blob: 1cebf8253d1904a6605da476a1e14207a920f7e9 [file] [log] [blame]
Alexander Shaposhnikovd911ed12019-02-02 00:38:07 +00001//===- Object.h - Mach-O object file model ----------------------*- C++ -*-===//
2//
Chandler Carruth127252b2019-02-11 08:25:19 +00003// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
Alexander Shaposhnikovd911ed12019-02-02 00:38:07 +00006//
7//===----------------------------------------------------------------------===//
8
9#ifndef LLVM_OBJCOPY_MACHO_OBJECT_H
10#define LLVM_OBJCOPY_MACHO_OBJECT_H
11
12#include "llvm/ADT/Optional.h"
13#include "llvm/ADT/StringRef.h"
14#include "llvm/BinaryFormat/MachO.h"
Seiya Nutaf923d9b2019-06-21 00:21:50 +000015#include "llvm/MC/StringTableBuilder.h"
Alexander Shaposhnikovd911ed12019-02-02 00:38:07 +000016#include "llvm/ObjectYAML/DWARFYAML.h"
17#include "llvm/Support/YAMLTraits.h"
18#include <cstdint>
19#include <string>
20#include <vector>
21
22namespace llvm {
23namespace objcopy {
24namespace macho {
25
26struct MachHeader {
27 uint32_t Magic;
28 uint32_t CPUType;
29 uint32_t CPUSubType;
30 uint32_t FileType;
31 uint32_t NCmds;
32 uint32_t SizeOfCmds;
33 uint32_t Flags;
34 uint32_t Reserved = 0;
35};
36
Seiya Nutaf923d9b2019-06-21 00:21:50 +000037struct RelocationInfo;
Alexander Shaposhnikovd911ed12019-02-02 00:38:07 +000038struct Section {
Seiya Nutab728e532019-06-08 01:22:54 +000039 std::string Sectname;
40 std::string Segname;
Alexander Shaposhnikovd911ed12019-02-02 00:38:07 +000041 uint64_t Addr;
42 uint64_t Size;
43 uint32_t Offset;
44 uint32_t Align;
45 uint32_t RelOff;
46 uint32_t NReloc;
47 uint32_t Flags;
48 uint32_t Reserved1;
49 uint32_t Reserved2;
50 uint32_t Reserved3;
51
52 StringRef Content;
Seiya Nutaf923d9b2019-06-21 00:21:50 +000053 std::vector<RelocationInfo> Relocations;
Seiya Nutab728e532019-06-08 01:22:54 +000054
55 MachO::SectionType getType() const {
56 return static_cast<MachO::SectionType>(Flags & MachO::SECTION_TYPE);
57 }
58
59 bool isVirtualSection() const {
60 return (getType() == MachO::S_ZEROFILL ||
61 getType() == MachO::S_GB_ZEROFILL ||
62 getType() == MachO::S_THREAD_LOCAL_ZEROFILL);
63 }
Alexander Shaposhnikovd911ed12019-02-02 00:38:07 +000064};
65
66struct LoadCommand {
67 // The type MachO::macho_load_command is defined in llvm/BinaryFormat/MachO.h
68 // and it is a union of all the structs corresponding to various load
69 // commands.
70 MachO::macho_load_command MachOLoadCommand;
71
72 // The raw content of the payload of the load command (located right after the
73 // corresponding struct). In some cases it is either empty or can be
74 // copied-over without digging into its structure.
75 ArrayRef<uint8_t> Payload;
76
77 // Some load commands can contain (inside the payload) an array of sections,
78 // though the contents of the sections are stored separately. The struct
79 // Section describes only sections' metadata and where to find the
80 // corresponding content inside the binary.
81 std::vector<Section> Sections;
82};
83
Seiya Nutaf923d9b2019-06-21 00:21:50 +000084// A symbol information. Fields which starts with "n_" are same as them in the
85// nlist.
86struct SymbolEntry {
87 std::string Name;
88 uint32_t Index;
Alexander Shaposhnikovd911ed12019-02-02 00:38:07 +000089 uint8_t n_type;
90 uint8_t n_sect;
91 uint16_t n_desc;
92 uint64_t n_value;
Seiya Nuta552bcb82019-08-19 21:05:31 +000093
94 bool isExternalSymbol() const {
95 return n_type & ((MachO::N_EXT | MachO::N_PEXT));
96 }
97
98 bool isLocalSymbol() const { return !isExternalSymbol(); }
99
100 bool isUndefinedSymbol() const {
101 return (n_type & MachO::N_TYPE) == MachO::N_UNDF;
102 }
Alexander Shaposhnikovd911ed12019-02-02 00:38:07 +0000103};
104
105/// The location of the symbol table inside the binary is described by LC_SYMTAB
106/// load command.
107struct SymbolTable {
Seiya Nutaf923d9b2019-06-21 00:21:50 +0000108 std::vector<std::unique_ptr<SymbolEntry>> Symbols;
109
110 const SymbolEntry *getSymbolByIndex(uint32_t Index) const;
Alexander Shaposhnikovd911ed12019-02-02 00:38:07 +0000111};
112
Seiya Nuta552bcb82019-08-19 21:05:31 +0000113struct IndirectSymbolTable {
114 std::vector<uint32_t> Symbols;
115};
116
Alexander Shaposhnikovd911ed12019-02-02 00:38:07 +0000117/// The location of the string table inside the binary is described by LC_SYMTAB
118/// load command.
119struct StringTable {
120 std::vector<std::string> Strings;
121};
122
Seiya Nutaf923d9b2019-06-21 00:21:50 +0000123struct RelocationInfo {
124 const SymbolEntry *Symbol;
125 // True if Info is a scattered_relocation_info.
126 bool Scattered;
127 MachO::any_relocation_info Info;
128};
129
Alexander Shaposhnikovd911ed12019-02-02 00:38:07 +0000130/// The location of the rebase info inside the binary is described by
131/// LC_DYLD_INFO load command. Dyld rebases an image whenever dyld loads it at
132/// an address different from its preferred address. The rebase information is
133/// a stream of byte sized opcodes whose symbolic names start with
134/// REBASE_OPCODE_. Conceptually the rebase information is a table of tuples:
135/// <seg-index, seg-offset, type>
136/// The opcodes are a compressed way to encode the table by only
137/// encoding when a column changes. In addition simple patterns
138/// like "every n'th offset for m times" can be encoded in a few
139/// bytes.
140struct RebaseInfo {
141 // At the moment we do not parse this info (and it is simply copied over),
142 // but the proper support will be added later.
143 ArrayRef<uint8_t> Opcodes;
144};
145
146/// The location of the bind info inside the binary is described by
147/// LC_DYLD_INFO load command. Dyld binds an image during the loading process,
148/// if the image requires any pointers to be initialized to symbols in other
149/// images. The bind information is a stream of byte sized opcodes whose
150/// symbolic names start with BIND_OPCODE_. Conceptually the bind information is
151/// a table of tuples: <seg-index, seg-offset, type, symbol-library-ordinal,
152/// symbol-name, addend> The opcodes are a compressed way to encode the table by
153/// only encoding when a column changes. In addition simple patterns like for
154/// runs of pointers initialized to the same value can be encoded in a few
155/// bytes.
156struct BindInfo {
157 // At the moment we do not parse this info (and it is simply copied over),
158 // but the proper support will be added later.
159 ArrayRef<uint8_t> Opcodes;
160};
161
162/// The location of the weak bind info inside the binary is described by
163/// LC_DYLD_INFO load command. Some C++ programs require dyld to unique symbols
164/// so that all images in the process use the same copy of some code/data. This
165/// step is done after binding. The content of the weak_bind info is an opcode
166/// stream like the bind_info. But it is sorted alphabetically by symbol name.
167/// This enable dyld to walk all images with weak binding information in order
168/// and look for collisions. If there are no collisions, dyld does no updating.
169/// That means that some fixups are also encoded in the bind_info. For
170/// instance, all calls to "operator new" are first bound to libstdc++.dylib
171/// using the information in bind_info. Then if some image overrides operator
172/// new that is detected when the weak_bind information is processed and the
173/// call to operator new is then rebound.
174struct WeakBindInfo {
175 // At the moment we do not parse this info (and it is simply copied over),
176 // but the proper support will be added later.
177 ArrayRef<uint8_t> Opcodes;
178};
179
180/// The location of the lazy bind info inside the binary is described by
181/// LC_DYLD_INFO load command. Some uses of external symbols do not need to be
182/// bound immediately. Instead they can be lazily bound on first use. The
183/// lazy_bind contains a stream of BIND opcodes to bind all lazy symbols. Normal
184/// use is that dyld ignores the lazy_bind section when loading an image.
185/// Instead the static linker arranged for the lazy pointer to initially point
186/// to a helper function which pushes the offset into the lazy_bind area for the
187/// symbol needing to be bound, then jumps to dyld which simply adds the offset
188/// to lazy_bind_off to get the information on what to bind.
189struct LazyBindInfo {
190 ArrayRef<uint8_t> Opcodes;
191};
192
193/// The location of the export info inside the binary is described by
194/// LC_DYLD_INFO load command. The symbols exported by a dylib are encoded in a
195/// trie. This is a compact representation that factors out common prefixes. It
196/// also reduces LINKEDIT pages in RAM because it encodes all information (name,
197/// address, flags) in one small, contiguous range. The export area is a stream
198/// of nodes. The first node sequentially is the start node for the trie. Nodes
199/// for a symbol start with a uleb128 that is the length of the exported symbol
200/// information for the string so far. If there is no exported symbol, the node
201/// starts with a zero byte. If there is exported info, it follows the length.
202/// First is a uleb128 containing flags. Normally, it is followed by
203/// a uleb128 encoded offset which is location of the content named
204/// by the symbol from the mach_header for the image. If the flags
205/// is EXPORT_SYMBOL_FLAGS_REEXPORT, then following the flags is
206/// a uleb128 encoded library ordinal, then a zero terminated
207/// UTF8 string. If the string is zero length, then the symbol
208/// is re-export from the specified dylib with the same name.
209/// If the flags is EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER, then following
210/// the flags is two uleb128s: the stub offset and the resolver offset.
211/// The stub is used by non-lazy pointers. The resolver is used
212/// by lazy pointers and must be called to get the actual address to use.
213/// After the optional exported symbol information is a byte of
214/// how many edges (0-255) that this node has leaving it,
215/// followed by each edge.
216/// Each edge is a zero terminated UTF8 of the addition chars
217/// in the symbol, followed by a uleb128 offset for the node that
218/// edge points to.
219struct ExportInfo {
220 ArrayRef<uint8_t> Trie;
221};
222
Seiya Nuta552bcb82019-08-19 21:05:31 +0000223struct LinkData {
224 ArrayRef<uint8_t> Data;
225};
226
Alexander Shaposhnikovd911ed12019-02-02 00:38:07 +0000227struct Object {
228 MachHeader Header;
229 std::vector<LoadCommand> LoadCommands;
230
231 SymbolTable SymTable;
232 StringTable StrTable;
233
234 RebaseInfo Rebases;
235 BindInfo Binds;
236 WeakBindInfo WeakBinds;
237 LazyBindInfo LazyBinds;
238 ExportInfo Exports;
Seiya Nuta552bcb82019-08-19 21:05:31 +0000239 IndirectSymbolTable IndirectSymTable;
240 LinkData DataInCode;
241 LinkData FunctionStarts;
Alexander Shaposhnikovd911ed12019-02-02 00:38:07 +0000242
243 /// The index of LC_SYMTAB load command if present.
244 Optional<size_t> SymTabCommandIndex;
245 /// The index of LC_DYLD_INFO or LC_DYLD_INFO_ONLY load command if present.
246 Optional<size_t> DyLdInfoCommandIndex;
Seiya Nuta552bcb82019-08-19 21:05:31 +0000247 /// The index LC_DYSYMTAB load comamnd if present.
248 Optional<size_t> DySymTabCommandIndex;
249 /// The index LC_DATA_IN_CODE load comamnd if present.
250 Optional<size_t> DataInCodeCommandIndex;
251 /// The index LC_FUNCTION_STARTS load comamnd if present.
252 Optional<size_t> FunctionStartsCommandIndex;
Alexander Shaposhnikovd911ed12019-02-02 00:38:07 +0000253};
254
255} // end namespace macho
256} // end namespace objcopy
257} // end namespace llvm
258
259#endif // LLVM_OBJCOPY_MACHO_OBJECT_H