blob: ac0543d7d793b0b8622936f0651e11f1765685d9 [file] [log] [blame]
Evan Chengab495562006-01-25 09:14:32 +00001//===---- ScheduleDAGList.cpp - Implement a list scheduler for isel DAG ---===//
Evan Cheng31272342006-01-23 08:26:10 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by Evan Cheng and is distributed under the
6// University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
Chris Lattner01aa7522006-03-06 17:58:04 +000010// This implements bottom-up and top-down list schedulers, using standard
11// algorithms. The basic approach uses a priority queue of available nodes to
12// schedule. One at a time, nodes are taken from the priority queue (thus in
13// priority order), checked for legality to schedule, and emitted if legal.
14//
15// Nodes may not be legal to schedule either due to structural hazards (e.g.
16// pipeline or resource constraints) or because an input to the instruction has
17// not completed execution.
Evan Cheng31272342006-01-23 08:26:10 +000018//
19//===----------------------------------------------------------------------===//
20
21#define DEBUG_TYPE "sched"
22#include "llvm/CodeGen/ScheduleDAG.h"
Evan Cheng31272342006-01-23 08:26:10 +000023#include "llvm/Target/TargetMachine.h"
24#include "llvm/Target/TargetInstrInfo.h"
Evan Chengab495562006-01-25 09:14:32 +000025#include "llvm/Support/Debug.h"
Chris Lattnerfa5e1c92006-03-05 23:13:56 +000026#include "llvm/ADT/Statistic.h"
Evan Chengab495562006-01-25 09:14:32 +000027#include <climits>
28#include <iostream>
Evan Cheng31272342006-01-23 08:26:10 +000029#include <queue>
Evan Cheng4e3904f2006-03-02 21:38:29 +000030#include <set>
31#include <vector>
Chris Lattnerd4130372006-03-09 07:15:18 +000032#include "llvm/Support/CommandLine.h"
Evan Cheng31272342006-01-23 08:26:10 +000033using namespace llvm;
34
Evan Chengab495562006-01-25 09:14:32 +000035namespace {
Chris Lattnerfa5e1c92006-03-05 23:13:56 +000036 Statistic<> NumNoops ("scheduler", "Number of noops inserted");
37 Statistic<> NumStalls("scheduler", "Number of pipeline stalls");
Evan Cheng31272342006-01-23 08:26:10 +000038
Chris Lattner12c6d892006-03-08 04:41:06 +000039 /// SUnit - Scheduling unit. It's an wrapper around either a single SDNode or
40 /// a group of nodes flagged together.
Chris Lattneraf5e26c2006-03-08 04:37:58 +000041 struct SUnit {
42 SDNode *Node; // Representative node.
43 std::vector<SDNode*> FlaggedNodes; // All nodes flagged to Node.
Chris Lattner578d8fc2006-03-11 22:24:20 +000044
45 // Preds/Succs - The SUnits before/after us in the graph. The boolean value
46 // is true if the edge is a token chain edge, false if it is a value edge.
47 std::set<std::pair<SUnit*,bool> > Preds; // All sunit predecessors.
48 std::set<std::pair<SUnit*,bool> > Succs; // All sunit successors.
49
Chris Lattner12c6d892006-03-08 04:41:06 +000050 short NumPredsLeft; // # of preds not scheduled.
51 short NumSuccsLeft; // # of succs not scheduled.
52 short NumChainPredsLeft; // # of chain preds not scheduled.
53 short NumChainSuccsLeft; // # of chain succs not scheduled.
Chris Lattner12c6d892006-03-08 04:41:06 +000054 bool isTwoAddress : 1; // Is a two-address instruction.
55 bool isDefNUseOperand : 1; // Is a def&use operand.
Chris Lattner572003c2006-03-12 00:38:57 +000056 bool isPending : 1; // True once pending.
Chris Lattner349e9dd2006-03-10 05:51:05 +000057 bool isAvailable : 1; // True once available.
58 bool isScheduled : 1; // True once scheduled.
Chris Lattner12c6d892006-03-08 04:41:06 +000059 unsigned short Latency; // Node latency.
Chris Lattneraf5e26c2006-03-08 04:37:58 +000060 unsigned CycleBound; // Upper/lower cycle to be scheduled at.
Chris Lattner356183d2006-03-11 22:44:37 +000061 unsigned Cycle; // Once scheduled, the cycle of the op.
Chris Lattnerfd22d422006-03-08 05:18:27 +000062 unsigned NodeNum; // Entry # of node in the node vector.
Chris Lattneraf5e26c2006-03-08 04:37:58 +000063
Chris Lattnerfd22d422006-03-08 05:18:27 +000064 SUnit(SDNode *node, unsigned nodenum)
Chris Lattneraf5e26c2006-03-08 04:37:58 +000065 : Node(node), NumPredsLeft(0), NumSuccsLeft(0),
Evan Cheng4e3904f2006-03-02 21:38:29 +000066 NumChainPredsLeft(0), NumChainSuccsLeft(0),
Evan Cheng5e9a6952006-03-03 06:23:43 +000067 isTwoAddress(false), isDefNUseOperand(false),
Chris Lattner572003c2006-03-12 00:38:57 +000068 isPending(false), isAvailable(false), isScheduled(false),
Chris Lattner356183d2006-03-11 22:44:37 +000069 Latency(0), CycleBound(0), Cycle(0), NodeNum(nodenum) {}
Chris Lattneraf5e26c2006-03-08 04:37:58 +000070
Chris Lattnerd4130372006-03-09 07:15:18 +000071 void dump(const SelectionDAG *G) const;
72 void dumpAll(const SelectionDAG *G) const;
Chris Lattneraf5e26c2006-03-08 04:37:58 +000073 };
74}
Evan Chengab495562006-01-25 09:14:32 +000075
Chris Lattnerd4130372006-03-09 07:15:18 +000076void SUnit::dump(const SelectionDAG *G) const {
Evan Chengc4c339c2006-01-26 00:30:29 +000077 std::cerr << "SU: ";
Evan Chengab495562006-01-25 09:14:32 +000078 Node->dump(G);
79 std::cerr << "\n";
Evan Chengab495562006-01-25 09:14:32 +000080 if (FlaggedNodes.size() != 0) {
Evan Chengab495562006-01-25 09:14:32 +000081 for (unsigned i = 0, e = FlaggedNodes.size(); i != e; i++) {
Evan Chengc4c339c2006-01-26 00:30:29 +000082 std::cerr << " ";
Evan Chengab495562006-01-25 09:14:32 +000083 FlaggedNodes[i]->dump(G);
84 std::cerr << "\n";
85 }
86 }
Chris Lattnerd4130372006-03-09 07:15:18 +000087}
Evan Chengab495562006-01-25 09:14:32 +000088
Chris Lattnerd4130372006-03-09 07:15:18 +000089void SUnit::dumpAll(const SelectionDAG *G) const {
90 dump(G);
Evan Chengc4c339c2006-01-26 00:30:29 +000091
Chris Lattnerd4130372006-03-09 07:15:18 +000092 std::cerr << " # preds left : " << NumPredsLeft << "\n";
93 std::cerr << " # succs left : " << NumSuccsLeft << "\n";
94 std::cerr << " # chain preds left : " << NumChainPredsLeft << "\n";
95 std::cerr << " # chain succs left : " << NumChainSuccsLeft << "\n";
96 std::cerr << " Latency : " << Latency << "\n";
97
98 if (Preds.size() != 0) {
99 std::cerr << " Predecessors:\n";
Chris Lattner578d8fc2006-03-11 22:24:20 +0000100 for (std::set<std::pair<SUnit*,bool> >::const_iterator I = Preds.begin(),
Chris Lattnerd4130372006-03-09 07:15:18 +0000101 E = Preds.end(); I != E; ++I) {
Chris Lattner578d8fc2006-03-11 22:24:20 +0000102 if (I->second)
103 std::cerr << " ch ";
104 else
105 std::cerr << " val ";
106 I->first->dump(G);
Chris Lattnerd4130372006-03-09 07:15:18 +0000107 }
108 }
109 if (Succs.size() != 0) {
110 std::cerr << " Successors:\n";
Chris Lattner578d8fc2006-03-11 22:24:20 +0000111 for (std::set<std::pair<SUnit*, bool> >::const_iterator I = Succs.begin(),
Chris Lattnerd4130372006-03-09 07:15:18 +0000112 E = Succs.end(); I != E; ++I) {
Chris Lattner578d8fc2006-03-11 22:24:20 +0000113 if (I->second)
114 std::cerr << " ch ";
115 else
116 std::cerr << " val ";
117 I->first->dump(G);
Chris Lattnerd4130372006-03-09 07:15:18 +0000118 }
119 }
120 std::cerr << "\n";
Evan Chengab495562006-01-25 09:14:32 +0000121}
122
Chris Lattner9df64752006-03-09 06:35:14 +0000123//===----------------------------------------------------------------------===//
Chris Lattner9e95acc2006-03-09 06:37:29 +0000124/// SchedulingPriorityQueue - This interface is used to plug different
125/// priorities computation algorithms into the list scheduler. It implements the
126/// interface of a standard priority queue, where nodes are inserted in
127/// arbitrary order and returned in priority order. The computation of the
128/// priority and the representation of the queue are totally up to the
129/// implementation to decide.
130///
131namespace {
Chris Lattner9df64752006-03-09 06:35:14 +0000132class SchedulingPriorityQueue {
133public:
134 virtual ~SchedulingPriorityQueue() {}
Chris Lattnerfd22d422006-03-08 05:18:27 +0000135
Chris Lattner9df64752006-03-09 06:35:14 +0000136 virtual void initNodes(const std::vector<SUnit> &SUnits) = 0;
137 virtual void releaseState() = 0;
Chris Lattnerfd22d422006-03-08 05:18:27 +0000138
Chris Lattner9df64752006-03-09 06:35:14 +0000139 virtual bool empty() const = 0;
140 virtual void push(SUnit *U) = 0;
Chris Lattner25e25562006-03-10 04:32:49 +0000141
142 virtual void push_all(const std::vector<SUnit *> &Nodes) = 0;
Chris Lattner9df64752006-03-09 06:35:14 +0000143 virtual SUnit *pop() = 0;
Chris Lattner25e25562006-03-10 04:32:49 +0000144
145 /// ScheduledNode - As each node is scheduled, this method is invoked. This
146 /// allows the priority function to adjust the priority of node that have
147 /// already been emitted.
148 virtual void ScheduledNode(SUnit *Node) {}
Chris Lattner9df64752006-03-09 06:35:14 +0000149};
Chris Lattner9e95acc2006-03-09 06:37:29 +0000150}
Chris Lattnerfd22d422006-03-08 05:18:27 +0000151
152
Chris Lattnere50c0922006-03-05 22:45:01 +0000153
Chris Lattneraf5e26c2006-03-08 04:37:58 +0000154namespace {
Chris Lattner9e95acc2006-03-09 06:37:29 +0000155//===----------------------------------------------------------------------===//
156/// ScheduleDAGList - The actual list scheduler implementation. This supports
157/// both top-down and bottom-up scheduling.
158///
Evan Cheng31272342006-01-23 08:26:10 +0000159class ScheduleDAGList : public ScheduleDAG {
160private:
Evan Chengab495562006-01-25 09:14:32 +0000161 // SDNode to SUnit mapping (many to one).
162 std::map<SDNode*, SUnit*> SUnitMap;
Chris Lattner00b52ea2006-03-05 23:59:20 +0000163 // The schedule. Null SUnit*'s represent noop instructions.
Evan Chengab495562006-01-25 09:14:32 +0000164 std::vector<SUnit*> Sequence;
Chris Lattner42e20262006-03-08 04:54:34 +0000165
166 // The scheduling units.
167 std::vector<SUnit> SUnits;
Evan Cheng31272342006-01-23 08:26:10 +0000168
Chris Lattner98ecb8e2006-03-05 21:10:33 +0000169 /// isBottomUp - This is true if the scheduling problem is bottom-up, false if
170 /// it is top-down.
171 bool isBottomUp;
172
Chris Lattner356183d2006-03-11 22:44:37 +0000173 /// AvailableQueue - The priority queue to use for the available SUnits.
174 ///
175 SchedulingPriorityQueue *AvailableQueue;
Chris Lattner9df64752006-03-09 06:35:14 +0000176
Chris Lattner572003c2006-03-12 00:38:57 +0000177 /// PendingQueue - This contains all of the instructions whose operands have
178 /// been issued, but their results are not ready yet (due to the latency of
179 /// the operation). Once the operands becomes available, the instruction is
180 /// added to the AvailableQueue. This keeps track of each SUnit and the
181 /// number of cycles left to execute before the operation is available.
182 std::vector<std::pair<unsigned, SUnit*> > PendingQueue;
183
Chris Lattnere50c0922006-03-05 22:45:01 +0000184 /// HazardRec - The hazard recognizer to use.
Chris Lattner543832d2006-03-08 04:25:59 +0000185 HazardRecognizer *HazardRec;
Chris Lattnere50c0922006-03-05 22:45:01 +0000186
Evan Cheng31272342006-01-23 08:26:10 +0000187public:
188 ScheduleDAGList(SelectionDAG &dag, MachineBasicBlock *bb,
Chris Lattnere50c0922006-03-05 22:45:01 +0000189 const TargetMachine &tm, bool isbottomup,
Chris Lattner356183d2006-03-11 22:44:37 +0000190 SchedulingPriorityQueue *availqueue,
Chris Lattner543832d2006-03-08 04:25:59 +0000191 HazardRecognizer *HR)
Chris Lattner063086b2006-03-11 22:34:41 +0000192 : ScheduleDAG(dag, bb, tm), isBottomUp(isbottomup),
Chris Lattner356183d2006-03-11 22:44:37 +0000193 AvailableQueue(availqueue), HazardRec(HR) {
Chris Lattnere50c0922006-03-05 22:45:01 +0000194 }
Evan Chengab495562006-01-25 09:14:32 +0000195
196 ~ScheduleDAGList() {
Chris Lattner543832d2006-03-08 04:25:59 +0000197 delete HazardRec;
Chris Lattner356183d2006-03-11 22:44:37 +0000198 delete AvailableQueue;
Evan Chengab495562006-01-25 09:14:32 +0000199 }
Evan Cheng31272342006-01-23 08:26:10 +0000200
201 void Schedule();
Evan Cheng31272342006-01-23 08:26:10 +0000202
Chris Lattnerd4130372006-03-09 07:15:18 +0000203 void dumpSchedule() const;
Evan Chengab495562006-01-25 09:14:32 +0000204
205private:
Evan Chengc4c339c2006-01-26 00:30:29 +0000206 SUnit *NewSUnit(SDNode *N);
Chris Lattner063086b2006-03-11 22:34:41 +0000207 void ReleasePred(SUnit *PredSU, bool isChain, unsigned CurCycle);
Chris Lattner572003c2006-03-12 00:38:57 +0000208 void ReleaseSucc(SUnit *SuccSU, bool isChain);
Chris Lattner063086b2006-03-11 22:34:41 +0000209 void ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle);
210 void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
Chris Lattner399bee22006-03-09 06:48:37 +0000211 void ListScheduleTopDown();
212 void ListScheduleBottomUp();
Evan Chengab495562006-01-25 09:14:32 +0000213 void BuildSchedUnits();
214 void EmitSchedule();
215};
Chris Lattneraf5e26c2006-03-08 04:37:58 +0000216} // end anonymous namespace
Evan Chengab495562006-01-25 09:14:32 +0000217
Chris Lattner47639db2006-03-06 00:22:00 +0000218HazardRecognizer::~HazardRecognizer() {}
219
Evan Chengc4c339c2006-01-26 00:30:29 +0000220
221/// NewSUnit - Creates a new SUnit and return a ptr to it.
222SUnit *ScheduleDAGList::NewSUnit(SDNode *N) {
Chris Lattnerfd22d422006-03-08 05:18:27 +0000223 SUnits.push_back(SUnit(N, SUnits.size()));
Chris Lattner42e20262006-03-08 04:54:34 +0000224 return &SUnits.back();
Evan Chengc4c339c2006-01-26 00:30:29 +0000225}
226
Chris Lattner9995a0c2006-03-11 22:28:35 +0000227/// BuildSchedUnits - Build SUnits from the selection dag that we are input.
228/// This SUnit graph is similar to the SelectionDAG, but represents flagged
229/// together nodes with a single SUnit.
230void ScheduleDAGList::BuildSchedUnits() {
231 // Reserve entries in the vector for each of the SUnits we are creating. This
232 // ensure that reallocation of the vector won't happen, so SUnit*'s won't get
233 // invalidated.
234 SUnits.reserve(std::distance(DAG.allnodes_begin(), DAG.allnodes_end()));
235
236 const InstrItineraryData &InstrItins = TM.getInstrItineraryData();
237
238 for (SelectionDAG::allnodes_iterator NI = DAG.allnodes_begin(),
239 E = DAG.allnodes_end(); NI != E; ++NI) {
240 if (isPassiveNode(NI)) // Leaf node, e.g. a TargetImmediate.
241 continue;
242
243 // If this node has already been processed, stop now.
244 if (SUnitMap[NI]) continue;
245
246 SUnit *NodeSUnit = NewSUnit(NI);
247
248 // See if anything is flagged to this node, if so, add them to flagged
249 // nodes. Nodes can have at most one flag input and one flag output. Flags
250 // are required the be the last operand and result of a node.
251
252 // Scan up, adding flagged preds to FlaggedNodes.
253 SDNode *N = NI;
254 while (N->getNumOperands() &&
255 N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Flag) {
256 N = N->getOperand(N->getNumOperands()-1).Val;
257 NodeSUnit->FlaggedNodes.push_back(N);
258 SUnitMap[N] = NodeSUnit;
259 }
260
261 // Scan down, adding this node and any flagged succs to FlaggedNodes if they
262 // have a user of the flag operand.
263 N = NI;
264 while (N->getValueType(N->getNumValues()-1) == MVT::Flag) {
265 SDOperand FlagVal(N, N->getNumValues()-1);
266
267 // There are either zero or one users of the Flag result.
268 bool HasFlagUse = false;
269 for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
270 UI != E; ++UI)
271 if (FlagVal.isOperand(*UI)) {
272 HasFlagUse = true;
273 NodeSUnit->FlaggedNodes.push_back(N);
274 SUnitMap[N] = NodeSUnit;
275 N = *UI;
276 break;
277 }
278 if (!HasFlagUse) break;
279 }
280
281 // Now all flagged nodes are in FlaggedNodes and N is the bottom-most node.
282 // Update the SUnit
283 NodeSUnit->Node = N;
284 SUnitMap[N] = NodeSUnit;
285
286 // Compute the latency for the node. We use the sum of the latencies for
287 // all nodes flagged together into this SUnit.
288 if (InstrItins.isEmpty()) {
289 // No latency information.
290 NodeSUnit->Latency = 1;
291 } else {
292 NodeSUnit->Latency = 0;
293 if (N->isTargetOpcode()) {
294 unsigned SchedClass = TII->getSchedClass(N->getTargetOpcode());
295 InstrStage *S = InstrItins.begin(SchedClass);
296 InstrStage *E = InstrItins.end(SchedClass);
297 for (; S != E; ++S)
298 NodeSUnit->Latency += S->Cycles;
299 }
300 for (unsigned i = 0, e = NodeSUnit->FlaggedNodes.size(); i != e; ++i) {
301 SDNode *FNode = NodeSUnit->FlaggedNodes[i];
302 if (FNode->isTargetOpcode()) {
303 unsigned SchedClass = TII->getSchedClass(FNode->getTargetOpcode());
304 InstrStage *S = InstrItins.begin(SchedClass);
305 InstrStage *E = InstrItins.end(SchedClass);
306 for (; S != E; ++S)
307 NodeSUnit->Latency += S->Cycles;
308 }
309 }
310 }
311 }
312
313 // Pass 2: add the preds, succs, etc.
314 for (unsigned su = 0, e = SUnits.size(); su != e; ++su) {
315 SUnit *SU = &SUnits[su];
316 SDNode *MainNode = SU->Node;
317
318 if (MainNode->isTargetOpcode() &&
319 TII->isTwoAddrInstr(MainNode->getTargetOpcode()))
320 SU->isTwoAddress = true;
321
322 // Find all predecessors and successors of the group.
323 // Temporarily add N to make code simpler.
324 SU->FlaggedNodes.push_back(MainNode);
325
326 for (unsigned n = 0, e = SU->FlaggedNodes.size(); n != e; ++n) {
327 SDNode *N = SU->FlaggedNodes[n];
328
329 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
330 SDNode *OpN = N->getOperand(i).Val;
331 if (isPassiveNode(OpN)) continue; // Not scheduled.
332 SUnit *OpSU = SUnitMap[OpN];
333 assert(OpSU && "Node has no SUnit!");
334 if (OpSU == SU) continue; // In the same group.
335
336 MVT::ValueType OpVT = N->getOperand(i).getValueType();
337 assert(OpVT != MVT::Flag && "Flagged nodes should be in same sunit!");
338 bool isChain = OpVT == MVT::Other;
339
340 if (SU->Preds.insert(std::make_pair(OpSU, isChain)).second) {
341 if (!isChain) {
342 SU->NumPredsLeft++;
343 } else {
344 SU->NumChainPredsLeft++;
345 }
346 }
347 if (OpSU->Succs.insert(std::make_pair(SU, isChain)).second) {
348 if (!isChain) {
349 OpSU->NumSuccsLeft++;
350 } else {
351 OpSU->NumChainSuccsLeft++;
352 }
353 }
354 }
355 }
356
357 // Remove MainNode from FlaggedNodes again.
358 SU->FlaggedNodes.pop_back();
359 }
360 DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
361 SUnits[su].dumpAll(&DAG));
362}
363
364/// EmitSchedule - Emit the machine code in scheduled order.
365void ScheduleDAGList::EmitSchedule() {
366 std::map<SDNode*, unsigned> VRBaseMap;
367 for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
368 if (SUnit *SU = Sequence[i]) {
369 for (unsigned j = 0, ee = SU->FlaggedNodes.size(); j != ee; j++)
370 EmitNode(SU->FlaggedNodes[j], VRBaseMap);
371 EmitNode(SU->Node, VRBaseMap);
372 } else {
373 // Null SUnit* is a noop.
374 EmitNoop();
375 }
376 }
377}
378
379/// dump - dump the schedule.
380void ScheduleDAGList::dumpSchedule() const {
381 for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
382 if (SUnit *SU = Sequence[i])
383 SU->dump(&DAG);
384 else
385 std::cerr << "**** NOOP ****\n";
386 }
387}
388
389/// Schedule - Schedule the DAG using list scheduling.
390/// FIXME: Right now it only supports the burr (bottom up register reducing)
391/// heuristic.
392void ScheduleDAGList::Schedule() {
393 DEBUG(std::cerr << "********** List Scheduling **********\n");
394
395 // Build scheduling units.
396 BuildSchedUnits();
397
Chris Lattner356183d2006-03-11 22:44:37 +0000398 AvailableQueue->initNodes(SUnits);
Chris Lattner9995a0c2006-03-11 22:28:35 +0000399
400 // Execute the actual scheduling loop Top-Down or Bottom-Up as appropriate.
401 if (isBottomUp)
402 ListScheduleBottomUp();
403 else
404 ListScheduleTopDown();
405
Chris Lattner356183d2006-03-11 22:44:37 +0000406 AvailableQueue->releaseState();
Chris Lattner9995a0c2006-03-11 22:28:35 +0000407
408 DEBUG(std::cerr << "*** Final schedule ***\n");
409 DEBUG(dumpSchedule());
410 DEBUG(std::cerr << "\n");
411
412 // Emit in scheduled order
413 EmitSchedule();
414}
415
416//===----------------------------------------------------------------------===//
417// Bottom-Up Scheduling
418//===----------------------------------------------------------------------===//
419
Evan Chengc4c339c2006-01-26 00:30:29 +0000420/// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
421/// the Available queue is the count reaches zero. Also update its cycle bound.
Chris Lattner063086b2006-03-11 22:34:41 +0000422void ScheduleDAGList::ReleasePred(SUnit *PredSU, bool isChain,
Chris Lattner356183d2006-03-11 22:44:37 +0000423 unsigned CurCycle) {
Evan Cheng4e3904f2006-03-02 21:38:29 +0000424 // FIXME: the distance between two nodes is not always == the predecessor's
425 // latency. For example, the reader can very well read the register written
426 // by the predecessor later than the issue cycle. It also depends on the
427 // interrupt model (drain vs. freeze).
Chris Lattner356183d2006-03-11 22:44:37 +0000428 PredSU->CycleBound = std::max(PredSU->CycleBound, CurCycle + PredSU->Latency);
Evan Cheng4e3904f2006-03-02 21:38:29 +0000429
Evan Chengc5c06582006-03-06 06:08:54 +0000430 if (!isChain)
Evan Cheng4e3904f2006-03-02 21:38:29 +0000431 PredSU->NumSuccsLeft--;
Evan Chengc5c06582006-03-06 06:08:54 +0000432 else
Evan Cheng4e3904f2006-03-02 21:38:29 +0000433 PredSU->NumChainSuccsLeft--;
Chris Lattner98ecb8e2006-03-05 21:10:33 +0000434
Evan Chengab495562006-01-25 09:14:32 +0000435#ifndef NDEBUG
Chris Lattner98ecb8e2006-03-05 21:10:33 +0000436 if (PredSU->NumSuccsLeft < 0 || PredSU->NumChainSuccsLeft < 0) {
Evan Chengab495562006-01-25 09:14:32 +0000437 std::cerr << "*** List scheduling failed! ***\n";
438 PredSU->dump(&DAG);
439 std::cerr << " has been released too many times!\n";
440 assert(0);
Chris Lattner98ecb8e2006-03-05 21:10:33 +0000441 }
Evan Chengab495562006-01-25 09:14:32 +0000442#endif
Chris Lattner98ecb8e2006-03-05 21:10:33 +0000443
444 if ((PredSU->NumSuccsLeft + PredSU->NumChainSuccsLeft) == 0) {
445 // EntryToken has to go last! Special case it here.
Chris Lattner349e9dd2006-03-10 05:51:05 +0000446 if (PredSU->Node->getOpcode() != ISD::EntryToken) {
447 PredSU->isAvailable = true;
Chris Lattner356183d2006-03-11 22:44:37 +0000448 AvailableQueue->push(PredSU);
Chris Lattner349e9dd2006-03-10 05:51:05 +0000449 }
Evan Chengab495562006-01-25 09:14:32 +0000450 }
Evan Chengab495562006-01-25 09:14:32 +0000451}
Chris Lattner98ecb8e2006-03-05 21:10:33 +0000452/// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
453/// count of its predecessors. If a predecessor pending count is zero, add it to
454/// the Available queue.
Chris Lattner356183d2006-03-11 22:44:37 +0000455void ScheduleDAGList::ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle) {
Chris Lattner572003c2006-03-12 00:38:57 +0000456 DEBUG(std::cerr << "*** Scheduling [" << CurCycle << "]: ");
Chris Lattnerd4130372006-03-09 07:15:18 +0000457 DEBUG(SU->dump(&DAG));
Chris Lattner356183d2006-03-11 22:44:37 +0000458 SU->Cycle = CurCycle;
Evan Cheng5e9a6952006-03-03 06:23:43 +0000459
Evan Chengab495562006-01-25 09:14:32 +0000460 Sequence.push_back(SU);
Evan Chengab495562006-01-25 09:14:32 +0000461
462 // Bottom up: release predecessors
Chris Lattner578d8fc2006-03-11 22:24:20 +0000463 for (std::set<std::pair<SUnit*, bool> >::iterator I = SU->Preds.begin(),
464 E = SU->Preds.end(); I != E; ++I) {
Chris Lattner356183d2006-03-11 22:44:37 +0000465 ReleasePred(I->first, I->second, CurCycle);
466 // FIXME: This is something used by the priority function that it should
467 // calculate directly.
Chris Lattner578d8fc2006-03-11 22:24:20 +0000468 if (!I->second)
469 SU->NumPredsLeft--;
Evan Cheng4e3904f2006-03-02 21:38:29 +0000470 }
Evan Chengab495562006-01-25 09:14:32 +0000471}
472
473/// isReady - True if node's lower cycle bound is less or equal to the current
474/// scheduling cycle. Always true if all nodes have uniform latency 1.
475static inline bool isReady(SUnit *SU, unsigned CurrCycle) {
476 return SU->CycleBound <= CurrCycle;
477}
478
Chris Lattner98ecb8e2006-03-05 21:10:33 +0000479/// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
480/// schedulers.
Chris Lattner399bee22006-03-09 06:48:37 +0000481void ScheduleDAGList::ListScheduleBottomUp() {
Chris Lattner063086b2006-03-11 22:34:41 +0000482 unsigned CurrCycle = 0;
Chris Lattner7a36d972006-03-05 20:21:55 +0000483 // Add root to Available queue.
Chris Lattner356183d2006-03-11 22:44:37 +0000484 AvailableQueue->push(SUnitMap[DAG.getRoot().Val]);
Evan Chengab495562006-01-25 09:14:32 +0000485
486 // While Available queue is not empty, grab the node with the highest
487 // priority. If it is not ready put it back. Schedule the node.
488 std::vector<SUnit*> NotReady;
Chris Lattner356183d2006-03-11 22:44:37 +0000489 while (!AvailableQueue->empty()) {
490 SUnit *CurrNode = AvailableQueue->pop();
Evan Chengab495562006-01-25 09:14:32 +0000491
Evan Chengab495562006-01-25 09:14:32 +0000492 while (!isReady(CurrNode, CurrCycle)) {
493 NotReady.push_back(CurrNode);
Chris Lattner356183d2006-03-11 22:44:37 +0000494 CurrNode = AvailableQueue->pop();
Evan Chengab495562006-01-25 09:14:32 +0000495 }
Chris Lattner98ecb8e2006-03-05 21:10:33 +0000496
497 // Add the nodes that aren't ready back onto the available list.
Chris Lattner356183d2006-03-11 22:44:37 +0000498 AvailableQueue->push_all(NotReady);
Chris Lattner25e25562006-03-10 04:32:49 +0000499 NotReady.clear();
Evan Chengab495562006-01-25 09:14:32 +0000500
Chris Lattner063086b2006-03-11 22:34:41 +0000501 ScheduleNodeBottomUp(CurrNode, CurrCycle);
502 CurrCycle++;
Chris Lattner349e9dd2006-03-10 05:51:05 +0000503 CurrNode->isScheduled = true;
Chris Lattner356183d2006-03-11 22:44:37 +0000504 AvailableQueue->ScheduledNode(CurrNode);
Evan Chengab495562006-01-25 09:14:32 +0000505 }
506
507 // Add entry node last
508 if (DAG.getEntryNode().Val != DAG.getRoot().Val) {
509 SUnit *Entry = SUnitMap[DAG.getEntryNode().Val];
Evan Chengab495562006-01-25 09:14:32 +0000510 Sequence.push_back(Entry);
511 }
512
Chris Lattner98ecb8e2006-03-05 21:10:33 +0000513 // Reverse the order if it is bottom up.
514 std::reverse(Sequence.begin(), Sequence.end());
515
516
Evan Chengab495562006-01-25 09:14:32 +0000517#ifndef NDEBUG
Chris Lattner98ecb8e2006-03-05 21:10:33 +0000518 // Verify that all SUnits were scheduled.
Evan Chengc4c339c2006-01-26 00:30:29 +0000519 bool AnyNotSched = false;
Chris Lattner42e20262006-03-08 04:54:34 +0000520 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
521 if (SUnits[i].NumSuccsLeft != 0 || SUnits[i].NumChainSuccsLeft != 0) {
Evan Chengc4c339c2006-01-26 00:30:29 +0000522 if (!AnyNotSched)
523 std::cerr << "*** List scheduling failed! ***\n";
Chris Lattner42e20262006-03-08 04:54:34 +0000524 SUnits[i].dump(&DAG);
Evan Chengc4c339c2006-01-26 00:30:29 +0000525 std::cerr << "has not been scheduled!\n";
526 AnyNotSched = true;
Evan Chengab495562006-01-25 09:14:32 +0000527 }
Evan Chengab495562006-01-25 09:14:32 +0000528 }
Evan Chengc4c339c2006-01-26 00:30:29 +0000529 assert(!AnyNotSched);
Reid Spencer5edde662006-01-25 21:49:13 +0000530#endif
Evan Chengab495562006-01-25 09:14:32 +0000531}
532
Chris Lattner9995a0c2006-03-11 22:28:35 +0000533//===----------------------------------------------------------------------===//
534// Top-Down Scheduling
535//===----------------------------------------------------------------------===//
536
537/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
Chris Lattner572003c2006-03-12 00:38:57 +0000538/// the PendingQueue if the count reaches zero.
539void ScheduleDAGList::ReleaseSucc(SUnit *SuccSU, bool isChain) {
Chris Lattner9995a0c2006-03-11 22:28:35 +0000540 if (!isChain)
541 SuccSU->NumPredsLeft--;
542 else
543 SuccSU->NumChainPredsLeft--;
544
Chris Lattner572003c2006-03-12 00:38:57 +0000545 assert(SuccSU->NumPredsLeft >= 0 && SuccSU->NumChainPredsLeft >= 0 &&
546 "List scheduling internal error");
Chris Lattner9995a0c2006-03-11 22:28:35 +0000547
548 if ((SuccSU->NumPredsLeft + SuccSU->NumChainPredsLeft) == 0) {
Chris Lattner572003c2006-03-12 00:38:57 +0000549 // Compute how many cycles it will be before this actually becomes
550 // available. This is the max of the start time of all predecessors plus
551 // their latencies.
552 unsigned AvailableCycle = 0;
553 for (std::set<std::pair<SUnit*, bool> >::iterator I = SuccSU->Preds.begin(),
554 E = SuccSU->Preds.end(); I != E; ++I) {
555 AvailableCycle = std::max(AvailableCycle,
556 I->first->Cycle + I->first->Latency);
557 }
558
559 PendingQueue.push_back(std::make_pair(AvailableCycle, SuccSU));
560 SuccSU->isPending = true;
Chris Lattner9995a0c2006-03-11 22:28:35 +0000561 }
562}
563
564/// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
565/// count of its successors. If a successor pending count is zero, add it to
566/// the Available queue.
Chris Lattner356183d2006-03-11 22:44:37 +0000567void ScheduleDAGList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
Chris Lattner572003c2006-03-12 00:38:57 +0000568 DEBUG(std::cerr << "*** Scheduling [" << CurCycle << "]: ");
Chris Lattner9995a0c2006-03-11 22:28:35 +0000569 DEBUG(SU->dump(&DAG));
570
571 Sequence.push_back(SU);
Chris Lattner356183d2006-03-11 22:44:37 +0000572 SU->Cycle = CurCycle;
Chris Lattner9995a0c2006-03-11 22:28:35 +0000573
574 // Bottom up: release successors.
575 for (std::set<std::pair<SUnit*, bool> >::iterator I = SU->Succs.begin(),
Chris Lattner356183d2006-03-11 22:44:37 +0000576 E = SU->Succs.end(); I != E; ++I)
Chris Lattner572003c2006-03-12 00:38:57 +0000577 ReleaseSucc(I->first, I->second);
Chris Lattner9995a0c2006-03-11 22:28:35 +0000578}
579
Chris Lattner98ecb8e2006-03-05 21:10:33 +0000580/// ListScheduleTopDown - The main loop of list scheduling for top-down
581/// schedulers.
Chris Lattner399bee22006-03-09 06:48:37 +0000582void ScheduleDAGList::ListScheduleTopDown() {
Chris Lattner572003c2006-03-12 00:38:57 +0000583 unsigned CurCycle = 0;
Chris Lattner98ecb8e2006-03-05 21:10:33 +0000584 SUnit *Entry = SUnitMap[DAG.getEntryNode().Val];
Chris Lattner572003c2006-03-12 00:38:57 +0000585
Chris Lattner98ecb8e2006-03-05 21:10:33 +0000586 // All leaves to Available queue.
Chris Lattner42e20262006-03-08 04:54:34 +0000587 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
Chris Lattner98ecb8e2006-03-05 21:10:33 +0000588 // It is available if it has no predecessors.
Chris Lattner572003c2006-03-12 00:38:57 +0000589 if (SUnits[i].Preds.size() == 0 && &SUnits[i] != Entry) {
Chris Lattner356183d2006-03-11 22:44:37 +0000590 AvailableQueue->push(&SUnits[i]);
Chris Lattner572003c2006-03-12 00:38:57 +0000591 SUnits[i].isAvailable = SUnits[i].isPending = true;
592 }
Chris Lattner98ecb8e2006-03-05 21:10:33 +0000593 }
594
Chris Lattner572003c2006-03-12 00:38:57 +0000595 // Emit the entry node first.
596 ScheduleNodeTopDown(Entry, CurCycle);
597 HazardRec->EmitInstruction(Entry->Node);
598
Chris Lattner98ecb8e2006-03-05 21:10:33 +0000599 // While Available queue is not empty, grab the node with the highest
600 // priority. If it is not ready put it back. Schedule the node.
601 std::vector<SUnit*> NotReady;
Chris Lattner572003c2006-03-12 00:38:57 +0000602 while (!AvailableQueue->empty() || !PendingQueue.empty()) {
603 // Check to see if any of the pending instructions are ready to issue. If
604 // so, add them to the available queue.
605 for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i)
606 if (PendingQueue[i].first == CurCycle) {
607 AvailableQueue->push(PendingQueue[i].second);
608 PendingQueue[i].second->isAvailable = true;
609 PendingQueue[i] = PendingQueue.back();
610 PendingQueue.pop_back();
611 --i; --e;
612 } else {
613 assert(PendingQueue[i].first > CurCycle && "Negative latency?");
614 }
615
Chris Lattnere50c0922006-03-05 22:45:01 +0000616 SUnit *FoundNode = 0;
Chris Lattner98ecb8e2006-03-05 21:10:33 +0000617
Chris Lattnere50c0922006-03-05 22:45:01 +0000618 bool HasNoopHazards = false;
Chris Lattner572003c2006-03-12 00:38:57 +0000619 while (!AvailableQueue->empty()) {
Chris Lattner356183d2006-03-11 22:44:37 +0000620 SUnit *CurNode = AvailableQueue->pop();
Chris Lattner0c801bd2006-03-07 05:40:43 +0000621
622 // Get the node represented by this SUnit.
623 SDNode *N = CurNode->Node;
624 // If this is a pseudo op, like copyfromreg, look to see if there is a
625 // real target node flagged to it. If so, use the target node.
626 for (unsigned i = 0, e = CurNode->FlaggedNodes.size();
627 N->getOpcode() < ISD::BUILTIN_OP_END && i != e; ++i)
628 N = CurNode->FlaggedNodes[i];
629
Chris Lattner543832d2006-03-08 04:25:59 +0000630 HazardRecognizer::HazardType HT = HazardRec->getHazardType(N);
Chris Lattnere50c0922006-03-05 22:45:01 +0000631 if (HT == HazardRecognizer::NoHazard) {
Chris Lattner0c801bd2006-03-07 05:40:43 +0000632 FoundNode = CurNode;
Chris Lattnere50c0922006-03-05 22:45:01 +0000633 break;
634 }
635
636 // Remember if this is a noop hazard.
637 HasNoopHazards |= HT == HazardRecognizer::NoopHazard;
638
Chris Lattner0c801bd2006-03-07 05:40:43 +0000639 NotReady.push_back(CurNode);
Chris Lattner572003c2006-03-12 00:38:57 +0000640 }
Chris Lattnere50c0922006-03-05 22:45:01 +0000641
Chris Lattner98ecb8e2006-03-05 21:10:33 +0000642 // Add the nodes that aren't ready back onto the available list.
Chris Lattner356183d2006-03-11 22:44:37 +0000643 AvailableQueue->push_all(NotReady);
Chris Lattner25e25562006-03-10 04:32:49 +0000644 NotReady.clear();
Chris Lattnere50c0922006-03-05 22:45:01 +0000645
646 // If we found a node to schedule, do it now.
647 if (FoundNode) {
Chris Lattner572003c2006-03-12 00:38:57 +0000648 ScheduleNodeTopDown(FoundNode, CurCycle);
Chris Lattner543832d2006-03-08 04:25:59 +0000649 HazardRec->EmitInstruction(FoundNode->Node);
Chris Lattner349e9dd2006-03-10 05:51:05 +0000650 FoundNode->isScheduled = true;
Chris Lattner356183d2006-03-11 22:44:37 +0000651 AvailableQueue->ScheduledNode(FoundNode);
Chris Lattner572003c2006-03-12 00:38:57 +0000652
653 // If this is a pseudo-op node, we don't want to increment the current
654 // cycle.
655 if (FoundNode->Latency == 0)
656 continue; // Don't increment for pseudo-ops!
Chris Lattnere50c0922006-03-05 22:45:01 +0000657 } else if (!HasNoopHazards) {
658 // Otherwise, we have a pipeline stall, but no other problem, just advance
659 // the current cycle and try again.
Chris Lattner0c801bd2006-03-07 05:40:43 +0000660 DEBUG(std::cerr << "*** Advancing cycle, no work to do\n");
Chris Lattner543832d2006-03-08 04:25:59 +0000661 HazardRec->AdvanceCycle();
Chris Lattnerfa5e1c92006-03-05 23:13:56 +0000662 ++NumStalls;
Chris Lattnere50c0922006-03-05 22:45:01 +0000663 } else {
664 // Otherwise, we have no instructions to issue and we have instructions
665 // that will fault if we don't do this right. This is the case for
666 // processors without pipeline interlocks and other cases.
Chris Lattner0c801bd2006-03-07 05:40:43 +0000667 DEBUG(std::cerr << "*** Emitting noop\n");
Chris Lattner543832d2006-03-08 04:25:59 +0000668 HazardRec->EmitNoop();
Chris Lattner00b52ea2006-03-05 23:59:20 +0000669 Sequence.push_back(0); // NULL SUnit* -> noop
Chris Lattnerfa5e1c92006-03-05 23:13:56 +0000670 ++NumNoops;
Chris Lattnere50c0922006-03-05 22:45:01 +0000671 }
Chris Lattner572003c2006-03-12 00:38:57 +0000672 ++CurCycle;
Chris Lattner98ecb8e2006-03-05 21:10:33 +0000673 }
674
675#ifndef NDEBUG
676 // Verify that all SUnits were scheduled.
677 bool AnyNotSched = false;
Chris Lattner42e20262006-03-08 04:54:34 +0000678 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
679 if (SUnits[i].NumPredsLeft != 0 || SUnits[i].NumChainPredsLeft != 0) {
Chris Lattner98ecb8e2006-03-05 21:10:33 +0000680 if (!AnyNotSched)
681 std::cerr << "*** List scheduling failed! ***\n";
Chris Lattner42e20262006-03-08 04:54:34 +0000682 SUnits[i].dump(&DAG);
Chris Lattner98ecb8e2006-03-05 21:10:33 +0000683 std::cerr << "has not been scheduled!\n";
684 AnyNotSched = true;
685 }
686 }
687 assert(!AnyNotSched);
688#endif
689}
690
Chris Lattner9df64752006-03-09 06:35:14 +0000691//===----------------------------------------------------------------------===//
692// RegReductionPriorityQueue Implementation
693//===----------------------------------------------------------------------===//
694//
695// This is a SchedulingPriorityQueue that schedules using Sethi Ullman numbers
696// to reduce register pressure.
697//
698namespace {
699 class RegReductionPriorityQueue;
700
701 /// Sorting functions for the Available queue.
702 struct ls_rr_sort : public std::binary_function<SUnit*, SUnit*, bool> {
703 RegReductionPriorityQueue *SPQ;
704 ls_rr_sort(RegReductionPriorityQueue *spq) : SPQ(spq) {}
705 ls_rr_sort(const ls_rr_sort &RHS) : SPQ(RHS.SPQ) {}
706
707 bool operator()(const SUnit* left, const SUnit* right) const;
708 };
709} // end anonymous namespace
710
711namespace {
712 class RegReductionPriorityQueue : public SchedulingPriorityQueue {
713 // SUnits - The SUnits for the current graph.
714 const std::vector<SUnit> *SUnits;
715
716 // SethiUllmanNumbers - The SethiUllman number for each node.
717 std::vector<int> SethiUllmanNumbers;
718
719 std::priority_queue<SUnit*, std::vector<SUnit*>, ls_rr_sort> Queue;
720 public:
721 RegReductionPriorityQueue() : Queue(ls_rr_sort(this)) {
722 }
723
724 void initNodes(const std::vector<SUnit> &sunits) {
725 SUnits = &sunits;
726 // Calculate node priorities.
727 CalculatePriorities();
728 }
729 void releaseState() {
730 SUnits = 0;
731 SethiUllmanNumbers.clear();
732 }
733
734 unsigned getSethiUllmanNumber(unsigned NodeNum) const {
735 assert(NodeNum < SethiUllmanNumbers.size());
736 return SethiUllmanNumbers[NodeNum];
737 }
738
739 bool empty() const { return Queue.empty(); }
740
741 void push(SUnit *U) {
742 Queue.push(U);
743 }
Chris Lattner25e25562006-03-10 04:32:49 +0000744 void push_all(const std::vector<SUnit *> &Nodes) {
745 for (unsigned i = 0, e = Nodes.size(); i != e; ++i)
746 Queue.push(Nodes[i]);
747 }
748
Chris Lattner9df64752006-03-09 06:35:14 +0000749 SUnit *pop() {
750 SUnit *V = Queue.top();
751 Queue.pop();
752 return V;
753 }
754 private:
755 void CalculatePriorities();
756 int CalcNodePriority(const SUnit *SU);
757 };
758}
759
760bool ls_rr_sort::operator()(const SUnit *left, const SUnit *right) const {
761 unsigned LeftNum = left->NodeNum;
762 unsigned RightNum = right->NodeNum;
763
764 int LBonus = (int)left ->isDefNUseOperand;
765 int RBonus = (int)right->isDefNUseOperand;
766
767 // Special tie breaker: if two nodes share a operand, the one that
768 // use it as a def&use operand is preferred.
769 if (left->isTwoAddress && !right->isTwoAddress) {
770 SDNode *DUNode = left->Node->getOperand(0).Val;
771 if (DUNode->isOperand(right->Node))
772 LBonus++;
773 }
774 if (!left->isTwoAddress && right->isTwoAddress) {
775 SDNode *DUNode = right->Node->getOperand(0).Val;
776 if (DUNode->isOperand(left->Node))
777 RBonus++;
778 }
779
780 // Priority1 is just the number of live range genned.
781 int LPriority1 = left ->NumPredsLeft - LBonus;
782 int RPriority1 = right->NumPredsLeft - RBonus;
783 int LPriority2 = SPQ->getSethiUllmanNumber(LeftNum) + LBonus;
784 int RPriority2 = SPQ->getSethiUllmanNumber(RightNum) + RBonus;
785
786 if (LPriority1 > RPriority1)
787 return true;
788 else if (LPriority1 == RPriority1)
789 if (LPriority2 < RPriority2)
790 return true;
791 else if (LPriority2 == RPriority2)
792 if (left->CycleBound > right->CycleBound)
793 return true;
794
795 return false;
796}
797
798
799/// CalcNodePriority - Priority is the Sethi Ullman number.
800/// Smaller number is the higher priority.
801int RegReductionPriorityQueue::CalcNodePriority(const SUnit *SU) {
802 int &SethiUllmanNumber = SethiUllmanNumbers[SU->NodeNum];
803 if (SethiUllmanNumber != INT_MIN)
804 return SethiUllmanNumber;
805
806 if (SU->Preds.size() == 0) {
807 SethiUllmanNumber = 1;
808 } else {
809 int Extra = 0;
Chris Lattner578d8fc2006-03-11 22:24:20 +0000810 for (std::set<std::pair<SUnit*, bool> >::const_iterator
811 I = SU->Preds.begin(), E = SU->Preds.end(); I != E; ++I) {
812 if (I->second) continue; // ignore chain preds.
813 SUnit *PredSU = I->first;
Chris Lattner9df64752006-03-09 06:35:14 +0000814 int PredSethiUllman = CalcNodePriority(PredSU);
815 if (PredSethiUllman > SethiUllmanNumber) {
816 SethiUllmanNumber = PredSethiUllman;
817 Extra = 0;
818 } else if (PredSethiUllman == SethiUllmanNumber)
819 Extra++;
820 }
821
822 if (SU->Node->getOpcode() != ISD::TokenFactor)
823 SethiUllmanNumber += Extra;
824 else
825 SethiUllmanNumber = (Extra == 1) ? 0 : Extra-1;
826 }
827
828 return SethiUllmanNumber;
829}
830
831/// CalculatePriorities - Calculate priorities of all scheduling units.
832void RegReductionPriorityQueue::CalculatePriorities() {
833 SethiUllmanNumbers.assign(SUnits->size(), INT_MIN);
834
835 for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
836 CalcNodePriority(&(*SUnits)[i]);
837}
838
Chris Lattner6398c132006-03-09 07:38:27 +0000839//===----------------------------------------------------------------------===//
840// LatencyPriorityQueue Implementation
841//===----------------------------------------------------------------------===//
842//
843// This is a SchedulingPriorityQueue that schedules using latency information to
844// reduce the length of the critical path through the basic block.
845//
846namespace {
847 class LatencyPriorityQueue;
848
849 /// Sorting functions for the Available queue.
850 struct latency_sort : public std::binary_function<SUnit*, SUnit*, bool> {
851 LatencyPriorityQueue *PQ;
852 latency_sort(LatencyPriorityQueue *pq) : PQ(pq) {}
853 latency_sort(const latency_sort &RHS) : PQ(RHS.PQ) {}
854
855 bool operator()(const SUnit* left, const SUnit* right) const;
856 };
857} // end anonymous namespace
858
859namespace {
860 class LatencyPriorityQueue : public SchedulingPriorityQueue {
861 // SUnits - The SUnits for the current graph.
862 const std::vector<SUnit> *SUnits;
863
864 // Latencies - The latency (max of latency from this node to the bb exit)
865 // for each node.
866 std::vector<int> Latencies;
Chris Lattner349e9dd2006-03-10 05:51:05 +0000867
868 /// NumNodesSolelyBlocking - This vector contains, for every node in the
869 /// Queue, the number of nodes that the node is the sole unscheduled
870 /// predecessor for. This is used as a tie-breaker heuristic for better
871 /// mobility.
872 std::vector<unsigned> NumNodesSolelyBlocking;
873
Chris Lattner6398c132006-03-09 07:38:27 +0000874 std::priority_queue<SUnit*, std::vector<SUnit*>, latency_sort> Queue;
875public:
876 LatencyPriorityQueue() : Queue(latency_sort(this)) {
877 }
878
879 void initNodes(const std::vector<SUnit> &sunits) {
880 SUnits = &sunits;
881 // Calculate node priorities.
882 CalculatePriorities();
883 }
884 void releaseState() {
885 SUnits = 0;
886 Latencies.clear();
887 }
888
889 unsigned getLatency(unsigned NodeNum) const {
890 assert(NodeNum < Latencies.size());
891 return Latencies[NodeNum];
892 }
893
Chris Lattner349e9dd2006-03-10 05:51:05 +0000894 unsigned getNumSolelyBlockNodes(unsigned NodeNum) const {
895 assert(NodeNum < NumNodesSolelyBlocking.size());
896 return NumNodesSolelyBlocking[NodeNum];
897 }
898
Chris Lattner6398c132006-03-09 07:38:27 +0000899 bool empty() const { return Queue.empty(); }
900
Chris Lattner349e9dd2006-03-10 05:51:05 +0000901 virtual void push(SUnit *U) {
902 push_impl(U);
Chris Lattner6398c132006-03-09 07:38:27 +0000903 }
Chris Lattner349e9dd2006-03-10 05:51:05 +0000904 void push_impl(SUnit *U);
905
Chris Lattner25e25562006-03-10 04:32:49 +0000906 void push_all(const std::vector<SUnit *> &Nodes) {
907 for (unsigned i = 0, e = Nodes.size(); i != e; ++i)
Chris Lattner349e9dd2006-03-10 05:51:05 +0000908 push_impl(Nodes[i]);
Chris Lattner25e25562006-03-10 04:32:49 +0000909 }
910
Chris Lattner6398c132006-03-09 07:38:27 +0000911 SUnit *pop() {
912 SUnit *V = Queue.top();
913 Queue.pop();
Chris Lattner6398c132006-03-09 07:38:27 +0000914 return V;
915 }
Chris Lattner349e9dd2006-03-10 05:51:05 +0000916
917 // ScheduledNode - As nodes are scheduled, we look to see if there are any
918 // successor nodes that have a single unscheduled predecessor. If so, that
919 // single predecessor has a higher priority, since scheduling it will make
920 // the node available.
921 void ScheduledNode(SUnit *Node);
922
Chris Lattner6398c132006-03-09 07:38:27 +0000923private:
924 void CalculatePriorities();
925 int CalcLatency(const SUnit &SU);
Chris Lattner349e9dd2006-03-10 05:51:05 +0000926 void AdjustPriorityOfUnscheduledPreds(SUnit *SU);
927
928 /// RemoveFromPriorityQueue - This is a really inefficient way to remove a
929 /// node from a priority queue. We should roll our own heap to make this
930 /// better or something.
931 void RemoveFromPriorityQueue(SUnit *SU) {
932 std::vector<SUnit*> Temp;
933
934 assert(!Queue.empty() && "Not in queue!");
935 while (Queue.top() != SU) {
936 Temp.push_back(Queue.top());
937 Queue.pop();
938 assert(!Queue.empty() && "Not in queue!");
939 }
940
941 // Remove the node from the PQ.
942 Queue.pop();
943
944 // Add all the other nodes back.
945 for (unsigned i = 0, e = Temp.size(); i != e; ++i)
946 Queue.push(Temp[i]);
947 }
Chris Lattner6398c132006-03-09 07:38:27 +0000948 };
949}
950
951bool latency_sort::operator()(const SUnit *LHS, const SUnit *RHS) const {
952 unsigned LHSNum = LHS->NodeNum;
953 unsigned RHSNum = RHS->NodeNum;
Chris Lattner349e9dd2006-03-10 05:51:05 +0000954
955 // The most important heuristic is scheduling the critical path.
956 unsigned LHSLatency = PQ->getLatency(LHSNum);
957 unsigned RHSLatency = PQ->getLatency(RHSNum);
958 if (LHSLatency < RHSLatency) return true;
959 if (LHSLatency > RHSLatency) return false;
Chris Lattner6398c132006-03-09 07:38:27 +0000960
Chris Lattner349e9dd2006-03-10 05:51:05 +0000961 // After that, if two nodes have identical latencies, look to see if one will
962 // unblock more other nodes than the other.
963 unsigned LHSBlocked = PQ->getNumSolelyBlockNodes(LHSNum);
964 unsigned RHSBlocked = PQ->getNumSolelyBlockNodes(RHSNum);
965 if (LHSBlocked < RHSBlocked) return true;
966 if (LHSBlocked > RHSBlocked) return false;
967
968 // Finally, just to provide a stable ordering, use the node number as a
969 // deciding factor.
970 return LHSNum < RHSNum;
Chris Lattner6398c132006-03-09 07:38:27 +0000971}
972
973
974/// CalcNodePriority - Calculate the maximal path from the node to the exit.
975///
976int LatencyPriorityQueue::CalcLatency(const SUnit &SU) {
977 int &Latency = Latencies[SU.NodeNum];
978 if (Latency != -1)
979 return Latency;
980
981 int MaxSuccLatency = 0;
Chris Lattner578d8fc2006-03-11 22:24:20 +0000982 for (std::set<std::pair<SUnit*, bool> >::const_iterator I = SU.Succs.begin(),
Chris Lattner6398c132006-03-09 07:38:27 +0000983 E = SU.Succs.end(); I != E; ++I)
Chris Lattner578d8fc2006-03-11 22:24:20 +0000984 MaxSuccLatency = std::max(MaxSuccLatency, CalcLatency(*I->first));
Chris Lattner6398c132006-03-09 07:38:27 +0000985
986 return Latency = MaxSuccLatency + SU.Latency;
987}
988
989/// CalculatePriorities - Calculate priorities of all scheduling units.
990void LatencyPriorityQueue::CalculatePriorities() {
991 Latencies.assign(SUnits->size(), -1);
Chris Lattner349e9dd2006-03-10 05:51:05 +0000992 NumNodesSolelyBlocking.assign(SUnits->size(), 0);
Chris Lattner6398c132006-03-09 07:38:27 +0000993
994 for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
995 CalcLatency((*SUnits)[i]);
996}
997
Chris Lattner349e9dd2006-03-10 05:51:05 +0000998/// getSingleUnscheduledPred - If there is exactly one unscheduled predecessor
999/// of SU, return it, otherwise return null.
1000static SUnit *getSingleUnscheduledPred(SUnit *SU) {
1001 SUnit *OnlyAvailablePred = 0;
Chris Lattner578d8fc2006-03-11 22:24:20 +00001002 for (std::set<std::pair<SUnit*, bool> >::const_iterator I = SU->Preds.begin(),
Chris Lattner349e9dd2006-03-10 05:51:05 +00001003 E = SU->Preds.end(); I != E; ++I)
Chris Lattner578d8fc2006-03-11 22:24:20 +00001004 if (!I->first->isScheduled) {
Chris Lattner349e9dd2006-03-10 05:51:05 +00001005 // We found an available, but not scheduled, predecessor. If it's the
1006 // only one we have found, keep track of it... otherwise give up.
Chris Lattner578d8fc2006-03-11 22:24:20 +00001007 if (OnlyAvailablePred && OnlyAvailablePred != I->first)
Chris Lattner349e9dd2006-03-10 05:51:05 +00001008 return 0;
Chris Lattner578d8fc2006-03-11 22:24:20 +00001009 OnlyAvailablePred = I->first;
Chris Lattner349e9dd2006-03-10 05:51:05 +00001010 }
1011
1012 return OnlyAvailablePred;
1013}
1014
1015void LatencyPriorityQueue::push_impl(SUnit *SU) {
1016 // Look at all of the successors of this node. Count the number of nodes that
1017 // this node is the sole unscheduled node for.
1018 unsigned NumNodesBlocking = 0;
Chris Lattner578d8fc2006-03-11 22:24:20 +00001019 for (std::set<std::pair<SUnit*, bool> >::const_iterator I = SU->Succs.begin(),
Chris Lattner349e9dd2006-03-10 05:51:05 +00001020 E = SU->Succs.end(); I != E; ++I)
Chris Lattner578d8fc2006-03-11 22:24:20 +00001021 if (getSingleUnscheduledPred(I->first) == SU)
Chris Lattner349e9dd2006-03-10 05:51:05 +00001022 ++NumNodesBlocking;
Chris Lattner578d8fc2006-03-11 22:24:20 +00001023 NumNodesSolelyBlocking[SU->NodeNum] = NumNodesBlocking;
Chris Lattner349e9dd2006-03-10 05:51:05 +00001024
1025 Queue.push(SU);
1026}
1027
1028
1029// ScheduledNode - As nodes are scheduled, we look to see if there are any
1030// successor nodes that have a single unscheduled predecessor. If so, that
1031// single predecessor has a higher priority, since scheduling it will make
1032// the node available.
1033void LatencyPriorityQueue::ScheduledNode(SUnit *SU) {
Chris Lattner578d8fc2006-03-11 22:24:20 +00001034 for (std::set<std::pair<SUnit*, bool> >::const_iterator I = SU->Succs.begin(),
Chris Lattner349e9dd2006-03-10 05:51:05 +00001035 E = SU->Succs.end(); I != E; ++I)
Chris Lattner578d8fc2006-03-11 22:24:20 +00001036 AdjustPriorityOfUnscheduledPreds(I->first);
Chris Lattner349e9dd2006-03-10 05:51:05 +00001037}
1038
1039/// AdjustPriorityOfUnscheduledPreds - One of the predecessors of SU was just
1040/// scheduled. If SU is not itself available, then there is at least one
1041/// predecessor node that has not been scheduled yet. If SU has exactly ONE
1042/// unscheduled predecessor, we want to increase its priority: it getting
1043/// scheduled will make this node available, so it is better than some other
1044/// node of the same priority that will not make a node available.
1045void LatencyPriorityQueue::AdjustPriorityOfUnscheduledPreds(SUnit *SU) {
Chris Lattner572003c2006-03-12 00:38:57 +00001046 if (SU->isPending) return; // All preds scheduled.
Chris Lattner349e9dd2006-03-10 05:51:05 +00001047
1048 SUnit *OnlyAvailablePred = getSingleUnscheduledPred(SU);
1049 if (OnlyAvailablePred == 0 || !OnlyAvailablePred->isAvailable) return;
1050
1051 // Okay, we found a single predecessor that is available, but not scheduled.
1052 // Since it is available, it must be in the priority queue. First remove it.
1053 RemoveFromPriorityQueue(OnlyAvailablePred);
1054
1055 // Reinsert the node into the priority queue, which recomputes its
1056 // NumNodesSolelyBlocking value.
1057 push(OnlyAvailablePred);
1058}
1059
Chris Lattner9df64752006-03-09 06:35:14 +00001060
1061//===----------------------------------------------------------------------===//
1062// Public Constructor Functions
1063//===----------------------------------------------------------------------===//
1064
Evan Chengab495562006-01-25 09:14:32 +00001065llvm::ScheduleDAG* llvm::createBURRListDAGScheduler(SelectionDAG &DAG,
1066 MachineBasicBlock *BB) {
Chris Lattner543832d2006-03-08 04:25:59 +00001067 return new ScheduleDAGList(DAG, BB, DAG.getTarget(), true,
Chris Lattner9df64752006-03-09 06:35:14 +00001068 new RegReductionPriorityQueue(),
Chris Lattner543832d2006-03-08 04:25:59 +00001069 new HazardRecognizer());
Chris Lattner98ecb8e2006-03-05 21:10:33 +00001070}
1071
Chris Lattner47639db2006-03-06 00:22:00 +00001072/// createTDListDAGScheduler - This creates a top-down list scheduler with the
1073/// specified hazard recognizer.
1074ScheduleDAG* llvm::createTDListDAGScheduler(SelectionDAG &DAG,
1075 MachineBasicBlock *BB,
Chris Lattner543832d2006-03-08 04:25:59 +00001076 HazardRecognizer *HR) {
Chris Lattner9df64752006-03-09 06:35:14 +00001077 return new ScheduleDAGList(DAG, BB, DAG.getTarget(), false,
Chris Lattner6398c132006-03-09 07:38:27 +00001078 new LatencyPriorityQueue(),
Chris Lattner9df64752006-03-09 06:35:14 +00001079 HR);
Evan Cheng31272342006-01-23 08:26:10 +00001080}