blob: 6a410eca8a15c649db03e82865a83a0c6578567f [file] [log] [blame]
Rui Ueyama0fcdc732016-05-24 20:24:43 +00001//===- Relocations.cpp ----------------------------------------------------===//
2//
3// The LLVM Linker
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains platform-independent functions to processe relocations.
11// I'll describe the overview of this file here.
12//
13// Simple relocations are easy to handle for the linker. For example,
14// for R_X86_64_PC64 relocs, the linker just has to fix up locations
15// with the relative offsets to the target symbols. It would just be
16// reading records from relocation sections and applying them to output.
17//
18// But not all relocations are that easy to handle. For example, for
19// R_386_GOTOFF relocs, the linker has to create new GOT entries for
20// symbols if they don't exist, and fix up locations with GOT entry
21// offsets from the beginning of GOT section. So there is more than
22// fixing addresses in relocation processing.
23//
24// ELF defines a large number of complex relocations.
25//
26// The functions in this file analyze relocations and do whatever needs
27// to be done. It includes, but not limited to, the following.
28//
29// - create GOT/PLT entries
30// - create new relocations in .dynsym to let the dynamic linker resolve
31// them at runtime (since ELF supports dynamic linking, not all
32// relocations can be resolved at link-time)
33// - create COPY relocs and reserve space in .bss
34// - replace expensive relocs (in terms of runtime cost) with cheap ones
35// - error out infeasible combinations such as PIC and non-relative relocs
36//
37// Note that the functions in this file don't actually apply relocations
38// because it doesn't know about the output file nor the output file buffer.
39// It instead stores Relocation objects to InputSection's Relocations
40// vector to let it apply later in InputSection::writeTo.
41//
42//===----------------------------------------------------------------------===//
43
44#include "Relocations.h"
45#include "Config.h"
46#include "OutputSections.h"
47#include "SymbolTable.h"
48#include "Target.h"
49
50#include "llvm/Support/Endian.h"
51#include "llvm/Support/raw_ostream.h"
52
53using namespace llvm;
54using namespace llvm::ELF;
55using namespace llvm::object;
56using namespace llvm::support::endian;
57
58namespace lld {
59namespace elf {
60
61static bool refersToGotEntry(RelExpr Expr) {
62 return Expr == R_GOT || Expr == R_GOT_OFF || Expr == R_MIPS_GOT_LOCAL ||
63 Expr == R_MIPS_GOT_LOCAL_PAGE || Expr == R_GOT_PAGE_PC ||
64 Expr == R_GOT_PC || Expr == R_GOT_FROM_END || Expr == R_TLSGD ||
65 Expr == R_TLSGD_PC;
66}
67
68// Returns the number of relocations processed.
69template <class ELFT>
70static unsigned handleTlsRelocation(uint32_t Type, SymbolBody &Body,
71 InputSectionBase<ELFT> &C,
72 typename ELFT::uint Offset,
73 typename ELFT::uint Addend, RelExpr Expr) {
74 if (!(C.getSectionHdr()->sh_flags & SHF_ALLOC))
75 return 0;
76
77 if (!Body.isTls())
78 return 0;
79
80 typedef typename ELFT::uint uintX_t;
81 if (Expr == R_TLSLD_PC || Expr == R_TLSLD) {
82 // Local-Dynamic relocs can be relaxed to Local-Exec.
83 if (!Config->Shared) {
84 C.Relocations.push_back(
85 {R_RELAX_TLS_LD_TO_LE, Type, Offset, Addend, &Body});
86 return 2;
87 }
88 if (Out<ELFT>::Got->addTlsIndex())
89 Out<ELFT>::RelaDyn->addReloc({Target->TlsModuleIndexRel, Out<ELFT>::Got,
90 Out<ELFT>::Got->getTlsIndexOff(), false,
91 nullptr, 0});
92 C.Relocations.push_back({Expr, Type, Offset, Addend, &Body});
93 return 1;
94 }
95
96 // Local-Dynamic relocs can be relaxed to Local-Exec.
97 if (Target->isTlsLocalDynamicRel(Type) && !Config->Shared) {
98 C.Relocations.push_back(
99 {R_RELAX_TLS_LD_TO_LE, Type, Offset, Addend, &Body});
100 return 1;
101 }
102
103 if (Target->isTlsGlobalDynamicRel(Type)) {
104 if (Config->Shared) {
105 if (Out<ELFT>::Got->addDynTlsEntry(Body)) {
106 uintX_t Off = Out<ELFT>::Got->getGlobalDynOffset(Body);
107 Out<ELFT>::RelaDyn->addReloc(
108 {Target->TlsModuleIndexRel, Out<ELFT>::Got, Off, false, &Body, 0});
109 Out<ELFT>::RelaDyn->addReloc({Target->TlsOffsetRel, Out<ELFT>::Got,
110 Off + (uintX_t)sizeof(uintX_t), false,
111 &Body, 0});
112 }
113 C.Relocations.push_back({Expr, Type, Offset, Addend, &Body});
114 return 1;
115 }
116
117 // Global-Dynamic relocs can be relaxed to Initial-Exec or Local-Exec
118 // depending on the symbol being locally defined or not.
119 if (Body.isPreemptible()) {
120 C.Relocations.push_back(
121 {R_RELAX_TLS_GD_TO_IE, Type, Offset, Addend, &Body});
122 if (!Body.isInGot()) {
123 Out<ELFT>::Got->addEntry(Body);
124 Out<ELFT>::RelaDyn->addReloc({Target->TlsGotRel, Out<ELFT>::Got,
125 Body.getGotOffset<ELFT>(), false, &Body,
126 0});
127 }
128 return 2;
129 }
130 C.Relocations.push_back(
131 {R_RELAX_TLS_GD_TO_LE, Type, Offset, Addend, &Body});
132 return Target->TlsGdToLeSkip;
133 }
134
135 // Initial-Exec relocs can be relaxed to Local-Exec if the symbol is locally
136 // defined.
137 if (Target->isTlsInitialExecRel(Type) && !Config->Shared &&
138 !Body.isPreemptible()) {
139 C.Relocations.push_back(
140 {R_RELAX_TLS_IE_TO_LE, Type, Offset, Addend, &Body});
141 return 1;
142 }
143 return 0;
144}
145
146// Some targets might require creation of thunks for relocations. Now we
147// support only MIPS which requires LA25 thunk to call PIC code from non-PIC
148// one. Scan relocations to find each one requires thunk.
149template <class ELFT, class RelTy>
150static void scanRelocsForThunks(const elf::ObjectFile<ELFT> &File,
151 ArrayRef<RelTy> Rels) {
152 for (const RelTy &RI : Rels) {
153 uint32_t Type = RI.getType(Config->Mips64EL);
154 SymbolBody &Body = File.getRelocTargetSym(RI);
155 if (Body.hasThunk() || !Target->needsThunk(Type, File, Body))
156 continue;
157 auto *D = cast<DefinedRegular<ELFT>>(&Body);
158 auto *S = cast<InputSection<ELFT>>(D->Section);
159 S->addThunk(Body);
160 }
161}
162
163template <endianness E> static int16_t readSignedLo16(const uint8_t *Loc) {
164 return read32<E>(Loc) & 0xffff;
165}
166
167template <class RelTy>
168static uint32_t getMipsPairType(const RelTy *Rel, const SymbolBody &Sym) {
169 switch (Rel->getType(Config->Mips64EL)) {
170 case R_MIPS_HI16:
171 return R_MIPS_LO16;
172 case R_MIPS_GOT16:
173 return Sym.isLocal() ? R_MIPS_LO16 : R_MIPS_NONE;
174 case R_MIPS_PCHI16:
175 return R_MIPS_PCLO16;
176 case R_MICROMIPS_HI16:
177 return R_MICROMIPS_LO16;
178 default:
179 return R_MIPS_NONE;
180 }
181}
182
183template <class ELFT, class RelTy>
184static int32_t findMipsPairedAddend(const uint8_t *Buf, const uint8_t *BufLoc,
185 SymbolBody &Sym, const RelTy *Rel,
186 const RelTy *End) {
187 uint32_t SymIndex = Rel->getSymbol(Config->Mips64EL);
188 uint32_t Type = getMipsPairType(Rel, Sym);
189
190 // Some MIPS relocations use addend calculated from addend of the relocation
191 // itself and addend of paired relocation. ABI requires to compute such
192 // combined addend in case of REL relocation record format only.
193 // See p. 4-17 at ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
194 if (RelTy::IsRela || Type == R_MIPS_NONE)
195 return 0;
196
197 for (const RelTy *RI = Rel; RI != End; ++RI) {
198 if (RI->getType(Config->Mips64EL) != Type)
199 continue;
200 if (RI->getSymbol(Config->Mips64EL) != SymIndex)
201 continue;
202 const endianness E = ELFT::TargetEndianness;
203 return ((read32<E>(BufLoc) & 0xffff) << 16) +
204 readSignedLo16<E>(Buf + RI->r_offset);
205 }
206 unsigned OldType = Rel->getType(Config->Mips64EL);
207 StringRef OldName = getELFRelocationTypeName(Config->EMachine, OldType);
208 StringRef NewName = getELFRelocationTypeName(Config->EMachine, Type);
209 warning("can't find matching " + NewName + " relocation for " + OldName);
210 return 0;
211}
212
213// True if non-preemptable symbol always has the same value regardless of where
214// the DSO is loaded.
215template <class ELFT> static bool isAbsolute(const SymbolBody &Body) {
216 if (Body.isUndefined())
217 return !Body.isLocal() && Body.symbol()->isWeak();
218 if (const auto *DR = dyn_cast<DefinedRegular<ELFT>>(&Body))
219 return DR->Section == nullptr; // Absolute symbol.
220 return false;
221}
222
223static bool needsPlt(RelExpr Expr) {
224 return Expr == R_PLT_PC || Expr == R_PPC_PLT_OPD || Expr == R_PLT;
225}
226
227// True if this expression is of the form Sym - X, where X is a position in the
228// file (PC, or GOT for example).
229static bool isRelExpr(RelExpr Expr) {
George Rimar5c33b912016-05-25 14:31:37 +0000230 return Expr == R_PC || Expr == R_GOTREL || Expr == R_PAGE_PC ||
231 Expr == R_RELAX_GOT_PC;
Rui Ueyama0fcdc732016-05-24 20:24:43 +0000232}
233
234template <class ELFT>
235static bool isStaticLinkTimeConstant(RelExpr E, uint32_t Type,
236 const SymbolBody &Body) {
237 // These expressions always compute a constant
238 if (E == R_SIZE || E == R_GOT_FROM_END || E == R_GOT_OFF ||
239 E == R_MIPS_GOT_LOCAL || E == R_MIPS_GOT_LOCAL_PAGE ||
240 E == R_GOT_PAGE_PC || E == R_GOT_PC || E == R_PLT_PC || E == R_TLSGD_PC ||
241 E == R_TLSGD || E == R_PPC_PLT_OPD)
242 return true;
243
244 // These never do, except if the entire file is position dependent or if
245 // only the low bits are used.
246 if (E == R_GOT || E == R_PLT)
247 return Target->usesOnlyLowPageBits(Type) || !Config->Pic;
248
249 if (Body.isPreemptible())
250 return false;
251
252 if (!Config->Pic)
253 return true;
254
255 bool AbsVal = isAbsolute<ELFT>(Body) || Body.isTls();
256 bool RelE = isRelExpr(E);
257 if (AbsVal && !RelE)
258 return true;
259 if (!AbsVal && RelE)
260 return true;
261
262 // Relative relocation to an absolute value. This is normally unrepresentable,
263 // but if the relocation refers to a weak undefined symbol, we allow it to
264 // resolve to the image base. This is a little strange, but it allows us to
265 // link function calls to such symbols. Normally such a call will be guarded
266 // with a comparison, which will load a zero from the GOT.
267 if (AbsVal && RelE) {
268 if (Body.isUndefined() && !Body.isLocal() && Body.symbol()->isWeak())
269 return true;
270 StringRef S = getELFRelocationTypeName(Config->EMachine, Type);
271 error("relocation " + S + " cannot refer to absolute symbol " +
272 Body.getName());
273 return true;
274 }
275
276 return Target->usesOnlyLowPageBits(Type);
277}
278
279static RelExpr toPlt(RelExpr Expr) {
280 if (Expr == R_PPC_OPD)
281 return R_PPC_PLT_OPD;
282 if (Expr == R_PC)
283 return R_PLT_PC;
284 if (Expr == R_ABS)
285 return R_PLT;
286 return Expr;
287}
288
289static RelExpr fromPlt(RelExpr Expr) {
290 // We decided not to use a plt. Optimize a reference to the plt to a
291 // reference to the symbol itself.
292 if (Expr == R_PLT_PC)
293 return R_PC;
294 if (Expr == R_PPC_PLT_OPD)
295 return R_PPC_OPD;
296 if (Expr == R_PLT)
297 return R_ABS;
298 return Expr;
299}
300
301template <class ELFT> static uint32_t getAlignment(SharedSymbol<ELFT> *SS) {
302 typedef typename ELFT::uint uintX_t;
303
304 uintX_t SecAlign = SS->File->getSection(SS->Sym)->sh_addralign;
305 uintX_t SymValue = SS->Sym.st_value;
306 int TrailingZeros =
307 std::min(countTrailingZeros(SecAlign), countTrailingZeros(SymValue));
308 return 1 << TrailingZeros;
309}
310
311// Reserve space in .bss for copy relocation.
312template <class ELFT> static void addCopyRelSymbol(SharedSymbol<ELFT> *SS) {
313 typedef typename ELFT::uint uintX_t;
314 typedef typename ELFT::Sym Elf_Sym;
315
316 // Copy relocation against zero-sized symbol doesn't make sense.
317 uintX_t SymSize = SS->template getSize<ELFT>();
318 if (SymSize == 0)
319 fatal("cannot create a copy relocation for " + SS->getName());
320
321 uintX_t Align = getAlignment(SS);
322 uintX_t Off = alignTo(Out<ELFT>::Bss->getSize(), Align);
323 Out<ELFT>::Bss->setSize(Off + SymSize);
324 Out<ELFT>::Bss->updateAlign(Align);
325 uintX_t Shndx = SS->Sym.st_shndx;
326 uintX_t Value = SS->Sym.st_value;
327 // Look through the DSO's dynamic symbol table for aliases and create a
328 // dynamic symbol for each one. This causes the copy relocation to correctly
329 // interpose any aliases.
330 for (const Elf_Sym &S : SS->File->getElfSymbols(true)) {
331 if (S.st_shndx != Shndx || S.st_value != Value)
332 continue;
333 auto *Alias = dyn_cast_or_null<SharedSymbol<ELFT>>(
334 Symtab<ELFT>::X->find(check(S.getName(SS->File->getStringTable()))));
335 if (!Alias)
336 continue;
337 Alias->OffsetInBss = Off;
338 Alias->NeedsCopyOrPltAddr = true;
339 Alias->symbol()->IsUsedInRegularObj = true;
340 }
341 Out<ELFT>::RelaDyn->addReloc(
342 {Target->CopyRel, Out<ELFT>::Bss, SS->OffsetInBss, false, SS, 0});
343}
344
345template <class ELFT>
346static RelExpr adjustExpr(const elf::ObjectFile<ELFT> &File, SymbolBody &Body,
George Rimar5c33b912016-05-25 14:31:37 +0000347 bool IsWrite, RelExpr Expr, uint32_t Type,
348 const uint8_t *Data, typename ELFT::uint Offset) {
Rui Ueyama0fcdc732016-05-24 20:24:43 +0000349 if (Target->needsThunk(Type, File, Body))
350 return R_THUNK;
351 bool Preemptible = Body.isPreemptible();
George Rimar5c33b912016-05-25 14:31:37 +0000352 if (Body.isGnuIFunc()) {
Rui Ueyama0fcdc732016-05-24 20:24:43 +0000353 Expr = toPlt(Expr);
George Rimar5c33b912016-05-25 14:31:37 +0000354 } else if (!Preemptible) {
355 if (needsPlt(Expr))
356 Expr = fromPlt(Expr);
357 if (Expr == R_GOT_PC && Target->canRelaxGot(Type, Data, Offset))
358 Expr = R_RELAX_GOT_PC;
359 }
Rui Ueyama0fcdc732016-05-24 20:24:43 +0000360
361 if (IsWrite || isStaticLinkTimeConstant<ELFT>(Expr, Type, Body))
362 return Expr;
363
364 // This relocation would require the dynamic linker to write a value to read
365 // only memory. We can hack around it if we are producing an executable and
366 // the refered symbol can be preemepted to refer to the executable.
367 if (Config->Shared || (Config->Pic && !isRelExpr(Expr))) {
368 StringRef S = getELFRelocationTypeName(Config->EMachine, Type);
369 error("relocation " + S + " cannot be used when making a shared "
370 "object; recompile with -fPIC.");
371 return Expr;
372 }
373 if (Body.getVisibility() != STV_DEFAULT) {
374 error("Cannot preempt symbol");
375 return Expr;
376 }
377 if (Body.isObject()) {
378 // Produce a copy relocation.
379 auto *B = cast<SharedSymbol<ELFT>>(&Body);
380 if (!B->needsCopy())
381 addCopyRelSymbol(B);
382 return Expr;
383 }
384 if (Body.isFunc()) {
385 // This handles a non PIC program call to function in a shared library. In
386 // an ideal world, we could just report an error saying the relocation can
387 // overflow at runtime. In the real world with glibc, crt1.o has a
388 // R_X86_64_PC32 pointing to libc.so.
389 //
390 // The general idea on how to handle such cases is to create a PLT entry and
391 // use that as the function value.
392 //
393 // For the static linking part, we just return a plt expr and everything
394 // else will use the the PLT entry as the address.
395 //
396 // The remaining problem is making sure pointer equality still works. We
397 // need the help of the dynamic linker for that. We let it know that we have
398 // a direct reference to a so symbol by creating an undefined symbol with a
399 // non zero st_value. Seeing that, the dynamic linker resolves the symbol to
400 // the value of the symbol we created. This is true even for got entries, so
401 // pointer equality is maintained. To avoid an infinite loop, the only entry
402 // that points to the real function is a dedicated got entry used by the
403 // plt. That is identified by special relocation types (R_X86_64_JUMP_SLOT,
404 // R_386_JMP_SLOT, etc).
405 Body.NeedsCopyOrPltAddr = true;
406 return toPlt(Expr);
407 }
408 error("Symbol is missing type");
409
410 return Expr;
411}
412
413template <class ELFT, class RelTy>
414static typename ELFT::uint computeAddend(const elf::ObjectFile<ELFT> &File,
415 const uint8_t *SectionData,
416 const RelTy *End, const RelTy &RI,
417 RelExpr Expr, SymbolBody &Body) {
418 typedef typename ELFT::uint uintX_t;
419
420 uint32_t Type = RI.getType(Config->Mips64EL);
421 uintX_t Addend = getAddend<ELFT>(RI);
422 const uint8_t *BufLoc = SectionData + RI.r_offset;
423 if (!RelTy::IsRela)
424 Addend += Target->getImplicitAddend(BufLoc, Type);
425 if (Config->EMachine == EM_MIPS) {
426 Addend += findMipsPairedAddend<ELFT>(SectionData, BufLoc, Body, &RI, End);
427 if (Type == R_MIPS_LO16 && Expr == R_PC)
428 // R_MIPS_LO16 expression has R_PC type iif the target is _gp_disp
429 // symbol. In that case we should use the following formula for
430 // calculation "AHL + GP - P + 4". Let's add 4 right here.
431 // For details see p. 4-19 at
432 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
433 Addend += 4;
434 if (Expr == R_GOT_OFF)
435 Addend -= MipsGPOffset;
436 if (Expr == R_GOTREL) {
437 Addend -= MipsGPOffset;
438 if (Body.isLocal())
439 Addend += File.getMipsGp0();
440 }
441 }
442 if (Config->Pic && Config->EMachine == EM_PPC64 && Type == R_PPC64_TOC)
443 Addend += getPPC64TocBase();
444 return Addend;
445}
446
447// The reason we have to do this early scan is as follows
448// * To mmap the output file, we need to know the size
449// * For that, we need to know how many dynamic relocs we will have.
450// It might be possible to avoid this by outputting the file with write:
451// * Write the allocated output sections, computing addresses.
452// * Apply relocations, recording which ones require a dynamic reloc.
453// * Write the dynamic relocations.
454// * Write the rest of the file.
455// This would have some drawbacks. For example, we would only know if .rela.dyn
456// is needed after applying relocations. If it is, it will go after rw and rx
457// sections. Given that it is ro, we will need an extra PT_LOAD. This
458// complicates things for the dynamic linker and means we would have to reserve
459// space for the extra PT_LOAD even if we end up not using it.
460template <class ELFT, class RelTy>
Rui Ueyama2487f192016-05-25 03:40:02 +0000461static void scanRelocs(InputSectionBase<ELFT> &C, ArrayRef<RelTy> Rels) {
Rui Ueyama0fcdc732016-05-24 20:24:43 +0000462 typedef typename ELFT::uint uintX_t;
463
464 uintX_t Flags = C.getSectionHdr()->sh_flags;
465 bool IsWrite = Flags & SHF_WRITE;
466
467 auto AddDyn = [=](const DynamicReloc<ELFT> &Reloc) {
468 Out<ELFT>::RelaDyn->addReloc(Reloc);
469 };
470
471 const elf::ObjectFile<ELFT> &File = *C.getFile();
472 ArrayRef<uint8_t> SectionData = C.getSectionData();
473 const uint8_t *Buf = SectionData.begin();
474 for (auto I = Rels.begin(), E = Rels.end(); I != E; ++I) {
475 const RelTy &RI = *I;
476 SymbolBody &Body = File.getRelocTargetSym(RI);
477 uint32_t Type = RI.getType(Config->Mips64EL);
478
479 RelExpr Expr = Target->getRelExpr(Type, Body);
480 // Ignore "hint" relocation because it is for optional code optimization.
481 if (Expr == R_HINT)
482 continue;
483
484 uintX_t Offset = C.getOffset(RI.r_offset);
485 if (Offset == (uintX_t)-1)
486 continue;
487
488 bool Preemptible = Body.isPreemptible();
George Rimar5c33b912016-05-25 14:31:37 +0000489 Expr = adjustExpr(File, Body, IsWrite, Expr, Type, Buf, Offset);
Rui Ueyama0fcdc732016-05-24 20:24:43 +0000490 if (HasError)
491 continue;
492
493 // This relocation does not require got entry, but it is relative to got and
494 // needs it to be created. Here we request for that.
495 if (Expr == R_GOTONLY_PC || Expr == R_GOTREL || Expr == R_PPC_TOC)
496 Out<ELFT>::Got->HasGotOffRel = true;
497
498 uintX_t Addend = computeAddend(File, Buf, E, RI, Expr, Body);
499
500 if (unsigned Processed =
501 handleTlsRelocation<ELFT>(Type, Body, C, Offset, Addend, Expr)) {
502 I += (Processed - 1);
503 continue;
504 }
505
506 if (needsPlt(Expr) || Expr == R_THUNK || refersToGotEntry(Expr) ||
507 !Body.isPreemptible()) {
508 // If the relocation points to something in the file, we can process it.
509 bool Constant = isStaticLinkTimeConstant<ELFT>(Expr, Type, Body);
510
511 // If the output being produced is position independent, the final value
512 // is still not known. In that case we still need some help from the
513 // dynamic linker. We can however do better than just copying the incoming
514 // relocation. We can process some of it and and just ask the dynamic
515 // linker to add the load address.
516 if (!Constant)
517 AddDyn({Target->RelativeRel, C.OutSec, Offset, true, &Body, Addend});
518
519 // If the produced value is a constant, we just remember to write it
520 // when outputting this section. We also have to do it if the format
521 // uses Elf_Rel, since in that case the written value is the addend.
522 if (Constant || !RelTy::IsRela)
523 C.Relocations.push_back({Expr, Type, Offset, Addend, &Body});
524 } else {
525 // We don't know anything about the finaly symbol. Just ask the dynamic
526 // linker to handle the relocation for us.
527 AddDyn({Target->getDynRel(Type), C.OutSec, Offset, false, &Body, Addend});
528 // MIPS ABI turns using of GOT and dynamic relocations inside out.
529 // While regular ABI uses dynamic relocations to fill up GOT entries
530 // MIPS ABI requires dynamic linker to fills up GOT entries using
531 // specially sorted dynamic symbol table. This affects even dynamic
532 // relocations against symbols which do not require GOT entries
533 // creation explicitly, i.e. do not have any GOT-relocations. So if
534 // a preemptible symbol has a dynamic relocation we anyway have
535 // to create a GOT entry for it.
536 // If a non-preemptible symbol has a dynamic relocation against it,
537 // dynamic linker takes it st_value, adds offset and writes down
538 // result of the dynamic relocation. In case of preemptible symbol
539 // dynamic linker performs symbol resolution, writes the symbol value
540 // to the GOT entry and reads the GOT entry when it needs to perform
541 // a dynamic relocation.
542 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf p.4-19
543 if (Config->EMachine == EM_MIPS && !Body.isInGot())
544 Out<ELFT>::Got->addEntry(Body);
545 continue;
546 }
547
548 if (Expr == R_THUNK)
549 continue;
550
551 // At this point we are done with the relocated position. Some relocations
552 // also require us to create a got or plt entry.
553
554 // If a relocation needs PLT, we create a PLT and a GOT slot for the symbol.
555 if (needsPlt(Expr)) {
556 if (Body.isInPlt())
557 continue;
558 Out<ELFT>::Plt->addEntry(Body);
559
560 uint32_t Rel;
561 if (Body.isGnuIFunc() && !Preemptible)
562 Rel = Target->IRelativeRel;
563 else
564 Rel = Target->PltRel;
565
566 Out<ELFT>::GotPlt->addEntry(Body);
567 Out<ELFT>::RelaPlt->addReloc({Rel, Out<ELFT>::GotPlt,
568 Body.getGotPltOffset<ELFT>(), !Preemptible,
569 &Body, 0});
570 continue;
571 }
572
573 if (refersToGotEntry(Expr)) {
574 if (Body.isInGot())
575 continue;
576 Out<ELFT>::Got->addEntry(Body);
577
578 if (Config->EMachine == EM_MIPS)
579 // MIPS ABI has special rules to process GOT entries
580 // and doesn't require relocation entries for them.
581 // See "Global Offset Table" in Chapter 5 in the following document
582 // for detailed description:
583 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
584 continue;
585
586 if (Preemptible || (Config->Pic && !isAbsolute<ELFT>(Body))) {
587 uint32_t DynType;
588 if (Body.isTls())
589 DynType = Target->TlsGotRel;
590 else if (Preemptible)
591 DynType = Target->GotRel;
592 else
593 DynType = Target->RelativeRel;
594 AddDyn({DynType, Out<ELFT>::Got, Body.getGotOffset<ELFT>(),
595 !Preemptible, &Body, 0});
596 }
597 continue;
598 }
599 }
600
601 // Scan relocations for necessary thunks.
602 if (Config->EMachine == EM_MIPS)
603 scanRelocsForThunks<ELFT>(File, Rels);
604}
605
606template <class ELFT> void scanRelocations(InputSection<ELFT> &C) {
607 typedef typename ELFT::Shdr Elf_Shdr;
608
609 // Scan all relocations. Each relocation goes through a series
610 // of tests to determine if it needs special treatment, such as
611 // creating GOT, PLT, copy relocations, etc.
612 // Note that relocations for non-alloc sections are directly
613 // processed by InputSection::relocateNative.
614 if (C.getSectionHdr()->sh_flags & SHF_ALLOC)
615 for (const Elf_Shdr *RelSec : C.RelocSections)
616 scanRelocations(C, *RelSec);
617}
618
619template <class ELFT>
620void scanRelocations(InputSectionBase<ELFT> &S,
621 const typename ELFT::Shdr &RelSec) {
622 ELFFile<ELFT> &EObj = S.getFile()->getObj();
623 if (RelSec.sh_type == SHT_RELA)
624 scanRelocs(S, EObj.relas(&RelSec));
625 else
626 scanRelocs(S, EObj.rels(&RelSec));
627}
628
629template void scanRelocations<ELF32LE>(InputSection<ELF32LE> &);
630template void scanRelocations<ELF32BE>(InputSection<ELF32BE> &);
631template void scanRelocations<ELF64LE>(InputSection<ELF64LE> &);
632template void scanRelocations<ELF64BE>(InputSection<ELF64BE> &);
633
634template void scanRelocations<ELF32LE>(InputSectionBase<ELF32LE> &,
635 const ELF32LE::Shdr &);
636template void scanRelocations<ELF32BE>(InputSectionBase<ELF32BE> &,
637 const ELF32BE::Shdr &);
638template void scanRelocations<ELF64LE>(InputSectionBase<ELF64LE> &,
639 const ELF64LE::Shdr &);
640template void scanRelocations<ELF64BE>(InputSectionBase<ELF64BE> &,
641 const ELF64BE::Shdr &);
642}
643}