Tim Northover | 2e44769 | 2013-02-15 14:32:20 +0000 | [diff] [blame] | 1 | //===-- AArch64BranchFixupPass.cpp - AArch64 branch fixup -----------------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file contains a pass that fixes AArch64 branches which have ended up out |
| 11 | // of range for their immediate operands. |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | #define DEBUG_TYPE "aarch64-branch-fixup" |
| 16 | #include "AArch64.h" |
| 17 | #include "AArch64InstrInfo.h" |
| 18 | #include "Utils/AArch64BaseInfo.h" |
Chandler Carruth | 8a8cd2b | 2014-01-07 11:48:04 +0000 | [diff] [blame] | 19 | #include "llvm/ADT/Statistic.h" |
Tim Northover | 2e44769 | 2013-02-15 14:32:20 +0000 | [diff] [blame] | 20 | #include "llvm/CodeGen/MachineFunctionPass.h" |
| 21 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
| 22 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
| 23 | #include "llvm/Support/Debug.h" |
| 24 | #include "llvm/Support/Format.h" |
| 25 | #include "llvm/Support/raw_ostream.h" |
Tim Northover | 2e44769 | 2013-02-15 14:32:20 +0000 | [diff] [blame] | 26 | using namespace llvm; |
| 27 | |
| 28 | STATISTIC(NumSplit, "Number of uncond branches inserted"); |
| 29 | STATISTIC(NumCBrFixed, "Number of cond branches fixed"); |
| 30 | |
| 31 | /// Return the worst case padding that could result from unknown offset bits. |
| 32 | /// This does not include alignment padding caused by known offset bits. |
| 33 | /// |
| 34 | /// @param LogAlign log2(alignment) |
| 35 | /// @param KnownBits Number of known low offset bits. |
| 36 | static inline unsigned UnknownPadding(unsigned LogAlign, unsigned KnownBits) { |
| 37 | if (KnownBits < LogAlign) |
| 38 | return (1u << LogAlign) - (1u << KnownBits); |
| 39 | return 0; |
| 40 | } |
| 41 | |
| 42 | namespace { |
| 43 | /// Due to limited PC-relative displacements, conditional branches to distant |
| 44 | /// blocks may need converting into an unconditional equivalent. For example: |
| 45 | /// tbz w1, #0, far_away |
| 46 | /// becomes |
| 47 | /// tbnz w1, #0, skip |
| 48 | /// b far_away |
| 49 | /// skip: |
| 50 | class AArch64BranchFixup : public MachineFunctionPass { |
| 51 | /// Information about the offset and size of a single basic block. |
| 52 | struct BasicBlockInfo { |
| 53 | /// Distance from the beginning of the function to the beginning of this |
| 54 | /// basic block. |
| 55 | /// |
| 56 | /// Offsets are computed assuming worst case padding before an aligned |
| 57 | /// block. This means that subtracting basic block offsets always gives a |
| 58 | /// conservative estimate of the real distance which may be smaller. |
| 59 | /// |
| 60 | /// Because worst case padding is used, the computed offset of an aligned |
| 61 | /// block may not actually be aligned. |
| 62 | unsigned Offset; |
| 63 | |
| 64 | /// Size of the basic block in bytes. If the block contains inline |
| 65 | /// assembly, this is a worst case estimate. |
| 66 | /// |
| 67 | /// The size does not include any alignment padding whether from the |
| 68 | /// beginning of the block, or from an aligned jump table at the end. |
| 69 | unsigned Size; |
| 70 | |
| 71 | /// The number of low bits in Offset that are known to be exact. The |
| 72 | /// remaining bits of Offset are an upper bound. |
| 73 | uint8_t KnownBits; |
| 74 | |
| 75 | /// When non-zero, the block contains instructions (inline asm) of unknown |
| 76 | /// size. The real size may be smaller than Size bytes by a multiple of 1 |
| 77 | /// << Unalign. |
| 78 | uint8_t Unalign; |
| 79 | |
| 80 | BasicBlockInfo() : Offset(0), Size(0), KnownBits(0), Unalign(0) {} |
| 81 | |
| 82 | /// Compute the number of known offset bits internally to this block. |
| 83 | /// This number should be used to predict worst case padding when |
| 84 | /// splitting the block. |
| 85 | unsigned internalKnownBits() const { |
| 86 | unsigned Bits = Unalign ? Unalign : KnownBits; |
| 87 | // If the block size isn't a multiple of the known bits, assume the |
| 88 | // worst case padding. |
| 89 | if (Size & ((1u << Bits) - 1)) |
Michael J. Spencer | df1ecbd7 | 2013-05-24 22:23:49 +0000 | [diff] [blame] | 90 | Bits = countTrailingZeros(Size); |
Tim Northover | 2e44769 | 2013-02-15 14:32:20 +0000 | [diff] [blame] | 91 | return Bits; |
| 92 | } |
| 93 | |
| 94 | /// Compute the offset immediately following this block. If LogAlign is |
| 95 | /// specified, return the offset the successor block will get if it has |
| 96 | /// this alignment. |
| 97 | unsigned postOffset(unsigned LogAlign = 0) const { |
| 98 | unsigned PO = Offset + Size; |
| 99 | if (!LogAlign) |
| 100 | return PO; |
| 101 | // Add alignment padding from the terminator. |
| 102 | return PO + UnknownPadding(LogAlign, internalKnownBits()); |
| 103 | } |
| 104 | |
| 105 | /// Compute the number of known low bits of postOffset. If this block |
| 106 | /// contains inline asm, the number of known bits drops to the |
| 107 | /// instruction alignment. An aligned terminator may increase the number |
| 108 | /// of know bits. |
| 109 | /// If LogAlign is given, also consider the alignment of the next block. |
| 110 | unsigned postKnownBits(unsigned LogAlign = 0) const { |
| 111 | return std::max(LogAlign, internalKnownBits()); |
| 112 | } |
| 113 | }; |
| 114 | |
| 115 | std::vector<BasicBlockInfo> BBInfo; |
| 116 | |
| 117 | /// One per immediate branch, keeping the machine instruction pointer, |
| 118 | /// conditional or unconditional, the max displacement, and (if IsCond is |
| 119 | /// true) the corresponding inverted branch opcode. |
| 120 | struct ImmBranch { |
| 121 | MachineInstr *MI; |
| 122 | unsigned OffsetBits : 31; |
| 123 | bool IsCond : 1; |
| 124 | ImmBranch(MachineInstr *mi, unsigned offsetbits, bool cond) |
| 125 | : MI(mi), OffsetBits(offsetbits), IsCond(cond) {} |
| 126 | }; |
| 127 | |
| 128 | /// Keep track of all the immediate branch instructions. |
| 129 | /// |
| 130 | std::vector<ImmBranch> ImmBranches; |
| 131 | |
| 132 | MachineFunction *MF; |
| 133 | const AArch64InstrInfo *TII; |
| 134 | public: |
| 135 | static char ID; |
| 136 | AArch64BranchFixup() : MachineFunctionPass(ID) {} |
| 137 | |
| 138 | virtual bool runOnMachineFunction(MachineFunction &MF); |
| 139 | |
| 140 | virtual const char *getPassName() const { |
| 141 | return "AArch64 branch fixup pass"; |
| 142 | } |
| 143 | |
| 144 | private: |
| 145 | void initializeFunctionInfo(); |
| 146 | MachineBasicBlock *splitBlockBeforeInstr(MachineInstr *MI); |
| 147 | void adjustBBOffsetsAfter(MachineBasicBlock *BB); |
| 148 | bool isBBInRange(MachineInstr *MI, MachineBasicBlock *BB, |
| 149 | unsigned OffsetBits); |
| 150 | bool fixupImmediateBr(ImmBranch &Br); |
| 151 | bool fixupConditionalBr(ImmBranch &Br); |
| 152 | |
| 153 | void computeBlockSize(MachineBasicBlock *MBB); |
| 154 | unsigned getOffsetOf(MachineInstr *MI) const; |
| 155 | void dumpBBs(); |
| 156 | void verify(); |
| 157 | }; |
| 158 | char AArch64BranchFixup::ID = 0; |
| 159 | } |
| 160 | |
| 161 | /// check BBOffsets |
| 162 | void AArch64BranchFixup::verify() { |
| 163 | #ifndef NDEBUG |
| 164 | for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end(); |
| 165 | MBBI != E; ++MBBI) { |
| 166 | MachineBasicBlock *MBB = MBBI; |
| 167 | unsigned MBBId = MBB->getNumber(); |
| 168 | assert(!MBBId || BBInfo[MBBId - 1].postOffset() <= BBInfo[MBBId].Offset); |
| 169 | } |
| 170 | #endif |
| 171 | } |
| 172 | |
| 173 | /// print block size and offset information - debugging |
| 174 | void AArch64BranchFixup::dumpBBs() { |
| 175 | DEBUG({ |
| 176 | for (unsigned J = 0, E = BBInfo.size(); J !=E; ++J) { |
| 177 | const BasicBlockInfo &BBI = BBInfo[J]; |
| 178 | dbgs() << format("%08x BB#%u\t", BBI.Offset, J) |
| 179 | << " kb=" << unsigned(BBI.KnownBits) |
| 180 | << " ua=" << unsigned(BBI.Unalign) |
| 181 | << format(" size=%#x\n", BBInfo[J].Size); |
| 182 | } |
| 183 | }); |
| 184 | } |
| 185 | |
| 186 | /// Returns an instance of the branch fixup pass. |
| 187 | FunctionPass *llvm::createAArch64BranchFixupPass() { |
| 188 | return new AArch64BranchFixup(); |
| 189 | } |
| 190 | |
| 191 | bool AArch64BranchFixup::runOnMachineFunction(MachineFunction &mf) { |
| 192 | MF = &mf; |
| 193 | DEBUG(dbgs() << "***** AArch64BranchFixup ******"); |
| 194 | TII = (const AArch64InstrInfo*)MF->getTarget().getInstrInfo(); |
| 195 | |
| 196 | // This pass invalidates liveness information when it splits basic blocks. |
| 197 | MF->getRegInfo().invalidateLiveness(); |
| 198 | |
| 199 | // Renumber all of the machine basic blocks in the function, guaranteeing that |
| 200 | // the numbers agree with the position of the block in the function. |
| 201 | MF->RenumberBlocks(); |
| 202 | |
| 203 | // Do the initial scan of the function, building up information about the |
| 204 | // sizes of each block and location of each immediate branch. |
| 205 | initializeFunctionInfo(); |
| 206 | |
| 207 | // Iteratively fix up branches until there is no change. |
| 208 | unsigned NoBRIters = 0; |
| 209 | bool MadeChange = false; |
| 210 | while (true) { |
| 211 | DEBUG(dbgs() << "Beginning iteration #" << NoBRIters << '\n'); |
| 212 | bool BRChange = false; |
| 213 | for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) |
| 214 | BRChange |= fixupImmediateBr(ImmBranches[i]); |
| 215 | if (BRChange && ++NoBRIters > 30) |
| 216 | report_fatal_error("Branch Fix Up pass failed to converge!"); |
| 217 | DEBUG(dumpBBs()); |
| 218 | |
| 219 | if (!BRChange) |
| 220 | break; |
| 221 | MadeChange = true; |
| 222 | } |
| 223 | |
| 224 | // After a while, this might be made debug-only, but it is not expensive. |
| 225 | verify(); |
| 226 | |
| 227 | DEBUG(dbgs() << '\n'; dumpBBs()); |
| 228 | |
| 229 | BBInfo.clear(); |
| 230 | ImmBranches.clear(); |
| 231 | |
| 232 | return MadeChange; |
| 233 | } |
| 234 | |
| 235 | /// Return true if the specified basic block can fallthrough into the block |
| 236 | /// immediately after it. |
| 237 | static bool BBHasFallthrough(MachineBasicBlock *MBB) { |
| 238 | // Get the next machine basic block in the function. |
| 239 | MachineFunction::iterator MBBI = MBB; |
| 240 | // Can't fall off end of function. |
| 241 | if (llvm::next(MBBI) == MBB->getParent()->end()) |
| 242 | return false; |
| 243 | |
| 244 | MachineBasicBlock *NextBB = llvm::next(MBBI); |
| 245 | for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(), |
| 246 | E = MBB->succ_end(); I != E; ++I) |
| 247 | if (*I == NextBB) |
| 248 | return true; |
| 249 | |
| 250 | return false; |
| 251 | } |
| 252 | |
| 253 | /// Do the initial scan of the function, building up information about the sizes |
| 254 | /// of each block, and each immediate branch. |
| 255 | void AArch64BranchFixup::initializeFunctionInfo() { |
| 256 | BBInfo.clear(); |
| 257 | BBInfo.resize(MF->getNumBlockIDs()); |
| 258 | |
| 259 | // First thing, compute the size of all basic blocks, and see if the function |
| 260 | // has any inline assembly in it. If so, we have to be conservative about |
| 261 | // alignment assumptions, as we don't know for sure the size of any |
| 262 | // instructions in the inline assembly. |
| 263 | for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I) |
| 264 | computeBlockSize(I); |
| 265 | |
| 266 | // The known bits of the entry block offset are determined by the function |
| 267 | // alignment. |
| 268 | BBInfo.front().KnownBits = MF->getAlignment(); |
| 269 | |
| 270 | // Compute block offsets and known bits. |
| 271 | adjustBBOffsetsAfter(MF->begin()); |
| 272 | |
| 273 | // Now go back through the instructions and build up our data structures. |
| 274 | for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end(); |
| 275 | MBBI != E; ++MBBI) { |
| 276 | MachineBasicBlock &MBB = *MBBI; |
| 277 | |
| 278 | for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); |
| 279 | I != E; ++I) { |
| 280 | if (I->isDebugValue()) |
| 281 | continue; |
| 282 | |
| 283 | int Opc = I->getOpcode(); |
| 284 | if (I->isBranch()) { |
| 285 | bool IsCond = false; |
| 286 | |
| 287 | // The offsets encoded in instructions here scale by the instruction |
| 288 | // size (4 bytes), effectively increasing their range by 2 bits. |
| 289 | unsigned Bits = 0; |
| 290 | switch (Opc) { |
| 291 | default: |
| 292 | continue; // Ignore other JT branches |
| 293 | case AArch64::TBZxii: |
| 294 | case AArch64::TBZwii: |
| 295 | case AArch64::TBNZxii: |
| 296 | case AArch64::TBNZwii: |
| 297 | IsCond = true; |
| 298 | Bits = 14 + 2; |
| 299 | break; |
| 300 | case AArch64::Bcc: |
| 301 | case AArch64::CBZx: |
| 302 | case AArch64::CBZw: |
| 303 | case AArch64::CBNZx: |
| 304 | case AArch64::CBNZw: |
| 305 | IsCond = true; |
| 306 | Bits = 19 + 2; |
| 307 | break; |
| 308 | case AArch64::Bimm: |
| 309 | Bits = 26 + 2; |
| 310 | break; |
| 311 | } |
| 312 | |
| 313 | // Record this immediate branch. |
| 314 | ImmBranches.push_back(ImmBranch(I, Bits, IsCond)); |
| 315 | } |
| 316 | } |
| 317 | } |
| 318 | } |
| 319 | |
| 320 | /// Compute the size and some alignment information for MBB. This function |
| 321 | /// updates BBInfo directly. |
| 322 | void AArch64BranchFixup::computeBlockSize(MachineBasicBlock *MBB) { |
| 323 | BasicBlockInfo &BBI = BBInfo[MBB->getNumber()]; |
| 324 | BBI.Size = 0; |
| 325 | BBI.Unalign = 0; |
| 326 | |
| 327 | for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; |
| 328 | ++I) { |
| 329 | BBI.Size += TII->getInstSizeInBytes(*I); |
| 330 | // For inline asm, GetInstSizeInBytes returns a conservative estimate. |
| 331 | // The actual size may be smaller, but still a multiple of the instr size. |
| 332 | if (I->isInlineAsm()) |
| 333 | BBI.Unalign = 2; |
| 334 | } |
| 335 | } |
| 336 | |
| 337 | /// Return the current offset of the specified machine instruction from the |
| 338 | /// start of the function. This offset changes as stuff is moved around inside |
| 339 | /// the function. |
| 340 | unsigned AArch64BranchFixup::getOffsetOf(MachineInstr *MI) const { |
| 341 | MachineBasicBlock *MBB = MI->getParent(); |
| 342 | |
| 343 | // The offset is composed of two things: the sum of the sizes of all MBB's |
| 344 | // before this instruction's block, and the offset from the start of the block |
| 345 | // it is in. |
| 346 | unsigned Offset = BBInfo[MBB->getNumber()].Offset; |
| 347 | |
| 348 | // Sum instructions before MI in MBB. |
| 349 | for (MachineBasicBlock::iterator I = MBB->begin(); &*I != MI; ++I) { |
| 350 | assert(I != MBB->end() && "Didn't find MI in its own basic block?"); |
| 351 | Offset += TII->getInstSizeInBytes(*I); |
| 352 | } |
| 353 | return Offset; |
| 354 | } |
| 355 | |
| 356 | /// Split the basic block containing MI into two blocks, which are joined by |
| 357 | /// an unconditional branch. Update data structures and renumber blocks to |
| 358 | /// account for this change and returns the newly created block. |
| 359 | MachineBasicBlock * |
| 360 | AArch64BranchFixup::splitBlockBeforeInstr(MachineInstr *MI) { |
| 361 | MachineBasicBlock *OrigBB = MI->getParent(); |
| 362 | |
| 363 | // Create a new MBB for the code after the OrigBB. |
| 364 | MachineBasicBlock *NewBB = |
| 365 | MF->CreateMachineBasicBlock(OrigBB->getBasicBlock()); |
| 366 | MachineFunction::iterator MBBI = OrigBB; ++MBBI; |
| 367 | MF->insert(MBBI, NewBB); |
| 368 | |
| 369 | // Splice the instructions starting with MI over to NewBB. |
| 370 | NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end()); |
| 371 | |
| 372 | // Add an unconditional branch from OrigBB to NewBB. |
| 373 | // Note the new unconditional branch is not being recorded. |
| 374 | // There doesn't seem to be meaningful DebugInfo available; this doesn't |
| 375 | // correspond to anything in the source. |
| 376 | BuildMI(OrigBB, DebugLoc(), TII->get(AArch64::Bimm)).addMBB(NewBB); |
| 377 | ++NumSplit; |
| 378 | |
| 379 | // Update the CFG. All succs of OrigBB are now succs of NewBB. |
| 380 | NewBB->transferSuccessors(OrigBB); |
| 381 | |
| 382 | // OrigBB branches to NewBB. |
| 383 | OrigBB->addSuccessor(NewBB); |
| 384 | |
| 385 | // Update internal data structures to account for the newly inserted MBB. |
| 386 | MF->RenumberBlocks(NewBB); |
| 387 | |
| 388 | // Insert an entry into BBInfo to align it properly with the (newly |
| 389 | // renumbered) block numbers. |
| 390 | BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo()); |
| 391 | |
| 392 | // Figure out how large the OrigBB is. As the first half of the original |
| 393 | // block, it cannot contain a tablejump. The size includes |
| 394 | // the new jump we added. (It should be possible to do this without |
| 395 | // recounting everything, but it's very confusing, and this is rarely |
| 396 | // executed.) |
| 397 | computeBlockSize(OrigBB); |
| 398 | |
| 399 | // Figure out how large the NewMBB is. As the second half of the original |
| 400 | // block, it may contain a tablejump. |
| 401 | computeBlockSize(NewBB); |
| 402 | |
| 403 | // All BBOffsets following these blocks must be modified. |
| 404 | adjustBBOffsetsAfter(OrigBB); |
| 405 | |
| 406 | return NewBB; |
| 407 | } |
| 408 | |
| 409 | void AArch64BranchFixup::adjustBBOffsetsAfter(MachineBasicBlock *BB) { |
| 410 | unsigned BBNum = BB->getNumber(); |
| 411 | for(unsigned i = BBNum + 1, e = MF->getNumBlockIDs(); i < e; ++i) { |
| 412 | // Get the offset and known bits at the end of the layout predecessor. |
| 413 | // Include the alignment of the current block. |
| 414 | unsigned LogAlign = MF->getBlockNumbered(i)->getAlignment(); |
| 415 | unsigned Offset = BBInfo[i - 1].postOffset(LogAlign); |
| 416 | unsigned KnownBits = BBInfo[i - 1].postKnownBits(LogAlign); |
| 417 | |
| 418 | // This is where block i begins. Stop if the offset is already correct, |
| 419 | // and we have updated 2 blocks. This is the maximum number of blocks |
| 420 | // changed before calling this function. |
| 421 | if (i > BBNum + 2 && |
| 422 | BBInfo[i].Offset == Offset && |
| 423 | BBInfo[i].KnownBits == KnownBits) |
| 424 | break; |
| 425 | |
| 426 | BBInfo[i].Offset = Offset; |
| 427 | BBInfo[i].KnownBits = KnownBits; |
| 428 | } |
| 429 | } |
| 430 | |
| 431 | /// Returns true if the distance between specific MI and specific BB can fit in |
| 432 | /// MI's displacement field. |
| 433 | bool AArch64BranchFixup::isBBInRange(MachineInstr *MI, |
| 434 | MachineBasicBlock *DestBB, |
| 435 | unsigned OffsetBits) { |
| 436 | int64_t BrOffset = getOffsetOf(MI); |
| 437 | int64_t DestOffset = BBInfo[DestBB->getNumber()].Offset; |
| 438 | |
| 439 | DEBUG(dbgs() << "Branch of destination BB#" << DestBB->getNumber() |
| 440 | << " from BB#" << MI->getParent()->getNumber() |
| 441 | << " bits available=" << OffsetBits |
| 442 | << " from " << getOffsetOf(MI) << " to " << DestOffset |
| 443 | << " offset " << int(DestOffset-BrOffset) << "\t" << *MI); |
| 444 | |
| 445 | return isIntN(OffsetBits, DestOffset - BrOffset); |
| 446 | } |
| 447 | |
| 448 | /// Fix up an immediate branch whose destination is too far away to fit in its |
| 449 | /// displacement field. |
| 450 | bool AArch64BranchFixup::fixupImmediateBr(ImmBranch &Br) { |
| 451 | MachineInstr *MI = Br.MI; |
| 452 | MachineBasicBlock *DestBB = 0; |
| 453 | for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| 454 | if (MI->getOperand(i).isMBB()) { |
| 455 | DestBB = MI->getOperand(i).getMBB(); |
| 456 | break; |
| 457 | } |
| 458 | } |
| 459 | assert(DestBB && "Branch with no destination BB?"); |
| 460 | |
| 461 | // Check to see if the DestBB is already in-range. |
| 462 | if (isBBInRange(MI, DestBB, Br.OffsetBits)) |
| 463 | return false; |
| 464 | |
| 465 | assert(Br.IsCond && "Only conditional branches should need fixup"); |
| 466 | return fixupConditionalBr(Br); |
| 467 | } |
| 468 | |
| 469 | /// Fix up a conditional branch whose destination is too far away to fit in its |
| 470 | /// displacement field. It is converted to an inverse conditional branch + an |
| 471 | /// unconditional branch to the destination. |
| 472 | bool |
| 473 | AArch64BranchFixup::fixupConditionalBr(ImmBranch &Br) { |
| 474 | MachineInstr *MI = Br.MI; |
| 475 | MachineBasicBlock *MBB = MI->getParent(); |
| 476 | unsigned CondBrMBBOperand = 0; |
| 477 | |
| 478 | // The general idea is to add an unconditional branch to the destination and |
| 479 | // invert the conditional branch to jump over it. Complications occur around |
| 480 | // fallthrough and unreachable ends to the block. |
| 481 | // b.lt L1 |
| 482 | // => |
| 483 | // b.ge L2 |
| 484 | // b L1 |
| 485 | // L2: |
| 486 | |
| 487 | // First we invert the conditional branch, by creating a replacement if |
| 488 | // necessary. This if statement contains all the special handling of different |
| 489 | // branch types. |
| 490 | if (MI->getOpcode() == AArch64::Bcc) { |
| 491 | // The basic block is operand number 1 for Bcc |
| 492 | CondBrMBBOperand = 1; |
| 493 | |
| 494 | A64CC::CondCodes CC = (A64CC::CondCodes)MI->getOperand(0).getImm(); |
| 495 | CC = A64InvertCondCode(CC); |
| 496 | MI->getOperand(0).setImm(CC); |
| 497 | } else { |
| 498 | MachineInstrBuilder InvertedMI; |
| 499 | int InvertedOpcode; |
| 500 | switch (MI->getOpcode()) { |
| 501 | default: llvm_unreachable("Unknown branch type"); |
| 502 | case AArch64::TBZxii: InvertedOpcode = AArch64::TBNZxii; break; |
| 503 | case AArch64::TBZwii: InvertedOpcode = AArch64::TBNZwii; break; |
| 504 | case AArch64::TBNZxii: InvertedOpcode = AArch64::TBZxii; break; |
| 505 | case AArch64::TBNZwii: InvertedOpcode = AArch64::TBZwii; break; |
| 506 | case AArch64::CBZx: InvertedOpcode = AArch64::CBNZx; break; |
| 507 | case AArch64::CBZw: InvertedOpcode = AArch64::CBNZw; break; |
| 508 | case AArch64::CBNZx: InvertedOpcode = AArch64::CBZx; break; |
| 509 | case AArch64::CBNZw: InvertedOpcode = AArch64::CBZw; break; |
| 510 | } |
| 511 | |
| 512 | InvertedMI = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(InvertedOpcode)); |
| 513 | for (unsigned i = 0, e= MI->getNumOperands(); i != e; ++i) { |
| 514 | InvertedMI.addOperand(MI->getOperand(i)); |
| 515 | if (MI->getOperand(i).isMBB()) |
| 516 | CondBrMBBOperand = i; |
| 517 | } |
| 518 | |
| 519 | MI->eraseFromParent(); |
| 520 | MI = Br.MI = InvertedMI; |
| 521 | } |
| 522 | |
| 523 | // If the branch is at the end of its MBB and that has a fall-through block, |
| 524 | // direct the updated conditional branch to the fall-through |
| 525 | // block. Otherwise, split the MBB before the next instruction. |
| 526 | MachineInstr *BMI = &MBB->back(); |
| 527 | bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB); |
| 528 | |
| 529 | ++NumCBrFixed; |
| 530 | if (BMI != MI) { |
| 531 | if (llvm::next(MachineBasicBlock::iterator(MI)) == prior(MBB->end()) && |
| 532 | BMI->getOpcode() == AArch64::Bimm) { |
| 533 | // Last MI in the BB is an unconditional branch. We can swap destinations: |
| 534 | // b.eq L1 (temporarily b.ne L1 after first change) |
| 535 | // b L2 |
| 536 | // => |
| 537 | // b.ne L2 |
| 538 | // b L1 |
| 539 | MachineBasicBlock *NewDest = BMI->getOperand(0).getMBB(); |
| 540 | if (isBBInRange(MI, NewDest, Br.OffsetBits)) { |
| 541 | DEBUG(dbgs() << " Invert Bcc condition and swap its destination with " |
| 542 | << *BMI); |
| 543 | MachineBasicBlock *DestBB = MI->getOperand(CondBrMBBOperand).getMBB(); |
| 544 | BMI->getOperand(0).setMBB(DestBB); |
| 545 | MI->getOperand(CondBrMBBOperand).setMBB(NewDest); |
| 546 | return true; |
| 547 | } |
| 548 | } |
| 549 | } |
| 550 | |
| 551 | if (NeedSplit) { |
| 552 | MachineBasicBlock::iterator MBBI = MI; ++MBBI; |
| 553 | splitBlockBeforeInstr(MBBI); |
| 554 | // No need for the branch to the next block. We're adding an unconditional |
| 555 | // branch to the destination. |
| 556 | int delta = TII->getInstSizeInBytes(MBB->back()); |
| 557 | BBInfo[MBB->getNumber()].Size -= delta; |
| 558 | MBB->back().eraseFromParent(); |
| 559 | // BBInfo[SplitBB].Offset is wrong temporarily, fixed below |
| 560 | } |
| 561 | |
| 562 | // After splitting and removing the unconditional branch from the original BB, |
| 563 | // the structure is now: |
| 564 | // oldbb: |
| 565 | // [things] |
| 566 | // b.invertedCC L1 |
| 567 | // splitbb/fallthroughbb: |
| 568 | // [old b L2/real continuation] |
| 569 | // |
| 570 | // We now have to change the conditional branch to point to splitbb and add an |
| 571 | // unconditional branch after it to L1, giving the final structure: |
| 572 | // oldbb: |
| 573 | // [things] |
| 574 | // b.invertedCC splitbb |
| 575 | // b L1 |
| 576 | // splitbb/fallthroughbb: |
| 577 | // [old b L2/real continuation] |
| 578 | MachineBasicBlock *NextBB = llvm::next(MachineFunction::iterator(MBB)); |
| 579 | |
| 580 | DEBUG(dbgs() << " Insert B to BB#" |
| 581 | << MI->getOperand(CondBrMBBOperand).getMBB()->getNumber() |
| 582 | << " also invert condition and change dest. to BB#" |
| 583 | << NextBB->getNumber() << "\n"); |
| 584 | |
| 585 | // Insert a new unconditional branch and fixup the destination of the |
| 586 | // conditional one. Also update the ImmBranch as well as adding a new entry |
| 587 | // for the new branch. |
| 588 | BuildMI(MBB, DebugLoc(), TII->get(AArch64::Bimm)) |
| 589 | .addMBB(MI->getOperand(CondBrMBBOperand).getMBB()); |
| 590 | MI->getOperand(CondBrMBBOperand).setMBB(NextBB); |
| 591 | |
| 592 | BBInfo[MBB->getNumber()].Size += TII->getInstSizeInBytes(MBB->back()); |
| 593 | |
| 594 | // 26 bits written down in Bimm, specifying a multiple of 4. |
| 595 | unsigned OffsetBits = 26 + 2; |
| 596 | ImmBranches.push_back(ImmBranch(&MBB->back(), OffsetBits, false)); |
| 597 | |
| 598 | adjustBBOffsetsAfter(MBB); |
| 599 | return true; |
| 600 | } |