blob: 93a288858ba8f02bd654d2ec2d175c097b402b49 [file] [log] [blame]
Marcello Maggioniab58c742015-09-21 17:58:14 +00001//===- DivergenceAnalysis.cpp --------- Divergence Analysis Implementation -==//
Jingyue Wu5da831c2015-04-10 05:03:50 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
Marcello Maggioniab58c742015-09-21 17:58:14 +000010// This file implements divergence analysis which determines whether a branch
11// in a GPU program is divergent.It can help branch optimizations such as jump
Jingyue Wu5da831c2015-04-10 05:03:50 +000012// threading and loop unswitching to make better decisions.
13//
14// GPU programs typically use the SIMD execution model, where multiple threads
15// in the same execution group have to execute in lock-step. Therefore, if the
16// code contains divergent branches (i.e., threads in a group do not agree on
17// which path of the branch to take), the group of threads has to execute all
18// the paths from that branch with different subsets of threads enabled until
19// they converge at the immediately post-dominating BB of the paths.
20//
21// Due to this execution model, some optimizations such as jump
22// threading and loop unswitching can be unfortunately harmful when performed on
23// divergent branches. Therefore, an analysis that computes which branches in a
24// GPU program are divergent can help the compiler to selectively run these
25// optimizations.
26//
27// This file defines divergence analysis which computes a conservative but
28// non-trivial approximation of all divergent branches in a GPU program. It
29// partially implements the approach described in
30//
31// Divergence Analysis
32// Sampaio, Souza, Collange, Pereira
33// TOPLAS '13
34//
35// The divergence analysis identifies the sources of divergence (e.g., special
36// variables that hold the thread ID), and recursively marks variables that are
37// data or sync dependent on a source of divergence as divergent.
38//
39// While data dependency is a well-known concept, the notion of sync dependency
40// is worth more explanation. Sync dependence characterizes the control flow
41// aspect of the propagation of branch divergence. For example,
42//
43// %cond = icmp slt i32 %tid, 10
44// br i1 %cond, label %then, label %else
45// then:
46// br label %merge
47// else:
48// br label %merge
49// merge:
50// %a = phi i32 [ 0, %then ], [ 1, %else ]
51//
52// Suppose %tid holds the thread ID. Although %a is not data dependent on %tid
53// because %tid is not on its use-def chains, %a is sync dependent on %tid
54// because the branch "br i1 %cond" depends on %tid and affects which value %a
55// is assigned to.
56//
57// The current implementation has the following limitations:
58// 1. intra-procedural. It conservatively considers the arguments of a
59// non-kernel-entry function and the return value of a function call as
60// divergent.
61// 2. memory as black box. It conservatively considers values loaded from
62// generic or local address as divergent. This can be improved by leveraging
63// pointer analysis.
Marcello Maggioniab58c742015-09-21 17:58:14 +000064//
Jingyue Wu5da831c2015-04-10 05:03:50 +000065//===----------------------------------------------------------------------===//
66
Marcello Maggioniab58c742015-09-21 17:58:14 +000067#include "llvm/Analysis/DivergenceAnalysis.h"
Jingyue Wu5da831c2015-04-10 05:03:50 +000068#include "llvm/Analysis/Passes.h"
69#include "llvm/Analysis/PostDominators.h"
70#include "llvm/Analysis/TargetTransformInfo.h"
Marcello Maggioniab58c742015-09-21 17:58:14 +000071#include "llvm/IR/Dominators.h"
Jingyue Wu5da831c2015-04-10 05:03:50 +000072#include "llvm/IR/InstIterator.h"
73#include "llvm/IR/Instructions.h"
74#include "llvm/IR/IntrinsicInst.h"
75#include "llvm/IR/Value.h"
Jingyue Wu5da831c2015-04-10 05:03:50 +000076#include "llvm/Support/CommandLine.h"
77#include "llvm/Support/Debug.h"
78#include "llvm/Support/raw_ostream.h"
79#include "llvm/Transforms/Scalar.h"
Marcello Maggioniab58c742015-09-21 17:58:14 +000080#include <vector>
Jingyue Wu5da831c2015-04-10 05:03:50 +000081using namespace llvm;
82
Jingyue Wu5da831c2015-04-10 05:03:50 +000083namespace {
84
85class DivergencePropagator {
86public:
Marcello Maggioniab58c742015-09-21 17:58:14 +000087 DivergencePropagator(Function &F, TargetTransformInfo &TTI, DominatorTree &DT,
88 PostDominatorTree &PDT, DenseSet<const Value *> &DV)
Jingyue Wu5da831c2015-04-10 05:03:50 +000089 : F(F), TTI(TTI), DT(DT), PDT(PDT), DV(DV) {}
90 void populateWithSourcesOfDivergence();
91 void propagate();
92
93private:
94 // A helper function that explores data dependents of V.
95 void exploreDataDependency(Value *V);
96 // A helper function that explores sync dependents of TI.
97 void exploreSyncDependency(TerminatorInst *TI);
98 // Computes the influence region from Start to End. This region includes all
99 // basic blocks on any path from Start to End.
100 void computeInfluenceRegion(BasicBlock *Start, BasicBlock *End,
101 DenseSet<BasicBlock *> &InfluenceRegion);
102 // Finds all users of I that are outside the influence region, and add these
103 // users to Worklist.
104 void findUsersOutsideInfluenceRegion(
105 Instruction &I, const DenseSet<BasicBlock *> &InfluenceRegion);
106
107 Function &F;
108 TargetTransformInfo &TTI;
109 DominatorTree &DT;
110 PostDominatorTree &PDT;
111 std::vector<Value *> Worklist; // Stack for DFS.
Marcello Maggioniab58c742015-09-21 17:58:14 +0000112 DenseSet<const Value *> &DV; // Stores all divergent values.
Jingyue Wu5da831c2015-04-10 05:03:50 +0000113};
114
115void DivergencePropagator::populateWithSourcesOfDivergence() {
116 Worklist.clear();
117 DV.clear();
Nico Rieck78199512015-08-06 19:10:45 +0000118 for (auto &I : instructions(F)) {
Jingyue Wu5da831c2015-04-10 05:03:50 +0000119 if (TTI.isSourceOfDivergence(&I)) {
120 Worklist.push_back(&I);
121 DV.insert(&I);
122 }
123 }
124 for (auto &Arg : F.args()) {
125 if (TTI.isSourceOfDivergence(&Arg)) {
126 Worklist.push_back(&Arg);
127 DV.insert(&Arg);
128 }
129 }
130}
131
132void DivergencePropagator::exploreSyncDependency(TerminatorInst *TI) {
133 // Propagation rule 1: if branch TI is divergent, all PHINodes in TI's
134 // immediate post dominator are divergent. This rule handles if-then-else
135 // patterns. For example,
136 //
137 // if (tid < 5)
138 // a1 = 1;
139 // else
140 // a2 = 2;
141 // a = phi(a1, a2); // sync dependent on (tid < 5)
142 BasicBlock *ThisBB = TI->getParent();
143 BasicBlock *IPostDom = PDT.getNode(ThisBB)->getIDom()->getBlock();
144 if (IPostDom == nullptr)
145 return;
146
147 for (auto I = IPostDom->begin(); isa<PHINode>(I); ++I) {
148 // A PHINode is uniform if it returns the same value no matter which path is
149 // taken.
Duncan P. N. Exon Smith5a82c912015-10-10 00:53:03 +0000150 if (!cast<PHINode>(I)->hasConstantValue() && DV.insert(&*I).second)
151 Worklist.push_back(&*I);
Jingyue Wu5da831c2015-04-10 05:03:50 +0000152 }
153
154 // Propagation rule 2: if a value defined in a loop is used outside, the user
155 // is sync dependent on the condition of the loop exits that dominate the
156 // user. For example,
157 //
158 // int i = 0;
159 // do {
160 // i++;
161 // if (foo(i)) ... // uniform
162 // } while (i < tid);
163 // if (bar(i)) ... // divergent
164 //
165 // A program may contain unstructured loops. Therefore, we cannot leverage
166 // LoopInfo, which only recognizes natural loops.
167 //
168 // The algorithm used here handles both natural and unstructured loops. Given
169 // a branch TI, we first compute its influence region, the union of all simple
170 // paths from TI to its immediate post dominator (IPostDom). Then, we search
171 // for all the values defined in the influence region but used outside. All
172 // these users are sync dependent on TI.
173 DenseSet<BasicBlock *> InfluenceRegion;
174 computeInfluenceRegion(ThisBB, IPostDom, InfluenceRegion);
175 // An insight that can speed up the search process is that all the in-region
176 // values that are used outside must dominate TI. Therefore, instead of
177 // searching every basic blocks in the influence region, we search all the
178 // dominators of TI until it is outside the influence region.
179 BasicBlock *InfluencedBB = ThisBB;
180 while (InfluenceRegion.count(InfluencedBB)) {
181 for (auto &I : *InfluencedBB)
182 findUsersOutsideInfluenceRegion(I, InfluenceRegion);
183 DomTreeNode *IDomNode = DT.getNode(InfluencedBB)->getIDom();
184 if (IDomNode == nullptr)
185 break;
186 InfluencedBB = IDomNode->getBlock();
187 }
188}
189
190void DivergencePropagator::findUsersOutsideInfluenceRegion(
191 Instruction &I, const DenseSet<BasicBlock *> &InfluenceRegion) {
192 for (User *U : I.users()) {
193 Instruction *UserInst = cast<Instruction>(U);
194 if (!InfluenceRegion.count(UserInst->getParent())) {
195 if (DV.insert(UserInst).second)
196 Worklist.push_back(UserInst);
197 }
198 }
199}
200
201void DivergencePropagator::computeInfluenceRegion(
202 BasicBlock *Start, BasicBlock *End,
203 DenseSet<BasicBlock *> &InfluenceRegion) {
204 assert(PDT.properlyDominates(End, Start) &&
205 "End does not properly dominate Start");
206 std::vector<BasicBlock *> InfluenceStack;
207 InfluenceStack.push_back(Start);
208 InfluenceRegion.insert(Start);
209 while (!InfluenceStack.empty()) {
210 BasicBlock *BB = InfluenceStack.back();
211 InfluenceStack.pop_back();
212 for (BasicBlock *Succ : successors(BB)) {
213 if (End != Succ && InfluenceRegion.insert(Succ).second)
214 InfluenceStack.push_back(Succ);
215 }
216 }
217}
218
219void DivergencePropagator::exploreDataDependency(Value *V) {
220 // Follow def-use chains of V.
221 for (User *U : V->users()) {
222 Instruction *UserInst = cast<Instruction>(U);
223 if (DV.insert(UserInst).second)
224 Worklist.push_back(UserInst);
225 }
226}
227
228void DivergencePropagator::propagate() {
229 // Traverse the dependency graph using DFS.
230 while (!Worklist.empty()) {
231 Value *V = Worklist.back();
232 Worklist.pop_back();
233 if (TerminatorInst *TI = dyn_cast<TerminatorInst>(V)) {
234 // Terminators with less than two successors won't introduce sync
235 // dependency. Ignore them.
236 if (TI->getNumSuccessors() > 1)
237 exploreSyncDependency(TI);
238 }
239 exploreDataDependency(V);
240 }
241}
242
Alexander Kornienkof00654e2015-06-23 09:49:53 +0000243} /// end namespace anonymous
Jingyue Wu5da831c2015-04-10 05:03:50 +0000244
Marcello Maggioniab58c742015-09-21 17:58:14 +0000245// Register this pass.
246char DivergenceAnalysis::ID = 0;
247INITIALIZE_PASS_BEGIN(DivergenceAnalysis, "divergence", "Divergence Analysis",
248 false, true)
249INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
250INITIALIZE_PASS_DEPENDENCY(PostDominatorTree)
251INITIALIZE_PASS_END(DivergenceAnalysis, "divergence", "Divergence Analysis",
252 false, true)
253
Jingyue Wu5da831c2015-04-10 05:03:50 +0000254FunctionPass *llvm::createDivergenceAnalysisPass() {
255 return new DivergenceAnalysis();
256}
257
Marcello Maggioniab58c742015-09-21 17:58:14 +0000258void DivergenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
259 AU.addRequired<DominatorTreeWrapperPass>();
260 AU.addRequired<PostDominatorTree>();
261 AU.setPreservesAll();
262}
263
Jingyue Wu5da831c2015-04-10 05:03:50 +0000264bool DivergenceAnalysis::runOnFunction(Function &F) {
265 auto *TTIWP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>();
266 if (TTIWP == nullptr)
267 return false;
268
269 TargetTransformInfo &TTI = TTIWP->getTTI(F);
270 // Fast path: if the target does not have branch divergence, we do not mark
271 // any branch as divergent.
272 if (!TTI.hasBranchDivergence())
273 return false;
274
275 DivergentValues.clear();
276 DivergencePropagator DP(F, TTI,
277 getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
278 getAnalysis<PostDominatorTree>(), DivergentValues);
279 DP.populateWithSourcesOfDivergence();
280 DP.propagate();
281 return false;
282}
283
284void DivergenceAnalysis::print(raw_ostream &OS, const Module *) const {
285 if (DivergentValues.empty())
286 return;
287 const Value *FirstDivergentValue = *DivergentValues.begin();
288 const Function *F;
289 if (const Argument *Arg = dyn_cast<Argument>(FirstDivergentValue)) {
290 F = Arg->getParent();
291 } else if (const Instruction *I =
292 dyn_cast<Instruction>(FirstDivergentValue)) {
293 F = I->getParent()->getParent();
294 } else {
295 llvm_unreachable("Only arguments and instructions can be divergent");
296 }
297
298 // Dumps all divergent values in F, arguments and then instructions.
299 for (auto &Arg : F->args()) {
300 if (DivergentValues.count(&Arg))
301 OS << "DIVERGENT: " << Arg << "\n";
302 }
Nico Rieck78199512015-08-06 19:10:45 +0000303 // Iterate instructions using instructions() to ensure a deterministic order.
304 for (auto &I : instructions(F)) {
Jingyue Wu5da831c2015-04-10 05:03:50 +0000305 if (DivergentValues.count(&I))
306 OS << "DIVERGENT:" << I << "\n";
307 }
308}