blob: 3ad146c57d92b13fd906508c2ab1915f93c28e72 [file] [log] [blame]
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001//===-- SystemZOperands.td - SystemZ instruction operands ----*- tblgen-*--===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10//===----------------------------------------------------------------------===//
11// Class definitions
12//===----------------------------------------------------------------------===//
13
14class ImmediateAsmOperand<string name>
15 : AsmOperandClass {
16 let Name = name;
17 let RenderMethod = "addImmOperands";
18}
19
20// Constructs both a DAG pattern and instruction operand for an immediate
21// of type VT. PRED returns true if a node is acceptable and XFORM returns
22// the operand value associated with the node. ASMOP is the name of the
23// associated asm operand, and also forms the basis of the asm print method.
24class Immediate<ValueType vt, code pred, SDNodeXForm xform, string asmop>
25 : PatLeaf<(vt imm), pred, xform>, Operand<vt> {
26 let PrintMethod = "print"##asmop##"Operand";
Richard Sandifordeb9af292013-05-14 10:17:52 +000027 let DecoderMethod = "decode"##asmop##"Operand";
Ulrich Weigand5f613df2013-05-06 16:15:19 +000028 let ParserMatchClass = !cast<AsmOperandClass>(asmop);
29}
30
Richard Sandiford1fb58832013-05-14 09:47:26 +000031// Constructs an asm operand for a PC-relative address. SIZE says how
32// many bits there are.
33class PCRelAsmOperand<string size> : ImmediateAsmOperand<"PCRel"##size> {
34 let PredicateMethod = "isImm";
35 let ParserMethod = "parsePCRel"##size;
36}
37
38// Constructs an operand for a PC-relative address with address type VT.
39// ASMOP is the associated asm operand.
40class PCRelOperand<ValueType vt, AsmOperandClass asmop> : Operand<vt> {
Richard Sandifordeb9af292013-05-14 10:17:52 +000041 let PrintMethod = "printPCRelOperand";
Richard Sandiford1fb58832013-05-14 09:47:26 +000042 let ParserMatchClass = asmop;
43}
44
Ulrich Weigand5f613df2013-05-06 16:15:19 +000045// Constructs both a DAG pattern and instruction operand for a PC-relative
Richard Sandiford1fb58832013-05-14 09:47:26 +000046// address with address size VT. SELF is the name of the operand and
47// ASMOP is the associated asm operand.
48class PCRelAddress<ValueType vt, string self, AsmOperandClass asmop>
Richard Sandiford54b36912013-09-27 15:14:04 +000049 : ComplexPattern<vt, 1, "selectPCRelAddress",
50 [z_pcrel_wrapper, z_pcrel_offset]>,
Richard Sandiford1fb58832013-05-14 09:47:26 +000051 PCRelOperand<vt, asmop> {
Ulrich Weigand5f613df2013-05-06 16:15:19 +000052 let MIOperandInfo = (ops !cast<Operand>(self));
53}
54
55// Constructs an AsmOperandClass for addressing mode FORMAT, treating the
56// registers as having BITSIZE bits and displacements as having DISPSIZE bits.
Richard Sandiford1d959002013-07-02 14:56:45 +000057// LENGTH is "LenN" for addresses with an N-bit length field, otherwise it
58// is "".
59class AddressAsmOperand<string format, string bitsize, string dispsize,
60 string length = "">
Ulrich Weigand5f613df2013-05-06 16:15:19 +000061 : AsmOperandClass {
Richard Sandiford1d959002013-07-02 14:56:45 +000062 let Name = format##bitsize##"Disp"##dispsize##length;
Ulrich Weigand5f613df2013-05-06 16:15:19 +000063 let ParserMethod = "parse"##format##bitsize;
64 let RenderMethod = "add"##format##"Operands";
65}
66
67// Constructs both a DAG pattern and instruction operand for an addressing mode.
Richard Sandiford1d959002013-07-02 14:56:45 +000068// FORMAT, BITSIZE, DISPSIZE and LENGTH are the parameters to an associated
69// AddressAsmOperand. OPERANDS is a list of NUMOPS individual operands
70// (base register, displacement, etc.). SELTYPE is the type of the memory
71// operand for selection purposes; sometimes we want different selection
72// choices for the same underlying addressing mode. SUFFIX is similarly
73// a suffix appended to the displacement for selection purposes;
74// e.g. we want to reject small 20-bit displacements if a 12-bit form
75// also exists, but we want to accept them otherwise.
76class AddressingMode<string seltype, string bitsize, string dispsize,
77 string suffix, string length, int numops, string format,
78 dag operands>
Ulrich Weigand5f613df2013-05-06 16:15:19 +000079 : ComplexPattern<!cast<ValueType>("i"##bitsize), numops,
Richard Sandiford1d959002013-07-02 14:56:45 +000080 "select"##seltype##dispsize##suffix##length,
Ulrich Weigand5f613df2013-05-06 16:15:19 +000081 [add, sub, or, frameindex, z_adjdynalloc]>,
82 Operand<!cast<ValueType>("i"##bitsize)> {
83 let PrintMethod = "print"##format##"Operand";
Richard Sandiford1d959002013-07-02 14:56:45 +000084 let EncoderMethod = "get"##format##dispsize##length##"Encoding";
85 let DecoderMethod =
86 "decode"##format##bitsize##"Disp"##dispsize##length##"Operand";
Ulrich Weigand5f613df2013-05-06 16:15:19 +000087 let MIOperandInfo = operands;
88 let ParserMatchClass =
Richard Sandiford1d959002013-07-02 14:56:45 +000089 !cast<AddressAsmOperand>(format##bitsize##"Disp"##dispsize##length);
Ulrich Weigand5f613df2013-05-06 16:15:19 +000090}
91
92// An addressing mode with a base and displacement but no index.
93class BDMode<string type, string bitsize, string dispsize, string suffix>
Richard Sandiford1d959002013-07-02 14:56:45 +000094 : AddressingMode<type, bitsize, dispsize, suffix, "", 2, "BDAddr",
Ulrich Weigand5f613df2013-05-06 16:15:19 +000095 (ops !cast<RegisterOperand>("ADDR"##bitsize),
96 !cast<Immediate>("disp"##dispsize##"imm"##bitsize))>;
97
98// An addressing mode with a base, displacement and index.
99class BDXMode<string type, string bitsize, string dispsize, string suffix>
Richard Sandiford1d959002013-07-02 14:56:45 +0000100 : AddressingMode<type, bitsize, dispsize, suffix, "", 3, "BDXAddr",
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000101 (ops !cast<RegisterOperand>("ADDR"##bitsize),
102 !cast<Immediate>("disp"##dispsize##"imm"##bitsize),
103 !cast<RegisterOperand>("ADDR"##bitsize))>;
104
Richard Sandiford1d959002013-07-02 14:56:45 +0000105// A BDMode paired with an immediate length operand of LENSIZE bits.
106class BDLMode<string type, string bitsize, string dispsize, string suffix,
107 string lensize>
108 : AddressingMode<type, bitsize, dispsize, suffix, "Len"##lensize, 3,
109 "BDLAddr",
110 (ops !cast<RegisterOperand>("ADDR"##bitsize),
111 !cast<Immediate>("disp"##dispsize##"imm"##bitsize),
112 !cast<Immediate>("imm"##bitsize))>;
113
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000114//===----------------------------------------------------------------------===//
115// Extracting immediate operands from nodes
116// These all create MVT::i64 nodes to ensure the value is not sign-extended
117// when converted from an SDNode to a MachineOperand later on.
118//===----------------------------------------------------------------------===//
119
120// Bits 0-15 (counting from the lsb).
121def LL16 : SDNodeXForm<imm, [{
122 uint64_t Value = N->getZExtValue() & 0x000000000000FFFFULL;
123 return CurDAG->getTargetConstant(Value, MVT::i64);
124}]>;
125
126// Bits 16-31 (counting from the lsb).
127def LH16 : SDNodeXForm<imm, [{
128 uint64_t Value = (N->getZExtValue() & 0x00000000FFFF0000ULL) >> 16;
129 return CurDAG->getTargetConstant(Value, MVT::i64);
130}]>;
131
132// Bits 32-47 (counting from the lsb).
133def HL16 : SDNodeXForm<imm, [{
134 uint64_t Value = (N->getZExtValue() & 0x0000FFFF00000000ULL) >> 32;
135 return CurDAG->getTargetConstant(Value, MVT::i64);
136}]>;
137
138// Bits 48-63 (counting from the lsb).
139def HH16 : SDNodeXForm<imm, [{
140 uint64_t Value = (N->getZExtValue() & 0xFFFF000000000000ULL) >> 48;
141 return CurDAG->getTargetConstant(Value, MVT::i64);
142}]>;
143
144// Low 32 bits.
145def LF32 : SDNodeXForm<imm, [{
146 uint64_t Value = N->getZExtValue() & 0x00000000FFFFFFFFULL;
147 return CurDAG->getTargetConstant(Value, MVT::i64);
148}]>;
149
150// High 32 bits.
151def HF32 : SDNodeXForm<imm, [{
152 uint64_t Value = N->getZExtValue() >> 32;
153 return CurDAG->getTargetConstant(Value, MVT::i64);
154}]>;
155
156// Truncate an immediate to a 8-bit signed quantity.
157def SIMM8 : SDNodeXForm<imm, [{
158 return CurDAG->getTargetConstant(int8_t(N->getZExtValue()), MVT::i64);
159}]>;
160
161// Truncate an immediate to a 8-bit unsigned quantity.
162def UIMM8 : SDNodeXForm<imm, [{
163 return CurDAG->getTargetConstant(uint8_t(N->getZExtValue()), MVT::i64);
164}]>;
165
166// Truncate an immediate to a 16-bit signed quantity.
167def SIMM16 : SDNodeXForm<imm, [{
168 return CurDAG->getTargetConstant(int16_t(N->getZExtValue()), MVT::i64);
169}]>;
170
171// Truncate an immediate to a 16-bit unsigned quantity.
172def UIMM16 : SDNodeXForm<imm, [{
173 return CurDAG->getTargetConstant(uint16_t(N->getZExtValue()), MVT::i64);
174}]>;
175
176// Truncate an immediate to a 32-bit signed quantity.
177def SIMM32 : SDNodeXForm<imm, [{
178 return CurDAG->getTargetConstant(int32_t(N->getZExtValue()), MVT::i64);
179}]>;
180
181// Truncate an immediate to a 32-bit unsigned quantity.
182def UIMM32 : SDNodeXForm<imm, [{
183 return CurDAG->getTargetConstant(uint32_t(N->getZExtValue()), MVT::i64);
184}]>;
185
186// Negate and then truncate an immediate to a 32-bit unsigned quantity.
187def NEGIMM32 : SDNodeXForm<imm, [{
188 return CurDAG->getTargetConstant(uint32_t(-N->getZExtValue()), MVT::i64);
189}]>;
190
191//===----------------------------------------------------------------------===//
192// Immediate asm operands.
193//===----------------------------------------------------------------------===//
194
195def U4Imm : ImmediateAsmOperand<"U4Imm">;
196def U6Imm : ImmediateAsmOperand<"U6Imm">;
197def S8Imm : ImmediateAsmOperand<"S8Imm">;
198def U8Imm : ImmediateAsmOperand<"U8Imm">;
199def S16Imm : ImmediateAsmOperand<"S16Imm">;
200def U16Imm : ImmediateAsmOperand<"U16Imm">;
201def S32Imm : ImmediateAsmOperand<"S32Imm">;
202def U32Imm : ImmediateAsmOperand<"U32Imm">;
203
204//===----------------------------------------------------------------------===//
205// 8-bit immediates
206//===----------------------------------------------------------------------===//
207
208def uimm8zx4 : Immediate<i8, [{
209 return isUInt<4>(N->getZExtValue());
210}], NOOP_SDNodeXForm, "U4Imm">;
211
212def uimm8zx6 : Immediate<i8, [{
213 return isUInt<6>(N->getZExtValue());
214}], NOOP_SDNodeXForm, "U6Imm">;
215
216def simm8 : Immediate<i8, [{}], SIMM8, "S8Imm">;
217def uimm8 : Immediate<i8, [{}], UIMM8, "U8Imm">;
218
219//===----------------------------------------------------------------------===//
220// i32 immediates
221//===----------------------------------------------------------------------===//
222
223// Immediates for the lower and upper 16 bits of an i32, with the other
224// bits of the i32 being zero.
225def imm32ll16 : Immediate<i32, [{
226 return SystemZ::isImmLL(N->getZExtValue());
227}], LL16, "U16Imm">;
228
229def imm32lh16 : Immediate<i32, [{
230 return SystemZ::isImmLH(N->getZExtValue());
231}], LH16, "U16Imm">;
232
233// Immediates for the lower and upper 16 bits of an i32, with the other
234// bits of the i32 being one.
235def imm32ll16c : Immediate<i32, [{
236 return SystemZ::isImmLL(uint32_t(~N->getZExtValue()));
237}], LL16, "U16Imm">;
238
239def imm32lh16c : Immediate<i32, [{
240 return SystemZ::isImmLH(uint32_t(~N->getZExtValue()));
241}], LH16, "U16Imm">;
242
243// Short immediates
244def imm32sx8 : Immediate<i32, [{
245 return isInt<8>(N->getSExtValue());
246}], SIMM8, "S8Imm">;
247
248def imm32zx8 : Immediate<i32, [{
249 return isUInt<8>(N->getZExtValue());
250}], UIMM8, "U8Imm">;
251
252def imm32zx8trunc : Immediate<i32, [{}], UIMM8, "U8Imm">;
253
254def imm32sx16 : Immediate<i32, [{
255 return isInt<16>(N->getSExtValue());
256}], SIMM16, "S16Imm">;
257
258def imm32zx16 : Immediate<i32, [{
259 return isUInt<16>(N->getZExtValue());
260}], UIMM16, "U16Imm">;
261
262def imm32sx16trunc : Immediate<i32, [{}], SIMM16, "S16Imm">;
263
264// Full 32-bit immediates. we need both signed and unsigned versions
265// because the assembler is picky. E.g. AFI requires signed operands
266// while NILF requires unsigned ones.
267def simm32 : Immediate<i32, [{}], SIMM32, "S32Imm">;
268def uimm32 : Immediate<i32, [{}], UIMM32, "U32Imm">;
269
270def imm32 : ImmLeaf<i32, [{}]>;
271
272//===----------------------------------------------------------------------===//
273// 64-bit immediates
274//===----------------------------------------------------------------------===//
275
276// Immediates for 16-bit chunks of an i64, with the other bits of the
277// i32 being zero.
278def imm64ll16 : Immediate<i64, [{
279 return SystemZ::isImmLL(N->getZExtValue());
280}], LL16, "U16Imm">;
281
282def imm64lh16 : Immediate<i64, [{
283 return SystemZ::isImmLH(N->getZExtValue());
284}], LH16, "U16Imm">;
285
286def imm64hl16 : Immediate<i64, [{
287 return SystemZ::isImmHL(N->getZExtValue());
288}], HL16, "U16Imm">;
289
290def imm64hh16 : Immediate<i64, [{
291 return SystemZ::isImmHH(N->getZExtValue());
292}], HH16, "U16Imm">;
293
294// Immediates for 16-bit chunks of an i64, with the other bits of the
295// i32 being one.
296def imm64ll16c : Immediate<i64, [{
297 return SystemZ::isImmLL(uint64_t(~N->getZExtValue()));
298}], LL16, "U16Imm">;
299
300def imm64lh16c : Immediate<i64, [{
301 return SystemZ::isImmLH(uint64_t(~N->getZExtValue()));
302}], LH16, "U16Imm">;
303
304def imm64hl16c : Immediate<i64, [{
305 return SystemZ::isImmHL(uint64_t(~N->getZExtValue()));
306}], HL16, "U16Imm">;
307
308def imm64hh16c : Immediate<i64, [{
309 return SystemZ::isImmHH(uint64_t(~N->getZExtValue()));
310}], HH16, "U16Imm">;
311
312// Immediates for the lower and upper 32 bits of an i64, with the other
313// bits of the i32 being zero.
314def imm64lf32 : Immediate<i64, [{
315 return SystemZ::isImmLF(N->getZExtValue());
316}], LF32, "U32Imm">;
317
318def imm64hf32 : Immediate<i64, [{
319 return SystemZ::isImmHF(N->getZExtValue());
320}], HF32, "U32Imm">;
321
322// Immediates for the lower and upper 32 bits of an i64, with the other
323// bits of the i32 being one.
324def imm64lf32c : Immediate<i64, [{
325 return SystemZ::isImmLF(uint64_t(~N->getZExtValue()));
326}], LF32, "U32Imm">;
327
328def imm64hf32c : Immediate<i64, [{
329 return SystemZ::isImmHF(uint64_t(~N->getZExtValue()));
330}], HF32, "U32Imm">;
331
332// Short immediates.
333def imm64sx8 : Immediate<i64, [{
334 return isInt<8>(N->getSExtValue());
335}], SIMM8, "S8Imm">;
336
Richard Sandiford93183ee2013-09-18 09:56:40 +0000337def imm64zx8 : Immediate<i64, [{
338 return isUInt<8>(N->getSExtValue());
339}], UIMM8, "U8Imm">;
340
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000341def imm64sx16 : Immediate<i64, [{
342 return isInt<16>(N->getSExtValue());
343}], SIMM16, "S16Imm">;
344
345def imm64zx16 : Immediate<i64, [{
346 return isUInt<16>(N->getZExtValue());
347}], UIMM16, "U16Imm">;
348
349def imm64sx32 : Immediate<i64, [{
350 return isInt<32>(N->getSExtValue());
351}], SIMM32, "S32Imm">;
352
353def imm64zx32 : Immediate<i64, [{
354 return isUInt<32>(N->getZExtValue());
355}], UIMM32, "U32Imm">;
356
357def imm64zx32n : Immediate<i64, [{
358 return isUInt<32>(-N->getSExtValue());
359}], NEGIMM32, "U32Imm">;
360
Richard Sandiford5e318f02013-08-27 09:54:29 +0000361def imm64 : ImmLeaf<i64, [{}]>, Operand<i64>;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000362
363//===----------------------------------------------------------------------===//
364// Floating-point immediates
365//===----------------------------------------------------------------------===//
366
367// Floating-point zero.
368def fpimm0 : PatLeaf<(fpimm), [{ return N->isExactlyValue(+0.0); }]>;
369
370// Floating point negative zero.
371def fpimmneg0 : PatLeaf<(fpimm), [{ return N->isExactlyValue(-0.0); }]>;
372
373//===----------------------------------------------------------------------===//
374// Symbolic address operands
375//===----------------------------------------------------------------------===//
376
Richard Sandiford1fb58832013-05-14 09:47:26 +0000377// PC-relative asm operands.
378def PCRel16 : PCRelAsmOperand<"16">;
379def PCRel32 : PCRelAsmOperand<"32">;
380
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000381// PC-relative offsets of a basic block. The offset is sign-extended
382// and multiplied by 2.
Richard Sandiford1fb58832013-05-14 09:47:26 +0000383def brtarget16 : PCRelOperand<OtherVT, PCRel16> {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000384 let EncoderMethod = "getPC16DBLEncoding";
Richard Sandifordeb9af292013-05-14 10:17:52 +0000385 let DecoderMethod = "decodePC16DBLOperand";
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000386}
Richard Sandiford1fb58832013-05-14 09:47:26 +0000387def brtarget32 : PCRelOperand<OtherVT, PCRel32> {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000388 let EncoderMethod = "getPC32DBLEncoding";
Richard Sandifordeb9af292013-05-14 10:17:52 +0000389 let DecoderMethod = "decodePC32DBLOperand";
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000390}
391
392// A PC-relative offset of a global value. The offset is sign-extended
393// and multiplied by 2.
Richard Sandiford1fb58832013-05-14 09:47:26 +0000394def pcrel32 : PCRelAddress<i64, "pcrel32", PCRel32> {
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000395 let EncoderMethod = "getPC32DBLEncoding";
Richard Sandifordeb9af292013-05-14 10:17:52 +0000396 let DecoderMethod = "decodePC32DBLOperand";
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000397}
398
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000399//===----------------------------------------------------------------------===//
400// Addressing modes
401//===----------------------------------------------------------------------===//
402
403// 12-bit displacement operands.
404def disp12imm32 : Operand<i32>;
405def disp12imm64 : Operand<i64>;
406
407// 20-bit displacement operands.
408def disp20imm32 : Operand<i32>;
409def disp20imm64 : Operand<i64>;
410
Richard Sandiford1d959002013-07-02 14:56:45 +0000411def BDAddr32Disp12 : AddressAsmOperand<"BDAddr", "32", "12">;
412def BDAddr32Disp20 : AddressAsmOperand<"BDAddr", "32", "20">;
413def BDAddr64Disp12 : AddressAsmOperand<"BDAddr", "64", "12">;
414def BDAddr64Disp20 : AddressAsmOperand<"BDAddr", "64", "20">;
415def BDXAddr64Disp12 : AddressAsmOperand<"BDXAddr", "64", "12">;
416def BDXAddr64Disp20 : AddressAsmOperand<"BDXAddr", "64", "20">;
417def BDLAddr64Disp12Len8 : AddressAsmOperand<"BDLAddr", "64", "12", "Len8">;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000418
419// DAG patterns and operands for addressing modes. Each mode has
Richard Sandiford1d959002013-07-02 14:56:45 +0000420// the form <type><range><group>[<len>] where:
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000421//
422// <type> is one of:
423// shift : base + displacement (32-bit)
424// bdaddr : base + displacement
Richard Sandiforda481f582013-08-23 11:18:53 +0000425// mviaddr : like bdaddr, but reject cases with a natural index
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000426// bdxaddr : base + displacement + index
427// laaddr : like bdxaddr, but used for Load Address operations
428// dynalloc : base + displacement + index + ADJDYNALLOC
Richard Sandiford1d959002013-07-02 14:56:45 +0000429// bdladdr : base + displacement with a length field
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000430//
431// <range> is one of:
432// 12 : the displacement is an unsigned 12-bit value
433// 20 : the displacement is a signed 20-bit value
434//
435// <group> is one of:
436// pair : used when there is an equivalent instruction with the opposite
437// range value (12 or 20)
438// only : used when there is no equivalent instruction with the opposite
439// range value
Richard Sandiford1d959002013-07-02 14:56:45 +0000440//
441// <len> is one of:
442//
443// <empty> : there is no length field
444// len8 : the length field is 8 bits, with a range of [1, 0x100].
445def shift12only : BDMode <"BDAddr", "32", "12", "Only">;
446def shift20only : BDMode <"BDAddr", "32", "20", "Only">;
447def bdaddr12only : BDMode <"BDAddr", "64", "12", "Only">;
448def bdaddr12pair : BDMode <"BDAddr", "64", "12", "Pair">;
449def bdaddr20only : BDMode <"BDAddr", "64", "20", "Only">;
450def bdaddr20pair : BDMode <"BDAddr", "64", "20", "Pair">;
Richard Sandiforda481f582013-08-23 11:18:53 +0000451def mviaddr12pair : BDMode <"MVIAddr", "64", "12", "Pair">;
452def mviaddr20pair : BDMode <"MVIAddr", "64", "20", "Pair">;
Richard Sandiford1d959002013-07-02 14:56:45 +0000453def bdxaddr12only : BDXMode<"BDXAddr", "64", "12", "Only">;
454def bdxaddr12pair : BDXMode<"BDXAddr", "64", "12", "Pair">;
455def bdxaddr20only : BDXMode<"BDXAddr", "64", "20", "Only">;
456def bdxaddr20only128 : BDXMode<"BDXAddr", "64", "20", "Only128">;
457def bdxaddr20pair : BDXMode<"BDXAddr", "64", "20", "Pair">;
458def dynalloc12only : BDXMode<"DynAlloc", "64", "12", "Only">;
459def laaddr12pair : BDXMode<"LAAddr", "64", "12", "Pair">;
460def laaddr20pair : BDXMode<"LAAddr", "64", "20", "Pair">;
461def bdladdr12onlylen8 : BDLMode<"BDLAddr", "64", "12", "Only", "8">;
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000462
463//===----------------------------------------------------------------------===//
464// Miscellaneous
465//===----------------------------------------------------------------------===//
466
467// Access registers. At present we just use them for accessing the thread
468// pointer, so we don't expose them as register to LLVM.
469def AccessReg : AsmOperandClass {
470 let Name = "AccessReg";
471 let ParserMethod = "parseAccessReg";
472}
473def access_reg : Immediate<i8, [{ return N->getZExtValue() < 16; }],
474 NOOP_SDNodeXForm, "AccessReg"> {
475 let ParserMatchClass = AccessReg;
476}
477
478// A 4-bit condition-code mask.
479def cond4 : PatLeaf<(i8 imm), [{ return (N->getZExtValue() < 16); }]>,
480 Operand<i8> {
481 let PrintMethod = "printCond4Operand";
482}