blob: c11c87391a7545f17d072c9e1ea2f7241802c053 [file] [log] [blame]
Chris Lattnerd43023a2002-08-02 16:43:03 +00001//===- Dominators.cpp - Dominator Calculation -----------------------------===//
Misha Brukmanb1c93172005-04-21 23:48:37 +00002//
John Criswell482202a2003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattnerf3ebc3f2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanb1c93172005-04-21 23:48:37 +00007//
John Criswell482202a2003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattner081aabc2001-07-02 05:46:38 +00009//
Chris Lattnerd43023a2002-08-02 16:43:03 +000010// This file implements simple dominator construction algorithms for finding
11// forward dominators. Postdominators are available in libanalysis, but are not
12// included in libvmcore, because it's not needed. Forward dominators are
13// needed to support the Verifier pass.
Chris Lattner081aabc2001-07-02 05:46:38 +000014//
15//===----------------------------------------------------------------------===//
16
Cameron Zwarich6b0c4c92011-01-18 06:06:27 +000017#include "llvm/Analysis/Dominators.h"
Reid Spencer7c16caa2004-09-01 22:55:40 +000018#include "llvm/ADT/DepthFirstIterator.h"
Devang Patel5a1bd402007-03-27 20:50:46 +000019#include "llvm/ADT/SmallPtrSet.h"
Chris Lattnerc63d4c22007-08-08 05:51:24 +000020#include "llvm/ADT/SmallVector.h"
Owen Anderson8313e752007-10-03 21:25:45 +000021#include "llvm/Analysis/DominatorInternals.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000022#include "llvm/IR/Instructions.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000023#include "llvm/Support/CFG.h"
Dan Gohman4dbb3012009-09-28 00:27:48 +000024#include "llvm/Support/CommandLine.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000025#include "llvm/Support/Compiler.h"
26#include "llvm/Support/Debug.h"
27#include "llvm/Support/raw_ostream.h"
Chris Lattnerc5e0be62004-06-05 00:24:59 +000028#include <algorithm>
Chris Lattner189d19f2003-11-21 20:23:48 +000029using namespace llvm;
Brian Gaeke960707c2003-11-11 22:41:34 +000030
Dan Gohman4dbb3012009-09-28 00:27:48 +000031// Always verify dominfo if expensive checking is enabled.
32#ifdef XDEBUG
Dan Gohmanb29cda92010-04-15 17:08:50 +000033static bool VerifyDomInfo = true;
Dan Gohman4dbb3012009-09-28 00:27:48 +000034#else
Dan Gohmanb29cda92010-04-15 17:08:50 +000035static bool VerifyDomInfo = false;
Dan Gohman4dbb3012009-09-28 00:27:48 +000036#endif
37static cl::opt<bool,true>
38VerifyDomInfoX("verify-dom-info", cl::location(VerifyDomInfo),
39 cl::desc("Verify dominator info (time consuming)"));
40
Rafael Espindolacc80cde2012-08-16 15:09:43 +000041bool BasicBlockEdge::isSingleEdge() const {
42 const TerminatorInst *TI = Start->getTerminator();
43 unsigned NumEdgesToEnd = 0;
44 for (unsigned int i = 0, n = TI->getNumSuccessors(); i < n; ++i) {
45 if (TI->getSuccessor(i) == End)
46 ++NumEdgesToEnd;
47 if (NumEdgesToEnd >= 2)
48 return false;
49 }
50 assert(NumEdgesToEnd == 1);
51 return true;
Rafael Espindola11870772012-08-10 14:05:55 +000052}
53
Chris Lattnerc385beb2001-07-06 16:58:22 +000054//===----------------------------------------------------------------------===//
Owen Andersonf35a1db2007-04-15 08:47:27 +000055// DominatorTree Implementation
Chris Lattner00f51672003-12-07 00:38:08 +000056//===----------------------------------------------------------------------===//
57//
Owen Anderson84c357f2007-09-23 21:31:44 +000058// Provide public access to DominatorTree information. Implementation details
Cameron Zwarich050eec12011-01-20 03:58:43 +000059// can be found in DominatorInternals.h.
Chris Lattner00f51672003-12-07 00:38:08 +000060//
61//===----------------------------------------------------------------------===//
62
John McCall086bb4e2009-12-19 00:55:12 +000063TEMPLATE_INSTANTIATION(class llvm::DomTreeNodeBase<BasicBlock>);
64TEMPLATE_INSTANTIATION(class llvm::DominatorTreeBase<BasicBlock>);
Owen Anderson41878012007-10-16 19:59:25 +000065
Devang Patel8c78a0b2007-05-03 01:11:54 +000066char DominatorTree::ID = 0;
Owen Andersona57b97e2010-07-21 22:09:45 +000067INITIALIZE_PASS(DominatorTree, "domtree",
Owen Andersondf7a4f22010-10-07 22:25:06 +000068 "Dominator Tree Construction", true, true)
Chris Lattner00f51672003-12-07 00:38:08 +000069
Owen Andersonf35a1db2007-04-15 08:47:27 +000070bool DominatorTree::runOnFunction(Function &F) {
Owen Anderson9c614112007-10-23 20:58:37 +000071 DT->recalculate(F);
Owen Andersonf35a1db2007-04-15 08:47:27 +000072 return false;
73}
Chris Lattner081aabc2001-07-02 05:46:38 +000074
Dan Gohman4dbb3012009-09-28 00:27:48 +000075void DominatorTree::verifyAnalysis() const {
Dan Gohman08d86da2009-09-28 00:44:15 +000076 if (!VerifyDomInfo) return;
Dan Gohman4dbb3012009-09-28 00:27:48 +000077
78 Function &F = *getRoot()->getParent();
79
80 DominatorTree OtherDT;
81 OtherDT.getBase().recalculate(F);
Chris Lattner5f7734c2011-01-08 19:55:55 +000082 if (compare(OtherDT)) {
Bill Wendling225d9b12011-03-29 04:28:26 +000083 errs() << "DominatorTree is not up to date!\nComputed:\n";
Chris Lattner5f7734c2011-01-08 19:55:55 +000084 print(errs());
Chris Lattner5f7734c2011-01-08 19:55:55 +000085 errs() << "\nActual:\n";
86 OtherDT.print(errs());
87 abort();
88 }
Dan Gohman4dbb3012009-09-28 00:27:48 +000089}
90
Chris Lattner13626022009-08-23 06:03:38 +000091void DominatorTree::print(raw_ostream &OS, const Module *) const {
92 DT->print(OS);
Chris Lattnerb1d782b2009-08-23 05:17:37 +000093}
94
Rafael Espindola94df2672012-02-26 02:19:19 +000095// dominates - Return true if Def dominates a use in User. This performs
96// the special checks necessary if Def and User are in the same basic block.
97// Note that Def doesn't dominate a use in Def itself!
98bool DominatorTree::dominates(const Instruction *Def,
99 const Instruction *User) const {
100 const BasicBlock *UseBB = User->getParent();
101 const BasicBlock *DefBB = Def->getParent();
Rafael Espindola082d4822012-02-18 19:46:02 +0000102
Rafael Espindolaa53c46a2012-03-30 16:46:21 +0000103 // Any unreachable use is dominated, even if Def == User.
104 if (!isReachableFromEntry(UseBB))
105 return true;
106
107 // Unreachable definitions don't dominate anything.
108 if (!isReachableFromEntry(DefBB))
109 return false;
Rafael Espindola082d4822012-02-18 19:46:02 +0000110
Rafael Espindola94df2672012-02-26 02:19:19 +0000111 // An instruction doesn't dominate a use in itself.
112 if (Def == User)
Chris Lattner22151ce2009-09-21 22:30:50 +0000113 return false;
Rafael Espindola082d4822012-02-18 19:46:02 +0000114
Rafael Espindola94df2672012-02-26 02:19:19 +0000115 // The value defined by an invoke dominates an instruction only if
116 // it dominates every instruction in UseBB.
117 // A PHI is dominated only if the instruction dominates every possible use
118 // in the UseBB.
119 if (isa<InvokeInst>(Def) || isa<PHINode>(User))
120 return dominates(Def, UseBB);
121
122 if (DefBB != UseBB)
123 return dominates(DefBB, UseBB);
124
125 // Loop through the basic block until we find Def or User.
126 BasicBlock::const_iterator I = DefBB->begin();
127 for (; &*I != Def && &*I != User; ++I)
Chris Lattner22151ce2009-09-21 22:30:50 +0000128 /*empty*/;
Rafael Espindola082d4822012-02-18 19:46:02 +0000129
Rafael Espindola94df2672012-02-26 02:19:19 +0000130 return &*I == Def;
131}
132
133// true if Def would dominate a use in any instruction in UseBB.
134// note that dominates(Def, Def->getParent()) is false.
135bool DominatorTree::dominates(const Instruction *Def,
136 const BasicBlock *UseBB) const {
137 const BasicBlock *DefBB = Def->getParent();
138
Rafael Espindolaa53c46a2012-03-30 16:46:21 +0000139 // Any unreachable use is dominated, even if DefBB == UseBB.
140 if (!isReachableFromEntry(UseBB))
141 return true;
142
143 // Unreachable definitions don't dominate anything.
144 if (!isReachableFromEntry(DefBB))
145 return false;
Rafael Espindola94df2672012-02-26 02:19:19 +0000146
147 if (DefBB == UseBB)
148 return false;
149
150 const InvokeInst *II = dyn_cast<InvokeInst>(Def);
151 if (!II)
152 return dominates(DefBB, UseBB);
153
154 // Invoke results are only usable in the normal destination, not in the
155 // exceptional destination.
156 BasicBlock *NormalDest = II->getNormalDest();
Rafael Espindola59564072012-08-07 17:30:46 +0000157 BasicBlockEdge E(DefBB, NormalDest);
158 return dominates(E, UseBB);
159}
160
161bool DominatorTree::dominates(const BasicBlockEdge &BBE,
162 const BasicBlock *UseBB) const {
Rafael Espindola9a167352012-08-17 18:21:28 +0000163 // Assert that we have a single edge. We could handle them by simply
164 // returning false, but since isSingleEdge is linear on the number of
165 // edges, the callers can normally handle them more efficiently.
166 assert(BBE.isSingleEdge());
167
Rafael Espindola59564072012-08-07 17:30:46 +0000168 // If the BB the edge ends in doesn't dominate the use BB, then the
169 // edge also doesn't.
170 const BasicBlock *Start = BBE.getStart();
171 const BasicBlock *End = BBE.getEnd();
172 if (!dominates(End, UseBB))
Rafael Espindola94df2672012-02-26 02:19:19 +0000173 return false;
174
Rafael Espindola59564072012-08-07 17:30:46 +0000175 // Simple case: if the end BB has a single predecessor, the fact that it
176 // dominates the use block implies that the edge also does.
177 if (End->getSinglePredecessor())
Rafael Espindola94df2672012-02-26 02:19:19 +0000178 return true;
179
180 // The normal edge from the invoke is critical. Conceptually, what we would
181 // like to do is split it and check if the new block dominates the use.
182 // With X being the new block, the graph would look like:
183 //
184 // DefBB
185 // /\ . .
186 // / \ . .
187 // / \ . .
188 // / \ | |
189 // A X B C
190 // | \ | /
191 // . \|/
192 // . NormalDest
193 // .
194 //
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +0000195 // Given the definition of dominance, NormalDest is dominated by X iff X
Rafael Espindola94df2672012-02-26 02:19:19 +0000196 // dominates all of NormalDest's predecessors (X, B, C in the example). X
197 // trivially dominates itself, so we only have to find if it dominates the
198 // other predecessors. Since the only way out of X is via NormalDest, X can
199 // only properly dominate a node if NormalDest dominates that node too.
Rafael Espindola59564072012-08-07 17:30:46 +0000200 for (const_pred_iterator PI = pred_begin(End), E = pred_end(End);
201 PI != E; ++PI) {
Rafael Espindola94df2672012-02-26 02:19:19 +0000202 const BasicBlock *BB = *PI;
Rafael Espindola59564072012-08-07 17:30:46 +0000203 if (BB == Start)
Rafael Espindola94df2672012-02-26 02:19:19 +0000204 continue;
205
Rafael Espindola59564072012-08-07 17:30:46 +0000206 if (!dominates(End, BB))
Rafael Espindola94df2672012-02-26 02:19:19 +0000207 return false;
208 }
209 return true;
Chris Lattner22151ce2009-09-21 22:30:50 +0000210}
Dan Gohman73273272012-04-12 23:31:46 +0000211
Rafael Espindola59564072012-08-07 17:30:46 +0000212bool DominatorTree::dominates(const BasicBlockEdge &BBE,
213 const Use &U) const {
Rafael Espindola9a167352012-08-17 18:21:28 +0000214 // Assert that we have a single edge. We could handle them by simply
215 // returning false, but since isSingleEdge is linear on the number of
216 // edges, the callers can normally handle them more efficiently.
217 assert(BBE.isSingleEdge());
218
Rafael Espindola59564072012-08-07 17:30:46 +0000219 Instruction *UserInst = cast<Instruction>(U.getUser());
220 // A PHI in the end of the edge is dominated by it.
221 PHINode *PN = dyn_cast<PHINode>(UserInst);
222 if (PN && PN->getParent() == BBE.getEnd() &&
223 PN->getIncomingBlock(U) == BBE.getStart())
224 return true;
225
226 // Otherwise use the edge-dominates-block query, which
227 // handles the crazy critical edge cases properly.
228 const BasicBlock *UseBB;
229 if (PN)
230 UseBB = PN->getIncomingBlock(U);
231 else
232 UseBB = UserInst->getParent();
233 return dominates(BBE, UseBB);
234}
235
Dan Gohman73273272012-04-12 23:31:46 +0000236bool DominatorTree::dominates(const Instruction *Def,
237 const Use &U) const {
Rafael Espindola59564072012-08-07 17:30:46 +0000238 Instruction *UserInst = cast<Instruction>(U.getUser());
Dan Gohman73273272012-04-12 23:31:46 +0000239 const BasicBlock *DefBB = Def->getParent();
240
241 // Determine the block in which the use happens. PHI nodes use
242 // their operands on edges; simulate this by thinking of the use
243 // happening at the end of the predecessor block.
244 const BasicBlock *UseBB;
245 if (PHINode *PN = dyn_cast<PHINode>(UserInst))
246 UseBB = PN->getIncomingBlock(U);
247 else
248 UseBB = UserInst->getParent();
249
250 // Any unreachable use is dominated, even if Def == User.
251 if (!isReachableFromEntry(UseBB))
252 return true;
253
254 // Unreachable definitions don't dominate anything.
255 if (!isReachableFromEntry(DefBB))
256 return false;
257
258 // Invoke instructions define their return values on the edges
259 // to their normal successors, so we have to handle them specially.
260 // Among other things, this means they don't dominate anything in
261 // their own block, except possibly a phi, so we don't need to
262 // walk the block in any case.
263 if (const InvokeInst *II = dyn_cast<InvokeInst>(Def)) {
Rafael Espindola59564072012-08-07 17:30:46 +0000264 BasicBlock *NormalDest = II->getNormalDest();
265 BasicBlockEdge E(DefBB, NormalDest);
266 return dominates(E, U);
Dan Gohman73273272012-04-12 23:31:46 +0000267 }
268
269 // If the def and use are in different blocks, do a simple CFG dominator
270 // tree query.
271 if (DefBB != UseBB)
272 return dominates(DefBB, UseBB);
273
274 // Ok, def and use are in the same block. If the def is an invoke, it
275 // doesn't dominate anything in the block. If it's a PHI, it dominates
276 // everything in the block.
277 if (isa<PHINode>(UserInst))
278 return true;
279
280 // Otherwise, just loop through the basic block until we find Def or User.
281 BasicBlock::const_iterator I = DefBB->begin();
282 for (; &*I != Def && &*I != UserInst; ++I)
283 /*empty*/;
284
285 return &*I != UserInst;
286}
287
288bool DominatorTree::isReachableFromEntry(const Use &U) const {
289 Instruction *I = dyn_cast<Instruction>(U.getUser());
290
291 // ConstantExprs aren't really reachable from the entry block, but they
292 // don't need to be treated like unreachable code either.
293 if (!I) return true;
294
295 // PHI nodes use their operands on their incoming edges.
296 if (PHINode *PN = dyn_cast<PHINode>(I))
297 return isReachableFromEntry(PN->getIncomingBlock(U));
298
299 // Everything else uses their operands in their own block.
300 return isReachableFromEntry(I->getParent());
301}