blob: f0ab6acedad1d391f11b6d1bb28902eec0255650 [file] [log] [blame]
Dylan McKay7549b0a2016-11-02 06:47:40 +00001//===-- AVRISelLowering.cpp - AVR DAG Lowering Implementation -------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that AVR uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "AVRISelLowering.h"
16
Dylan McKay8fa6d8d2017-01-07 23:39:47 +000017#include "llvm/ADT/StringSwitch.h"
Dylan McKay7549b0a2016-11-02 06:47:40 +000018#include "llvm/CodeGen/CallingConvLower.h"
19#include "llvm/CodeGen/MachineFrameInfo.h"
20#include "llvm/CodeGen/MachineInstrBuilder.h"
21#include "llvm/CodeGen/MachineRegisterInfo.h"
22#include "llvm/CodeGen/SelectionDAG.h"
23#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
24#include "llvm/IR/Function.h"
25#include "llvm/Support/ErrorHandling.h"
26
27#include "AVR.h"
28#include "AVRMachineFunctionInfo.h"
29#include "AVRTargetMachine.h"
30#include "MCTargetDesc/AVRMCTargetDesc.h"
31
32namespace llvm {
33
34AVRTargetLowering::AVRTargetLowering(AVRTargetMachine &tm)
35 : TargetLowering(tm) {
36 // Set up the register classes.
37 addRegisterClass(MVT::i8, &AVR::GPR8RegClass);
38 addRegisterClass(MVT::i16, &AVR::DREGSRegClass);
39
40 // Compute derived properties from the register classes.
41 computeRegisterProperties(tm.getSubtargetImpl()->getRegisterInfo());
42
43 setBooleanContents(ZeroOrOneBooleanContent);
44 setBooleanVectorContents(ZeroOrOneBooleanContent);
45 setSchedulingPreference(Sched::RegPressure);
46 setStackPointerRegisterToSaveRestore(AVR::SP);
47
48 setOperationAction(ISD::GlobalAddress, MVT::i16, Custom);
49 setOperationAction(ISD::BlockAddress, MVT::i16, Custom);
50
Dylan McKayccd819a2017-02-05 21:35:45 +000051 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
52 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
Dylan McKay7549b0a2016-11-02 06:47:40 +000053 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i8, Expand);
54 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i16, Expand);
55
56 for (MVT VT : MVT::integer_valuetypes()) {
57 for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) {
58 setLoadExtAction(N, VT, MVT::i1, Promote);
59 setLoadExtAction(N, VT, MVT::i8, Expand);
60 }
61 }
62
63 setTruncStoreAction(MVT::i16, MVT::i8, Expand);
64
65 // sub (x, imm) gets canonicalized to add (x, -imm), so for illegal types
66 // revert into a sub since we don't have an add with immediate instruction.
67 setOperationAction(ISD::ADD, MVT::i32, Custom);
68 setOperationAction(ISD::ADD, MVT::i64, Custom);
69
70 // our shift instructions are only able to shift 1 bit at a time, so handle
71 // this in a custom way.
72 setOperationAction(ISD::SRA, MVT::i8, Custom);
73 setOperationAction(ISD::SHL, MVT::i8, Custom);
74 setOperationAction(ISD::SRL, MVT::i8, Custom);
75 setOperationAction(ISD::SRA, MVT::i16, Custom);
76 setOperationAction(ISD::SHL, MVT::i16, Custom);
77 setOperationAction(ISD::SRL, MVT::i16, Custom);
78 setOperationAction(ISD::SHL_PARTS, MVT::i16, Expand);
79 setOperationAction(ISD::SRA_PARTS, MVT::i16, Expand);
80 setOperationAction(ISD::SRL_PARTS, MVT::i16, Expand);
81
Dylan McKay59e7fe32017-05-01 09:48:55 +000082 setOperationAction(ISD::ROTL, MVT::i8, Custom);
83 setOperationAction(ISD::ROTL, MVT::i16, Custom);
84 setOperationAction(ISD::ROTR, MVT::i8, Custom);
85 setOperationAction(ISD::ROTR, MVT::i16, Custom);
86
Dylan McKay7549b0a2016-11-02 06:47:40 +000087 setOperationAction(ISD::BR_CC, MVT::i8, Custom);
88 setOperationAction(ISD::BR_CC, MVT::i16, Custom);
89 setOperationAction(ISD::BR_CC, MVT::i32, Custom);
90 setOperationAction(ISD::BR_CC, MVT::i64, Custom);
91 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
92
93 setOperationAction(ISD::SELECT_CC, MVT::i8, Custom);
94 setOperationAction(ISD::SELECT_CC, MVT::i16, Custom);
Dylan McKay99b756e2016-12-07 12:34:47 +000095 setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
96 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
Dylan McKay7549b0a2016-11-02 06:47:40 +000097 setOperationAction(ISD::SETCC, MVT::i8, Custom);
98 setOperationAction(ISD::SETCC, MVT::i16, Custom);
99 setOperationAction(ISD::SETCC, MVT::i32, Custom);
100 setOperationAction(ISD::SETCC, MVT::i64, Custom);
101 setOperationAction(ISD::SELECT, MVT::i8, Expand);
102 setOperationAction(ISD::SELECT, MVT::i16, Expand);
103
104 setOperationAction(ISD::BSWAP, MVT::i16, Expand);
105
106 // Add support for postincrement and predecrement load/stores.
107 setIndexedLoadAction(ISD::POST_INC, MVT::i8, Legal);
108 setIndexedLoadAction(ISD::POST_INC, MVT::i16, Legal);
109 setIndexedLoadAction(ISD::PRE_DEC, MVT::i8, Legal);
110 setIndexedLoadAction(ISD::PRE_DEC, MVT::i16, Legal);
111 setIndexedStoreAction(ISD::POST_INC, MVT::i8, Legal);
112 setIndexedStoreAction(ISD::POST_INC, MVT::i16, Legal);
113 setIndexedStoreAction(ISD::PRE_DEC, MVT::i8, Legal);
114 setIndexedStoreAction(ISD::PRE_DEC, MVT::i16, Legal);
115
116 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
117
118 setOperationAction(ISD::VASTART, MVT::Other, Custom);
119 setOperationAction(ISD::VAEND, MVT::Other, Expand);
120 setOperationAction(ISD::VAARG, MVT::Other, Expand);
121 setOperationAction(ISD::VACOPY, MVT::Other, Expand);
122
123 // Atomic operations which must be lowered to rtlib calls
124 for (MVT VT : MVT::integer_valuetypes()) {
125 setOperationAction(ISD::ATOMIC_SWAP, VT, Expand);
126 setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Expand);
127 setOperationAction(ISD::ATOMIC_LOAD_NAND, VT, Expand);
128 setOperationAction(ISD::ATOMIC_LOAD_MAX, VT, Expand);
129 setOperationAction(ISD::ATOMIC_LOAD_MIN, VT, Expand);
130 setOperationAction(ISD::ATOMIC_LOAD_UMAX, VT, Expand);
131 setOperationAction(ISD::ATOMIC_LOAD_UMIN, VT, Expand);
132 }
133
134 // Division/remainder
135 setOperationAction(ISD::UDIV, MVT::i8, Expand);
136 setOperationAction(ISD::UDIV, MVT::i16, Expand);
137 setOperationAction(ISD::UREM, MVT::i8, Expand);
138 setOperationAction(ISD::UREM, MVT::i16, Expand);
139 setOperationAction(ISD::SDIV, MVT::i8, Expand);
140 setOperationAction(ISD::SDIV, MVT::i16, Expand);
141 setOperationAction(ISD::SREM, MVT::i8, Expand);
142 setOperationAction(ISD::SREM, MVT::i16, Expand);
143
144 // Make division and modulus custom
145 for (MVT VT : MVT::integer_valuetypes()) {
146 setOperationAction(ISD::UDIVREM, VT, Custom);
147 setOperationAction(ISD::SDIVREM, VT, Custom);
148 }
149
150 // Do not use MUL. The AVR instructions are closer to SMUL_LOHI &co.
151 setOperationAction(ISD::MUL, MVT::i8, Expand);
152 setOperationAction(ISD::MUL, MVT::i16, Expand);
153
154 // Expand 16 bit multiplications.
155 setOperationAction(ISD::SMUL_LOHI, MVT::i16, Expand);
156 setOperationAction(ISD::UMUL_LOHI, MVT::i16, Expand);
157
158 for (MVT VT : MVT::integer_valuetypes()) {
159 setOperationAction(ISD::MULHS, VT, Expand);
160 setOperationAction(ISD::MULHU, VT, Expand);
161 }
162
163 for (MVT VT : MVT::integer_valuetypes()) {
164 setOperationAction(ISD::CTPOP, VT, Expand);
165 setOperationAction(ISD::CTLZ, VT, Expand);
166 setOperationAction(ISD::CTTZ, VT, Expand);
167 }
168
169 for (MVT VT : MVT::integer_valuetypes()) {
170 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
171 // TODO: The generated code is pretty poor. Investigate using the
172 // same "shift and subtract with carry" trick that we do for
173 // extending 8-bit to 16-bit. This may require infrastructure
174 // improvements in how we treat 16-bit "registers" to be feasible.
175 }
176
177 // Division rtlib functions (not supported)
178 setLibcallName(RTLIB::SDIV_I8, nullptr);
179 setLibcallName(RTLIB::SDIV_I16, nullptr);
180 setLibcallName(RTLIB::SDIV_I32, nullptr);
181 setLibcallName(RTLIB::SDIV_I64, nullptr);
182 setLibcallName(RTLIB::SDIV_I128, nullptr);
183 setLibcallName(RTLIB::UDIV_I8, nullptr);
184 setLibcallName(RTLIB::UDIV_I16, nullptr);
185 setLibcallName(RTLIB::UDIV_I32, nullptr);
186 setLibcallName(RTLIB::UDIV_I64, nullptr);
187 setLibcallName(RTLIB::UDIV_I128, nullptr);
188
189 // Modulus rtlib functions (not supported)
190 setLibcallName(RTLIB::SREM_I8, nullptr);
191 setLibcallName(RTLIB::SREM_I16, nullptr);
192 setLibcallName(RTLIB::SREM_I32, nullptr);
193 setLibcallName(RTLIB::SREM_I64, nullptr);
194 setLibcallName(RTLIB::SREM_I128, nullptr);
195 setLibcallName(RTLIB::UREM_I8, nullptr);
196 setLibcallName(RTLIB::UREM_I16, nullptr);
197 setLibcallName(RTLIB::UREM_I32, nullptr);
198 setLibcallName(RTLIB::UREM_I64, nullptr);
199 setLibcallName(RTLIB::UREM_I128, nullptr);
200
201 // Division and modulus rtlib functions
202 setLibcallName(RTLIB::SDIVREM_I8, "__divmodqi4");
203 setLibcallName(RTLIB::SDIVREM_I16, "__divmodhi4");
204 setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4");
205 setLibcallName(RTLIB::SDIVREM_I64, "__divmoddi4");
206 setLibcallName(RTLIB::SDIVREM_I128, "__divmodti4");
207 setLibcallName(RTLIB::UDIVREM_I8, "__udivmodqi4");
208 setLibcallName(RTLIB::UDIVREM_I16, "__udivmodhi4");
209 setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4");
210 setLibcallName(RTLIB::UDIVREM_I64, "__udivmoddi4");
211 setLibcallName(RTLIB::UDIVREM_I128, "__udivmodti4");
212
213 // Several of the runtime library functions use a special calling conv
214 setLibcallCallingConv(RTLIB::SDIVREM_I8, CallingConv::AVR_BUILTIN);
215 setLibcallCallingConv(RTLIB::SDIVREM_I16, CallingConv::AVR_BUILTIN);
216 setLibcallCallingConv(RTLIB::UDIVREM_I8, CallingConv::AVR_BUILTIN);
217 setLibcallCallingConv(RTLIB::UDIVREM_I16, CallingConv::AVR_BUILTIN);
218
219 // Trigonometric rtlib functions
220 setLibcallName(RTLIB::SIN_F32, "sin");
221 setLibcallName(RTLIB::COS_F32, "cos");
222
223 setMinFunctionAlignment(1);
224 setMinimumJumpTableEntries(INT_MAX);
225}
226
227const char *AVRTargetLowering::getTargetNodeName(unsigned Opcode) const {
228#define NODE(name) \
229 case AVRISD::name: \
230 return #name
231
232 switch (Opcode) {
233 default:
234 return nullptr;
235 NODE(RET_FLAG);
236 NODE(RETI_FLAG);
237 NODE(CALL);
238 NODE(WRAPPER);
239 NODE(LSL);
240 NODE(LSR);
241 NODE(ROL);
242 NODE(ROR);
243 NODE(ASR);
244 NODE(LSLLOOP);
245 NODE(LSRLOOP);
246 NODE(ASRLOOP);
247 NODE(BRCOND);
248 NODE(CMP);
249 NODE(CMPC);
250 NODE(TST);
251 NODE(SELECT_CC);
252#undef NODE
253 }
254}
255
256EVT AVRTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &,
257 EVT VT) const {
258 assert(!VT.isVector() && "No AVR SetCC type for vectors!");
259 return MVT::i8;
260}
261
262SDValue AVRTargetLowering::LowerShifts(SDValue Op, SelectionDAG &DAG) const {
263 //:TODO: this function has to be completely rewritten to produce optimal
264 // code, for now it's producing very long but correct code.
265 unsigned Opc8;
266 const SDNode *N = Op.getNode();
267 EVT VT = Op.getValueType();
268 SDLoc dl(N);
269
270 // Expand non-constant shifts to loops.
271 if (!isa<ConstantSDNode>(N->getOperand(1))) {
272 switch (Op.getOpcode()) {
273 default:
274 llvm_unreachable("Invalid shift opcode!");
275 case ISD::SHL:
276 return DAG.getNode(AVRISD::LSLLOOP, dl, VT, N->getOperand(0),
277 N->getOperand(1));
278 case ISD::SRL:
279 return DAG.getNode(AVRISD::LSRLOOP, dl, VT, N->getOperand(0),
280 N->getOperand(1));
Dylan McKay59e7fe32017-05-01 09:48:55 +0000281 case ISD::ROTL:
282 return DAG.getNode(AVRISD::ROLLOOP, dl, VT, N->getOperand(0),
283 N->getOperand(1));
284 case ISD::ROTR:
285 return DAG.getNode(AVRISD::RORLOOP, dl, VT, N->getOperand(0),
286 N->getOperand(1));
Dylan McKay7549b0a2016-11-02 06:47:40 +0000287 case ISD::SRA:
288 return DAG.getNode(AVRISD::ASRLOOP, dl, VT, N->getOperand(0),
289 N->getOperand(1));
290 }
291 }
292
293 uint64_t ShiftAmount = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
294 SDValue Victim = N->getOperand(0);
295
296 switch (Op.getOpcode()) {
297 case ISD::SRA:
298 Opc8 = AVRISD::ASR;
299 break;
300 case ISD::ROTL:
301 Opc8 = AVRISD::ROL;
302 break;
303 case ISD::ROTR:
304 Opc8 = AVRISD::ROR;
305 break;
306 case ISD::SRL:
307 Opc8 = AVRISD::LSR;
308 break;
309 case ISD::SHL:
310 Opc8 = AVRISD::LSL;
311 break;
312 default:
313 llvm_unreachable("Invalid shift opcode");
314 }
315
316 while (ShiftAmount--) {
317 Victim = DAG.getNode(Opc8, dl, VT, Victim);
318 }
319
320 return Victim;
321}
322
323SDValue AVRTargetLowering::LowerDivRem(SDValue Op, SelectionDAG &DAG) const {
324 unsigned Opcode = Op->getOpcode();
325 assert((Opcode == ISD::SDIVREM || Opcode == ISD::UDIVREM) &&
326 "Invalid opcode for Div/Rem lowering");
Meador Inge5d3c5992017-03-24 01:57:29 +0000327 bool IsSigned = (Opcode == ISD::SDIVREM);
Dylan McKay7549b0a2016-11-02 06:47:40 +0000328 EVT VT = Op->getValueType(0);
329 Type *Ty = VT.getTypeForEVT(*DAG.getContext());
330
331 RTLIB::Libcall LC;
332 switch (VT.getSimpleVT().SimpleTy) {
333 default:
334 llvm_unreachable("Unexpected request for libcall!");
335 case MVT::i8:
Meador Inge5d3c5992017-03-24 01:57:29 +0000336 LC = IsSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8;
Dylan McKay7549b0a2016-11-02 06:47:40 +0000337 break;
338 case MVT::i16:
Meador Inge5d3c5992017-03-24 01:57:29 +0000339 LC = IsSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16;
Dylan McKay7549b0a2016-11-02 06:47:40 +0000340 break;
341 case MVT::i32:
Meador Inge5d3c5992017-03-24 01:57:29 +0000342 LC = IsSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32;
Dylan McKay7549b0a2016-11-02 06:47:40 +0000343 break;
344 case MVT::i64:
Meador Inge5d3c5992017-03-24 01:57:29 +0000345 LC = IsSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64;
Dylan McKay7549b0a2016-11-02 06:47:40 +0000346 break;
347 }
348
349 SDValue InChain = DAG.getEntryNode();
350
351 TargetLowering::ArgListTy Args;
352 TargetLowering::ArgListEntry Entry;
353 for (SDValue const &Value : Op->op_values()) {
354 Entry.Node = Value;
355 Entry.Ty = Value.getValueType().getTypeForEVT(*DAG.getContext());
Meador Inge5d3c5992017-03-24 01:57:29 +0000356 Entry.IsSExt = IsSigned;
357 Entry.IsZExt = !IsSigned;
Dylan McKay7549b0a2016-11-02 06:47:40 +0000358 Args.push_back(Entry);
359 }
360
361 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
362 getPointerTy(DAG.getDataLayout()));
363
364 Type *RetTy = (Type *)StructType::get(Ty, Ty, nullptr);
365
366 SDLoc dl(Op);
367 TargetLowering::CallLoweringInfo CLI(DAG);
368 CLI.setDebugLoc(dl)
369 .setChain(InChain)
Nirav Daveac6081c2017-03-18 00:44:07 +0000370 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
Dylan McKay7549b0a2016-11-02 06:47:40 +0000371 .setInRegister()
Meador Inge5d3c5992017-03-24 01:57:29 +0000372 .setSExtResult(IsSigned)
373 .setZExtResult(!IsSigned);
Dylan McKay7549b0a2016-11-02 06:47:40 +0000374
375 std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
376 return CallInfo.first;
377}
378
379SDValue AVRTargetLowering::LowerGlobalAddress(SDValue Op,
380 SelectionDAG &DAG) const {
381 auto DL = DAG.getDataLayout();
382
383 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
384 int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
385
386 // Create the TargetGlobalAddress node, folding in the constant offset.
387 SDValue Result =
388 DAG.getTargetGlobalAddress(GV, SDLoc(Op), getPointerTy(DL), Offset);
389 return DAG.getNode(AVRISD::WRAPPER, SDLoc(Op), getPointerTy(DL), Result);
390}
391
392SDValue AVRTargetLowering::LowerBlockAddress(SDValue Op,
393 SelectionDAG &DAG) const {
394 auto DL = DAG.getDataLayout();
395 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
396
397 SDValue Result = DAG.getTargetBlockAddress(BA, getPointerTy(DL));
398
399 return DAG.getNode(AVRISD::WRAPPER, SDLoc(Op), getPointerTy(DL), Result);
400}
401
402/// IntCCToAVRCC - Convert a DAG integer condition code to an AVR CC.
403static AVRCC::CondCodes intCCToAVRCC(ISD::CondCode CC) {
404 switch (CC) {
405 default:
406 llvm_unreachable("Unknown condition code!");
407 case ISD::SETEQ:
408 return AVRCC::COND_EQ;
409 case ISD::SETNE:
410 return AVRCC::COND_NE;
411 case ISD::SETGE:
412 return AVRCC::COND_GE;
413 case ISD::SETLT:
414 return AVRCC::COND_LT;
415 case ISD::SETUGE:
416 return AVRCC::COND_SH;
417 case ISD::SETULT:
418 return AVRCC::COND_LO;
419 }
420}
421
422/// Returns appropriate AVR CMP/CMPC nodes and corresponding condition code for
423/// the given operands.
424SDValue AVRTargetLowering::getAVRCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
425 SDValue &AVRcc, SelectionDAG &DAG,
426 SDLoc DL) const {
427 SDValue Cmp;
428 EVT VT = LHS.getValueType();
429 bool UseTest = false;
430
431 switch (CC) {
432 default:
433 break;
434 case ISD::SETLE: {
435 // Swap operands and reverse the branching condition.
436 std::swap(LHS, RHS);
437 CC = ISD::SETGE;
438 break;
439 }
440 case ISD::SETGT: {
441 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
442 switch (C->getSExtValue()) {
443 case -1: {
444 // When doing lhs > -1 use a tst instruction on the top part of lhs
445 // and use brpl instead of using a chain of cp/cpc.
446 UseTest = true;
447 AVRcc = DAG.getConstant(AVRCC::COND_PL, DL, MVT::i8);
448 break;
449 }
450 case 0: {
451 // Turn lhs > 0 into 0 < lhs since 0 can be materialized with
452 // __zero_reg__ in lhs.
453 RHS = LHS;
454 LHS = DAG.getConstant(0, DL, VT);
455 CC = ISD::SETLT;
456 break;
457 }
458 default: {
459 // Turn lhs < rhs with lhs constant into rhs >= lhs+1, this allows
460 // us to fold the constant into the cmp instruction.
461 RHS = DAG.getConstant(C->getSExtValue() + 1, DL, VT);
462 CC = ISD::SETGE;
463 break;
464 }
465 }
466 break;
467 }
468 // Swap operands and reverse the branching condition.
469 std::swap(LHS, RHS);
470 CC = ISD::SETLT;
471 break;
472 }
473 case ISD::SETLT: {
474 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
475 switch (C->getSExtValue()) {
476 case 1: {
477 // Turn lhs < 1 into 0 >= lhs since 0 can be materialized with
478 // __zero_reg__ in lhs.
479 RHS = LHS;
480 LHS = DAG.getConstant(0, DL, VT);
481 CC = ISD::SETGE;
482 break;
483 }
484 case 0: {
485 // When doing lhs < 0 use a tst instruction on the top part of lhs
486 // and use brmi instead of using a chain of cp/cpc.
487 UseTest = true;
488 AVRcc = DAG.getConstant(AVRCC::COND_MI, DL, MVT::i8);
489 break;
490 }
491 }
492 }
493 break;
494 }
495 case ISD::SETULE: {
496 // Swap operands and reverse the branching condition.
497 std::swap(LHS, RHS);
498 CC = ISD::SETUGE;
499 break;
500 }
501 case ISD::SETUGT: {
502 // Turn lhs < rhs with lhs constant into rhs >= lhs+1, this allows us to
503 // fold the constant into the cmp instruction.
504 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
505 RHS = DAG.getConstant(C->getSExtValue() + 1, DL, VT);
506 CC = ISD::SETUGE;
507 break;
508 }
509 // Swap operands and reverse the branching condition.
510 std::swap(LHS, RHS);
511 CC = ISD::SETULT;
512 break;
513 }
514 }
515
516 // Expand 32 and 64 bit comparisons with custom CMP and CMPC nodes instead of
517 // using the default and/or/xor expansion code which is much longer.
518 if (VT == MVT::i32) {
519 SDValue LHSlo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS,
520 DAG.getIntPtrConstant(0, DL));
521 SDValue LHShi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS,
522 DAG.getIntPtrConstant(1, DL));
523 SDValue RHSlo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS,
524 DAG.getIntPtrConstant(0, DL));
525 SDValue RHShi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS,
526 DAG.getIntPtrConstant(1, DL));
527
528 if (UseTest) {
529 // When using tst we only care about the highest part.
530 SDValue Top = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8, LHShi,
531 DAG.getIntPtrConstant(1, DL));
532 Cmp = DAG.getNode(AVRISD::TST, DL, MVT::Glue, Top);
533 } else {
534 Cmp = DAG.getNode(AVRISD::CMP, DL, MVT::Glue, LHSlo, RHSlo);
535 Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHShi, RHShi, Cmp);
536 }
537 } else if (VT == MVT::i64) {
538 SDValue LHS_0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, LHS,
539 DAG.getIntPtrConstant(0, DL));
540 SDValue LHS_1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, LHS,
541 DAG.getIntPtrConstant(1, DL));
542
543 SDValue LHS0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS_0,
544 DAG.getIntPtrConstant(0, DL));
545 SDValue LHS1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS_0,
546 DAG.getIntPtrConstant(1, DL));
547 SDValue LHS2 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS_1,
548 DAG.getIntPtrConstant(0, DL));
549 SDValue LHS3 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS_1,
550 DAG.getIntPtrConstant(1, DL));
551
552 SDValue RHS_0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, RHS,
553 DAG.getIntPtrConstant(0, DL));
554 SDValue RHS_1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, RHS,
555 DAG.getIntPtrConstant(1, DL));
556
557 SDValue RHS0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS_0,
558 DAG.getIntPtrConstant(0, DL));
559 SDValue RHS1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS_0,
560 DAG.getIntPtrConstant(1, DL));
561 SDValue RHS2 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS_1,
562 DAG.getIntPtrConstant(0, DL));
563 SDValue RHS3 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS_1,
564 DAG.getIntPtrConstant(1, DL));
565
566 if (UseTest) {
567 // When using tst we only care about the highest part.
568 SDValue Top = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8, LHS3,
569 DAG.getIntPtrConstant(1, DL));
570 Cmp = DAG.getNode(AVRISD::TST, DL, MVT::Glue, Top);
571 } else {
572 Cmp = DAG.getNode(AVRISD::CMP, DL, MVT::Glue, LHS0, RHS0);
573 Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHS1, RHS1, Cmp);
574 Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHS2, RHS2, Cmp);
575 Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHS3, RHS3, Cmp);
576 }
577 } else if (VT == MVT::i8 || VT == MVT::i16) {
578 if (UseTest) {
579 // When using tst we only care about the highest part.
580 Cmp = DAG.getNode(AVRISD::TST, DL, MVT::Glue,
581 (VT == MVT::i8)
582 ? LHS
583 : DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8,
584 LHS, DAG.getIntPtrConstant(1, DL)));
585 } else {
586 Cmp = DAG.getNode(AVRISD::CMP, DL, MVT::Glue, LHS, RHS);
587 }
588 } else {
589 llvm_unreachable("Invalid comparison size");
590 }
591
592 // When using a test instruction AVRcc is already set.
593 if (!UseTest) {
594 AVRcc = DAG.getConstant(intCCToAVRCC(CC), DL, MVT::i8);
595 }
596
597 return Cmp;
598}
599
600SDValue AVRTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
601 SDValue Chain = Op.getOperand(0);
602 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
603 SDValue LHS = Op.getOperand(2);
604 SDValue RHS = Op.getOperand(3);
605 SDValue Dest = Op.getOperand(4);
606 SDLoc dl(Op);
607
608 SDValue TargetCC;
609 SDValue Cmp = getAVRCmp(LHS, RHS, CC, TargetCC, DAG, dl);
610
611 return DAG.getNode(AVRISD::BRCOND, dl, MVT::Other, Chain, Dest, TargetCC,
612 Cmp);
613}
614
615SDValue AVRTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
616 SDValue LHS = Op.getOperand(0);
617 SDValue RHS = Op.getOperand(1);
618 SDValue TrueV = Op.getOperand(2);
619 SDValue FalseV = Op.getOperand(3);
620 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
621 SDLoc dl(Op);
622
623 SDValue TargetCC;
624 SDValue Cmp = getAVRCmp(LHS, RHS, CC, TargetCC, DAG, dl);
625
626 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
627 SDValue Ops[] = {TrueV, FalseV, TargetCC, Cmp};
628
629 return DAG.getNode(AVRISD::SELECT_CC, dl, VTs, Ops);
630}
631
632SDValue AVRTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
633 SDValue LHS = Op.getOperand(0);
634 SDValue RHS = Op.getOperand(1);
635 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
636 SDLoc DL(Op);
637
638 SDValue TargetCC;
639 SDValue Cmp = getAVRCmp(LHS, RHS, CC, TargetCC, DAG, DL);
640
641 SDValue TrueV = DAG.getConstant(1, DL, Op.getValueType());
642 SDValue FalseV = DAG.getConstant(0, DL, Op.getValueType());
643 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
644 SDValue Ops[] = {TrueV, FalseV, TargetCC, Cmp};
645
646 return DAG.getNode(AVRISD::SELECT_CC, DL, VTs, Ops);
647}
648
649SDValue AVRTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
650 const MachineFunction &MF = DAG.getMachineFunction();
651 const AVRMachineFunctionInfo *AFI = MF.getInfo<AVRMachineFunctionInfo>();
652 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
653 auto DL = DAG.getDataLayout();
654 SDLoc dl(Op);
655
656 // Vastart just stores the address of the VarArgsFrameIndex slot into the
657 // memory location argument.
658 SDValue FI = DAG.getFrameIndex(AFI->getVarArgsFrameIndex(), getPointerTy(DL));
659
660 return DAG.getStore(Op.getOperand(0), dl, FI, Op.getOperand(1),
661 MachinePointerInfo(SV), 0);
662}
663
664SDValue AVRTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
665 switch (Op.getOpcode()) {
666 default:
667 llvm_unreachable("Don't know how to custom lower this!");
668 case ISD::SHL:
669 case ISD::SRA:
670 case ISD::SRL:
671 case ISD::ROTL:
672 case ISD::ROTR:
673 return LowerShifts(Op, DAG);
674 case ISD::GlobalAddress:
675 return LowerGlobalAddress(Op, DAG);
676 case ISD::BlockAddress:
677 return LowerBlockAddress(Op, DAG);
678 case ISD::BR_CC:
679 return LowerBR_CC(Op, DAG);
680 case ISD::SELECT_CC:
681 return LowerSELECT_CC(Op, DAG);
682 case ISD::SETCC:
683 return LowerSETCC(Op, DAG);
684 case ISD::VASTART:
685 return LowerVASTART(Op, DAG);
686 case ISD::SDIVREM:
687 case ISD::UDIVREM:
688 return LowerDivRem(Op, DAG);
689 }
690
691 return SDValue();
692}
693
694/// Replace a node with an illegal result type
695/// with a new node built out of custom code.
696void AVRTargetLowering::ReplaceNodeResults(SDNode *N,
697 SmallVectorImpl<SDValue> &Results,
698 SelectionDAG &DAG) const {
699 SDLoc DL(N);
700
701 switch (N->getOpcode()) {
702 case ISD::ADD: {
703 // Convert add (x, imm) into sub (x, -imm).
704 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
705 SDValue Sub = DAG.getNode(
706 ISD::SUB, DL, N->getValueType(0), N->getOperand(0),
707 DAG.getConstant(-C->getAPIntValue(), DL, C->getValueType(0)));
708 Results.push_back(Sub);
709 }
710 break;
711 }
712 default: {
713 SDValue Res = LowerOperation(SDValue(N, 0), DAG);
714
715 for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I)
716 Results.push_back(Res.getValue(I));
717
718 break;
719 }
720 }
721}
722
723/// Return true if the addressing mode represented
724/// by AM is legal for this target, for a load/store of the specified type.
725bool AVRTargetLowering::isLegalAddressingMode(const DataLayout &DL,
726 const AddrMode &AM, Type *Ty,
727 unsigned AS) const {
728 int64_t Offs = AM.BaseOffs;
729
730 // Allow absolute addresses.
731 if (AM.BaseGV && !AM.HasBaseReg && AM.Scale == 0 && Offs == 0) {
732 return true;
733 }
734
735 // Flash memory instructions only allow zero offsets.
736 if (isa<PointerType>(Ty) && AS == AVR::ProgramMemory) {
737 return false;
738 }
739
740 // Allow reg+<6bit> offset.
741 if (Offs < 0)
742 Offs = -Offs;
743 if (AM.BaseGV == 0 && AM.HasBaseReg && AM.Scale == 0 && isUInt<6>(Offs)) {
744 return true;
745 }
746
747 return false;
748}
749
750/// Returns true by value, base pointer and
751/// offset pointer and addressing mode by reference if the node's address
752/// can be legally represented as pre-indexed load / store address.
753bool AVRTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
754 SDValue &Offset,
755 ISD::MemIndexedMode &AM,
756 SelectionDAG &DAG) const {
757 EVT VT;
758 const SDNode *Op;
759 SDLoc DL(N);
760
761 if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
762 VT = LD->getMemoryVT();
763 Op = LD->getBasePtr().getNode();
764 if (LD->getExtensionType() != ISD::NON_EXTLOAD)
765 return false;
766 if (AVR::isProgramMemoryAccess(LD)) {
767 return false;
768 }
769 } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
770 VT = ST->getMemoryVT();
771 Op = ST->getBasePtr().getNode();
772 if (AVR::isProgramMemoryAccess(ST)) {
773 return false;
774 }
775 } else {
776 return false;
777 }
778
779 if (VT != MVT::i8 && VT != MVT::i16) {
780 return false;
781 }
782
783 if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB) {
784 return false;
785 }
786
787 if (const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
788 int RHSC = RHS->getSExtValue();
789 if (Op->getOpcode() == ISD::SUB)
790 RHSC = -RHSC;
791
792 if ((VT == MVT::i16 && RHSC != -2) || (VT == MVT::i8 && RHSC != -1)) {
793 return false;
794 }
795
796 Base = Op->getOperand(0);
797 Offset = DAG.getConstant(RHSC, DL, MVT::i8);
798 AM = ISD::PRE_DEC;
799
800 return true;
801 }
802
803 return false;
804}
805
806/// Returns true by value, base pointer and
807/// offset pointer and addressing mode by reference if this node can be
808/// combined with a load / store to form a post-indexed load / store.
809bool AVRTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
810 SDValue &Base,
811 SDValue &Offset,
812 ISD::MemIndexedMode &AM,
813 SelectionDAG &DAG) const {
814 EVT VT;
815 SDLoc DL(N);
816
817 if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
818 VT = LD->getMemoryVT();
819 if (LD->getExtensionType() != ISD::NON_EXTLOAD)
820 return false;
821 } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
822 VT = ST->getMemoryVT();
823 if (AVR::isProgramMemoryAccess(ST)) {
824 return false;
825 }
826 } else {
827 return false;
828 }
829
830 if (VT != MVT::i8 && VT != MVT::i16) {
831 return false;
832 }
833
834 if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB) {
835 return false;
836 }
837
838 if (const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
839 int RHSC = RHS->getSExtValue();
840 if (Op->getOpcode() == ISD::SUB)
841 RHSC = -RHSC;
842 if ((VT == MVT::i16 && RHSC != 2) || (VT == MVT::i8 && RHSC != 1)) {
843 return false;
844 }
845
846 Base = Op->getOperand(0);
847 Offset = DAG.getConstant(RHSC, DL, MVT::i8);
848 AM = ISD::POST_INC;
849
850 return true;
851 }
852
853 return false;
854}
855
856bool AVRTargetLowering::isOffsetFoldingLegal(
857 const GlobalAddressSDNode *GA) const {
858 return true;
859}
860
861//===----------------------------------------------------------------------===//
862// Formal Arguments Calling Convention Implementation
863//===----------------------------------------------------------------------===//
864
865#include "AVRGenCallingConv.inc"
866
867/// For each argument in a function store the number of pieces it is composed
868/// of.
869static void parseFunctionArgs(const Function *F, const DataLayout *TD,
870 SmallVectorImpl<unsigned> &Out) {
871 for (Argument const &Arg : F->args()) {
872 unsigned Bytes = (TD->getTypeSizeInBits(Arg.getType()) + 7) / 8;
873 Out.push_back((Bytes + 1) / 2);
874 }
875}
876
877/// For external symbols there is no function prototype information so we
878/// have to rely directly on argument sizes.
879static void parseExternFuncCallArgs(const SmallVectorImpl<ISD::OutputArg> &In,
880 SmallVectorImpl<unsigned> &Out) {
881 for (unsigned i = 0, e = In.size(); i != e;) {
882 unsigned Size = 0;
883 unsigned Offset = 0;
884 while ((i != e) && (In[i].PartOffset == Offset)) {
885 Offset += In[i].VT.getStoreSize();
886 ++i;
887 ++Size;
888 }
889 Out.push_back(Size);
890 }
891}
892
893static StringRef getFunctionName(TargetLowering::CallLoweringInfo &CLI) {
894 SDValue Callee = CLI.Callee;
895
896 if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee)) {
897 return G->getSymbol();
898 }
899
900 if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
901 return G->getGlobal()->getName();
902 }
903
904 llvm_unreachable("don't know how to get the name for this callee");
905}
906
907/// Analyze incoming and outgoing function arguments. We need custom C++ code
908/// to handle special constraints in the ABI like reversing the order of the
909/// pieces of splitted arguments. In addition, all pieces of a certain argument
910/// have to be passed either using registers or the stack but never mixing both.
911static void analyzeStandardArguments(TargetLowering::CallLoweringInfo *CLI,
912 const Function *F, const DataLayout *TD,
913 const SmallVectorImpl<ISD::OutputArg> *Outs,
914 const SmallVectorImpl<ISD::InputArg> *Ins,
915 CallingConv::ID CallConv,
916 SmallVectorImpl<CCValAssign> &ArgLocs,
917 CCState &CCInfo, bool IsCall, bool IsVarArg) {
918 static const MCPhysReg RegList8[] = {AVR::R24, AVR::R22, AVR::R20,
919 AVR::R18, AVR::R16, AVR::R14,
920 AVR::R12, AVR::R10, AVR::R8};
921 static const MCPhysReg RegList16[] = {AVR::R25R24, AVR::R23R22, AVR::R21R20,
922 AVR::R19R18, AVR::R17R16, AVR::R15R14,
923 AVR::R13R12, AVR::R11R10, AVR::R9R8};
924 if (IsVarArg) {
925 // Variadic functions do not need all the analisys below.
926 if (IsCall) {
927 CCInfo.AnalyzeCallOperands(*Outs, ArgCC_AVR_Vararg);
928 } else {
929 CCInfo.AnalyzeFormalArguments(*Ins, ArgCC_AVR_Vararg);
930 }
931 return;
932 }
933
934 // Fill in the Args array which will contain original argument sizes.
935 SmallVector<unsigned, 8> Args;
936 if (IsCall) {
937 parseExternFuncCallArgs(*Outs, Args);
938 } else {
939 assert(F != nullptr && "function should not be null");
940 parseFunctionArgs(F, TD, Args);
941 }
942
943 unsigned RegsLeft = array_lengthof(RegList8), ValNo = 0;
944 // Variadic functions always use the stack.
945 bool UsesStack = false;
946 for (unsigned i = 0, pos = 0, e = Args.size(); i != e; ++i) {
947 unsigned Size = Args[i];
Dylan McKay7a3eb292017-02-05 09:53:45 +0000948
949 // If we have a zero-sized argument, don't attempt to lower it.
950 // AVR-GCC does not support zero-sized arguments and so we need not
951 // worry about ABI compatibility.
952 if (Size == 0) continue;
953
Dylan McKay7549b0a2016-11-02 06:47:40 +0000954 MVT LocVT = (IsCall) ? (*Outs)[pos].VT : (*Ins)[pos].VT;
955
956 // If we have plenty of regs to pass the whole argument do it.
957 if (!UsesStack && (Size <= RegsLeft)) {
958 const MCPhysReg *RegList = (LocVT == MVT::i16) ? RegList16 : RegList8;
959
960 for (unsigned j = 0; j != Size; ++j) {
961 unsigned Reg = CCInfo.AllocateReg(
962 ArrayRef<MCPhysReg>(RegList, array_lengthof(RegList8)));
963 CCInfo.addLoc(
964 CCValAssign::getReg(ValNo++, LocVT, Reg, LocVT, CCValAssign::Full));
965 --RegsLeft;
966 }
967
968 // Reverse the order of the pieces to agree with the "big endian" format
969 // required in the calling convention ABI.
970 std::reverse(ArgLocs.begin() + pos, ArgLocs.begin() + pos + Size);
971 } else {
972 // Pass the rest of arguments using the stack.
973 UsesStack = true;
974 for (unsigned j = 0; j != Size; ++j) {
975 unsigned Offset = CCInfo.AllocateStack(
976 TD->getTypeAllocSize(EVT(LocVT).getTypeForEVT(CCInfo.getContext())),
977 TD->getABITypeAlignment(
978 EVT(LocVT).getTypeForEVT(CCInfo.getContext())));
979 CCInfo.addLoc(CCValAssign::getMem(ValNo++, LocVT, Offset, LocVT,
980 CCValAssign::Full));
981 }
982 }
983 pos += Size;
984 }
985}
986
987static void analyzeBuiltinArguments(TargetLowering::CallLoweringInfo &CLI,
988 const Function *F, const DataLayout *TD,
989 const SmallVectorImpl<ISD::OutputArg> *Outs,
990 const SmallVectorImpl<ISD::InputArg> *Ins,
991 CallingConv::ID CallConv,
992 SmallVectorImpl<CCValAssign> &ArgLocs,
993 CCState &CCInfo, bool IsCall, bool IsVarArg) {
994 StringRef FuncName = getFunctionName(CLI);
995
996 if (FuncName.startswith("__udivmod") || FuncName.startswith("__divmod")) {
997 CCInfo.AnalyzeCallOperands(*Outs, ArgCC_AVR_BUILTIN_DIV);
998 } else {
999 analyzeStandardArguments(&CLI, F, TD, Outs, Ins,
1000 CallConv, ArgLocs, CCInfo,
1001 IsCall, IsVarArg);
1002 }
1003}
1004
1005static void analyzeArguments(TargetLowering::CallLoweringInfo *CLI,
1006 const Function *F, const DataLayout *TD,
1007 const SmallVectorImpl<ISD::OutputArg> *Outs,
1008 const SmallVectorImpl<ISD::InputArg> *Ins,
1009 CallingConv::ID CallConv,
1010 SmallVectorImpl<CCValAssign> &ArgLocs,
1011 CCState &CCInfo, bool IsCall, bool IsVarArg) {
1012 switch (CallConv) {
1013 case CallingConv::AVR_BUILTIN: {
1014 analyzeBuiltinArguments(*CLI, F, TD, Outs, Ins,
1015 CallConv, ArgLocs, CCInfo,
1016 IsCall, IsVarArg);
1017 return;
1018 }
1019 default: {
1020 analyzeStandardArguments(CLI, F, TD, Outs, Ins,
1021 CallConv, ArgLocs, CCInfo,
1022 IsCall, IsVarArg);
1023 return;
1024 }
1025 }
1026}
1027
1028SDValue AVRTargetLowering::LowerFormalArguments(
1029 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1030 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, SelectionDAG &DAG,
1031 SmallVectorImpl<SDValue> &InVals) const {
1032 MachineFunction &MF = DAG.getMachineFunction();
1033 MachineFrameInfo &MFI = MF.getFrameInfo();
1034 auto DL = DAG.getDataLayout();
1035
1036 // Assign locations to all of the incoming arguments.
1037 SmallVector<CCValAssign, 16> ArgLocs;
1038 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1039 *DAG.getContext());
1040
1041 analyzeArguments(nullptr, MF.getFunction(), &DL, 0, &Ins, CallConv, ArgLocs, CCInfo,
1042 false, isVarArg);
1043
1044 SDValue ArgValue;
1045 for (CCValAssign &VA : ArgLocs) {
1046
1047 // Arguments stored on registers.
1048 if (VA.isRegLoc()) {
1049 EVT RegVT = VA.getLocVT();
1050 const TargetRegisterClass *RC;
1051 if (RegVT == MVT::i8) {
1052 RC = &AVR::GPR8RegClass;
1053 } else if (RegVT == MVT::i16) {
1054 RC = &AVR::DREGSRegClass;
1055 } else {
1056 llvm_unreachable("Unknown argument type!");
1057 }
1058
1059 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1060 ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1061
1062 // :NOTE: Clang should not promote any i8 into i16 but for safety the
1063 // following code will handle zexts or sexts generated by other
1064 // front ends. Otherwise:
1065 // If this is an 8 bit value, it is really passed promoted
1066 // to 16 bits. Insert an assert[sz]ext to capture this, then
1067 // truncate to the right size.
1068 switch (VA.getLocInfo()) {
1069 default:
1070 llvm_unreachable("Unknown loc info!");
1071 case CCValAssign::Full:
1072 break;
1073 case CCValAssign::BCvt:
1074 ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1075 break;
1076 case CCValAssign::SExt:
1077 ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1078 DAG.getValueType(VA.getValVT()));
1079 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1080 break;
1081 case CCValAssign::ZExt:
1082 ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1083 DAG.getValueType(VA.getValVT()));
1084 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1085 break;
1086 }
1087
1088 InVals.push_back(ArgValue);
1089 } else {
1090 // Sanity check.
1091 assert(VA.isMemLoc());
1092
1093 EVT LocVT = VA.getLocVT();
1094
1095 // Create the frame index object for this incoming parameter.
1096 int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8,
1097 VA.getLocMemOffset(), true);
1098
1099 // Create the SelectionDAG nodes corresponding to a load
1100 // from this parameter.
1101 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DL));
1102 InVals.push_back(DAG.getLoad(LocVT, dl, Chain, FIN,
1103 MachinePointerInfo::getFixedStack(MF, FI),
1104 0));
1105 }
1106 }
1107
1108 // If the function takes variable number of arguments, make a frame index for
1109 // the start of the first vararg value... for expansion of llvm.va_start.
1110 if (isVarArg) {
1111 unsigned StackSize = CCInfo.getNextStackOffset();
1112 AVRMachineFunctionInfo *AFI = MF.getInfo<AVRMachineFunctionInfo>();
1113
1114 AFI->setVarArgsFrameIndex(MFI.CreateFixedObject(2, StackSize, true));
1115 }
1116
1117 return Chain;
1118}
1119
1120//===----------------------------------------------------------------------===//
1121// Call Calling Convention Implementation
1122//===----------------------------------------------------------------------===//
1123
1124SDValue AVRTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
1125 SmallVectorImpl<SDValue> &InVals) const {
1126 SelectionDAG &DAG = CLI.DAG;
1127 SDLoc &DL = CLI.DL;
1128 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1129 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1130 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1131 SDValue Chain = CLI.Chain;
1132 SDValue Callee = CLI.Callee;
1133 bool &isTailCall = CLI.IsTailCall;
1134 CallingConv::ID CallConv = CLI.CallConv;
1135 bool isVarArg = CLI.IsVarArg;
1136
1137 MachineFunction &MF = DAG.getMachineFunction();
1138
1139 // AVR does not yet support tail call optimization.
1140 isTailCall = false;
1141
1142 // Analyze operands of the call, assigning locations to each operand.
1143 SmallVector<CCValAssign, 16> ArgLocs;
1144 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1145 *DAG.getContext());
1146
1147 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1148 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1149 // node so that legalize doesn't hack it.
1150 const Function *F = nullptr;
1151 if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1152 const GlobalValue *GV = G->getGlobal();
1153
1154 F = cast<Function>(GV);
1155 Callee =
1156 DAG.getTargetGlobalAddress(GV, DL, getPointerTy(DAG.getDataLayout()));
1157 } else if (const ExternalSymbolSDNode *ES =
1158 dyn_cast<ExternalSymbolSDNode>(Callee)) {
1159 Callee = DAG.getTargetExternalSymbol(ES->getSymbol(),
1160 getPointerTy(DAG.getDataLayout()));
1161 }
1162
1163 analyzeArguments(&CLI, F, &DAG.getDataLayout(), &Outs, 0, CallConv, ArgLocs, CCInfo,
1164 true, isVarArg);
1165
1166 // Get a count of how many bytes are to be pushed on the stack.
1167 unsigned NumBytes = CCInfo.getNextStackOffset();
1168
1169 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, DL, true),
1170 DL);
1171
1172 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
1173
1174 // First, walk the register assignments, inserting copies.
1175 unsigned AI, AE;
1176 bool HasStackArgs = false;
1177 for (AI = 0, AE = ArgLocs.size(); AI != AE; ++AI) {
1178 CCValAssign &VA = ArgLocs[AI];
1179 EVT RegVT = VA.getLocVT();
1180 SDValue Arg = OutVals[AI];
1181
1182 // Promote the value if needed. With Clang this should not happen.
1183 switch (VA.getLocInfo()) {
1184 default:
1185 llvm_unreachable("Unknown loc info!");
1186 case CCValAssign::Full:
1187 break;
1188 case CCValAssign::SExt:
1189 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, RegVT, Arg);
1190 break;
1191 case CCValAssign::ZExt:
1192 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, RegVT, Arg);
1193 break;
1194 case CCValAssign::AExt:
1195 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, RegVT, Arg);
1196 break;
1197 case CCValAssign::BCvt:
1198 Arg = DAG.getNode(ISD::BITCAST, DL, RegVT, Arg);
1199 break;
1200 }
1201
1202 // Stop when we encounter a stack argument, we need to process them
1203 // in reverse order in the loop below.
1204 if (VA.isMemLoc()) {
1205 HasStackArgs = true;
1206 break;
1207 }
1208
1209 // Arguments that can be passed on registers must be kept in the RegsToPass
1210 // vector.
1211 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1212 }
1213
1214 // Second, stack arguments have to walked in reverse order by inserting
1215 // chained stores, this ensures their order is not changed by the scheduler
1216 // and that the push instruction sequence generated is correct, otherwise they
1217 // can be freely intermixed.
1218 if (HasStackArgs) {
1219 for (AE = AI, AI = ArgLocs.size(); AI != AE; --AI) {
1220 unsigned Loc = AI - 1;
1221 CCValAssign &VA = ArgLocs[Loc];
1222 SDValue Arg = OutVals[Loc];
1223
1224 assert(VA.isMemLoc());
1225
1226 // SP points to one stack slot further so add one to adjust it.
1227 SDValue PtrOff = DAG.getNode(
1228 ISD::ADD, DL, getPointerTy(DAG.getDataLayout()),
1229 DAG.getRegister(AVR::SP, getPointerTy(DAG.getDataLayout())),
1230 DAG.getIntPtrConstant(VA.getLocMemOffset() + 1, DL));
1231
1232 Chain =
1233 DAG.getStore(Chain, DL, Arg, PtrOff,
1234 MachinePointerInfo::getStack(MF, VA.getLocMemOffset()),
1235 0);
1236 }
1237 }
1238
1239 // Build a sequence of copy-to-reg nodes chained together with token chain and
1240 // flag operands which copy the outgoing args into registers. The InFlag in
1241 // necessary since all emited instructions must be stuck together.
1242 SDValue InFlag;
1243 for (auto Reg : RegsToPass) {
1244 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, InFlag);
1245 InFlag = Chain.getValue(1);
1246 }
1247
1248 // Returns a chain & a flag for retval copy to use.
1249 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1250 SmallVector<SDValue, 8> Ops;
1251 Ops.push_back(Chain);
1252 Ops.push_back(Callee);
1253
1254 // Add argument registers to the end of the list so that they are known live
1255 // into the call.
1256 for (auto Reg : RegsToPass) {
1257 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
1258 }
1259
1260 // Add a register mask operand representing the call-preserved registers.
1261 const AVRTargetMachine &TM = (const AVRTargetMachine &)getTargetMachine();
1262 const TargetRegisterInfo *TRI = TM.getSubtargetImpl()->getRegisterInfo();
1263 const uint32_t *Mask =
1264 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv);
1265 assert(Mask && "Missing call preserved mask for calling convention");
1266 Ops.push_back(DAG.getRegisterMask(Mask));
1267
1268 if (InFlag.getNode()) {
1269 Ops.push_back(InFlag);
1270 }
1271
1272 Chain = DAG.getNode(AVRISD::CALL, DL, NodeTys, Ops);
1273 InFlag = Chain.getValue(1);
1274
1275 // Create the CALLSEQ_END node.
1276 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, DL, true),
1277 DAG.getIntPtrConstant(0, DL, true), InFlag, DL);
1278
1279 if (!Ins.empty()) {
1280 InFlag = Chain.getValue(1);
1281 }
1282
1283 // Handle result values, copying them out of physregs into vregs that we
1284 // return.
1285 return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, DL, DAG,
1286 InVals);
1287}
1288
1289/// Lower the result values of a call into the
1290/// appropriate copies out of appropriate physical registers.
1291///
1292SDValue AVRTargetLowering::LowerCallResult(
1293 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
1294 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl, SelectionDAG &DAG,
1295 SmallVectorImpl<SDValue> &InVals) const {
1296
1297 // Assign locations to each value returned by this call.
1298 SmallVector<CCValAssign, 16> RVLocs;
1299 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1300 *DAG.getContext());
1301
1302 // Handle runtime calling convs.
1303 auto CCFunction = CCAssignFnForReturn(CallConv);
1304 CCInfo.AnalyzeCallResult(Ins, CCFunction);
1305
1306 if (CallConv != CallingConv::AVR_BUILTIN && RVLocs.size() > 1) {
1307 // Reverse splitted return values to get the "big endian" format required
1308 // to agree with the calling convention ABI.
1309 std::reverse(RVLocs.begin(), RVLocs.end());
1310 }
1311
1312 // Copy all of the result registers out of their specified physreg.
1313 for (CCValAssign const &RVLoc : RVLocs) {
1314 Chain = DAG.getCopyFromReg(Chain, dl, RVLoc.getLocReg(), RVLoc.getValVT(),
1315 InFlag)
1316 .getValue(1);
1317 InFlag = Chain.getValue(2);
1318 InVals.push_back(Chain.getValue(0));
1319 }
1320
1321 return Chain;
1322}
1323
1324//===----------------------------------------------------------------------===//
1325// Return Value Calling Convention Implementation
1326//===----------------------------------------------------------------------===//
1327
1328CCAssignFn *AVRTargetLowering::CCAssignFnForReturn(CallingConv::ID CC) const {
1329 switch (CC) {
1330 case CallingConv::AVR_BUILTIN:
1331 return RetCC_AVR_BUILTIN;
1332 default:
1333 return RetCC_AVR;
1334 }
1335}
1336
1337bool
1338AVRTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1339 MachineFunction &MF, bool isVarArg,
1340 const SmallVectorImpl<ISD::OutputArg> &Outs,
1341 LLVMContext &Context) const
1342{
1343 SmallVector<CCValAssign, 16> RVLocs;
1344 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
1345
1346 auto CCFunction = CCAssignFnForReturn(CallConv);
1347 return CCInfo.CheckReturn(Outs, CCFunction);
1348}
1349
1350SDValue
1351AVRTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
1352 bool isVarArg,
1353 const SmallVectorImpl<ISD::OutputArg> &Outs,
1354 const SmallVectorImpl<SDValue> &OutVals,
1355 const SDLoc &dl, SelectionDAG &DAG) const {
1356 // CCValAssign - represent the assignment of the return value to locations.
1357 SmallVector<CCValAssign, 16> RVLocs;
1358
1359 // CCState - Info about the registers and stack slot.
1360 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1361 *DAG.getContext());
1362
1363 // Analyze return values.
1364 auto CCFunction = CCAssignFnForReturn(CallConv);
1365 CCInfo.AnalyzeReturn(Outs, CCFunction);
1366
1367 // If this is the first return lowered for this function, add the regs to
1368 // the liveout set for the function.
1369 MachineFunction &MF = DAG.getMachineFunction();
1370 unsigned e = RVLocs.size();
1371
1372 // Reverse splitted return values to get the "big endian" format required
1373 // to agree with the calling convention ABI.
1374 if (e > 1) {
1375 std::reverse(RVLocs.begin(), RVLocs.end());
1376 }
1377
1378 SDValue Flag;
1379 SmallVector<SDValue, 4> RetOps(1, Chain);
1380 // Copy the result values into the output registers.
1381 for (unsigned i = 0; i != e; ++i) {
1382 CCValAssign &VA = RVLocs[i];
1383 assert(VA.isRegLoc() && "Can only return in registers!");
1384
1385 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag);
1386
1387 // Guarantee that all emitted copies are stuck together with flags.
1388 Flag = Chain.getValue(1);
1389 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
1390 }
1391
1392 // Don't emit the ret/reti instruction when the naked attribute is present in
1393 // the function being compiled.
1394 if (MF.getFunction()->getAttributes().hasAttribute(
Reid Klecknerb5180542017-03-21 16:57:19 +00001395 AttributeList::FunctionIndex, Attribute::Naked)) {
Dylan McKay7549b0a2016-11-02 06:47:40 +00001396 return Chain;
1397 }
1398
1399 unsigned RetOpc =
1400 (CallConv == CallingConv::AVR_INTR || CallConv == CallingConv::AVR_SIGNAL)
1401 ? AVRISD::RETI_FLAG
1402 : AVRISD::RET_FLAG;
1403
1404 RetOps[0] = Chain; // Update chain.
1405
1406 if (Flag.getNode()) {
1407 RetOps.push_back(Flag);
1408 }
1409
1410 return DAG.getNode(RetOpc, dl, MVT::Other, RetOps);
1411}
1412
1413//===----------------------------------------------------------------------===//
1414// Custom Inserters
1415//===----------------------------------------------------------------------===//
1416
1417MachineBasicBlock *AVRTargetLowering::insertShift(MachineInstr &MI,
1418 MachineBasicBlock *BB) const {
1419 unsigned Opc;
1420 const TargetRegisterClass *RC;
1421 MachineFunction *F = BB->getParent();
1422 MachineRegisterInfo &RI = F->getRegInfo();
1423 const AVRTargetMachine &TM = (const AVRTargetMachine &)getTargetMachine();
1424 const TargetInstrInfo &TII = *TM.getSubtargetImpl()->getInstrInfo();
1425 DebugLoc dl = MI.getDebugLoc();
1426
1427 switch (MI.getOpcode()) {
1428 default:
1429 llvm_unreachable("Invalid shift opcode!");
1430 case AVR::Lsl8:
1431 Opc = AVR::LSLRd;
1432 RC = &AVR::GPR8RegClass;
1433 break;
1434 case AVR::Lsl16:
1435 Opc = AVR::LSLWRd;
1436 RC = &AVR::DREGSRegClass;
1437 break;
1438 case AVR::Asr8:
1439 Opc = AVR::ASRRd;
1440 RC = &AVR::GPR8RegClass;
1441 break;
1442 case AVR::Asr16:
1443 Opc = AVR::ASRWRd;
1444 RC = &AVR::DREGSRegClass;
1445 break;
1446 case AVR::Lsr8:
1447 Opc = AVR::LSRRd;
1448 RC = &AVR::GPR8RegClass;
1449 break;
1450 case AVR::Lsr16:
1451 Opc = AVR::LSRWRd;
1452 RC = &AVR::DREGSRegClass;
1453 break;
Dylan McKay59e7fe32017-05-01 09:48:55 +00001454 case AVR::Rol8:
1455 Opc = AVR::ROLRd;
1456 RC = &AVR::GPR8RegClass;
1457 break;
1458 case AVR::Rol16:
1459 Opc = AVR::ROLWRd;
1460 RC = &AVR::DREGSRegClass;
1461 break;
1462 case AVR::Ror8:
1463 Opc = AVR::RORRd;
1464 RC = &AVR::GPR8RegClass;
1465 break;
1466 case AVR::Ror16:
1467 Opc = AVR::RORWRd;
1468 RC = &AVR::DREGSRegClass;
1469 break;
Dylan McKay7549b0a2016-11-02 06:47:40 +00001470 }
1471
1472 const BasicBlock *LLVM_BB = BB->getBasicBlock();
1473 MachineFunction::iterator I = BB->getParent()->begin();
1474 ++I;
1475
1476 // Create loop block.
1477 MachineBasicBlock *LoopBB = F->CreateMachineBasicBlock(LLVM_BB);
1478 MachineBasicBlock *RemBB = F->CreateMachineBasicBlock(LLVM_BB);
1479
1480 F->insert(I, LoopBB);
1481 F->insert(I, RemBB);
1482
1483 // Update machine-CFG edges by transferring all successors of the current
1484 // block to the block containing instructions after shift.
1485 RemBB->splice(RemBB->begin(), BB, std::next(MachineBasicBlock::iterator(MI)),
1486 BB->end());
1487 RemBB->transferSuccessorsAndUpdatePHIs(BB);
1488
1489 // Add adges BB => LoopBB => RemBB, BB => RemBB, LoopBB => LoopBB.
1490 BB->addSuccessor(LoopBB);
1491 BB->addSuccessor(RemBB);
1492 LoopBB->addSuccessor(RemBB);
1493 LoopBB->addSuccessor(LoopBB);
1494
1495 unsigned ShiftAmtReg = RI.createVirtualRegister(&AVR::LD8RegClass);
1496 unsigned ShiftAmtReg2 = RI.createVirtualRegister(&AVR::LD8RegClass);
1497 unsigned ShiftReg = RI.createVirtualRegister(RC);
1498 unsigned ShiftReg2 = RI.createVirtualRegister(RC);
1499 unsigned ShiftAmtSrcReg = MI.getOperand(2).getReg();
1500 unsigned SrcReg = MI.getOperand(1).getReg();
1501 unsigned DstReg = MI.getOperand(0).getReg();
1502
1503 // BB:
1504 // cp 0, N
1505 // breq RemBB
1506 BuildMI(BB, dl, TII.get(AVR::CPRdRr)).addReg(ShiftAmtSrcReg).addReg(AVR::R0);
1507 BuildMI(BB, dl, TII.get(AVR::BREQk)).addMBB(RemBB);
1508
1509 // LoopBB:
1510 // ShiftReg = phi [%SrcReg, BB], [%ShiftReg2, LoopBB]
1511 // ShiftAmt = phi [%N, BB], [%ShiftAmt2, LoopBB]
1512 // ShiftReg2 = shift ShiftReg
1513 // ShiftAmt2 = ShiftAmt - 1;
1514 BuildMI(LoopBB, dl, TII.get(AVR::PHI), ShiftReg)
1515 .addReg(SrcReg)
1516 .addMBB(BB)
1517 .addReg(ShiftReg2)
1518 .addMBB(LoopBB);
1519 BuildMI(LoopBB, dl, TII.get(AVR::PHI), ShiftAmtReg)
1520 .addReg(ShiftAmtSrcReg)
1521 .addMBB(BB)
1522 .addReg(ShiftAmtReg2)
1523 .addMBB(LoopBB);
1524 BuildMI(LoopBB, dl, TII.get(Opc), ShiftReg2).addReg(ShiftReg);
1525 BuildMI(LoopBB, dl, TII.get(AVR::SUBIRdK), ShiftAmtReg2)
1526 .addReg(ShiftAmtReg)
1527 .addImm(1);
1528 BuildMI(LoopBB, dl, TII.get(AVR::BRNEk)).addMBB(LoopBB);
1529
1530 // RemBB:
1531 // DestReg = phi [%SrcReg, BB], [%ShiftReg, LoopBB]
1532 BuildMI(*RemBB, RemBB->begin(), dl, TII.get(AVR::PHI), DstReg)
1533 .addReg(SrcReg)
1534 .addMBB(BB)
1535 .addReg(ShiftReg2)
1536 .addMBB(LoopBB);
1537
1538 MI.eraseFromParent(); // The pseudo instruction is gone now.
1539 return RemBB;
1540}
1541
1542static bool isCopyMulResult(MachineBasicBlock::iterator const &I) {
1543 if (I->getOpcode() == AVR::COPY) {
1544 unsigned SrcReg = I->getOperand(1).getReg();
1545 return (SrcReg == AVR::R0 || SrcReg == AVR::R1);
1546 }
1547
1548 return false;
1549}
1550
1551// The mul instructions wreak havock on our zero_reg R1. We need to clear it
1552// after the result has been evacuated. This is probably not the best way to do
1553// it, but it works for now.
1554MachineBasicBlock *AVRTargetLowering::insertMul(MachineInstr &MI,
1555 MachineBasicBlock *BB) const {
1556 const AVRTargetMachine &TM = (const AVRTargetMachine &)getTargetMachine();
1557 const TargetInstrInfo &TII = *TM.getSubtargetImpl()->getInstrInfo();
1558 MachineBasicBlock::iterator I(MI);
1559 ++I; // in any case insert *after* the mul instruction
1560 if (isCopyMulResult(I))
1561 ++I;
1562 if (isCopyMulResult(I))
1563 ++I;
1564 BuildMI(*BB, I, MI.getDebugLoc(), TII.get(AVR::EORRdRr), AVR::R1)
1565 .addReg(AVR::R1)
1566 .addReg(AVR::R1);
1567 return BB;
1568}
1569
1570MachineBasicBlock *
1571AVRTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
1572 MachineBasicBlock *MBB) const {
1573 int Opc = MI.getOpcode();
1574
1575 // Pseudo shift instructions with a non constant shift amount are expanded
1576 // into a loop.
1577 switch (Opc) {
1578 case AVR::Lsl8:
1579 case AVR::Lsl16:
1580 case AVR::Lsr8:
1581 case AVR::Lsr16:
Dylan McKay59e7fe32017-05-01 09:48:55 +00001582 case AVR::Rol8:
1583 case AVR::Rol16:
1584 case AVR::Ror8:
1585 case AVR::Ror16:
Dylan McKay7549b0a2016-11-02 06:47:40 +00001586 case AVR::Asr8:
1587 case AVR::Asr16:
1588 return insertShift(MI, MBB);
1589 case AVR::MULRdRr:
1590 case AVR::MULSRdRr:
1591 return insertMul(MI, MBB);
1592 }
1593
1594 assert((Opc == AVR::Select16 || Opc == AVR::Select8) &&
1595 "Unexpected instr type to insert");
1596
1597 const AVRInstrInfo &TII = (const AVRInstrInfo &)*MI.getParent()
1598 ->getParent()
1599 ->getSubtarget()
1600 .getInstrInfo();
1601 DebugLoc dl = MI.getDebugLoc();
1602
1603 // To "insert" a SELECT instruction, we insert the diamond
1604 // control-flow pattern. The incoming instruction knows the
1605 // destination vreg to set, the condition code register to branch
1606 // on, the true/false values to select between, and a branch opcode
1607 // to use.
1608
1609 MachineFunction *MF = MBB->getParent();
1610 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
1611 MachineBasicBlock *trueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1612 MachineBasicBlock *falseMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1613
1614 MachineFunction::iterator I = MBB->getParent()->begin();
1615 ++I;
1616 MF->insert(I, trueMBB);
1617 MF->insert(I, falseMBB);
1618
1619 // Transfer remaining instructions and all successors of the current
1620 // block to the block which will contain the Phi node for the
1621 // select.
1622 trueMBB->splice(trueMBB->begin(), MBB,
1623 std::next(MachineBasicBlock::iterator(MI)), MBB->end());
1624 trueMBB->transferSuccessorsAndUpdatePHIs(MBB);
1625
1626 AVRCC::CondCodes CC = (AVRCC::CondCodes)MI.getOperand(3).getImm();
1627 BuildMI(MBB, dl, TII.getBrCond(CC)).addMBB(trueMBB);
1628 BuildMI(MBB, dl, TII.get(AVR::RJMPk)).addMBB(falseMBB);
1629 MBB->addSuccessor(falseMBB);
1630 MBB->addSuccessor(trueMBB);
1631
1632 // Unconditionally flow back to the true block
1633 BuildMI(falseMBB, dl, TII.get(AVR::RJMPk)).addMBB(trueMBB);
1634 falseMBB->addSuccessor(trueMBB);
1635
1636 // Set up the Phi node to determine where we came from
1637 BuildMI(*trueMBB, trueMBB->begin(), dl, TII.get(AVR::PHI), MI.getOperand(0).getReg())
1638 .addReg(MI.getOperand(1).getReg())
1639 .addMBB(MBB)
1640 .addReg(MI.getOperand(2).getReg())
1641 .addMBB(falseMBB) ;
1642
1643 MI.eraseFromParent(); // The pseudo instruction is gone now.
1644 return trueMBB;
1645}
1646
1647//===----------------------------------------------------------------------===//
1648// Inline Asm Support
1649//===----------------------------------------------------------------------===//
1650
1651AVRTargetLowering::ConstraintType
1652AVRTargetLowering::getConstraintType(StringRef Constraint) const {
1653 if (Constraint.size() == 1) {
1654 // See http://www.nongnu.org/avr-libc/user-manual/inline_asm.html
1655 switch (Constraint[0]) {
1656 case 'a': // Simple upper registers
1657 case 'b': // Base pointer registers pairs
1658 case 'd': // Upper register
1659 case 'l': // Lower registers
1660 case 'e': // Pointer register pairs
1661 case 'q': // Stack pointer register
1662 case 'r': // Any register
1663 case 'w': // Special upper register pairs
1664 return C_RegisterClass;
1665 case 't': // Temporary register
1666 case 'x': case 'X': // Pointer register pair X
1667 case 'y': case 'Y': // Pointer register pair Y
1668 case 'z': case 'Z': // Pointer register pair Z
1669 return C_Register;
1670 case 'Q': // A memory address based on Y or Z pointer with displacement.
1671 return C_Memory;
1672 case 'G': // Floating point constant
1673 case 'I': // 6-bit positive integer constant
1674 case 'J': // 6-bit negative integer constant
1675 case 'K': // Integer constant (Range: 2)
1676 case 'L': // Integer constant (Range: 0)
1677 case 'M': // 8-bit integer constant
1678 case 'N': // Integer constant (Range: -1)
1679 case 'O': // Integer constant (Range: 8, 16, 24)
1680 case 'P': // Integer constant (Range: 1)
1681 case 'R': // Integer constant (Range: -6 to 5)x
1682 return C_Other;
1683 default:
1684 break;
1685 }
1686 }
1687
1688 return TargetLowering::getConstraintType(Constraint);
1689}
1690
1691unsigned
1692AVRTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const {
1693 // Not sure if this is actually the right thing to do, but we got to do
1694 // *something* [agnat]
1695 switch (ConstraintCode[0]) {
1696 case 'Q':
1697 return InlineAsm::Constraint_Q;
1698 }
1699 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
1700}
1701
1702AVRTargetLowering::ConstraintWeight
1703AVRTargetLowering::getSingleConstraintMatchWeight(
1704 AsmOperandInfo &info, const char *constraint) const {
1705 ConstraintWeight weight = CW_Invalid;
1706 Value *CallOperandVal = info.CallOperandVal;
1707
1708 // If we don't have a value, we can't do a match,
1709 // but allow it at the lowest weight.
1710 // (this behaviour has been copied from the ARM backend)
1711 if (!CallOperandVal) {
1712 return CW_Default;
1713 }
1714
1715 // Look at the constraint type.
1716 switch (*constraint) {
1717 default:
1718 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
1719 break;
1720 case 'd':
1721 case 'r':
1722 case 'l':
1723 weight = CW_Register;
1724 break;
1725 case 'a':
1726 case 'b':
1727 case 'e':
1728 case 'q':
1729 case 't':
1730 case 'w':
1731 case 'x': case 'X':
1732 case 'y': case 'Y':
1733 case 'z': case 'Z':
1734 weight = CW_SpecificReg;
1735 break;
1736 case 'G':
1737 if (const ConstantFP *C = dyn_cast<ConstantFP>(CallOperandVal)) {
1738 if (C->isZero()) {
1739 weight = CW_Constant;
1740 }
1741 }
1742 break;
1743 case 'I':
1744 if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1745 if (isUInt<6>(C->getZExtValue())) {
1746 weight = CW_Constant;
1747 }
1748 }
1749 break;
1750 case 'J':
1751 if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1752 if ((C->getSExtValue() >= -63) && (C->getSExtValue() <= 0)) {
1753 weight = CW_Constant;
1754 }
1755 }
1756 break;
1757 case 'K':
1758 if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1759 if (C->getZExtValue() == 2) {
1760 weight = CW_Constant;
1761 }
1762 }
1763 break;
1764 case 'L':
1765 if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1766 if (C->getZExtValue() == 0) {
1767 weight = CW_Constant;
1768 }
1769 }
1770 break;
1771 case 'M':
1772 if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1773 if (isUInt<8>(C->getZExtValue())) {
1774 weight = CW_Constant;
1775 }
1776 }
1777 break;
1778 case 'N':
1779 if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1780 if (C->getSExtValue() == -1) {
1781 weight = CW_Constant;
1782 }
1783 }
1784 break;
1785 case 'O':
1786 if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1787 if ((C->getZExtValue() == 8) || (C->getZExtValue() == 16) ||
1788 (C->getZExtValue() == 24)) {
1789 weight = CW_Constant;
1790 }
1791 }
1792 break;
1793 case 'P':
1794 if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1795 if (C->getZExtValue() == 1) {
1796 weight = CW_Constant;
1797 }
1798 }
1799 break;
1800 case 'R':
1801 if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1802 if ((C->getSExtValue() >= -6) && (C->getSExtValue() <= 5)) {
1803 weight = CW_Constant;
1804 }
1805 }
1806 break;
1807 case 'Q':
1808 weight = CW_Memory;
1809 break;
1810 }
1811
1812 return weight;
1813}
1814
1815std::pair<unsigned, const TargetRegisterClass *>
1816AVRTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
1817 StringRef Constraint,
1818 MVT VT) const {
1819 auto STI = static_cast<const AVRTargetMachine &>(this->getTargetMachine())
1820 .getSubtargetImpl();
1821
1822 // We only support i8 and i16.
1823 //
1824 //:FIXME: remove this assert for now since it gets sometimes executed
1825 // assert((VT == MVT::i16 || VT == MVT::i8) && "Wrong operand type.");
1826
1827 if (Constraint.size() == 1) {
1828 switch (Constraint[0]) {
1829 case 'a': // Simple upper registers r16..r23.
1830 return std::make_pair(0U, &AVR::LD8loRegClass);
1831 case 'b': // Base pointer registers: y, z.
1832 return std::make_pair(0U, &AVR::PTRDISPREGSRegClass);
1833 case 'd': // Upper registers r16..r31.
1834 return std::make_pair(0U, &AVR::LD8RegClass);
1835 case 'l': // Lower registers r0..r15.
1836 return std::make_pair(0U, &AVR::GPR8loRegClass);
1837 case 'e': // Pointer register pairs: x, y, z.
1838 return std::make_pair(0U, &AVR::PTRREGSRegClass);
1839 case 'q': // Stack pointer register: SPH:SPL.
1840 return std::make_pair(0U, &AVR::GPRSPRegClass);
1841 case 'r': // Any register: r0..r31.
1842 if (VT == MVT::i8)
1843 return std::make_pair(0U, &AVR::GPR8RegClass);
1844
1845 assert(VT == MVT::i16 && "inline asm constraint too large");
1846 return std::make_pair(0U, &AVR::DREGSRegClass);
1847 case 't': // Temporary register: r0.
1848 return std::make_pair(unsigned(AVR::R0), &AVR::GPR8RegClass);
1849 case 'w': // Special upper register pairs: r24, r26, r28, r30.
1850 return std::make_pair(0U, &AVR::IWREGSRegClass);
1851 case 'x': // Pointer register pair X: r27:r26.
1852 case 'X':
1853 return std::make_pair(unsigned(AVR::R27R26), &AVR::PTRREGSRegClass);
1854 case 'y': // Pointer register pair Y: r29:r28.
1855 case 'Y':
1856 return std::make_pair(unsigned(AVR::R29R28), &AVR::PTRREGSRegClass);
1857 case 'z': // Pointer register pair Z: r31:r30.
1858 case 'Z':
1859 return std::make_pair(unsigned(AVR::R31R30), &AVR::PTRREGSRegClass);
1860 default:
1861 break;
1862 }
1863 }
1864
1865 return TargetLowering::getRegForInlineAsmConstraint(STI->getRegisterInfo(),
1866 Constraint, VT);
1867}
1868
1869void AVRTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
1870 std::string &Constraint,
1871 std::vector<SDValue> &Ops,
1872 SelectionDAG &DAG) const {
1873 SDValue Result(0, 0);
1874 SDLoc DL(Op);
1875 EVT Ty = Op.getValueType();
1876
1877 // Currently only support length 1 constraints.
1878 if (Constraint.length() != 1) {
1879 return;
1880 }
1881
1882 char ConstraintLetter = Constraint[0];
1883 switch (ConstraintLetter) {
1884 default:
1885 break;
1886 // Deal with integers first:
1887 case 'I':
1888 case 'J':
1889 case 'K':
1890 case 'L':
1891 case 'M':
1892 case 'N':
1893 case 'O':
1894 case 'P':
1895 case 'R': {
1896 const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1897 if (!C) {
1898 return;
1899 }
1900
1901 int64_t CVal64 = C->getSExtValue();
1902 uint64_t CUVal64 = C->getZExtValue();
1903 switch (ConstraintLetter) {
1904 case 'I': // 0..63
1905 if (!isUInt<6>(CUVal64))
1906 return;
1907 Result = DAG.getTargetConstant(CUVal64, DL, Ty);
1908 break;
1909 case 'J': // -63..0
1910 if (CVal64 < -63 || CVal64 > 0)
1911 return;
1912 Result = DAG.getTargetConstant(CVal64, DL, Ty);
1913 break;
1914 case 'K': // 2
1915 if (CUVal64 != 2)
1916 return;
1917 Result = DAG.getTargetConstant(CUVal64, DL, Ty);
1918 break;
1919 case 'L': // 0
1920 if (CUVal64 != 0)
1921 return;
1922 Result = DAG.getTargetConstant(CUVal64, DL, Ty);
1923 break;
1924 case 'M': // 0..255
1925 if (!isUInt<8>(CUVal64))
1926 return;
1927 // i8 type may be printed as a negative number,
1928 // e.g. 254 would be printed as -2,
1929 // so we force it to i16 at least.
1930 if (Ty.getSimpleVT() == MVT::i8) {
1931 Ty = MVT::i16;
1932 }
1933 Result = DAG.getTargetConstant(CUVal64, DL, Ty);
1934 break;
1935 case 'N': // -1
1936 if (CVal64 != -1)
1937 return;
1938 Result = DAG.getTargetConstant(CVal64, DL, Ty);
1939 break;
1940 case 'O': // 8, 16, 24
1941 if (CUVal64 != 8 && CUVal64 != 16 && CUVal64 != 24)
1942 return;
1943 Result = DAG.getTargetConstant(CUVal64, DL, Ty);
1944 break;
1945 case 'P': // 1
1946 if (CUVal64 != 1)
1947 return;
1948 Result = DAG.getTargetConstant(CUVal64, DL, Ty);
1949 break;
1950 case 'R': // -6..5
1951 if (CVal64 < -6 || CVal64 > 5)
1952 return;
1953 Result = DAG.getTargetConstant(CVal64, DL, Ty);
1954 break;
1955 }
1956
1957 break;
1958 }
1959 case 'G':
1960 const ConstantFPSDNode *FC = dyn_cast<ConstantFPSDNode>(Op);
1961 if (!FC || !FC->isZero())
1962 return;
1963 // Soften float to i8 0
1964 Result = DAG.getTargetConstant(0, DL, MVT::i8);
1965 break;
1966 }
1967
1968 if (Result.getNode()) {
1969 Ops.push_back(Result);
1970 return;
1971 }
1972
1973 return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
1974}
1975
Dylan McKay8fa6d8d2017-01-07 23:39:47 +00001976unsigned AVRTargetLowering::getRegisterByName(const char *RegName,
1977 EVT VT,
1978 SelectionDAG &DAG) const {
1979 unsigned Reg;
1980
1981 if (VT == MVT::i8) {
1982 Reg = StringSwitch<unsigned>(RegName)
1983 .Case("r0", AVR::R0).Case("r1", AVR::R1).Case("r2", AVR::R2)
1984 .Case("r3", AVR::R3).Case("r4", AVR::R4).Case("r5", AVR::R5)
1985 .Case("r6", AVR::R6).Case("r7", AVR::R7).Case("r8", AVR::R8)
1986 .Case("r9", AVR::R9).Case("r10", AVR::R10).Case("r11", AVR::R11)
1987 .Case("r12", AVR::R12).Case("r13", AVR::R13).Case("r14", AVR::R14)
1988 .Case("r15", AVR::R15).Case("r16", AVR::R16).Case("r17", AVR::R17)
1989 .Case("r18", AVR::R18).Case("r19", AVR::R19).Case("r20", AVR::R20)
1990 .Case("r21", AVR::R21).Case("r22", AVR::R22).Case("r23", AVR::R23)
1991 .Case("r24", AVR::R24).Case("r25", AVR::R25).Case("r26", AVR::R26)
1992 .Case("r27", AVR::R27).Case("r28", AVR::R28).Case("r29", AVR::R29)
1993 .Case("r30", AVR::R30).Case("r31", AVR::R31)
1994 .Case("X", AVR::R27R26).Case("Y", AVR::R29R28).Case("Z", AVR::R31R30)
1995 .Default(0);
1996 } else {
1997 Reg = StringSwitch<unsigned>(RegName)
1998 .Case("r0", AVR::R1R0).Case("r2", AVR::R3R2)
1999 .Case("r4", AVR::R5R4).Case("r6", AVR::R7R6)
2000 .Case("r8", AVR::R9R8).Case("r10", AVR::R11R10)
2001 .Case("r12", AVR::R13R12).Case("r14", AVR::R15R14)
2002 .Case("r16", AVR::R17R16).Case("r18", AVR::R19R18)
2003 .Case("r20", AVR::R21R20).Case("r22", AVR::R23R22)
2004 .Case("r24", AVR::R25R24).Case("r26", AVR::R27R26)
2005 .Case("r28", AVR::R29R28).Case("r30", AVR::R31R30)
2006 .Case("X", AVR::R27R26).Case("Y", AVR::R29R28).Case("Z", AVR::R31R30)
2007 .Default(0);
2008 }
2009
2010 if (Reg)
2011 return Reg;
2012
2013 report_fatal_error("Invalid register name global variable");
2014}
2015
Dylan McKay7549b0a2016-11-02 06:47:40 +00002016} // end of namespace llvm