David Blaikie | 1213dbf | 2015-06-26 16:57:30 +0000 | [diff] [blame] | 1 | //===----------- VectorUtils.cpp - Vectorizer utility functions -----------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file defines vectorizer utilities. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
Hal Finkel | 9cf58c4 | 2015-07-11 10:52:42 +0000 | [diff] [blame] | 14 | #include "llvm/Analysis/LoopInfo.h" |
| 15 | #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
| 16 | #include "llvm/Analysis/ScalarEvolution.h" |
David Blaikie | b447ac6 | 2015-06-26 18:02:52 +0000 | [diff] [blame] | 17 | #include "llvm/Analysis/VectorUtils.h" |
Hal Finkel | 9cf58c4 | 2015-07-11 10:52:42 +0000 | [diff] [blame] | 18 | #include "llvm/IR/GetElementPtrTypeIterator.h" |
| 19 | #include "llvm/IR/PatternMatch.h" |
| 20 | #include "llvm/IR/Value.h" |
David Blaikie | 1213dbf | 2015-06-26 16:57:30 +0000 | [diff] [blame] | 21 | |
| 22 | /// \brief Identify if the intrinsic is trivially vectorizable. |
| 23 | /// This method returns true if the intrinsic's argument types are all |
| 24 | /// scalars for the scalar form of the intrinsic and all vectors for |
| 25 | /// the vector form of the intrinsic. |
| 26 | bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) { |
| 27 | switch (ID) { |
| 28 | case Intrinsic::sqrt: |
| 29 | case Intrinsic::sin: |
| 30 | case Intrinsic::cos: |
| 31 | case Intrinsic::exp: |
| 32 | case Intrinsic::exp2: |
| 33 | case Intrinsic::log: |
| 34 | case Intrinsic::log10: |
| 35 | case Intrinsic::log2: |
| 36 | case Intrinsic::fabs: |
| 37 | case Intrinsic::minnum: |
| 38 | case Intrinsic::maxnum: |
| 39 | case Intrinsic::copysign: |
| 40 | case Intrinsic::floor: |
| 41 | case Intrinsic::ceil: |
| 42 | case Intrinsic::trunc: |
| 43 | case Intrinsic::rint: |
| 44 | case Intrinsic::nearbyint: |
| 45 | case Intrinsic::round: |
| 46 | case Intrinsic::bswap: |
| 47 | case Intrinsic::ctpop: |
| 48 | case Intrinsic::pow: |
| 49 | case Intrinsic::fma: |
| 50 | case Intrinsic::fmuladd: |
| 51 | case Intrinsic::ctlz: |
| 52 | case Intrinsic::cttz: |
| 53 | case Intrinsic::powi: |
| 54 | return true; |
| 55 | default: |
| 56 | return false; |
| 57 | } |
| 58 | } |
| 59 | |
| 60 | /// \brief Identifies if the intrinsic has a scalar operand. It check for |
| 61 | /// ctlz,cttz and powi special intrinsics whose argument is scalar. |
| 62 | bool llvm::hasVectorInstrinsicScalarOpd(Intrinsic::ID ID, |
| 63 | unsigned ScalarOpdIdx) { |
| 64 | switch (ID) { |
| 65 | case Intrinsic::ctlz: |
| 66 | case Intrinsic::cttz: |
| 67 | case Intrinsic::powi: |
| 68 | return (ScalarOpdIdx == 1); |
| 69 | default: |
| 70 | return false; |
| 71 | } |
| 72 | } |
| 73 | |
| 74 | /// \brief Check call has a unary float signature |
| 75 | /// It checks following: |
| 76 | /// a) call should have a single argument |
| 77 | /// b) argument type should be floating point type |
| 78 | /// c) call instruction type and argument type should be same |
| 79 | /// d) call should only reads memory. |
| 80 | /// If all these condition is met then return ValidIntrinsicID |
| 81 | /// else return not_intrinsic. |
| 82 | llvm::Intrinsic::ID |
| 83 | llvm::checkUnaryFloatSignature(const CallInst &I, |
| 84 | Intrinsic::ID ValidIntrinsicID) { |
| 85 | if (I.getNumArgOperands() != 1 || |
| 86 | !I.getArgOperand(0)->getType()->isFloatingPointTy() || |
| 87 | I.getType() != I.getArgOperand(0)->getType() || !I.onlyReadsMemory()) |
| 88 | return Intrinsic::not_intrinsic; |
| 89 | |
| 90 | return ValidIntrinsicID; |
| 91 | } |
| 92 | |
| 93 | /// \brief Check call has a binary float signature |
| 94 | /// It checks following: |
| 95 | /// a) call should have 2 arguments. |
| 96 | /// b) arguments type should be floating point type |
| 97 | /// c) call instruction type and arguments type should be same |
| 98 | /// d) call should only reads memory. |
| 99 | /// If all these condition is met then return ValidIntrinsicID |
| 100 | /// else return not_intrinsic. |
| 101 | llvm::Intrinsic::ID |
| 102 | llvm::checkBinaryFloatSignature(const CallInst &I, |
| 103 | Intrinsic::ID ValidIntrinsicID) { |
| 104 | if (I.getNumArgOperands() != 2 || |
| 105 | !I.getArgOperand(0)->getType()->isFloatingPointTy() || |
| 106 | !I.getArgOperand(1)->getType()->isFloatingPointTy() || |
| 107 | I.getType() != I.getArgOperand(0)->getType() || |
| 108 | I.getType() != I.getArgOperand(1)->getType() || !I.onlyReadsMemory()) |
| 109 | return Intrinsic::not_intrinsic; |
| 110 | |
| 111 | return ValidIntrinsicID; |
| 112 | } |
| 113 | |
| 114 | /// \brief Returns intrinsic ID for call. |
| 115 | /// For the input call instruction it finds mapping intrinsic and returns |
| 116 | /// its ID, in case it does not found it return not_intrinsic. |
| 117 | llvm::Intrinsic::ID llvm::getIntrinsicIDForCall(CallInst *CI, |
| 118 | const TargetLibraryInfo *TLI) { |
| 119 | // If we have an intrinsic call, check if it is trivially vectorizable. |
| 120 | if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) { |
| 121 | Intrinsic::ID ID = II->getIntrinsicID(); |
| 122 | if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start || |
| 123 | ID == Intrinsic::lifetime_end || ID == Intrinsic::assume) |
| 124 | return ID; |
| 125 | return Intrinsic::not_intrinsic; |
| 126 | } |
| 127 | |
| 128 | if (!TLI) |
| 129 | return Intrinsic::not_intrinsic; |
| 130 | |
| 131 | LibFunc::Func Func; |
| 132 | Function *F = CI->getCalledFunction(); |
| 133 | // We're going to make assumptions on the semantics of the functions, check |
| 134 | // that the target knows that it's available in this environment and it does |
| 135 | // not have local linkage. |
| 136 | if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(F->getName(), Func)) |
| 137 | return Intrinsic::not_intrinsic; |
| 138 | |
| 139 | // Otherwise check if we have a call to a function that can be turned into a |
| 140 | // vector intrinsic. |
| 141 | switch (Func) { |
| 142 | default: |
| 143 | break; |
| 144 | case LibFunc::sin: |
| 145 | case LibFunc::sinf: |
| 146 | case LibFunc::sinl: |
| 147 | return checkUnaryFloatSignature(*CI, Intrinsic::sin); |
| 148 | case LibFunc::cos: |
| 149 | case LibFunc::cosf: |
| 150 | case LibFunc::cosl: |
| 151 | return checkUnaryFloatSignature(*CI, Intrinsic::cos); |
| 152 | case LibFunc::exp: |
| 153 | case LibFunc::expf: |
| 154 | case LibFunc::expl: |
| 155 | return checkUnaryFloatSignature(*CI, Intrinsic::exp); |
| 156 | case LibFunc::exp2: |
| 157 | case LibFunc::exp2f: |
| 158 | case LibFunc::exp2l: |
| 159 | return checkUnaryFloatSignature(*CI, Intrinsic::exp2); |
| 160 | case LibFunc::log: |
| 161 | case LibFunc::logf: |
| 162 | case LibFunc::logl: |
| 163 | return checkUnaryFloatSignature(*CI, Intrinsic::log); |
| 164 | case LibFunc::log10: |
| 165 | case LibFunc::log10f: |
| 166 | case LibFunc::log10l: |
| 167 | return checkUnaryFloatSignature(*CI, Intrinsic::log10); |
| 168 | case LibFunc::log2: |
| 169 | case LibFunc::log2f: |
| 170 | case LibFunc::log2l: |
| 171 | return checkUnaryFloatSignature(*CI, Intrinsic::log2); |
| 172 | case LibFunc::fabs: |
| 173 | case LibFunc::fabsf: |
| 174 | case LibFunc::fabsl: |
| 175 | return checkUnaryFloatSignature(*CI, Intrinsic::fabs); |
| 176 | case LibFunc::fmin: |
| 177 | case LibFunc::fminf: |
| 178 | case LibFunc::fminl: |
| 179 | return checkBinaryFloatSignature(*CI, Intrinsic::minnum); |
| 180 | case LibFunc::fmax: |
| 181 | case LibFunc::fmaxf: |
| 182 | case LibFunc::fmaxl: |
| 183 | return checkBinaryFloatSignature(*CI, Intrinsic::maxnum); |
| 184 | case LibFunc::copysign: |
| 185 | case LibFunc::copysignf: |
| 186 | case LibFunc::copysignl: |
| 187 | return checkBinaryFloatSignature(*CI, Intrinsic::copysign); |
| 188 | case LibFunc::floor: |
| 189 | case LibFunc::floorf: |
| 190 | case LibFunc::floorl: |
| 191 | return checkUnaryFloatSignature(*CI, Intrinsic::floor); |
| 192 | case LibFunc::ceil: |
| 193 | case LibFunc::ceilf: |
| 194 | case LibFunc::ceill: |
| 195 | return checkUnaryFloatSignature(*CI, Intrinsic::ceil); |
| 196 | case LibFunc::trunc: |
| 197 | case LibFunc::truncf: |
| 198 | case LibFunc::truncl: |
| 199 | return checkUnaryFloatSignature(*CI, Intrinsic::trunc); |
| 200 | case LibFunc::rint: |
| 201 | case LibFunc::rintf: |
| 202 | case LibFunc::rintl: |
| 203 | return checkUnaryFloatSignature(*CI, Intrinsic::rint); |
| 204 | case LibFunc::nearbyint: |
| 205 | case LibFunc::nearbyintf: |
| 206 | case LibFunc::nearbyintl: |
| 207 | return checkUnaryFloatSignature(*CI, Intrinsic::nearbyint); |
| 208 | case LibFunc::round: |
| 209 | case LibFunc::roundf: |
| 210 | case LibFunc::roundl: |
| 211 | return checkUnaryFloatSignature(*CI, Intrinsic::round); |
| 212 | case LibFunc::pow: |
| 213 | case LibFunc::powf: |
| 214 | case LibFunc::powl: |
| 215 | return checkBinaryFloatSignature(*CI, Intrinsic::pow); |
| 216 | } |
| 217 | |
| 218 | return Intrinsic::not_intrinsic; |
| 219 | } |
Hal Finkel | 9cf58c4 | 2015-07-11 10:52:42 +0000 | [diff] [blame] | 220 | |
| 221 | /// \brief Find the operand of the GEP that should be checked for consecutive |
| 222 | /// stores. This ignores trailing indices that have no effect on the final |
| 223 | /// pointer. |
| 224 | unsigned llvm::getGEPInductionOperand(const GetElementPtrInst *Gep) { |
| 225 | const DataLayout &DL = Gep->getModule()->getDataLayout(); |
| 226 | unsigned LastOperand = Gep->getNumOperands() - 1; |
| 227 | unsigned GEPAllocSize = DL.getTypeAllocSize( |
| 228 | cast<PointerType>(Gep->getType()->getScalarType())->getElementType()); |
| 229 | |
| 230 | // Walk backwards and try to peel off zeros. |
| 231 | while (LastOperand > 1 && |
| 232 | match(Gep->getOperand(LastOperand), llvm::PatternMatch::m_Zero())) { |
| 233 | // Find the type we're currently indexing into. |
| 234 | gep_type_iterator GEPTI = gep_type_begin(Gep); |
| 235 | std::advance(GEPTI, LastOperand - 1); |
| 236 | |
| 237 | // If it's a type with the same allocation size as the result of the GEP we |
| 238 | // can peel off the zero index. |
| 239 | if (DL.getTypeAllocSize(*GEPTI) != GEPAllocSize) |
| 240 | break; |
| 241 | --LastOperand; |
| 242 | } |
| 243 | |
| 244 | return LastOperand; |
| 245 | } |
| 246 | |
| 247 | /// \brief If the argument is a GEP, then returns the operand identified by |
| 248 | /// getGEPInductionOperand. However, if there is some other non-loop-invariant |
| 249 | /// operand, it returns that instead. |
| 250 | llvm::Value *llvm::stripGetElementPtr(llvm::Value *Ptr, ScalarEvolution *SE, |
| 251 | Loop *Lp) { |
| 252 | GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); |
| 253 | if (!GEP) |
| 254 | return Ptr; |
| 255 | |
| 256 | unsigned InductionOperand = getGEPInductionOperand(GEP); |
| 257 | |
| 258 | // Check that all of the gep indices are uniform except for our induction |
| 259 | // operand. |
| 260 | for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) |
| 261 | if (i != InductionOperand && |
| 262 | !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp)) |
| 263 | return Ptr; |
| 264 | return GEP->getOperand(InductionOperand); |
| 265 | } |
| 266 | |
| 267 | /// \brief If a value has only one user that is a CastInst, return it. |
| 268 | llvm::Value *llvm::getUniqueCastUse(llvm::Value *Ptr, Loop *Lp, Type *Ty) { |
| 269 | llvm::Value *UniqueCast = nullptr; |
| 270 | for (User *U : Ptr->users()) { |
| 271 | CastInst *CI = dyn_cast<CastInst>(U); |
| 272 | if (CI && CI->getType() == Ty) { |
| 273 | if (!UniqueCast) |
| 274 | UniqueCast = CI; |
| 275 | else |
| 276 | return nullptr; |
| 277 | } |
| 278 | } |
| 279 | return UniqueCast; |
| 280 | } |
| 281 | |
| 282 | /// \brief Get the stride of a pointer access in a loop. Looks for symbolic |
| 283 | /// strides "a[i*stride]". Returns the symbolic stride, or null otherwise. |
| 284 | llvm::Value *llvm::getStrideFromPointer(llvm::Value *Ptr, ScalarEvolution *SE, |
| 285 | Loop *Lp) { |
| 286 | const PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); |
| 287 | if (!PtrTy || PtrTy->isAggregateType()) |
| 288 | return nullptr; |
| 289 | |
| 290 | // Try to remove a gep instruction to make the pointer (actually index at this |
| 291 | // point) easier analyzable. If OrigPtr is equal to Ptr we are analzying the |
| 292 | // pointer, otherwise, we are analyzing the index. |
| 293 | llvm::Value *OrigPtr = Ptr; |
| 294 | |
| 295 | // The size of the pointer access. |
| 296 | int64_t PtrAccessSize = 1; |
| 297 | |
| 298 | Ptr = stripGetElementPtr(Ptr, SE, Lp); |
| 299 | const SCEV *V = SE->getSCEV(Ptr); |
| 300 | |
| 301 | if (Ptr != OrigPtr) |
| 302 | // Strip off casts. |
| 303 | while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) |
| 304 | V = C->getOperand(); |
| 305 | |
| 306 | const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V); |
| 307 | if (!S) |
| 308 | return nullptr; |
| 309 | |
| 310 | V = S->getStepRecurrence(*SE); |
| 311 | if (!V) |
| 312 | return nullptr; |
| 313 | |
| 314 | // Strip off the size of access multiplication if we are still analyzing the |
| 315 | // pointer. |
| 316 | if (OrigPtr == Ptr) { |
| 317 | const DataLayout &DL = Lp->getHeader()->getModule()->getDataLayout(); |
| 318 | DL.getTypeAllocSize(PtrTy->getElementType()); |
| 319 | if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) { |
| 320 | if (M->getOperand(0)->getSCEVType() != scConstant) |
| 321 | return nullptr; |
| 322 | |
| 323 | const APInt &APStepVal = |
| 324 | cast<SCEVConstant>(M->getOperand(0))->getValue()->getValue(); |
| 325 | |
| 326 | // Huge step value - give up. |
| 327 | if (APStepVal.getBitWidth() > 64) |
| 328 | return nullptr; |
| 329 | |
| 330 | int64_t StepVal = APStepVal.getSExtValue(); |
| 331 | if (PtrAccessSize != StepVal) |
| 332 | return nullptr; |
| 333 | V = M->getOperand(1); |
| 334 | } |
| 335 | } |
| 336 | |
| 337 | // Strip off casts. |
| 338 | Type *StripedOffRecurrenceCast = nullptr; |
| 339 | if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) { |
| 340 | StripedOffRecurrenceCast = C->getType(); |
| 341 | V = C->getOperand(); |
| 342 | } |
| 343 | |
| 344 | // Look for the loop invariant symbolic value. |
| 345 | const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V); |
| 346 | if (!U) |
| 347 | return nullptr; |
| 348 | |
| 349 | llvm::Value *Stride = U->getValue(); |
| 350 | if (!Lp->isLoopInvariant(Stride)) |
| 351 | return nullptr; |
| 352 | |
| 353 | // If we have stripped off the recurrence cast we have to make sure that we |
| 354 | // return the value that is used in this loop so that we can replace it later. |
| 355 | if (StripedOffRecurrenceCast) |
| 356 | Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast); |
| 357 | |
| 358 | return Stride; |
| 359 | } |