  | 592 | // We want to reliably handle any conditional branch terminators in the | 
|  | 593 | // MBB, so we manually analyze the branch. We can handle all of the | 
|  | 594 | // permutations here, including ones that analyze branch cannot. | 
|  | 595 | // | 
|  | 596 | // The approach is to walk backwards across the terminators, resetting at | 
|  | 597 | // any unconditional non-indirect branch, and track all conditional edges | 
|  | 598 | // to basic blocks as well as the fallthrough or unconditional successor | 
|  | 599 | // edge. For each conditional edge, we track the target and the opposite | 
|  | 600 | // condition code in order to inject a "no-op" cmov into that successor | 
|  | 601 | // that will harden the predicate. For the fallthrough/unconditional | 
|  | 602 | // edge, we inject a separate cmov for each conditional branch with | 
|  | 603 | // matching condition codes. This effectively implements an "and" of the | 
|  | 604 | // condition flags, even if there isn't a single condition flag that would | 
|  | 605 | // directly implement that. We don't bother trying to optimize either of | 
|  | 606 | // these cases because if such an optimization is possible, LLVM should | 
|  | 607 | // have optimized the conditional *branches* in that way already to reduce | 
|  | 608 | // instruction count. This late, we simply assume the minimal number of | 
|  | 609 | // branch instructions is being emitted and use that to guide our cmov | 
|  | 610 | // insertion. | 
|  | 611 |  | 
|  | 612 | BlockCondInfo Info = {&MBB, {}, nullptr}; | 
|  | 613 |  | 
|  | 614 | // Now walk backwards through the terminators and build up successors they | 
|  | 615 | // reach and the conditions. | 
|  | 616 | for (MachineInstr &MI : llvm::reverse(MBB)) { | 
|  | 617 | // Once we've handled all the terminators, we're done. | 
|  | 618 | if (!MI.isTerminator()) | 
|  | 619 | break; | 
|  | 620 |  | 
|  | 621 | // If we see a non-branch terminator, we can't handle anything so bail. | 
|  | 622 | if (!MI.isBranch()) { | 
|  | 623 | Info.CondBrs.clear(); | 
|  | 624 | break; | 
|  | 625 | } | 
|  | 626 |  | 
|  | 627 | // If we see an unconditional branch, reset our state, clear any | 
|  | 628 | // fallthrough, and set this is the "else" successor. | 
|  | 629 | if (MI.getOpcode() == X86::JMP_1) { | 
|  | 630 | Info.CondBrs.clear(); | 
|  | 631 | Info.UncondBr = &MI; | 
|  | 632 | continue; | 
|  | 633 | } | 
|  | 634 |  | 
|  | 635 | // If we get an invalid condition, we have an indirect branch or some | 
|  | 636 | // other unanalyzable "fallthrough" case. We model this as a nullptr for | 
|  | 637 | // the destination so we can still guard any conditional successors. | 
|  | 638 | // Consider code sequences like: | 
|  | 639 | // ``` | 
|  | 640 | //   jCC L1 | 
|  | 641 | //   jmpq *%rax | 
|  | 642 | // ``` | 
|  | 643 | // We still want to harden the edge to `L1`. | 
|  | 644 | if (X86::getCondFromBranchOpc(MI.getOpcode()) == X86::COND_INVALID) { | 
|  | 645 | Info.CondBrs.clear(); | 
|  | 646 | Info.UncondBr = &MI; | 
|  | 647 | continue; | 
|  | 648 | } | 
|  | 649 |  | 
|  | 650 | // We have a vanilla conditional branch, add it to our list. | 
|  | 651 | Info.CondBrs.push_back(&MI); | 
|  | 652 | } | 
|  | 653 | if (Info.CondBrs.empty()) { | 
|  | 654 | ++NumBranchesUntraced; | 
|  | 655 | LLVM_DEBUG(dbgs() << "WARNING: unable to secure successors of block:\n"; | 
|  | 656 | MBB.dump()); | 
|  | 657 | continue; | 
|  | 658 | } | 
|  | 659 |  | 
|  | 660 | Infos.push_back(Info); | 
|  | 661 | } | 
|  | 662 |  | 
|  | 663 | return Infos; | 
|  | 664 | } | 
|  | 665 |  | 
| Chandler Carruth | 4b0028a | 2018-07-19 11:13:58 +0000 | [diff] [blame] | 666 | /// Trace the predicate state through the CFG, instrumenting each conditional | 
|  | 667 | /// branch such that misspeculation through an edge will poison the predicate | 
|  | 668 | /// state. | 
|  | 669 | /// | 
|  | 670 | /// Returns the list of inserted CMov instructions so that they can have their | 
|  | 671 | /// uses of the predicate state rewritten into proper SSA form once it is | 
|  | 672 | /// complete. | 
|  | 673 | SmallVector<MachineInstr *, 16> | 
|  | 674 | X86SpeculativeLoadHardeningPass::tracePredStateThroughCFG( | 
|  | 675 | MachineFunction &MF, ArrayRef<BlockCondInfo> Infos) { | 
|  | 676 | // Collect the inserted cmov instructions so we can rewrite their uses of the | 
|  | 677 | // predicate state into SSA form. | 
|  | 678 | SmallVector<MachineInstr *, 16> CMovs; | 
|  | 679 |  | 
|  | 680 | // Now walk all of the basic blocks looking for ones that end in conditional | 
|  | 681 | // jumps where we need to update this register along each edge. | 
|  | 682 | for (const BlockCondInfo &Info : Infos) { | 
|  | 683 | MachineBasicBlock &MBB = *Info.MBB; | 
|  | 684 | const SmallVectorImpl<MachineInstr *> &CondBrs = Info.CondBrs; | 
|  | 685 | MachineInstr *UncondBr = Info.UncondBr; | 
|  | 686 |  | 
|  | 687 | LLVM_DEBUG(dbgs() << "Tracing predicate through block: " << MBB.getName() | 
|  | 688 | << "\n"); | 
|  | 689 | ++NumCondBranchesTraced; | 
|  | 690 |  | 
|  | 691 | // Compute the non-conditional successor as either the target of any | 
|  | 692 | // unconditional branch or the layout successor. | 
|  | 693 | MachineBasicBlock *UncondSucc = | 
|  | 694 | UncondBr ? (UncondBr->getOpcode() == X86::JMP_1 | 
|  | 695 | ? UncondBr->getOperand(0).getMBB() | 
|  | 696 | : nullptr) | 
|  | 697 | : &*std::next(MachineFunction::iterator(&MBB)); | 
|  | 698 |  | 
|  | 699 | // Count how many edges there are to any given successor. | 
|  | 700 | SmallDenseMap<MachineBasicBlock *, int> SuccCounts; | 
|  | 701 | if (UncondSucc) | 
|  | 702 | ++SuccCounts[UncondSucc]; | 
|  | 703 | for (auto *CondBr : CondBrs) | 
|  | 704 | ++SuccCounts[CondBr->getOperand(0).getMBB()]; | 
|  | 705 |  | 
|  | 706 | // A lambda to insert cmov instructions into a block checking all of the | 
|  | 707 | // condition codes in a sequence. | 
|  | 708 | auto BuildCheckingBlockForSuccAndConds = | 
|  | 709 | [&](MachineBasicBlock &MBB, MachineBasicBlock &Succ, int SuccCount, | 
|  | 710 | MachineInstr *Br, MachineInstr *&UncondBr, | 
|  | 711 | ArrayRef<X86::CondCode> Conds) { | 
|  | 712 | // First, we split the edge to insert the checking block into a safe | 
|  | 713 | // location. | 
|  | 714 | auto &CheckingMBB = | 
|  | 715 | (SuccCount == 1 && Succ.pred_size() == 1) | 
|  | 716 | ? Succ | 
|  | 717 | : splitEdge(MBB, Succ, SuccCount, Br, UncondBr, *TII); | 
|  | 718 |  | 
|  | 719 | bool LiveEFLAGS = Succ.isLiveIn(X86::EFLAGS); | 
|  | 720 | if (!LiveEFLAGS) | 
|  | 721 | CheckingMBB.addLiveIn(X86::EFLAGS); | 
|  | 722 |  | 
|  | 723 | // Now insert the cmovs to implement the checks. | 
|  | 724 | auto InsertPt = CheckingMBB.begin(); | 
|  | 725 | assert((InsertPt == CheckingMBB.end() || !InsertPt->isPHI()) && | 
|  | 726 | "Should never have a PHI in the initial checking block as it " | 
|  | 727 | "always has a single predecessor!"); | 
|  | 728 |  | 
|  | 729 | // We will wire each cmov to each other, but need to start with the | 
|  | 730 | // incoming pred state. | 
|  | 731 | unsigned CurStateReg = PS->InitialReg; | 
|  | 732 |  | 
|  | 733 | for (X86::CondCode Cond : Conds) { | 
|  | 734 | int PredStateSizeInBytes = TRI->getRegSizeInBits(*PS->RC) / 8; | 
|  | 735 | auto CMovOp = X86::getCMovFromCond(Cond, PredStateSizeInBytes); | 
|  | 736 |  | 
|  | 737 | unsigned UpdatedStateReg = MRI->createVirtualRegister(PS->RC); | 
|  | 738 | // Note that we intentionally use an empty debug location so that | 
|  | 739 | // this picks up the preceding location. | 
|  | 740 | auto CMovI = BuildMI(CheckingMBB, InsertPt, DebugLoc(), | 
|  | 741 | TII->get(CMovOp), UpdatedStateReg) | 
|  | 742 | .addReg(CurStateReg) | 
|  | 743 | .addReg(PS->PoisonReg); | 
|  | 744 | // If this is the last cmov and the EFLAGS weren't originally | 
|  | 745 | // live-in, mark them as killed. | 
|  | 746 | if (!LiveEFLAGS && Cond == Conds.back()) | 
|  | 747 | CMovI->findRegisterUseOperand(X86::EFLAGS)->setIsKill(true); | 
|  | 748 |  | 
|  | 749 | ++NumInstsInserted; | 
|  | 750 | LLVM_DEBUG(dbgs() << "  Inserting cmov: "; CMovI->dump(); | 
|  | 751 | dbgs() << "\n"); | 
|  | 752 |  | 
|  | 753 | // The first one of the cmovs will be using the top level | 
|  | 754 | // `PredStateReg` and need to get rewritten into SSA form. | 
|  | 755 | if (CurStateReg == PS->InitialReg) | 
|  | 756 | CMovs.push_back(&*CMovI); | 
|  | 757 |  | 
|  | 758 | // The next cmov should start from this one's def. | 
|  | 759 | CurStateReg = UpdatedStateReg; | 
|  | 760 | } | 
|  | 761 |  | 
|  | 762 | // And put the last one into the available values for SSA form of our | 
|  | 763 | // predicate state. | 
|  | 764 | PS->SSA.AddAvailableValue(&CheckingMBB, CurStateReg); | 
|  | 765 | }; | 
|  | 766 |  | 
|  | 767 | std::vector<X86::CondCode> UncondCodeSeq; | 
|  | 768 | for (auto *CondBr : CondBrs) { | 
|  | 769 | MachineBasicBlock &Succ = *CondBr->getOperand(0).getMBB(); | 
|  | 770 | int &SuccCount = SuccCounts[&Succ]; | 
|  | 771 |  | 
|  | 772 | X86::CondCode Cond = X86::getCondFromBranchOpc(CondBr->getOpcode()); | 
|  | 773 | X86::CondCode InvCond = X86::GetOppositeBranchCondition(Cond); | 
|  | 774 | UncondCodeSeq.push_back(Cond); | 
|  | 775 |  | 
|  | 776 | BuildCheckingBlockForSuccAndConds(MBB, Succ, SuccCount, CondBr, UncondBr, | 
|  | 777 | {InvCond}); | 
|  | 778 |  | 
|  | 779 | // Decrement the successor count now that we've split one of the edges. | 
|  | 780 | // We need to keep the count of edges to the successor accurate in order | 
|  | 781 | // to know above when to *replace* the successor in the CFG vs. just | 
|  | 782 | // adding the new successor. | 
|  | 783 | --SuccCount; | 
|  | 784 | } | 
|  | 785 |  | 
|  | 786 | // Since we may have split edges and changed the number of successors, | 
|  | 787 | // normalize the probabilities. This avoids doing it each time we split an | 
|  | 788 | // edge. | 
|  | 789 | MBB.normalizeSuccProbs(); | 
|  | 790 |  | 
|  | 791 | // Finally, we need to insert cmovs into the "fallthrough" edge. Here, we | 
|  | 792 | // need to intersect the other condition codes. We can do this by just | 
|  | 793 | // doing a cmov for each one. | 
|  | 794 | if (!UncondSucc) | 
|  | 795 | // If we have no fallthrough to protect (perhaps it is an indirect jump?) | 
|  | 796 | // just skip this and continue. | 
|  | 797 | continue; | 
|  | 798 |  | 
|  | 799 | assert(SuccCounts[UncondSucc] == 1 && | 
|  | 800 | "We should never have more than one edge to the unconditional " | 
|  | 801 | "successor at this point because every other edge must have been " | 
|  | 802 | "split above!"); | 
|  | 803 |  | 
|  | 804 | // Sort and unique the codes to minimize them. | 
|  | 805 | llvm::sort(UncondCodeSeq.begin(), UncondCodeSeq.end()); | 
|  | 806 | UncondCodeSeq.erase(std::unique(UncondCodeSeq.begin(), UncondCodeSeq.end()), | 
|  | 807 | UncondCodeSeq.end()); | 
|  | 808 |  | 
|  | 809 | // Build a checking version of the successor. | 
|  | 810 | BuildCheckingBlockForSuccAndConds(MBB, *UncondSucc, /*SuccCount*/ 1, | 
|  | 811 | UncondBr, UncondBr, UncondCodeSeq); | 
|  | 812 | } | 
|  | 813 |  | 
|  | 814 | return CMovs; | 
|  | 815 | } | 
|  | 816 |  | 
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 817 | /// Returns true if the instruction has no behavior (specified or otherwise) | 
|  | 818 | /// that is based on the value of any of its register operands | 
|  | 819 | /// | 
|  | 820 | /// A classical example of something that is inherently not data invariant is an | 
|  | 821 | /// indirect jump -- the destination is loaded into icache based on the bits set | 
|  | 822 | /// in the jump destination register. | 
|  | 823 | /// | 
|  | 824 | /// FIXME: This should become part of our instruction tables. | 
|  | 825 | static bool isDataInvariant(MachineInstr &MI) { | 
|  | 826 | switch (MI.getOpcode()) { | 
|  | 827 | default: | 
|  | 828 | // By default, assume that the instruction is not data invariant. | 
|  | 829 | return false; | 
|  | 830 |  | 
| Chandler Carruth | fa065aa | 2018-07-16 14:58:32 +0000 | [diff] [blame] | 831 | // Some target-independent operations that trivially lower to data-invariant | 
|  | 832 | // instructions. | 
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 833 | case TargetOpcode::COPY: | 
| Chandler Carruth | fa065aa | 2018-07-16 14:58:32 +0000 | [diff] [blame] | 834 | case TargetOpcode::INSERT_SUBREG: | 
|  | 835 | case TargetOpcode::SUBREG_TO_REG: | 
|  | 836 | return true; | 
|  | 837 |  | 
|  | 838 | // On x86 it is believed that imul is constant time w.r.t. the loaded data. | 
|  | 839 | // However, they set flags and are perhaps the most surprisingly constant | 
|  | 840 | // time operations so we call them out here separately. | 
|  | 841 | case X86::IMUL16rr: | 
|  | 842 | case X86::IMUL16rri8: | 
|  | 843 | case X86::IMUL16rri: | 
|  | 844 | case X86::IMUL32rr: | 
|  | 845 | case X86::IMUL32rri8: | 
|  | 846 | case X86::IMUL32rri: | 
|  | 847 | case X86::IMUL64rr: | 
|  | 848 | case X86::IMUL64rri32: | 
|  | 849 | case X86::IMUL64rri8: | 
|  | 850 |  | 
|  | 851 | // Bit scanning and counting instructions that are somewhat surprisingly | 
|  | 852 | // constant time as they scan across bits and do other fairly complex | 
|  | 853 | // operations like popcnt, but are believed to be constant time on x86. | 
|  | 854 | // However, these set flags. | 
|  | 855 | case X86::BSF16rr: | 
|  | 856 | case X86::BSF32rr: | 
|  | 857 | case X86::BSF64rr: | 
|  | 858 | case X86::BSR16rr: | 
|  | 859 | case X86::BSR32rr: | 
|  | 860 | case X86::BSR64rr: | 
|  | 861 | case X86::LZCNT16rr: | 
|  | 862 | case X86::LZCNT32rr: | 
|  | 863 | case X86::LZCNT64rr: | 
|  | 864 | case X86::POPCNT16rr: | 
|  | 865 | case X86::POPCNT32rr: | 
|  | 866 | case X86::POPCNT64rr: | 
|  | 867 | case X86::TZCNT16rr: | 
|  | 868 | case X86::TZCNT32rr: | 
|  | 869 | case X86::TZCNT64rr: | 
|  | 870 |  | 
|  | 871 | // Bit manipulation instructions are effectively combinations of basic | 
|  | 872 | // arithmetic ops, and should still execute in constant time. These also | 
|  | 873 | // set flags. | 
|  | 874 | case X86::BLCFILL32rr: | 
|  | 875 | case X86::BLCFILL64rr: | 
|  | 876 | case X86::BLCI32rr: | 
|  | 877 | case X86::BLCI64rr: | 
|  | 878 | case X86::BLCIC32rr: | 
|  | 879 | case X86::BLCIC64rr: | 
|  | 880 | case X86::BLCMSK32rr: | 
|  | 881 | case X86::BLCMSK64rr: | 
|  | 882 | case X86::BLCS32rr: | 
|  | 883 | case X86::BLCS64rr: | 
|  | 884 | case X86::BLSFILL32rr: | 
|  | 885 | case X86::BLSFILL64rr: | 
|  | 886 | case X86::BLSI32rr: | 
|  | 887 | case X86::BLSI64rr: | 
|  | 888 | case X86::BLSIC32rr: | 
|  | 889 | case X86::BLSIC64rr: | 
|  | 890 | case X86::BLSMSK32rr: | 
|  | 891 | case X86::BLSMSK64rr: | 
|  | 892 | case X86::BLSR32rr: | 
|  | 893 | case X86::BLSR64rr: | 
|  | 894 | case X86::TZMSK32rr: | 
|  | 895 | case X86::TZMSK64rr: | 
|  | 896 |  | 
|  | 897 | // Bit extracting and clearing instructions should execute in constant time, | 
|  | 898 | // and set flags. | 
|  | 899 | case X86::BEXTR32rr: | 
|  | 900 | case X86::BEXTR64rr: | 
|  | 901 | case X86::BEXTRI32ri: | 
|  | 902 | case X86::BEXTRI64ri: | 
|  | 903 | case X86::BZHI32rr: | 
|  | 904 | case X86::BZHI64rr: | 
|  | 905 |  | 
| Chandler Carruth | c0cb573 | 2018-07-17 18:07:59 +0000 | [diff] [blame] | 906 | // Shift and rotate. | 
|  | 907 | case X86::ROL8r1:  case X86::ROL16r1:  case X86::ROL32r1:  case X86::ROL64r1: | 
|  | 908 | case X86::ROL8rCL: case X86::ROL16rCL: case X86::ROL32rCL: case X86::ROL64rCL: | 
|  | 909 | case X86::ROL8ri:  case X86::ROL16ri:  case X86::ROL32ri:  case X86::ROL64ri: | 
|  | 910 | case X86::ROR8r1:  case X86::ROR16r1:  case X86::ROR32r1:  case X86::ROR64r1: | 
|  | 911 | case X86::ROR8rCL: case X86::ROR16rCL: case X86::ROR32rCL: case X86::ROR64rCL: | 
|  | 912 | case X86::ROR8ri:  case X86::ROR16ri:  case X86::ROR32ri:  case X86::ROR64ri: | 
|  | 913 | case X86::SAR8r1:  case X86::SAR16r1:  case X86::SAR32r1:  case X86::SAR64r1: | 
|  | 914 | case X86::SAR8rCL: case X86::SAR16rCL: case X86::SAR32rCL: case X86::SAR64rCL: | 
|  | 915 | case X86::SAR8ri:  case X86::SAR16ri:  case X86::SAR32ri:  case X86::SAR64ri: | 
|  | 916 | case X86::SHL8r1:  case X86::SHL16r1:  case X86::SHL32r1:  case X86::SHL64r1: | 
|  | 917 | case X86::SHL8rCL: case X86::SHL16rCL: case X86::SHL32rCL: case X86::SHL64rCL: | 
|  | 918 | case X86::SHL8ri:  case X86::SHL16ri:  case X86::SHL32ri:  case X86::SHL64ri: | 
|  | 919 | case X86::SHR8r1:  case X86::SHR16r1:  case X86::SHR32r1:  case X86::SHR64r1: | 
|  | 920 | case X86::SHR8rCL: case X86::SHR16rCL: case X86::SHR32rCL: case X86::SHR64rCL: | 
|  | 921 | case X86::SHR8ri:  case X86::SHR16ri:  case X86::SHR32ri:  case X86::SHR64ri: | 
|  | 922 | case X86::SHLD16rrCL: case X86::SHLD32rrCL: case X86::SHLD64rrCL: | 
|  | 923 | case X86::SHLD16rri8: case X86::SHLD32rri8: case X86::SHLD64rri8: | 
|  | 924 | case X86::SHRD16rrCL: case X86::SHRD32rrCL: case X86::SHRD64rrCL: | 
|  | 925 | case X86::SHRD16rri8: case X86::SHRD32rri8: case X86::SHRD64rri8: | 
|  | 926 |  | 
| Chandler Carruth | fa065aa | 2018-07-16 14:58:32 +0000 | [diff] [blame] | 927 | // Basic arithmetic is constant time on the input but does set flags. | 
|  | 928 | case X86::ADC8rr:   case X86::ADC8ri: | 
|  | 929 | case X86::ADC16rr:  case X86::ADC16ri:   case X86::ADC16ri8: | 
|  | 930 | case X86::ADC32rr:  case X86::ADC32ri:   case X86::ADC32ri8: | 
|  | 931 | case X86::ADC64rr:  case X86::ADC64ri8:  case X86::ADC64ri32: | 
|  | 932 | case X86::ADD8rr:   case X86::ADD8ri: | 
|  | 933 | case X86::ADD16rr:  case X86::ADD16ri:   case X86::ADD16ri8: | 
|  | 934 | case X86::ADD32rr:  case X86::ADD32ri:   case X86::ADD32ri8: | 
|  | 935 | case X86::ADD64rr:  case X86::ADD64ri8:  case X86::ADD64ri32: | 
|  | 936 | case X86::AND8rr:   case X86::AND8ri: | 
|  | 937 | case X86::AND16rr:  case X86::AND16ri:   case X86::AND16ri8: | 
|  | 938 | case X86::AND32rr:  case X86::AND32ri:   case X86::AND32ri8: | 
|  | 939 | case X86::AND64rr:  case X86::AND64ri8:  case X86::AND64ri32: | 
|  | 940 | case X86::OR8rr:    case X86::OR8ri: | 
|  | 941 | case X86::OR16rr:   case X86::OR16ri:    case X86::OR16ri8: | 
|  | 942 | case X86::OR32rr:   case X86::OR32ri:    case X86::OR32ri8: | 
|  | 943 | case X86::OR64rr:   case X86::OR64ri8:   case X86::OR64ri32: | 
|  | 944 | case X86::SBB8rr:   case X86::SBB8ri: | 
|  | 945 | case X86::SBB16rr:  case X86::SBB16ri:   case X86::SBB16ri8: | 
|  | 946 | case X86::SBB32rr:  case X86::SBB32ri:   case X86::SBB32ri8: | 
|  | 947 | case X86::SBB64rr:  case X86::SBB64ri8:  case X86::SBB64ri32: | 
|  | 948 | case X86::SUB8rr:   case X86::SUB8ri: | 
|  | 949 | case X86::SUB16rr:  case X86::SUB16ri:   case X86::SUB16ri8: | 
|  | 950 | case X86::SUB32rr:  case X86::SUB32ri:   case X86::SUB32ri8: | 
|  | 951 | case X86::SUB64rr:  case X86::SUB64ri8:  case X86::SUB64ri32: | 
|  | 952 | case X86::XOR8rr:   case X86::XOR8ri: | 
|  | 953 | case X86::XOR16rr:  case X86::XOR16ri:   case X86::XOR16ri8: | 
|  | 954 | case X86::XOR32rr:  case X86::XOR32ri:   case X86::XOR32ri8: | 
|  | 955 | case X86::XOR64rr:  case X86::XOR64ri8:  case X86::XOR64ri32: | 
|  | 956 | // Arithmetic with just 32-bit and 64-bit variants and no immediates. | 
|  | 957 | case X86::ADCX32rr: case X86::ADCX64rr: | 
|  | 958 | case X86::ADOX32rr: case X86::ADOX64rr: | 
|  | 959 | case X86::ANDN32rr: case X86::ANDN64rr: | 
| Chandler Carruth | c0cb573 | 2018-07-17 18:07:59 +0000 | [diff] [blame] | 960 | // Unary arithmetic operations. | 
| Chandler Carruth | fa065aa | 2018-07-16 14:58:32 +0000 | [diff] [blame] | 961 | case X86::DEC8r: case X86::DEC16r: case X86::DEC32r: case X86::DEC64r: | 
| Chandler Carruth | c0cb573 | 2018-07-17 18:07:59 +0000 | [diff] [blame] | 962 | case X86::INC8r: case X86::INC16r: case X86::INC32r: case X86::INC64r: | 
|  | 963 | case X86::NEG8r: case X86::NEG16r: case X86::NEG32r: case X86::NEG64r: | 
| Chandler Carruth | fa065aa | 2018-07-16 14:58:32 +0000 | [diff] [blame] | 964 | // Check whether the EFLAGS implicit-def is dead. We assume that this will | 
|  | 965 | // always find the implicit-def because this code should only be reached | 
|  | 966 | // for instructions that do in fact implicitly def this. | 
|  | 967 | if (!MI.findRegisterDefOperand(X86::EFLAGS)->isDead()) { | 
|  | 968 | // If we would clobber EFLAGS that are used, just bail for now. | 
|  | 969 | LLVM_DEBUG(dbgs() << "    Unable to harden post-load due to EFLAGS: "; | 
|  | 970 | MI.dump(); dbgs() << "\n"); | 
|  | 971 | return false; | 
|  | 972 | } | 
|  | 973 |  | 
|  | 974 | // Otherwise, fallthrough to handle these the same as instructions that | 
|  | 975 | // don't set EFLAGS. | 
|  | 976 | LLVM_FALLTHROUGH; | 
|  | 977 |  | 
| Chandler Carruth | c0cb573 | 2018-07-17 18:07:59 +0000 | [diff] [blame] | 978 | // Unlike other arithmetic, NOT doesn't set EFLAGS. | 
|  | 979 | case X86::NOT8r: case X86::NOT16r: case X86::NOT32r: case X86::NOT64r: | 
|  | 980 |  | 
|  | 981 | // Various move instructions used to zero or sign extend things. Note that we | 
|  | 982 | // intentionally don't support the _NOREX variants as we can't handle that | 
|  | 983 | // register constraint anyways. | 
|  | 984 | case X86::MOVSX16rr8: | 
|  | 985 | case X86::MOVSX32rr8: case X86::MOVSX32rr16: | 
|  | 986 | case X86::MOVSX64rr8: case X86::MOVSX64rr16: case X86::MOVSX64rr32: | 
|  | 987 | case X86::MOVZX16rr8: | 
|  | 988 | case X86::MOVZX32rr8: case X86::MOVZX32rr16: | 
|  | 989 | case X86::MOVZX64rr8: case X86::MOVZX64rr16: | 
|  | 990 | case X86::MOV32rr: | 
| Chandler Carruth | fa065aa | 2018-07-16 14:58:32 +0000 | [diff] [blame] | 991 |  | 
|  | 992 | // Arithmetic instructions that are both constant time and don't set flags. | 
|  | 993 | case X86::RORX32ri: | 
|  | 994 | case X86::RORX64ri: | 
|  | 995 | case X86::SARX32rr: | 
|  | 996 | case X86::SARX64rr: | 
|  | 997 | case X86::SHLX32rr: | 
|  | 998 | case X86::SHLX64rr: | 
|  | 999 | case X86::SHRX32rr: | 
|  | 1000 | case X86::SHRX64rr: | 
|  | 1001 |  | 
|  | 1002 | // LEA doesn't actually access memory, and its arithmetic is constant time. | 
|  | 1003 | case X86::LEA16r: | 
|  | 1004 | case X86::LEA32r: | 
|  | 1005 | case X86::LEA64_32r: | 
|  | 1006 | case X86::LEA64r: | 
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1007 | return true; | 
|  | 1008 | } | 
|  | 1009 | } | 
|  | 1010 |  | 
|  | 1011 | /// Returns true if the instruction has no behavior (specified or otherwise) | 
|  | 1012 | /// that is based on the value loaded from memory or the value of any | 
|  | 1013 | /// non-address register operands. | 
|  | 1014 | /// | 
|  | 1015 | /// For example, if the latency of the instruction is dependent on the | 
|  | 1016 | /// particular bits set in any of the registers *or* any of the bits loaded from | 
|  | 1017 | /// memory. | 
|  | 1018 | /// | 
|  | 1019 | /// A classical example of something that is inherently not data invariant is an | 
|  | 1020 | /// indirect jump -- the destination is loaded into icache based on the bits set | 
|  | 1021 | /// in the jump destination register. | 
|  | 1022 | /// | 
|  | 1023 | /// FIXME: This should become part of our instruction tables. | 
|  | 1024 | static bool isDataInvariantLoad(MachineInstr &MI) { | 
|  | 1025 | switch (MI.getOpcode()) { | 
|  | 1026 | default: | 
|  | 1027 | // By default, assume that the load will immediately leak. | 
|  | 1028 | return false; | 
|  | 1029 |  | 
| Craig Topper | 445abf7 | 2018-07-13 22:41:46 +0000 | [diff] [blame] | 1030 | // On x86 it is believed that imul is constant time w.r.t. the loaded data. | 
|  | 1031 | // However, they set flags and are perhaps the most surprisingly constant | 
|  | 1032 | // time operations so we call them out here separately. | 
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1033 | case X86::IMUL16rm: | 
|  | 1034 | case X86::IMUL16rmi8: | 
|  | 1035 | case X86::IMUL16rmi: | 
|  | 1036 | case X86::IMUL32rm: | 
|  | 1037 | case X86::IMUL32rmi8: | 
|  | 1038 | case X86::IMUL32rmi: | 
|  | 1039 | case X86::IMUL64rm: | 
|  | 1040 | case X86::IMUL64rmi32: | 
|  | 1041 | case X86::IMUL64rmi8: | 
|  | 1042 |  | 
| Craig Topper | 445abf7 | 2018-07-13 22:41:46 +0000 | [diff] [blame] | 1043 | // Bit scanning and counting instructions that are somewhat surprisingly | 
|  | 1044 | // constant time as they scan across bits and do other fairly complex | 
|  | 1045 | // operations like popcnt, but are believed to be constant time on x86. | 
|  | 1046 | // However, these set flags. | 
|  | 1047 | case X86::BSF16rm: | 
|  | 1048 | case X86::BSF32rm: | 
|  | 1049 | case X86::BSF64rm: | 
|  | 1050 | case X86::BSR16rm: | 
|  | 1051 | case X86::BSR32rm: | 
|  | 1052 | case X86::BSR64rm: | 
|  | 1053 | case X86::LZCNT16rm: | 
|  | 1054 | case X86::LZCNT32rm: | 
|  | 1055 | case X86::LZCNT64rm: | 
|  | 1056 | case X86::POPCNT16rm: | 
|  | 1057 | case X86::POPCNT32rm: | 
|  | 1058 | case X86::POPCNT64rm: | 
|  | 1059 | case X86::TZCNT16rm: | 
|  | 1060 | case X86::TZCNT32rm: | 
|  | 1061 | case X86::TZCNT64rm: | 
|  | 1062 |  | 
|  | 1063 | // Bit manipulation instructions are effectively combinations of basic | 
|  | 1064 | // arithmetic ops, and should still execute in constant time. These also | 
|  | 1065 | // set flags. | 
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1066 | case X86::BLCFILL32rm: | 
|  | 1067 | case X86::BLCFILL64rm: | 
|  | 1068 | case X86::BLCI32rm: | 
|  | 1069 | case X86::BLCI64rm: | 
|  | 1070 | case X86::BLCIC32rm: | 
|  | 1071 | case X86::BLCIC64rm: | 
|  | 1072 | case X86::BLCMSK32rm: | 
|  | 1073 | case X86::BLCMSK64rm: | 
|  | 1074 | case X86::BLCS32rm: | 
|  | 1075 | case X86::BLCS64rm: | 
|  | 1076 | case X86::BLSFILL32rm: | 
|  | 1077 | case X86::BLSFILL64rm: | 
|  | 1078 | case X86::BLSI32rm: | 
|  | 1079 | case X86::BLSI64rm: | 
|  | 1080 | case X86::BLSIC32rm: | 
|  | 1081 | case X86::BLSIC64rm: | 
|  | 1082 | case X86::BLSMSK32rm: | 
|  | 1083 | case X86::BLSMSK64rm: | 
|  | 1084 | case X86::BLSR32rm: | 
|  | 1085 | case X86::BLSR64rm: | 
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1086 | case X86::TZMSK32rm: | 
|  | 1087 | case X86::TZMSK64rm: | 
|  | 1088 |  | 
| Craig Topper | 445abf7 | 2018-07-13 22:41:46 +0000 | [diff] [blame] | 1089 | // Bit extracting and clearing instructions should execute in constant time, | 
|  | 1090 | // and set flags. | 
|  | 1091 | case X86::BEXTR32rm: | 
|  | 1092 | case X86::BEXTR64rm: | 
|  | 1093 | case X86::BEXTRI32mi: | 
|  | 1094 | case X86::BEXTRI64mi: | 
|  | 1095 | case X86::BZHI32rm: | 
|  | 1096 | case X86::BZHI64rm: | 
|  | 1097 |  | 
|  | 1098 | // Basic arithmetic is constant time on the input but does set flags. | 
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1099 | case X86::ADC8rm: | 
|  | 1100 | case X86::ADC16rm: | 
|  | 1101 | case X86::ADC32rm: | 
|  | 1102 | case X86::ADC64rm: | 
|  | 1103 | case X86::ADCX32rm: | 
|  | 1104 | case X86::ADCX64rm: | 
|  | 1105 | case X86::ADD8rm: | 
|  | 1106 | case X86::ADD16rm: | 
|  | 1107 | case X86::ADD32rm: | 
|  | 1108 | case X86::ADD64rm: | 
|  | 1109 | case X86::ADOX32rm: | 
|  | 1110 | case X86::ADOX64rm: | 
|  | 1111 | case X86::AND8rm: | 
|  | 1112 | case X86::AND16rm: | 
|  | 1113 | case X86::AND32rm: | 
|  | 1114 | case X86::AND64rm: | 
|  | 1115 | case X86::ANDN32rm: | 
|  | 1116 | case X86::ANDN64rm: | 
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1117 | case X86::OR8rm: | 
|  | 1118 | case X86::OR16rm: | 
|  | 1119 | case X86::OR32rm: | 
|  | 1120 | case X86::OR64rm: | 
|  | 1121 | case X86::SBB8rm: | 
|  | 1122 | case X86::SBB16rm: | 
|  | 1123 | case X86::SBB32rm: | 
|  | 1124 | case X86::SBB64rm: | 
|  | 1125 | case X86::SUB8rm: | 
|  | 1126 | case X86::SUB16rm: | 
|  | 1127 | case X86::SUB32rm: | 
|  | 1128 | case X86::SUB64rm: | 
|  | 1129 | case X86::XOR8rm: | 
|  | 1130 | case X86::XOR16rm: | 
|  | 1131 | case X86::XOR32rm: | 
|  | 1132 | case X86::XOR64rm: | 
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1133 | // Check whether the EFLAGS implicit-def is dead. We assume that this will | 
|  | 1134 | // always find the implicit-def because this code should only be reached | 
|  | 1135 | // for instructions that do in fact implicitly def this. | 
|  | 1136 | if (!MI.findRegisterDefOperand(X86::EFLAGS)->isDead()) { | 
|  | 1137 | // If we would clobber EFLAGS that are used, just bail for now. | 
|  | 1138 | LLVM_DEBUG(dbgs() << "    Unable to harden post-load due to EFLAGS: "; | 
|  | 1139 | MI.dump(); dbgs() << "\n"); | 
|  | 1140 | return false; | 
|  | 1141 | } | 
|  | 1142 |  | 
|  | 1143 | // Otherwise, fallthrough to handle these the same as instructions that | 
|  | 1144 | // don't set EFLAGS. | 
|  | 1145 | LLVM_FALLTHROUGH; | 
|  | 1146 |  | 
| Craig Topper | 445abf7 | 2018-07-13 22:41:46 +0000 | [diff] [blame] | 1147 | // Integer multiply w/o affecting flags is still believed to be constant | 
|  | 1148 | // time on x86. Called out separately as this is among the most surprising | 
|  | 1149 | // instructions to exhibit that behavior. | 
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1150 | case X86::MULX32rm: | 
|  | 1151 | case X86::MULX64rm: | 
|  | 1152 |  | 
| Craig Topper | 445abf7 | 2018-07-13 22:41:46 +0000 | [diff] [blame] | 1153 | // Arithmetic instructions that are both constant time and don't set flags. | 
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1154 | case X86::RORX32mi: | 
|  | 1155 | case X86::RORX64mi: | 
|  | 1156 | case X86::SARX32rm: | 
|  | 1157 | case X86::SARX64rm: | 
|  | 1158 | case X86::SHLX32rm: | 
|  | 1159 | case X86::SHLX64rm: | 
|  | 1160 | case X86::SHRX32rm: | 
|  | 1161 | case X86::SHRX64rm: | 
|  | 1162 |  | 
| Craig Topper | 445abf7 | 2018-07-13 22:41:46 +0000 | [diff] [blame] | 1163 | // Conversions are believed to be constant time and don't set flags. | 
| Craig Topper | 41fa858 | 2018-07-13 22:41:50 +0000 | [diff] [blame] | 1164 | case X86::CVTTSD2SI64rm: case X86::VCVTTSD2SI64rm: case X86::VCVTTSD2SI64Zrm: | 
|  | 1165 | case X86::CVTTSD2SIrm:   case X86::VCVTTSD2SIrm:   case X86::VCVTTSD2SIZrm: | 
|  | 1166 | case X86::CVTTSS2SI64rm: case X86::VCVTTSS2SI64rm: case X86::VCVTTSS2SI64Zrm: | 
|  | 1167 | case X86::CVTTSS2SIrm:   case X86::VCVTTSS2SIrm:   case X86::VCVTTSS2SIZrm: | 
|  | 1168 | case X86::CVTSI2SDrm:    case X86::VCVTSI2SDrm:    case X86::VCVTSI2SDZrm: | 
|  | 1169 | case X86::CVTSI2SSrm:    case X86::VCVTSI2SSrm:    case X86::VCVTSI2SSZrm: | 
|  | 1170 | case X86::CVTSI642SDrm:  case X86::VCVTSI642SDrm:  case X86::VCVTSI642SDZrm: | 
|  | 1171 | case X86::CVTSI642SSrm:  case X86::VCVTSI642SSrm:  case X86::VCVTSI642SSZrm: | 
|  | 1172 | case X86::CVTSS2SDrm:    case X86::VCVTSS2SDrm:    case X86::VCVTSS2SDZrm: | 
|  | 1173 | case X86::CVTSD2SSrm:    case X86::VCVTSD2SSrm:    case X86::VCVTSD2SSZrm: | 
|  | 1174 | // AVX512 added unsigned integer conversions. | 
|  | 1175 | case X86::VCVTTSD2USI64Zrm: | 
|  | 1176 | case X86::VCVTTSD2USIZrm: | 
|  | 1177 | case X86::VCVTTSS2USI64Zrm: | 
|  | 1178 | case X86::VCVTTSS2USIZrm: | 
|  | 1179 | case X86::VCVTUSI2SDZrm: | 
|  | 1180 | case X86::VCVTUSI642SDZrm: | 
|  | 1181 | case X86::VCVTUSI2SSZrm: | 
|  | 1182 | case X86::VCVTUSI642SSZrm: | 
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1183 |  | 
| Craig Topper | 445abf7 | 2018-07-13 22:41:46 +0000 | [diff] [blame] | 1184 | // Loads to register don't set flags. | 
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1185 | case X86::MOV8rm: | 
|  | 1186 | case X86::MOV8rm_NOREX: | 
|  | 1187 | case X86::MOV16rm: | 
|  | 1188 | case X86::MOV32rm: | 
|  | 1189 | case X86::MOV64rm: | 
|  | 1190 | case X86::MOVSX16rm8: | 
|  | 1191 | case X86::MOVSX32rm16: | 
|  | 1192 | case X86::MOVSX32rm8: | 
|  | 1193 | case X86::MOVSX32rm8_NOREX: | 
|  | 1194 | case X86::MOVSX64rm16: | 
|  | 1195 | case X86::MOVSX64rm32: | 
|  | 1196 | case X86::MOVSX64rm8: | 
|  | 1197 | case X86::MOVZX16rm8: | 
|  | 1198 | case X86::MOVZX32rm16: | 
|  | 1199 | case X86::MOVZX32rm8: | 
|  | 1200 | case X86::MOVZX32rm8_NOREX: | 
|  | 1201 | case X86::MOVZX64rm16: | 
|  | 1202 | case X86::MOVZX64rm8: | 
|  | 1203 | return true; | 
|  | 1204 | } | 
|  | 1205 | } | 
|  | 1206 |  | 
|  | 1207 | static bool isEFLAGSLive(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, | 
|  | 1208 | const TargetRegisterInfo &TRI) { | 
|  | 1209 | // Check if EFLAGS are alive by seeing if there is a def of them or they | 
|  | 1210 | // live-in, and then seeing if that def is in turn used. | 
|  | 1211 | for (MachineInstr &MI : llvm::reverse(llvm::make_range(MBB.begin(), I))) { | 
|  | 1212 | if (MachineOperand *DefOp = MI.findRegisterDefOperand(X86::EFLAGS)) { | 
|  | 1213 | // If the def is dead, then EFLAGS is not live. | 
|  | 1214 | if (DefOp->isDead()) | 
|  | 1215 | return false; | 
|  | 1216 |  | 
|  | 1217 | // Otherwise we've def'ed it, and it is live. | 
|  | 1218 | return true; | 
|  | 1219 | } | 
|  | 1220 | // While at this instruction, also check if we use and kill EFLAGS | 
|  | 1221 | // which means it isn't live. | 
|  | 1222 | if (MI.killsRegister(X86::EFLAGS, &TRI)) | 
|  | 1223 | return false; | 
|  | 1224 | } | 
|  | 1225 |  | 
|  | 1226 | // If we didn't find anything conclusive (neither definitely alive or | 
|  | 1227 | // definitely dead) return whether it lives into the block. | 
|  | 1228 | return MBB.isLiveIn(X86::EFLAGS); | 
|  | 1229 | } | 
|  | 1230 |  | 
| Chandler Carruth | 0477b40 | 2018-07-23 04:01:34 +0000 | [diff] [blame] | 1231 | /// Harden all of the loads (including implicit loads) in the function. | 
|  | 1232 | /// | 
|  | 1233 | /// This operates in two passes. First, we analyze the loads to determine which | 
|  | 1234 | /// strategy will be used to harden them: hardening the address or hardening the | 
|  | 1235 | /// loaded value when loaded into a register amenable to hardening. We have to | 
|  | 1236 | /// process these first because the two strategies may interact -- later | 
|  | 1237 | /// hardening may change what strategy we wish to use. We also will analyze | 
|  | 1238 | /// data dependencies between loads and avoid hardening those loads that are | 
|  | 1239 | /// data dependent on a load with a hardened address. We also skip hardening | 
|  | 1240 | /// loads already behind an LFENCE as that is sufficient to harden them against | 
|  | 1241 | /// misspeculation. | 
|  | 1242 | /// | 
|  | 1243 | /// Second, we apply the hardening steps we determined necessary in the first | 
|  | 1244 | /// pass. | 
|  | 1245 | /// | 
|  | 1246 | /// These two passes are applied to each basic block. We operate one block at | 
|  | 1247 | /// a time to simplify reasoning about reachability and sequencing. | 
|  | 1248 | void X86SpeculativeLoadHardeningPass::hardenAllLoads(MachineFunction &MF) { | 
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1249 | // If the actual checking of loads is disabled, skip doing anything here. | 
|  | 1250 | if (!HardenLoads) | 
|  | 1251 | return; | 
|  | 1252 |  | 
|  | 1253 | SmallPtrSet<MachineInstr *, 16> HardenPostLoad; | 
|  | 1254 | SmallPtrSet<MachineInstr *, 16> HardenLoadAddr; | 
|  | 1255 |  | 
|  | 1256 | SmallSet<unsigned, 16> HardenedAddrRegs; | 
|  | 1257 |  | 
|  | 1258 | SmallDenseMap<unsigned, unsigned, 32> AddrRegToHardenedReg; | 
|  | 1259 |  | 
|  | 1260 | // Track the set of load-dependent registers through the basic block. Because | 
|  | 1261 | // the values of these registers have an existing data dependency on a loaded | 
|  | 1262 | // value which we would have checked, we can omit any checks on them. | 
|  | 1263 | SparseBitVector<> LoadDepRegs; | 
|  | 1264 |  | 
|  | 1265 | for (MachineBasicBlock &MBB : MF) { | 
|  | 1266 | // We harden the loads of a basic block in several passes: | 
|  | 1267 | // | 
|  | 1268 | // 1) Collect all the loads which can have their loaded value hardened | 
|  | 1269 | //    and all the loads that instead need their address hardened. During | 
|  | 1270 | //    this walk we propagate load dependence for address hardened loads and | 
|  | 1271 | //    also look for LFENCE to stop hardening wherever possible. When | 
|  | 1272 | //    deciding whether or not to harden the loaded value or not, we check | 
|  | 1273 | //    to see if any registers used in the address will have been hardened | 
|  | 1274 | //    at this point and if so, harden any remaining address registers as | 
|  | 1275 | //    that often successfully re-uses hardened addresses and minimizes | 
|  | 1276 | //    instructions. FIXME: We should consider an aggressive mode where we | 
|  | 1277 | //    continue to keep as many loads value hardened even when some address | 
|  | 1278 | //    register hardening would be free (due to reuse). | 
|  | 1279 | for (MachineInstr &MI : MBB) { | 
|  | 1280 | // We naively assume that all def'ed registers of an instruction have | 
|  | 1281 | // a data dependency on all of their operands. | 
|  | 1282 | // FIXME: Do a more careful analysis of x86 to build a conservative model | 
|  | 1283 | // here. | 
|  | 1284 | if (llvm::any_of(MI.uses(), [&](MachineOperand &Op) { | 
|  | 1285 | return Op.isReg() && LoadDepRegs.test(Op.getReg()); | 
|  | 1286 | })) | 
|  | 1287 | for (MachineOperand &Def : MI.defs()) | 
|  | 1288 | if (Def.isReg()) | 
|  | 1289 | LoadDepRegs.set(Def.getReg()); | 
|  | 1290 |  | 
|  | 1291 | // Both Intel and AMD are guiding that they will change the semantics of | 
|  | 1292 | // LFENCE to be a speculation barrier, so if we see an LFENCE, there is | 
|  | 1293 | // no more need to guard things in this block. | 
|  | 1294 | if (MI.getOpcode() == X86::LFENCE) | 
|  | 1295 | break; | 
|  | 1296 |  | 
|  | 1297 | // If this instruction cannot load, nothing to do. | 
|  | 1298 | if (!MI.mayLoad()) | 
|  | 1299 | continue; | 
|  | 1300 |  | 
|  | 1301 | // Some instructions which "load" are trivially safe or unimportant. | 
|  | 1302 | if (MI.getOpcode() == X86::MFENCE) | 
|  | 1303 | continue; | 
|  | 1304 |  | 
|  | 1305 | // Extract the memory operand information about this instruction. | 
|  | 1306 | // FIXME: This doesn't handle loading pseudo instructions which we often | 
|  | 1307 | // could handle with similarly generic logic. We probably need to add an | 
|  | 1308 | // MI-layer routine similar to the MC-layer one we use here which maps | 
|  | 1309 | // pseudos much like this maps real instructions. | 
|  | 1310 | const MCInstrDesc &Desc = MI.getDesc(); | 
|  | 1311 | int MemRefBeginIdx = X86II::getMemoryOperandNo(Desc.TSFlags); | 
|  | 1312 | if (MemRefBeginIdx < 0) { | 
|  | 1313 | LLVM_DEBUG(dbgs() << "WARNING: unable to harden loading instruction: "; | 
|  | 1314 | MI.dump()); | 
|  | 1315 | continue; | 
|  | 1316 | } | 
|  | 1317 |  | 
|  | 1318 | MemRefBeginIdx += X86II::getOperandBias(Desc); | 
|  | 1319 |  | 
|  | 1320 | MachineOperand &BaseMO = MI.getOperand(MemRefBeginIdx + X86::AddrBaseReg); | 
|  | 1321 | MachineOperand &IndexMO = | 
|  | 1322 | MI.getOperand(MemRefBeginIdx + X86::AddrIndexReg); | 
|  | 1323 |  | 
|  | 1324 | // If we have at least one (non-frame-index, non-RIP) register operand, | 
|  | 1325 | // and neither operand is load-dependent, we need to check the load. | 
|  | 1326 | unsigned BaseReg = 0, IndexReg = 0; | 
|  | 1327 | if (!BaseMO.isFI() && BaseMO.getReg() != X86::RIP && | 
|  | 1328 | BaseMO.getReg() != X86::NoRegister) | 
|  | 1329 | BaseReg = BaseMO.getReg(); | 
|  | 1330 | if (IndexMO.getReg() != X86::NoRegister) | 
|  | 1331 | IndexReg = IndexMO.getReg(); | 
|  | 1332 |  | 
|  | 1333 | if (!BaseReg && !IndexReg) | 
|  | 1334 | // No register operands! | 
|  | 1335 | continue; | 
|  | 1336 |  | 
|  | 1337 | // If any register operand is dependent, this load is dependent and we | 
|  | 1338 | // needn't check it. | 
|  | 1339 | // FIXME: Is this true in the case where we are hardening loads after | 
|  | 1340 | // they complete? Unclear, need to investigate. | 
|  | 1341 | if ((BaseReg && LoadDepRegs.test(BaseReg)) || | 
|  | 1342 | (IndexReg && LoadDepRegs.test(IndexReg))) | 
|  | 1343 | continue; | 
|  | 1344 |  | 
| Chandler Carruth | e66a6f4 | 2018-07-16 11:38:48 +0000 | [diff] [blame] | 1345 | // If post-load hardening is enabled, this load is compatible with | 
|  | 1346 | // post-load hardening, and we aren't already going to harden one of the | 
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1347 | // address registers, queue it up to be hardened post-load. Notably, even | 
|  | 1348 | // once hardened this won't introduce a useful dependency that could prune | 
|  | 1349 | // out subsequent loads. | 
| Chandler Carruth | fa065aa | 2018-07-16 14:58:32 +0000 | [diff] [blame] | 1350 | if (EnablePostLoadHardening && isDataInvariantLoad(MI) && | 
|  | 1351 | MI.getDesc().getNumDefs() == 1 && MI.getOperand(0).isReg() && | 
|  | 1352 | canHardenRegister(MI.getOperand(0).getReg()) && | 
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1353 | !HardenedAddrRegs.count(BaseReg) && | 
|  | 1354 | !HardenedAddrRegs.count(IndexReg)) { | 
|  | 1355 | HardenPostLoad.insert(&MI); | 
|  | 1356 | HardenedAddrRegs.insert(MI.getOperand(0).getReg()); | 
|  | 1357 | continue; | 
|  | 1358 | } | 
|  | 1359 |  | 
|  | 1360 | // Record this instruction for address hardening and record its register | 
|  | 1361 | // operands as being address-hardened. | 
|  | 1362 | HardenLoadAddr.insert(&MI); | 
|  | 1363 | if (BaseReg) | 
|  | 1364 | HardenedAddrRegs.insert(BaseReg); | 
|  | 1365 | if (IndexReg) | 
|  | 1366 | HardenedAddrRegs.insert(IndexReg); | 
|  | 1367 |  | 
|  | 1368 | for (MachineOperand &Def : MI.defs()) | 
|  | 1369 | if (Def.isReg()) | 
|  | 1370 | LoadDepRegs.set(Def.getReg()); | 
|  | 1371 | } | 
|  | 1372 |  | 
|  | 1373 | // Now re-walk the instructions in the basic block, and apply whichever | 
|  | 1374 | // hardening strategy we have elected. Note that we do this in a second | 
|  | 1375 | // pass specifically so that we have the complete set of instructions for | 
|  | 1376 | // which we will do post-load hardening and can defer it in certain | 
|  | 1377 | // circumstances. | 
|  | 1378 | // | 
|  | 1379 | // FIXME: This could probably be made even more effective by doing it | 
|  | 1380 | // across the entire function. Rather than just walking the flat list | 
|  | 1381 | // backwards here, we could walk the function in PO and each block bottom | 
|  | 1382 | // up, allowing us to in some cases sink hardening across block blocks. As | 
|  | 1383 | // long as the in-block predicate state is used at the eventual hardening | 
|  | 1384 | // site, this remains safe. | 
|  | 1385 | for (MachineInstr &MI : MBB) { | 
|  | 1386 | // We cannot both require hardening the def of a load and its address. | 
|  | 1387 | assert(!(HardenLoadAddr.count(&MI) && HardenPostLoad.count(&MI)) && | 
|  | 1388 | "Requested to harden both the address and def of a load!"); | 
|  | 1389 |  | 
|  | 1390 | // Check if this is a load whose address needs to be hardened. | 
|  | 1391 | if (HardenLoadAddr.erase(&MI)) { | 
|  | 1392 | const MCInstrDesc &Desc = MI.getDesc(); | 
|  | 1393 | int MemRefBeginIdx = X86II::getMemoryOperandNo(Desc.TSFlags); | 
|  | 1394 | assert(MemRefBeginIdx >= 0 && "Cannot have an invalid index here!"); | 
|  | 1395 |  | 
|  | 1396 | MemRefBeginIdx += X86II::getOperandBias(Desc); | 
|  | 1397 |  | 
|  | 1398 | MachineOperand &BaseMO = | 
|  | 1399 | MI.getOperand(MemRefBeginIdx + X86::AddrBaseReg); | 
|  | 1400 | MachineOperand &IndexMO = | 
|  | 1401 | MI.getOperand(MemRefBeginIdx + X86::AddrIndexReg); | 
| Chandler Carruth | 4b0028a | 2018-07-19 11:13:58 +0000 | [diff] [blame] | 1402 | hardenLoadAddr(MI, BaseMO, IndexMO, AddrRegToHardenedReg); | 
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1403 | continue; | 
|  | 1404 | } | 
|  | 1405 |  | 
|  | 1406 | // Test if this instruction is one of our post load instructions (and | 
|  | 1407 | // remove it from the set if so). | 
|  | 1408 | if (HardenPostLoad.erase(&MI)) { | 
|  | 1409 | assert(!MI.isCall() && "Must not try to post-load harden a call!"); | 
|  | 1410 |  | 
|  | 1411 | // If this is a data-invariant load, we want to try and sink any | 
|  | 1412 | // hardening as far as possible. | 
|  | 1413 | if (isDataInvariantLoad(MI)) { | 
|  | 1414 | // Sink the instruction we'll need to harden as far as we can down the | 
|  | 1415 | // graph. | 
|  | 1416 | MachineInstr *SunkMI = sinkPostLoadHardenedInst(MI, HardenPostLoad); | 
|  | 1417 |  | 
|  | 1418 | // If we managed to sink this instruction, update everything so we | 
|  | 1419 | // harden that instruction when we reach it in the instruction | 
|  | 1420 | // sequence. | 
|  | 1421 | if (SunkMI != &MI) { | 
|  | 1422 | // If in sinking there was no instruction needing to be hardened, | 
|  | 1423 | // we're done. | 
|  | 1424 | if (!SunkMI) | 
|  | 1425 | continue; | 
|  | 1426 |  | 
|  | 1427 | // Otherwise, add this to the set of defs we harden. | 
|  | 1428 | HardenPostLoad.insert(SunkMI); | 
|  | 1429 | continue; | 
|  | 1430 | } | 
|  | 1431 | } | 
|  | 1432 |  | 
|  | 1433 | // The register def'ed by this instruction is trivially hardened so map | 
|  | 1434 | // it to itself. | 
|  | 1435 | AddrRegToHardenedReg[MI.getOperand(0).getReg()] = | 
|  | 1436 | MI.getOperand(0).getReg(); | 
|  | 1437 |  | 
| Chandler Carruth | 4b0028a | 2018-07-19 11:13:58 +0000 | [diff] [blame] | 1438 | hardenPostLoad(MI); | 
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1439 | continue; | 
|  | 1440 | } | 
|  | 1441 |  | 
|  | 1442 | // After we finish processing the instruction and doing any hardening | 
|  | 1443 | // necessary for it, we need to handle transferring the predicate state | 
|  | 1444 | // into a call and recovering it after the call returns (if it returns). | 
|  | 1445 | if (!MI.isCall()) | 
|  | 1446 | continue; | 
|  | 1447 |  | 
|  | 1448 | // If we're not hardening interprocedurally, we can just skip calls. | 
|  | 1449 | if (!HardenInterprocedurally) | 
|  | 1450 | continue; | 
|  | 1451 |  | 
|  | 1452 | auto InsertPt = MI.getIterator(); | 
|  | 1453 | DebugLoc Loc = MI.getDebugLoc(); | 
|  | 1454 |  | 
|  | 1455 | // First, we transfer the predicate state into the called function by | 
|  | 1456 | // merging it into the stack pointer. This will kill the current def of | 
|  | 1457 | // the state. | 
| Chandler Carruth | 4b0028a | 2018-07-19 11:13:58 +0000 | [diff] [blame] | 1458 | unsigned StateReg = PS->SSA.GetValueAtEndOfBlock(&MBB); | 
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1459 | mergePredStateIntoSP(MBB, InsertPt, Loc, StateReg); | 
|  | 1460 |  | 
|  | 1461 | // If this call is also a return (because it is a tail call) we're done. | 
|  | 1462 | if (MI.isReturn()) | 
|  | 1463 | continue; | 
|  | 1464 |  | 
|  | 1465 | // Otherwise we need to step past the call and recover the predicate | 
|  | 1466 | // state from SP after the return, and make this new state available. | 
|  | 1467 | ++InsertPt; | 
|  | 1468 | unsigned NewStateReg = extractPredStateFromSP(MBB, InsertPt, Loc); | 
| Chandler Carruth | 4b0028a | 2018-07-19 11:13:58 +0000 | [diff] [blame] | 1469 | PS->SSA.AddAvailableValue(&MBB, NewStateReg); | 
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1470 | } | 
|  | 1471 |  | 
|  | 1472 | HardenPostLoad.clear(); | 
|  | 1473 | HardenLoadAddr.clear(); | 
|  | 1474 | HardenedAddrRegs.clear(); | 
|  | 1475 | AddrRegToHardenedReg.clear(); | 
|  | 1476 |  | 
|  | 1477 | // Currently, we only track data-dependent loads within a basic block. | 
|  | 1478 | // FIXME: We should see if this is necessary or if we could be more | 
|  | 1479 | // aggressive here without opening up attack avenues. | 
|  | 1480 | LoadDepRegs.clear(); | 
|  | 1481 | } | 
|  | 1482 | } | 
|  | 1483 |  | 
|  | 1484 | /// Save EFLAGS into the returned GPR. This can in turn be restored with | 
|  | 1485 | /// `restoreEFLAGS`. | 
|  | 1486 | /// | 
|  | 1487 | /// Note that LLVM can only lower very simple patterns of saved and restored | 
|  | 1488 | /// EFLAGS registers. The restore should always be within the same basic block | 
|  | 1489 | /// as the save so that no PHI nodes are inserted. | 
|  | 1490 | unsigned X86SpeculativeLoadHardeningPass::saveEFLAGS( | 
|  | 1491 | MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt, | 
|  | 1492 | DebugLoc Loc) { | 
|  | 1493 | // FIXME: Hard coding this to a 32-bit register class seems weird, but matches | 
|  | 1494 | // what instruction selection does. | 
|  | 1495 | unsigned Reg = MRI->createVirtualRegister(&X86::GR32RegClass); | 
|  | 1496 | // We directly copy the FLAGS register and rely on later lowering to clean | 
|  | 1497 | // this up into the appropriate setCC instructions. | 
|  | 1498 | BuildMI(MBB, InsertPt, Loc, TII->get(X86::COPY), Reg).addReg(X86::EFLAGS); | 
|  | 1499 | ++NumInstsInserted; | 
|  | 1500 | return Reg; | 
|  | 1501 | } | 
|  | 1502 |  | 
|  | 1503 | /// Restore EFLAGS from the provided GPR. This should be produced by | 
|  | 1504 | /// `saveEFLAGS`. | 
|  | 1505 | /// | 
|  | 1506 | /// This must be done within the same basic block as the save in order to | 
|  | 1507 | /// reliably lower. | 
|  | 1508 | void X86SpeculativeLoadHardeningPass::restoreEFLAGS( | 
|  | 1509 | MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt, DebugLoc Loc, | 
|  | 1510 | unsigned Reg) { | 
|  | 1511 | BuildMI(MBB, InsertPt, Loc, TII->get(X86::COPY), X86::EFLAGS).addReg(Reg); | 
|  | 1512 | ++NumInstsInserted; | 
|  | 1513 | } | 
|  | 1514 |  | 
|  | 1515 | /// Takes the current predicate state (in a register) and merges it into the | 
|  | 1516 | /// stack pointer. The state is essentially a single bit, but we merge this in | 
|  | 1517 | /// a way that won't form non-canonical pointers and also will be preserved | 
|  | 1518 | /// across normal stack adjustments. | 
|  | 1519 | void X86SpeculativeLoadHardeningPass::mergePredStateIntoSP( | 
|  | 1520 | MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt, DebugLoc Loc, | 
|  | 1521 | unsigned PredStateReg) { | 
| Chandler Carruth | 4b0028a | 2018-07-19 11:13:58 +0000 | [diff] [blame] | 1522 | unsigned TmpReg = MRI->createVirtualRegister(PS->RC); | 
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1523 | // FIXME: This hard codes a shift distance based on the number of bits needed | 
|  | 1524 | // to stay canonical on 64-bit. We should compute this somehow and support | 
|  | 1525 | // 32-bit as part of that. | 
|  | 1526 | auto ShiftI = BuildMI(MBB, InsertPt, Loc, TII->get(X86::SHL64ri), TmpReg) | 
|  | 1527 | .addReg(PredStateReg, RegState::Kill) | 
|  | 1528 | .addImm(47); | 
|  | 1529 | ShiftI->addRegisterDead(X86::EFLAGS, TRI); | 
|  | 1530 | ++NumInstsInserted; | 
|  | 1531 | auto OrI = BuildMI(MBB, InsertPt, Loc, TII->get(X86::OR64rr), X86::RSP) | 
|  | 1532 | .addReg(X86::RSP) | 
|  | 1533 | .addReg(TmpReg, RegState::Kill); | 
|  | 1534 | OrI->addRegisterDead(X86::EFLAGS, TRI); | 
|  | 1535 | ++NumInstsInserted; | 
|  | 1536 | } | 
|  | 1537 |  | 
|  | 1538 | /// Extracts the predicate state stored in the high bits of the stack pointer. | 
|  | 1539 | unsigned X86SpeculativeLoadHardeningPass::extractPredStateFromSP( | 
|  | 1540 | MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt, | 
|  | 1541 | DebugLoc Loc) { | 
| Chandler Carruth | 4b0028a | 2018-07-19 11:13:58 +0000 | [diff] [blame] | 1542 | unsigned PredStateReg = MRI->createVirtualRegister(PS->RC); | 
|  | 1543 | unsigned TmpReg = MRI->createVirtualRegister(PS->RC); | 
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1544 |  | 
|  | 1545 | // We know that the stack pointer will have any preserved predicate state in | 
|  | 1546 | // its high bit. We just want to smear this across the other bits. Turns out, | 
|  | 1547 | // this is exactly what an arithmetic right shift does. | 
|  | 1548 | BuildMI(MBB, InsertPt, Loc, TII->get(TargetOpcode::COPY), TmpReg) | 
|  | 1549 | .addReg(X86::RSP); | 
|  | 1550 | auto ShiftI = | 
|  | 1551 | BuildMI(MBB, InsertPt, Loc, TII->get(X86::SAR64ri), PredStateReg) | 
|  | 1552 | .addReg(TmpReg, RegState::Kill) | 
| Chandler Carruth | 4b0028a | 2018-07-19 11:13:58 +0000 | [diff] [blame] | 1553 | .addImm(TRI->getRegSizeInBits(*PS->RC) - 1); | 
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1554 | ShiftI->addRegisterDead(X86::EFLAGS, TRI); | 
|  | 1555 | ++NumInstsInserted; | 
|  | 1556 |  | 
|  | 1557 | return PredStateReg; | 
|  | 1558 | } | 
|  | 1559 |  | 
|  | 1560 | void X86SpeculativeLoadHardeningPass::hardenLoadAddr( | 
|  | 1561 | MachineInstr &MI, MachineOperand &BaseMO, MachineOperand &IndexMO, | 
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1562 | SmallDenseMap<unsigned, unsigned, 32> &AddrRegToHardenedReg) { | 
|  | 1563 | MachineBasicBlock &MBB = *MI.getParent(); | 
|  | 1564 | DebugLoc Loc = MI.getDebugLoc(); | 
|  | 1565 |  | 
|  | 1566 | // Check if EFLAGS are alive by seeing if there is a def of them or they | 
|  | 1567 | // live-in, and then seeing if that def is in turn used. | 
|  | 1568 | bool EFLAGSLive = isEFLAGSLive(MBB, MI.getIterator(), *TRI); | 
|  | 1569 |  | 
|  | 1570 | SmallVector<MachineOperand *, 2> HardenOpRegs; | 
|  | 1571 |  | 
|  | 1572 | if (BaseMO.isFI()) { | 
|  | 1573 | // A frame index is never a dynamically controllable load, so only | 
|  | 1574 | // harden it if we're covering fixed address loads as well. | 
|  | 1575 | LLVM_DEBUG( | 
|  | 1576 | dbgs() << "  Skipping hardening base of explicit stack frame load: "; | 
|  | 1577 | MI.dump(); dbgs() << "\n"); | 
|  | 1578 | } else if (BaseMO.getReg() == X86::RIP || | 
|  | 1579 | BaseMO.getReg() == X86::NoRegister) { | 
|  | 1580 | // For both RIP-relative addressed loads or absolute loads, we cannot | 
|  | 1581 | // meaningfully harden them because the address being loaded has no | 
|  | 1582 | // dynamic component. | 
|  | 1583 | // | 
|  | 1584 | // FIXME: When using a segment base (like TLS does) we end up with the | 
|  | 1585 | // dynamic address being the base plus -1 because we can't mutate the | 
|  | 1586 | // segment register here. This allows the signed 32-bit offset to point at | 
|  | 1587 | // valid segment-relative addresses and load them successfully. | 
|  | 1588 | LLVM_DEBUG( | 
|  | 1589 | dbgs() << "  Cannot harden base of " | 
|  | 1590 | << (BaseMO.getReg() == X86::RIP ? "RIP-relative" : "no-base") | 
|  | 1591 | << " address in a load!"); | 
|  | 1592 | } else { | 
|  | 1593 | assert(BaseMO.isReg() && | 
|  | 1594 | "Only allowed to have a frame index or register base."); | 
|  | 1595 | HardenOpRegs.push_back(&BaseMO); | 
|  | 1596 | } | 
|  | 1597 |  | 
|  | 1598 | if (IndexMO.getReg() != X86::NoRegister && | 
|  | 1599 | (HardenOpRegs.empty() || | 
|  | 1600 | HardenOpRegs.front()->getReg() != IndexMO.getReg())) | 
|  | 1601 | HardenOpRegs.push_back(&IndexMO); | 
|  | 1602 |  | 
|  | 1603 | assert((HardenOpRegs.size() == 1 || HardenOpRegs.size() == 2) && | 
|  | 1604 | "Should have exactly one or two registers to harden!"); | 
|  | 1605 | assert((HardenOpRegs.size() == 1 || | 
|  | 1606 | HardenOpRegs[0]->getReg() != HardenOpRegs[1]->getReg()) && | 
|  | 1607 | "Should not have two of the same registers!"); | 
|  | 1608 |  | 
|  | 1609 | // Remove any registers that have alreaded been checked. | 
|  | 1610 | llvm::erase_if(HardenOpRegs, [&](MachineOperand *Op) { | 
|  | 1611 | // See if this operand's register has already been checked. | 
|  | 1612 | auto It = AddrRegToHardenedReg.find(Op->getReg()); | 
|  | 1613 | if (It == AddrRegToHardenedReg.end()) | 
|  | 1614 | // Not checked, so retain this one. | 
|  | 1615 | return false; | 
|  | 1616 |  | 
|  | 1617 | // Otherwise, we can directly update this operand and remove it. | 
|  | 1618 | Op->setReg(It->second); | 
|  | 1619 | return true; | 
|  | 1620 | }); | 
|  | 1621 | // If there are none left, we're done. | 
|  | 1622 | if (HardenOpRegs.empty()) | 
|  | 1623 | return; | 
|  | 1624 |  | 
|  | 1625 | // Compute the current predicate state. | 
| Chandler Carruth | 4b0028a | 2018-07-19 11:13:58 +0000 | [diff] [blame] | 1626 | unsigned StateReg = PS->SSA.GetValueAtEndOfBlock(&MBB); | 
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1627 |  | 
|  | 1628 | auto InsertPt = MI.getIterator(); | 
|  | 1629 |  | 
|  | 1630 | // If EFLAGS are live and we don't have access to instructions that avoid | 
|  | 1631 | // clobbering EFLAGS we need to save and restore them. This in turn makes | 
|  | 1632 | // the EFLAGS no longer live. | 
|  | 1633 | unsigned FlagsReg = 0; | 
|  | 1634 | if (EFLAGSLive && !Subtarget->hasBMI2()) { | 
|  | 1635 | EFLAGSLive = false; | 
|  | 1636 | FlagsReg = saveEFLAGS(MBB, InsertPt, Loc); | 
|  | 1637 | } | 
|  | 1638 |  | 
|  | 1639 | for (MachineOperand *Op : HardenOpRegs) { | 
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1640 | unsigned OpReg = Op->getReg(); | 
| Chandler Carruth | cdf0add | 2018-07-16 04:17:51 +0000 | [diff] [blame] | 1641 | auto *OpRC = MRI->getRegClass(OpReg); | 
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1642 | unsigned TmpReg = MRI->createVirtualRegister(OpRC); | 
|  | 1643 |  | 
| Chandler Carruth | cdf0add | 2018-07-16 04:17:51 +0000 | [diff] [blame] | 1644 | // If this is a vector register, we'll need somewhat custom logic to handle | 
|  | 1645 | // hardening it. | 
|  | 1646 | if (!Subtarget->hasVLX() && (OpRC->hasSuperClassEq(&X86::VR128RegClass) || | 
|  | 1647 | OpRC->hasSuperClassEq(&X86::VR256RegClass))) { | 
|  | 1648 | assert(Subtarget->hasAVX2() && "AVX2-specific register classes!"); | 
|  | 1649 | bool Is128Bit = OpRC->hasSuperClassEq(&X86::VR128RegClass); | 
|  | 1650 |  | 
|  | 1651 | // Move our state into a vector register. | 
|  | 1652 | // FIXME: We could skip this at the cost of longer encodings with AVX-512 | 
|  | 1653 | // but that doesn't seem likely worth it. | 
|  | 1654 | unsigned VStateReg = MRI->createVirtualRegister(&X86::VR128RegClass); | 
|  | 1655 | auto MovI = | 
|  | 1656 | BuildMI(MBB, InsertPt, Loc, TII->get(X86::VMOV64toPQIrr), VStateReg) | 
|  | 1657 | .addReg(StateReg); | 
|  | 1658 | (void)MovI; | 
|  | 1659 | ++NumInstsInserted; | 
|  | 1660 | LLVM_DEBUG(dbgs() << "  Inserting mov: "; MovI->dump(); dbgs() << "\n"); | 
|  | 1661 |  | 
|  | 1662 | // Broadcast it across the vector register. | 
|  | 1663 | unsigned VBStateReg = MRI->createVirtualRegister(OpRC); | 
|  | 1664 | auto BroadcastI = BuildMI(MBB, InsertPt, Loc, | 
|  | 1665 | TII->get(Is128Bit ? X86::VPBROADCASTQrr | 
|  | 1666 | : X86::VPBROADCASTQYrr), | 
|  | 1667 | VBStateReg) | 
|  | 1668 | .addReg(VStateReg); | 
|  | 1669 | (void)BroadcastI; | 
|  | 1670 | ++NumInstsInserted; | 
|  | 1671 | LLVM_DEBUG(dbgs() << "  Inserting broadcast: "; BroadcastI->dump(); | 
|  | 1672 | dbgs() << "\n"); | 
|  | 1673 |  | 
|  | 1674 | // Merge our potential poison state into the value with a vector or. | 
|  | 1675 | auto OrI = | 
|  | 1676 | BuildMI(MBB, InsertPt, Loc, | 
|  | 1677 | TII->get(Is128Bit ? X86::VPORrr : X86::VPORYrr), TmpReg) | 
|  | 1678 | .addReg(VBStateReg) | 
|  | 1679 | .addReg(OpReg); | 
|  | 1680 | (void)OrI; | 
|  | 1681 | ++NumInstsInserted; | 
|  | 1682 | LLVM_DEBUG(dbgs() << "  Inserting or: "; OrI->dump(); dbgs() << "\n"); | 
|  | 1683 | } else if (OpRC->hasSuperClassEq(&X86::VR128XRegClass) || | 
|  | 1684 | OpRC->hasSuperClassEq(&X86::VR256XRegClass) || | 
|  | 1685 | OpRC->hasSuperClassEq(&X86::VR512RegClass)) { | 
|  | 1686 | assert(Subtarget->hasAVX512() && "AVX512-specific register classes!"); | 
|  | 1687 | bool Is128Bit = OpRC->hasSuperClassEq(&X86::VR128XRegClass); | 
|  | 1688 | bool Is256Bit = OpRC->hasSuperClassEq(&X86::VR256XRegClass); | 
|  | 1689 | if (Is128Bit || Is256Bit) | 
|  | 1690 | assert(Subtarget->hasVLX() && "AVX512VL-specific register classes!"); | 
|  | 1691 |  | 
|  | 1692 | // Broadcast our state into a vector register. | 
|  | 1693 | unsigned VStateReg = MRI->createVirtualRegister(OpRC); | 
|  | 1694 | unsigned BroadcastOp = | 
|  | 1695 | Is128Bit ? X86::VPBROADCASTQrZ128r | 
|  | 1696 | : Is256Bit ? X86::VPBROADCASTQrZ256r : X86::VPBROADCASTQrZr; | 
|  | 1697 | auto BroadcastI = | 
|  | 1698 | BuildMI(MBB, InsertPt, Loc, TII->get(BroadcastOp), VStateReg) | 
|  | 1699 | .addReg(StateReg); | 
|  | 1700 | (void)BroadcastI; | 
|  | 1701 | ++NumInstsInserted; | 
|  | 1702 | LLVM_DEBUG(dbgs() << "  Inserting broadcast: "; BroadcastI->dump(); | 
|  | 1703 | dbgs() << "\n"); | 
|  | 1704 |  | 
|  | 1705 | // Merge our potential poison state into the value with a vector or. | 
|  | 1706 | unsigned OrOp = Is128Bit ? X86::VPORQZ128rr | 
|  | 1707 | : Is256Bit ? X86::VPORQZ256rr : X86::VPORQZrr; | 
|  | 1708 | auto OrI = BuildMI(MBB, InsertPt, Loc, TII->get(OrOp), TmpReg) | 
|  | 1709 | .addReg(VStateReg) | 
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1710 | .addReg(OpReg); | 
| Chandler Carruth | bc46bca | 2018-07-16 04:42:27 +0000 | [diff] [blame] | 1711 | (void)OrI; | 
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1712 | ++NumInstsInserted; | 
|  | 1713 | LLVM_DEBUG(dbgs() << "  Inserting or: "; OrI->dump(); dbgs() << "\n"); | 
|  | 1714 | } else { | 
| Chandler Carruth | cdf0add | 2018-07-16 04:17:51 +0000 | [diff] [blame] | 1715 | // FIXME: Need to support GR32 here for 32-bit code. | 
|  | 1716 | assert(OpRC->hasSuperClassEq(&X86::GR64RegClass) && | 
|  | 1717 | "Not a supported register class for address hardening!"); | 
|  | 1718 |  | 
|  | 1719 | if (!EFLAGSLive) { | 
|  | 1720 | // Merge our potential poison state into the value with an or. | 
|  | 1721 | auto OrI = BuildMI(MBB, InsertPt, Loc, TII->get(X86::OR64rr), TmpReg) | 
|  | 1722 | .addReg(StateReg) | 
|  | 1723 | .addReg(OpReg); | 
|  | 1724 | OrI->addRegisterDead(X86::EFLAGS, TRI); | 
|  | 1725 | ++NumInstsInserted; | 
|  | 1726 | LLVM_DEBUG(dbgs() << "  Inserting or: "; OrI->dump(); dbgs() << "\n"); | 
|  | 1727 | } else { | 
|  | 1728 | // We need to avoid touching EFLAGS so shift out all but the least | 
|  | 1729 | // significant bit using the instruction that doesn't update flags. | 
|  | 1730 | auto ShiftI = | 
|  | 1731 | BuildMI(MBB, InsertPt, Loc, TII->get(X86::SHRX64rr), TmpReg) | 
|  | 1732 | .addReg(OpReg) | 
|  | 1733 | .addReg(StateReg); | 
|  | 1734 | (void)ShiftI; | 
|  | 1735 | ++NumInstsInserted; | 
|  | 1736 | LLVM_DEBUG(dbgs() << "  Inserting shrx: "; ShiftI->dump(); | 
|  | 1737 | dbgs() << "\n"); | 
|  | 1738 | } | 
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1739 | } | 
|  | 1740 |  | 
|  | 1741 | // Record this register as checked and update the operand. | 
|  | 1742 | assert(!AddrRegToHardenedReg.count(Op->getReg()) && | 
|  | 1743 | "Should not have checked this register yet!"); | 
|  | 1744 | AddrRegToHardenedReg[Op->getReg()] = TmpReg; | 
|  | 1745 | Op->setReg(TmpReg); | 
|  | 1746 | ++NumAddrRegsHardened; | 
|  | 1747 | } | 
|  | 1748 |  | 
|  | 1749 | // And restore the flags if needed. | 
|  | 1750 | if (FlagsReg) | 
|  | 1751 | restoreEFLAGS(MBB, InsertPt, Loc, FlagsReg); | 
|  | 1752 | } | 
|  | 1753 |  | 
|  | 1754 | MachineInstr *X86SpeculativeLoadHardeningPass::sinkPostLoadHardenedInst( | 
| Chandler Carruth | fa065aa | 2018-07-16 14:58:32 +0000 | [diff] [blame] | 1755 | MachineInstr &InitialMI, SmallPtrSetImpl<MachineInstr *> &HardenedInstrs) { | 
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1756 | assert(isDataInvariantLoad(InitialMI) && | 
|  | 1757 | "Cannot get here with a non-invariant load!"); | 
|  | 1758 |  | 
|  | 1759 | // See if we can sink hardening the loaded value. | 
|  | 1760 | auto SinkCheckToSingleUse = | 
|  | 1761 | [&](MachineInstr &MI) -> Optional<MachineInstr *> { | 
|  | 1762 | unsigned DefReg = MI.getOperand(0).getReg(); | 
|  | 1763 |  | 
|  | 1764 | // We need to find a single use which we can sink the check. We can | 
|  | 1765 | // primarily do this because many uses may already end up checked on their | 
|  | 1766 | // own. | 
|  | 1767 | MachineInstr *SingleUseMI = nullptr; | 
|  | 1768 | for (MachineInstr &UseMI : MRI->use_instructions(DefReg)) { | 
|  | 1769 | // If we're already going to harden this use, it is data invariant and | 
| Chandler Carruth | fa065aa | 2018-07-16 14:58:32 +0000 | [diff] [blame] | 1770 | // within our block. | 
|  | 1771 | if (HardenedInstrs.count(&UseMI)) { | 
|  | 1772 | if (!isDataInvariantLoad(UseMI)) { | 
|  | 1773 | // If we've already decided to harden a non-load, we must have sunk | 
|  | 1774 | // some other post-load hardened instruction to it and it must itself | 
|  | 1775 | // be data-invariant. | 
|  | 1776 | assert(isDataInvariant(UseMI) && | 
|  | 1777 | "Data variant instruction being hardened!"); | 
|  | 1778 | continue; | 
|  | 1779 | } | 
|  | 1780 |  | 
|  | 1781 | // Otherwise, this is a load and the load component can't be data | 
|  | 1782 | // invariant so check how this register is being used. | 
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1783 | const MCInstrDesc &Desc = UseMI.getDesc(); | 
|  | 1784 | int MemRefBeginIdx = X86II::getMemoryOperandNo(Desc.TSFlags); | 
|  | 1785 | assert(MemRefBeginIdx >= 0 && | 
|  | 1786 | "Should always have mem references here!"); | 
|  | 1787 | MemRefBeginIdx += X86II::getOperandBias(Desc); | 
|  | 1788 |  | 
|  | 1789 | MachineOperand &BaseMO = | 
|  | 1790 | UseMI.getOperand(MemRefBeginIdx + X86::AddrBaseReg); | 
|  | 1791 | MachineOperand &IndexMO = | 
|  | 1792 | UseMI.getOperand(MemRefBeginIdx + X86::AddrIndexReg); | 
|  | 1793 | if ((BaseMO.isReg() && BaseMO.getReg() == DefReg) || | 
|  | 1794 | (IndexMO.isReg() && IndexMO.getReg() == DefReg)) | 
|  | 1795 | // The load uses the register as part of its address making it not | 
|  | 1796 | // invariant. | 
|  | 1797 | return {}; | 
|  | 1798 |  | 
|  | 1799 | continue; | 
|  | 1800 | } | 
|  | 1801 |  | 
|  | 1802 | if (SingleUseMI) | 
|  | 1803 | // We already have a single use, this would make two. Bail. | 
|  | 1804 | return {}; | 
|  | 1805 |  | 
|  | 1806 | // If this single use isn't data invariant, isn't in this block, or has | 
|  | 1807 | // interfering EFLAGS, we can't sink the hardening to it. | 
|  | 1808 | if (!isDataInvariant(UseMI) || UseMI.getParent() != MI.getParent()) | 
|  | 1809 | return {}; | 
|  | 1810 |  | 
|  | 1811 | // If this instruction defines multiple registers bail as we won't harden | 
|  | 1812 | // all of them. | 
|  | 1813 | if (UseMI.getDesc().getNumDefs() > 1) | 
|  | 1814 | return {}; | 
|  | 1815 |  | 
|  | 1816 | // If this register isn't a virtual register we can't walk uses of sanely, | 
|  | 1817 | // just bail. Also check that its register class is one of the ones we | 
|  | 1818 | // can harden. | 
|  | 1819 | unsigned UseDefReg = UseMI.getOperand(0).getReg(); | 
|  | 1820 | if (!TRI->isVirtualRegister(UseDefReg) || | 
| Chandler Carruth | fa065aa | 2018-07-16 14:58:32 +0000 | [diff] [blame] | 1821 | !canHardenRegister(UseDefReg)) | 
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1822 | return {}; | 
|  | 1823 |  | 
|  | 1824 | SingleUseMI = &UseMI; | 
|  | 1825 | } | 
|  | 1826 |  | 
|  | 1827 | // If SingleUseMI is still null, there is no use that needs its own | 
|  | 1828 | // checking. Otherwise, it is the single use that needs checking. | 
|  | 1829 | return {SingleUseMI}; | 
|  | 1830 | }; | 
|  | 1831 |  | 
|  | 1832 | MachineInstr *MI = &InitialMI; | 
|  | 1833 | while (Optional<MachineInstr *> SingleUse = SinkCheckToSingleUse(*MI)) { | 
|  | 1834 | // Update which MI we're checking now. | 
|  | 1835 | MI = *SingleUse; | 
|  | 1836 | if (!MI) | 
|  | 1837 | break; | 
|  | 1838 | } | 
|  | 1839 |  | 
|  | 1840 | return MI; | 
|  | 1841 | } | 
|  | 1842 |  | 
| Chandler Carruth | fa065aa | 2018-07-16 14:58:32 +0000 | [diff] [blame] | 1843 | bool X86SpeculativeLoadHardeningPass::canHardenRegister(unsigned Reg) { | 
|  | 1844 | auto *RC = MRI->getRegClass(Reg); | 
|  | 1845 | int RegBytes = TRI->getRegSizeInBits(*RC) / 8; | 
|  | 1846 | if (RegBytes > 8) | 
|  | 1847 | // We don't support post-load hardening of vectors. | 
| Chandler Carruth | e66a6f4 | 2018-07-16 11:38:48 +0000 | [diff] [blame] | 1848 | return false; | 
|  | 1849 |  | 
| Chandler Carruth | fa065aa | 2018-07-16 14:58:32 +0000 | [diff] [blame] | 1850 | // If this register class is explicitly constrained to a class that doesn't | 
|  | 1851 | // require REX prefix, we may not be able to satisfy that constraint when | 
|  | 1852 | // emitting the hardening instructions, so bail out here. | 
|  | 1853 | // FIXME: This seems like a pretty lame hack. The way this comes up is when we | 
|  | 1854 | // end up both with a NOREX and REX-only register as operands to the hardening | 
|  | 1855 | // instructions. It would be better to fix that code to handle this situation | 
|  | 1856 | // rather than hack around it in this way. | 
|  | 1857 | const TargetRegisterClass *NOREXRegClasses[] = { | 
|  | 1858 | &X86::GR8_NOREXRegClass, &X86::GR16_NOREXRegClass, | 
|  | 1859 | &X86::GR32_NOREXRegClass, &X86::GR64_NOREXRegClass}; | 
|  | 1860 | if (RC == NOREXRegClasses[Log2_32(RegBytes)]) | 
| Chandler Carruth | e66a6f4 | 2018-07-16 11:38:48 +0000 | [diff] [blame] | 1861 | return false; | 
|  | 1862 |  | 
|  | 1863 | const TargetRegisterClass *GPRRegClasses[] = { | 
|  | 1864 | &X86::GR8RegClass, &X86::GR16RegClass, &X86::GR32RegClass, | 
|  | 1865 | &X86::GR64RegClass}; | 
| Chandler Carruth | fa065aa | 2018-07-16 14:58:32 +0000 | [diff] [blame] | 1866 | return RC->hasSuperClassEq(GPRRegClasses[Log2_32(RegBytes)]); | 
| Chandler Carruth | e66a6f4 | 2018-07-16 11:38:48 +0000 | [diff] [blame] | 1867 | } | 
|  | 1868 |  | 
| Chandler Carruth | 376113d | 2018-07-24 12:19:01 +0000 | [diff] [blame] | 1869 | /// Harden a load by hardening the loaded value in the defined register. | 
|  | 1870 | /// | 
|  | 1871 | /// We can harden a non-leaking load into a register without touching the | 
|  | 1872 | /// address by just hiding all of the loaded bits during misspeculation. We use | 
|  | 1873 | /// an `or` instruction to do this because we set up our poison value as all | 
|  | 1874 | /// ones. And the goal is just for the loaded bits to not be exposed to | 
|  | 1875 | /// execution and coercing them to one is sufficient. | 
| Chandler Carruth | 4b0028a | 2018-07-19 11:13:58 +0000 | [diff] [blame] | 1876 | void X86SpeculativeLoadHardeningPass::hardenPostLoad(MachineInstr &MI) { | 
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1877 | MachineBasicBlock &MBB = *MI.getParent(); | 
|  | 1878 | DebugLoc Loc = MI.getDebugLoc(); | 
|  | 1879 |  | 
|  | 1880 | // For all of these, the def'ed register operand is operand zero. | 
|  | 1881 | auto &DefOp = MI.getOperand(0); | 
|  | 1882 | unsigned OldDefReg = DefOp.getReg(); | 
| Chandler Carruth | fa065aa | 2018-07-16 14:58:32 +0000 | [diff] [blame] | 1883 | assert(canHardenRegister(OldDefReg) && | 
|  | 1884 | "Cannot harden this instruction's defined register!"); | 
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1885 |  | 
|  | 1886 | auto *DefRC = MRI->getRegClass(OldDefReg); | 
|  | 1887 | int DefRegBytes = TRI->getRegSizeInBits(*DefRC) / 8; | 
|  | 1888 |  | 
| Chandler Carruth | 66fbbbc | 2018-07-24 00:35:36 +0000 | [diff] [blame] | 1889 | unsigned StateReg = PS->SSA.GetValueAtEndOfBlock(&MBB); | 
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1890 |  | 
| Chandler Carruth | 66fbbbc | 2018-07-24 00:35:36 +0000 | [diff] [blame] | 1891 | // FIXME: Need to teach this about 32-bit mode. | 
|  | 1892 | if (DefRegBytes != 8) { | 
|  | 1893 | unsigned SubRegImms[] = {X86::sub_8bit, X86::sub_16bit, X86::sub_32bit}; | 
|  | 1894 | unsigned SubRegImm = SubRegImms[Log2_32(DefRegBytes)]; | 
|  | 1895 | unsigned NarrowStateReg = MRI->createVirtualRegister(DefRC); | 
|  | 1896 | BuildMI(MBB, MI.getIterator(), Loc, TII->get(TargetOpcode::COPY), | 
|  | 1897 | NarrowStateReg) | 
|  | 1898 | .addReg(StateReg, 0, SubRegImm); | 
|  | 1899 | StateReg = NarrowStateReg; | 
|  | 1900 | } | 
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1901 |  | 
|  | 1902 | auto InsertPt = std::next(MI.getIterator()); | 
| Chandler Carruth | 66fbbbc | 2018-07-24 00:35:36 +0000 | [diff] [blame] | 1903 |  | 
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1904 | unsigned FlagsReg = 0; | 
| Chandler Carruth | b46c22d | 2018-07-24 00:21:59 +0000 | [diff] [blame] | 1905 | if (isEFLAGSLive(MBB, InsertPt, *TRI)) | 
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1906 | FlagsReg = saveEFLAGS(MBB, InsertPt, Loc); | 
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1907 |  | 
| Chandler Carruth | b46c22d | 2018-07-24 00:21:59 +0000 | [diff] [blame] | 1908 | unsigned NewDefReg = MRI->createVirtualRegister(DefRC); | 
|  | 1909 | DefOp.setReg(NewDefReg); | 
| Chandler Carruth | 66fbbbc | 2018-07-24 00:35:36 +0000 | [diff] [blame] | 1910 |  | 
|  | 1911 | unsigned OrOpCodes[] = {X86::OR8rr, X86::OR16rr, X86::OR32rr, X86::OR64rr}; | 
|  | 1912 | unsigned OrOpCode = OrOpCodes[Log2_32(DefRegBytes)]; | 
| Chandler Carruth | b46c22d | 2018-07-24 00:21:59 +0000 | [diff] [blame] | 1913 | auto OrI = BuildMI(MBB, InsertPt, Loc, TII->get(OrOpCode), OldDefReg) | 
|  | 1914 | .addReg(StateReg) | 
|  | 1915 | .addReg(NewDefReg); | 
|  | 1916 | OrI->addRegisterDead(X86::EFLAGS, TRI); | 
|  | 1917 | ++NumInstsInserted; | 
|  | 1918 | LLVM_DEBUG(dbgs() << "  Inserting or: "; OrI->dump(); dbgs() << "\n"); | 
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1919 |  | 
|  | 1920 | if (FlagsReg) | 
|  | 1921 | restoreEFLAGS(MBB, InsertPt, Loc, FlagsReg); | 
|  | 1922 |  | 
|  | 1923 | ++NumPostLoadRegsHardened; | 
|  | 1924 | } | 
|  | 1925 |  | 
| Chandler Carruth | a3a03ac | 2018-07-19 23:46:24 +0000 | [diff] [blame] | 1926 | /// Harden a return instruction. | 
|  | 1927 | /// | 
|  | 1928 | /// Returns implicitly perform a load which we need to harden. Without hardening | 
|  | 1929 | /// this load, an attacker my speculatively write over the return address to | 
|  | 1930 | /// steer speculation of the return to an attacker controlled address. This is | 
|  | 1931 | /// called Spectre v1.1 or Bounds Check Bypass Store (BCBS) and is described in | 
|  | 1932 | /// this paper: | 
|  | 1933 | /// https://people.csail.mit.edu/vlk/spectre11.pdf | 
|  | 1934 | /// | 
|  | 1935 | /// We can harden this by introducing an LFENCE that will delay any load of the | 
|  | 1936 | /// return address until prior instructions have retired (and thus are not being | 
|  | 1937 | /// speculated), or we can harden the address used by the implicit load: the | 
|  | 1938 | /// stack pointer. | 
|  | 1939 | /// | 
|  | 1940 | /// If we are not using an LFENCE, hardening the stack pointer has an additional | 
|  | 1941 | /// benefit: it allows us to pass the predicate state accumulated in this | 
|  | 1942 | /// function back to the caller. In the absence of a BCBS attack on the return, | 
|  | 1943 | /// the caller will typically be resumed and speculatively executed due to the | 
|  | 1944 | /// Return Stack Buffer (RSB) prediction which is very accurate and has a high | 
|  | 1945 | /// priority. It is possible that some code from the caller will be executed | 
|  | 1946 | /// speculatively even during a BCBS-attacked return until the steering takes | 
|  | 1947 | /// effect. Whenever this happens, the caller can recover the (poisoned) | 
|  | 1948 | /// predicate state from the stack pointer and continue to harden loads. | 
|  | 1949 | void X86SpeculativeLoadHardeningPass::hardenReturnInstr(MachineInstr &MI) { | 
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1950 | MachineBasicBlock &MBB = *MI.getParent(); | 
|  | 1951 | DebugLoc Loc = MI.getDebugLoc(); | 
|  | 1952 | auto InsertPt = MI.getIterator(); | 
|  | 1953 |  | 
|  | 1954 | if (FenceCallAndRet) { | 
|  | 1955 | // Simply forcibly block speculation of loads out of the function by using | 
|  | 1956 | // an LFENCE. This is potentially a heavy-weight mitigation strategy, but | 
|  | 1957 | // should be secure, is simple from an ABI perspective, and the cost can be | 
|  | 1958 | // minimized through inlining. | 
|  | 1959 | // | 
|  | 1960 | // FIXME: We should investigate ways to establish a strong data-dependency | 
|  | 1961 | // on the return. However, poisoning the stack pointer is unlikely to work | 
|  | 1962 | // because the return is *predicted* rather than relying on the load of the | 
|  | 1963 | // return address to actually resolve. | 
|  | 1964 | BuildMI(MBB, InsertPt, Loc, TII->get(X86::LFENCE)); | 
|  | 1965 | ++NumInstsInserted; | 
|  | 1966 | ++NumLFENCEsInserted; | 
|  | 1967 | return; | 
|  | 1968 | } | 
|  | 1969 |  | 
|  | 1970 | // Take our predicate state, shift it to the high 17 bits (so that we keep | 
|  | 1971 | // pointers canonical) and merge it into RSP. This will allow the caller to | 
|  | 1972 | // extract it when we return (speculatively). | 
| Chandler Carruth | 4b0028a | 2018-07-19 11:13:58 +0000 | [diff] [blame] | 1973 | mergePredStateIntoSP(MBB, InsertPt, Loc, PS->SSA.GetValueAtEndOfBlock(&MBB)); | 
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1974 | } | 
|  | 1975 |  | 
|  | 1976 | INITIALIZE_PASS_BEGIN(X86SpeculativeLoadHardeningPass, DEBUG_TYPE, | 
|  | 1977 | "X86 speculative load hardener", false, false) | 
|  | 1978 | INITIALIZE_PASS_END(X86SpeculativeLoadHardeningPass, DEBUG_TYPE, | 
|  | 1979 | "X86 speculative load hardener", false, false) | 
|  | 1980 |  | 
|  | 1981 | FunctionPass *llvm::createX86SpeculativeLoadHardeningPass() { | 
|  | 1982 | return new X86SpeculativeLoadHardeningPass(); | 
|  | 1983 | } |