blob: 3f0316396e91cc1c6eccc3254049d11a7a87a6af [file] [log] [blame]
Evan Cheng7e763d82011-07-25 18:43:53 +00001//===-- X86BaseInfo.h - Top level definitions for X86 -------- --*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains small standalone helper functions and enum definitions for
11// the X86 target useful for the compiler back-end and the MC libraries.
12// As such, it deliberately does not include references to LLVM core
13// code gen types, passes, etc..
14//
15//===----------------------------------------------------------------------===//
16
Benjamin Kramera7c40ef2014-08-13 16:26:38 +000017#ifndef LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H
18#define LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H
Evan Cheng7e763d82011-07-25 18:43:53 +000019
20#include "X86MCTargetDesc.h"
Craig Topperc6d4efa2014-03-19 06:53:25 +000021#include "llvm/MC/MCInstrDesc.h"
Evan Cheng7e763d82011-07-25 18:43:53 +000022#include "llvm/Support/DataTypes.h"
Craig Topper4ed72782012-02-05 05:38:58 +000023#include "llvm/Support/ErrorHandling.h"
Evan Cheng7e763d82011-07-25 18:43:53 +000024
25namespace llvm {
26
27namespace X86 {
28 // Enums for memory operand decoding. Each memory operand is represented with
29 // a 5 operand sequence in the form:
30 // [BaseReg, ScaleAmt, IndexReg, Disp, Segment]
31 // These enums help decode this.
32 enum {
33 AddrBaseReg = 0,
34 AddrScaleAmt = 1,
35 AddrIndexReg = 2,
36 AddrDisp = 3,
37
38 /// AddrSegmentReg - The operand # of the segment in the memory operand.
39 AddrSegmentReg = 4,
40
41 /// AddrNumOperands - Total number of operands in a memory reference.
42 AddrNumOperands = 5
43 };
Craig Topperc7277d92015-12-25 22:09:49 +000044
45 /// AVX512 static rounding constants. These need to match the values in
46 /// avx512fintrin.h.
47 enum STATIC_ROUNDING {
48 TO_NEAREST_INT = 0,
49 TO_NEG_INF = 1,
50 TO_POS_INF = 2,
51 TO_ZERO = 3,
52 CUR_DIRECTION = 4
53 };
Alexander Kornienkof00654e2015-06-23 09:49:53 +000054} // end namespace X86;
Evan Cheng7e763d82011-07-25 18:43:53 +000055
56/// X86II - This namespace holds all of the target specific flags that
57/// instruction info tracks.
58///
59namespace X86II {
60 /// Target Operand Flag enum.
61 enum TOF {
62 //===------------------------------------------------------------------===//
63 // X86 Specific MachineOperand flags.
64
65 MO_NO_FLAG,
66
67 /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a
68 /// relocation of:
69 /// SYMBOL_LABEL + [. - PICBASELABEL]
70 MO_GOT_ABSOLUTE_ADDRESS,
71
72 /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the
73 /// immediate should get the value of the symbol minus the PIC base label:
74 /// SYMBOL_LABEL - PICBASELABEL
75 MO_PIC_BASE_OFFSET,
76
77 /// MO_GOT - On a symbol operand this indicates that the immediate is the
78 /// offset to the GOT entry for the symbol name from the base of the GOT.
79 ///
80 /// See the X86-64 ELF ABI supplement for more details.
81 /// SYMBOL_LABEL @GOT
82 MO_GOT,
83
84 /// MO_GOTOFF - On a symbol operand this indicates that the immediate is
85 /// the offset to the location of the symbol name from the base of the GOT.
86 ///
87 /// See the X86-64 ELF ABI supplement for more details.
88 /// SYMBOL_LABEL @GOTOFF
89 MO_GOTOFF,
90
91 /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is
92 /// offset to the GOT entry for the symbol name from the current code
93 /// location.
94 ///
95 /// See the X86-64 ELF ABI supplement for more details.
96 /// SYMBOL_LABEL @GOTPCREL
97 MO_GOTPCREL,
98
99 /// MO_PLT - On a symbol operand this indicates that the immediate is
100 /// offset to the PLT entry of symbol name from the current code location.
101 ///
102 /// See the X86-64 ELF ABI supplement for more details.
103 /// SYMBOL_LABEL @PLT
104 MO_PLT,
105
106 /// MO_TLSGD - On a symbol operand this indicates that the immediate is
Hans Wennborg09610f32012-06-04 09:55:36 +0000107 /// the offset of the GOT entry with the TLS index structure that contains
108 /// the module number and variable offset for the symbol. Used in the
109 /// general dynamic TLS access model.
Evan Cheng7e763d82011-07-25 18:43:53 +0000110 ///
111 /// See 'ELF Handling for Thread-Local Storage' for more details.
112 /// SYMBOL_LABEL @TLSGD
113 MO_TLSGD,
114
Hans Wennborg789acfb2012-06-01 16:27:21 +0000115 /// MO_TLSLD - On a symbol operand this indicates that the immediate is
116 /// the offset of the GOT entry with the TLS index for the module that
Hans Wennborg5deecd92013-01-29 14:05:57 +0000117 /// contains the symbol. When this index is passed to a call to
Hans Wennborg789acfb2012-06-01 16:27:21 +0000118 /// __tls_get_addr, the function will return the base address of the TLS
Hans Wennborg09610f32012-06-04 09:55:36 +0000119 /// block for the symbol. Used in the x86-64 local dynamic TLS access model.
Hans Wennborg789acfb2012-06-01 16:27:21 +0000120 ///
121 /// See 'ELF Handling for Thread-Local Storage' for more details.
122 /// SYMBOL_LABEL @TLSLD
123 MO_TLSLD,
124
125 /// MO_TLSLDM - On a symbol operand this indicates that the immediate is
126 /// the offset of the GOT entry with the TLS index for the module that
Hans Wennborg5deecd92013-01-29 14:05:57 +0000127 /// contains the symbol. When this index is passed to a call to
Hans Wennborg789acfb2012-06-01 16:27:21 +0000128 /// ___tls_get_addr, the function will return the base address of the TLS
Hans Wennborg09610f32012-06-04 09:55:36 +0000129 /// block for the symbol. Used in the IA32 local dynamic TLS access model.
Hans Wennborg789acfb2012-06-01 16:27:21 +0000130 ///
131 /// See 'ELF Handling for Thread-Local Storage' for more details.
132 /// SYMBOL_LABEL @TLSLDM
133 MO_TLSLDM,
134
Evan Cheng7e763d82011-07-25 18:43:53 +0000135 /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is
Hans Wennborg09610f32012-06-04 09:55:36 +0000136 /// the offset of the GOT entry with the thread-pointer offset for the
137 /// symbol. Used in the x86-64 initial exec TLS access model.
Evan Cheng7e763d82011-07-25 18:43:53 +0000138 ///
139 /// See 'ELF Handling for Thread-Local Storage' for more details.
140 /// SYMBOL_LABEL @GOTTPOFF
141 MO_GOTTPOFF,
142
143 /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is
Hans Wennborg09610f32012-06-04 09:55:36 +0000144 /// the absolute address of the GOT entry with the negative thread-pointer
145 /// offset for the symbol. Used in the non-PIC IA32 initial exec TLS access
146 /// model.
Evan Cheng7e763d82011-07-25 18:43:53 +0000147 ///
148 /// See 'ELF Handling for Thread-Local Storage' for more details.
149 /// SYMBOL_LABEL @INDNTPOFF
150 MO_INDNTPOFF,
151
152 /// MO_TPOFF - On a symbol operand this indicates that the immediate is
Hans Wennborg09610f32012-06-04 09:55:36 +0000153 /// the thread-pointer offset for the symbol. Used in the x86-64 local
154 /// exec TLS access model.
Evan Cheng7e763d82011-07-25 18:43:53 +0000155 ///
156 /// See 'ELF Handling for Thread-Local Storage' for more details.
157 /// SYMBOL_LABEL @TPOFF
158 MO_TPOFF,
159
Hans Wennborg789acfb2012-06-01 16:27:21 +0000160 /// MO_DTPOFF - On a symbol operand this indicates that the immediate is
Hans Wennborg09610f32012-06-04 09:55:36 +0000161 /// the offset of the GOT entry with the TLS offset of the symbol. Used
162 /// in the local dynamic TLS access model.
Hans Wennborg789acfb2012-06-01 16:27:21 +0000163 ///
164 /// See 'ELF Handling for Thread-Local Storage' for more details.
165 /// SYMBOL_LABEL @DTPOFF
166 MO_DTPOFF,
167
Evan Cheng7e763d82011-07-25 18:43:53 +0000168 /// MO_NTPOFF - On a symbol operand this indicates that the immediate is
Hans Wennborg09610f32012-06-04 09:55:36 +0000169 /// the negative thread-pointer offset for the symbol. Used in the IA32
170 /// local exec TLS access model.
Evan Cheng7e763d82011-07-25 18:43:53 +0000171 ///
172 /// See 'ELF Handling for Thread-Local Storage' for more details.
173 /// SYMBOL_LABEL @NTPOFF
174 MO_NTPOFF,
175
Hans Wennborgf9d0e442012-05-11 10:11:01 +0000176 /// MO_GOTNTPOFF - On a symbol operand this indicates that the immediate is
Hans Wennborg09610f32012-06-04 09:55:36 +0000177 /// the offset of the GOT entry with the negative thread-pointer offset for
178 /// the symbol. Used in the PIC IA32 initial exec TLS access model.
Hans Wennborgf9d0e442012-05-11 10:11:01 +0000179 ///
180 /// See 'ELF Handling for Thread-Local Storage' for more details.
181 /// SYMBOL_LABEL @GOTNTPOFF
182 MO_GOTNTPOFF,
183
Evan Cheng7e763d82011-07-25 18:43:53 +0000184 /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the
185 /// reference is actually to the "__imp_FOO" symbol. This is used for
186 /// dllimport linkage on windows.
187 MO_DLLIMPORT,
188
Evan Cheng7e763d82011-07-25 18:43:53 +0000189 /// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the
190 /// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a
191 /// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
192 MO_DARWIN_NONLAZY,
193
194 /// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates
195 /// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is
196 /// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
197 MO_DARWIN_NONLAZY_PIC_BASE,
198
Evan Cheng7e763d82011-07-25 18:43:53 +0000199 /// MO_TLVP - On a symbol operand this indicates that the immediate is
200 /// some TLS offset.
201 ///
202 /// This is the TLS offset for the Darwin TLS mechanism.
203 MO_TLVP,
204
205 /// MO_TLVP_PIC_BASE - On a symbol operand this indicates that the immediate
206 /// is some TLS offset from the picbase.
207 ///
208 /// This is the 32-bit TLS offset for Darwin TLS in PIC mode.
Anton Korobeynikovc6b40172012-02-11 17:26:53 +0000209 MO_TLVP_PIC_BASE,
210
211 /// MO_SECREL - On a symbol operand this indicates that the immediate is
212 /// the offset from beginning of section.
213 ///
214 /// This is the TLS offset for the COFF/Windows TLS mechanism.
Rafael Espindola36b718f2015-06-22 17:46:53 +0000215 MO_SECREL
Evan Cheng7e763d82011-07-25 18:43:53 +0000216 };
217
Craig Topperf655cdd2014-11-11 07:32:32 +0000218 enum : uint64_t {
Evan Cheng7e763d82011-07-25 18:43:53 +0000219 //===------------------------------------------------------------------===//
220 // Instruction encodings. These are the standard/most common forms for X86
221 // instructions.
222 //
223
224 // PseudoFrm - This represents an instruction that is a pseudo instruction
225 // or one that has not been implemented yet. It is illegal to code generate
226 // it, but tolerated for intermediate implementation stages.
227 Pseudo = 0,
228
229 /// Raw - This form is for instructions that don't have any operands, so
230 /// they are just a fixed opcode value, like 'leave'.
231 RawFrm = 1,
232
233 /// AddRegFrm - This form is used for instructions like 'push r32' that have
234 /// their one register operand added to their opcode.
235 AddRegFrm = 2,
236
Craig Topper35da3d12014-01-16 07:36:58 +0000237 /// RawFrmMemOffs - This form is for instructions that store an absolute
238 /// memory offset as an immediate with a possible segment override.
Craig Topper61b62e52016-08-22 07:38:41 +0000239 RawFrmMemOffs = 3,
Craig Topper35da3d12014-01-16 07:36:58 +0000240
David Woodhouse2ef8d9c2014-01-22 15:08:08 +0000241 /// RawFrmSrc - This form is for instructions that use the source index
242 /// register SI/ESI/RSI with a possible segment override.
Craig Topper61b62e52016-08-22 07:38:41 +0000243 RawFrmSrc = 4,
David Woodhouse2ef8d9c2014-01-22 15:08:08 +0000244
David Woodhouseb33c2ef2014-01-22 15:08:21 +0000245 /// RawFrmDst - This form is for instructions that use the destination index
246 /// register DI/EDI/ESI.
Craig Topper61b62e52016-08-22 07:38:41 +0000247 RawFrmDst = 5,
David Woodhouseb33c2ef2014-01-22 15:08:21 +0000248
Eric Christopher572e03a2015-06-19 01:53:21 +0000249 /// RawFrmSrc - This form is for instructions that use the source index
David Woodhouse9bbf7ca2014-01-22 15:08:36 +0000250 /// register SI/ESI/ERI with a possible segment override, and also the
251 /// destination index register DI/ESI/RDI.
Craig Topper61b62e52016-08-22 07:38:41 +0000252 RawFrmDstSrc = 6,
David Woodhouse9bbf7ca2014-01-22 15:08:36 +0000253
Craig Topper2fb696b2014-02-19 06:59:13 +0000254 /// RawFrmImm8 - This is used for the ENTER instruction, which has two
255 /// immediates, the first of which is a 16-bit immediate (specified by
256 /// the imm encoding) and the second is a 8-bit fixed value.
Craig Topper61b62e52016-08-22 07:38:41 +0000257 RawFrmImm8 = 7,
Craig Topper2fb696b2014-02-19 06:59:13 +0000258
259 /// RawFrmImm16 - This is used for CALL FAR instructions, which have two
260 /// immediates, the first of which is a 16 or 32-bit immediate (specified by
261 /// the imm encoding) and the second is a 16-bit fixed value. In the AMD
262 /// manual, this operand is described as pntr16:32 and pntr16:16
Craig Topper61b62e52016-08-22 07:38:41 +0000263 RawFrmImm16 = 8,
Craig Toppera0869dc2014-02-10 06:55:41 +0000264
Evan Cheng7e763d82011-07-25 18:43:53 +0000265 /// MRM[0-7][rm] - These forms are used to represent instructions that use
266 /// a Mod/RM byte, and use the middle field to hold extended opcode
267 /// information. In the intel manual these are represented as /0, /1, ...
268 ///
269
Craig Topper61b62e52016-08-22 07:38:41 +0000270 /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
271 /// to specify a destination, which in this case is memory.
272 ///
273 MRMDestMem = 32,
274
275 /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
276 /// to specify a source, which in this case is memory.
277 ///
278 MRMSrcMem = 33,
279
Craig Topper5f8419d2016-08-22 07:38:50 +0000280 /// MRMSrcMem4VOp3 - This form is used for instructions that encode
281 /// operand 3 with VEX.VVVV and load from memory.
282 ///
283 MRMSrcMem4VOp3 = 34,
284
Craig Topper9b20fec2016-08-22 07:38:45 +0000285 /// MRMSrcMemOp4 - This form is used for instructions that use the Mod/RM
286 /// byte to specify the fourth source, which in this case is memory.
287 ///
Craig Topper5f8419d2016-08-22 07:38:50 +0000288 MRMSrcMemOp4 = 35,
Craig Topper9b20fec2016-08-22 07:38:45 +0000289
Craig Topper61b62e52016-08-22 07:38:41 +0000290 /// MRMXm - This form is used for instructions that use the Mod/RM byte
291 /// to specify a memory source, but doesn't use the middle field.
292 ///
293 MRMXm = 39, // Instruction that uses Mod/RM but not the middle field.
Evan Cheng7e763d82011-07-25 18:43:53 +0000294
295 // Next, instructions that operate on a memory r/m operand...
Craig Topper61b62e52016-08-22 07:38:41 +0000296 MRM0m = 40, MRM1m = 41, MRM2m = 42, MRM3m = 43, // Format /0 /1 /2 /3
297 MRM4m = 44, MRM5m = 45, MRM6m = 46, MRM7m = 47, // Format /4 /5 /6 /7
Evan Cheng7e763d82011-07-25 18:43:53 +0000298
Craig Topper61b62e52016-08-22 07:38:41 +0000299 /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
300 /// to specify a destination, which in this case is a register.
301 ///
302 MRMDestReg = 48,
303
304 /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
305 /// to specify a source, which in this case is a register.
306 ///
307 MRMSrcReg = 49,
308
Craig Topper5f8419d2016-08-22 07:38:50 +0000309 /// MRMSrcReg4VOp3 - This form is used for instructions that encode
310 /// operand 3 with VEX.VVVV and do not load from memory.
311 ///
312 MRMSrcReg4VOp3 = 50,
313
Craig Topper9b20fec2016-08-22 07:38:45 +0000314 /// MRMSrcRegOp4 - This form is used for instructions that use the Mod/RM
315 /// byte to specify the fourth source, which in this case is a register.
316 ///
Craig Topper5f8419d2016-08-22 07:38:50 +0000317 MRMSrcRegOp4 = 51,
Craig Topper9b20fec2016-08-22 07:38:45 +0000318
Craig Topper61b62e52016-08-22 07:38:41 +0000319 /// MRMXr - This form is used for instructions that use the Mod/RM byte
320 /// to specify a register source, but doesn't use the middle field.
321 ///
322 MRMXr = 55, // Instruction that uses Mod/RM but not the middle field.
323
324 // Instructions that operate on a register r/m operand...
325 MRM0r = 56, MRM1r = 57, MRM2r = 58, MRM3r = 59, // Format /0 /1 /2 /3
326 MRM4r = 60, MRM5r = 61, MRM6r = 62, MRM7r = 63, // Format /4 /5 /6 /7
327
328 /// MRM_XX - A mod/rm byte of exactly 0xXX.
329 MRM_C0 = 64, MRM_C1 = 65, MRM_C2 = 66, MRM_C3 = 67,
330 MRM_C4 = 68, MRM_C5 = 69, MRM_C6 = 70, MRM_C7 = 71,
331 MRM_C8 = 72, MRM_C9 = 73, MRM_CA = 74, MRM_CB = 75,
332 MRM_CC = 76, MRM_CD = 77, MRM_CE = 78, MRM_CF = 79,
333 MRM_D0 = 80, MRM_D1 = 81, MRM_D2 = 82, MRM_D3 = 83,
334 MRM_D4 = 84, MRM_D5 = 85, MRM_D6 = 86, MRM_D7 = 87,
335 MRM_D8 = 88, MRM_D9 = 89, MRM_DA = 90, MRM_DB = 91,
336 MRM_DC = 92, MRM_DD = 93, MRM_DE = 94, MRM_DF = 95,
337 MRM_E0 = 96, MRM_E1 = 97, MRM_E2 = 98, MRM_E3 = 99,
338 MRM_E4 = 100, MRM_E5 = 101, MRM_E6 = 102, MRM_E7 = 103,
339 MRM_E8 = 104, MRM_E9 = 105, MRM_EA = 106, MRM_EB = 107,
340 MRM_EC = 108, MRM_ED = 109, MRM_EE = 110, MRM_EF = 111,
341 MRM_F0 = 112, MRM_F1 = 113, MRM_F2 = 114, MRM_F3 = 115,
342 MRM_F4 = 116, MRM_F5 = 117, MRM_F6 = 118, MRM_F7 = 119,
343 MRM_F8 = 120, MRM_F9 = 121, MRM_FA = 122, MRM_FB = 123,
344 MRM_FC = 124, MRM_FD = 125, MRM_FE = 126, MRM_FF = 127,
Evan Cheng7e763d82011-07-25 18:43:53 +0000345
Craig Topper56f0ed812014-02-19 08:25:02 +0000346 FormMask = 127,
Evan Cheng7e763d82011-07-25 18:43:53 +0000347
348 //===------------------------------------------------------------------===//
349 // Actual flags...
350
Craig Topperfa6298a2014-02-02 09:25:09 +0000351 // OpSize - OpSizeFixed implies instruction never needs a 0x66 prefix.
352 // OpSize16 means this is a 16-bit instruction and needs 0x66 prefix in
353 // 32-bit mode. OpSize32 means this is a 32-bit instruction needs a 0x66
354 // prefix in 16-bit mode.
Craig Topper56f0ed812014-02-19 08:25:02 +0000355 OpSizeShift = 7,
Craig Topperfa6298a2014-02-02 09:25:09 +0000356 OpSizeMask = 0x3 << OpSizeShift,
357
Craig Topperb86338f2014-12-24 06:05:22 +0000358 OpSizeFixed = 0 << OpSizeShift,
359 OpSize16 = 1 << OpSizeShift,
360 OpSize32 = 2 << OpSizeShift,
Evan Cheng7e763d82011-07-25 18:43:53 +0000361
Craig Topperb86338f2014-12-24 06:05:22 +0000362 // AsSize - AdSizeX implies this instruction determines its need of 0x67
363 // prefix from a normal ModRM memory operand. The other types indicate that
364 // an operand is encoded with a specific width and a prefix is needed if
365 // it differs from the current mode.
Craig Topper56f0ed812014-02-19 08:25:02 +0000366 AdSizeShift = OpSizeShift + 2,
Craig Topperb86338f2014-12-24 06:05:22 +0000367 AdSizeMask = 0x3 << AdSizeShift,
368
369 AdSizeX = 1 << AdSizeShift,
370 AdSize16 = 1 << AdSizeShift,
371 AdSize32 = 2 << AdSizeShift,
372 AdSize64 = 3 << AdSizeShift,
Evan Cheng7e763d82011-07-25 18:43:53 +0000373
374 //===------------------------------------------------------------------===//
Craig Topper10243c82014-01-31 08:47:06 +0000375 // OpPrefix - There are several prefix bytes that are used as opcode
376 // extensions. These are 0x66, 0xF3, and 0xF2. If this field is 0 there is
377 // no prefix.
Evan Cheng7e763d82011-07-25 18:43:53 +0000378 //
Craig Topperb86338f2014-12-24 06:05:22 +0000379 OpPrefixShift = AdSizeShift + 2,
Craig Topper5ccb6172014-02-18 00:21:49 +0000380 OpPrefixMask = 0x7 << OpPrefixShift,
Yunzhong Gaob8bbcbf2013-09-27 18:38:42 +0000381
Craig Topper5ccb6172014-02-18 00:21:49 +0000382 // PS, PD - Prefix code for packed single and double precision vector
383 // floating point operations performed in the SSE registers.
384 PS = 1 << OpPrefixShift, PD = 2 << OpPrefixShift,
Craig Topperae11aed2014-01-14 07:41:20 +0000385
Craig Topper10243c82014-01-31 08:47:06 +0000386 // XS, XD - These prefix codes are for single and double precision scalar
387 // floating point operations performed in the SSE registers.
Craig Topper5ccb6172014-02-18 00:21:49 +0000388 XS = 3 << OpPrefixShift, XD = 4 << OpPrefixShift,
Craig Topperae11aed2014-01-14 07:41:20 +0000389
Craig Topper10243c82014-01-31 08:47:06 +0000390 //===------------------------------------------------------------------===//
391 // OpMap - This field determines which opcode map this instruction
392 // belongs to. i.e. one-byte, two-byte, 0x0f 0x38, 0x0f 0x3a, etc.
393 //
Craig Topper5ccb6172014-02-18 00:21:49 +0000394 OpMapShift = OpPrefixShift + 3,
Craig Topper56f0ed812014-02-19 08:25:02 +0000395 OpMapMask = 0x7 << OpMapShift,
Craig Topper10243c82014-01-31 08:47:06 +0000396
397 // OB - OneByte - Set if this instruction has a one byte opcode.
398 OB = 0 << OpMapShift,
399
400 // TB - TwoByte - Set if this instruction has a two byte opcode, which
401 // starts with a 0x0F byte before the real opcode.
402 TB = 1 << OpMapShift,
403
404 // T8, TA - Prefix after the 0x0F prefix.
405 T8 = 2 << OpMapShift, TA = 3 << OpMapShift,
406
407 // XOP8 - Prefix to include use of imm byte.
408 XOP8 = 4 << OpMapShift,
409
410 // XOP9 - Prefix to exclude use of imm byte.
411 XOP9 = 5 << OpMapShift,
412
413 // XOPA - Prefix to encode 0xA in VEX.MMMM of XOP instructions.
414 XOPA = 6 << OpMapShift,
415
Evan Cheng7e763d82011-07-25 18:43:53 +0000416 //===------------------------------------------------------------------===//
417 // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
418 // They are used to specify GPRs and SSE registers, 64-bit operand size,
419 // etc. We only cares about REX.W and REX.R bits and only the former is
420 // statically determined.
421 //
Craig Topper56f0ed812014-02-19 08:25:02 +0000422 REXShift = OpMapShift + 3,
Evan Cheng7e763d82011-07-25 18:43:53 +0000423 REX_W = 1 << REXShift,
424
425 //===------------------------------------------------------------------===//
426 // This three-bit field describes the size of an immediate operand. Zero is
427 // unused so that we can tell if we forgot to set a value.
428 ImmShift = REXShift + 1,
David Woodhouse0b6c9492014-01-30 22:20:41 +0000429 ImmMask = 15 << ImmShift,
Evan Cheng7e763d82011-07-25 18:43:53 +0000430 Imm8 = 1 << ImmShift,
431 Imm8PCRel = 2 << ImmShift,
Craig Topperca0eda32016-08-22 01:37:19 +0000432 Imm8Reg = 3 << ImmShift,
433 Imm16 = 4 << ImmShift,
434 Imm16PCRel = 5 << ImmShift,
435 Imm32 = 6 << ImmShift,
436 Imm32PCRel = 7 << ImmShift,
437 Imm32S = 8 << ImmShift,
438 Imm64 = 9 << ImmShift,
Evan Cheng7e763d82011-07-25 18:43:53 +0000439
440 //===------------------------------------------------------------------===//
441 // FP Instruction Classification... Zero is non-fp instruction.
442
443 // FPTypeMask - Mask for all of the FP types...
David Woodhouse0b6c9492014-01-30 22:20:41 +0000444 FPTypeShift = ImmShift + 4,
Evan Cheng7e763d82011-07-25 18:43:53 +0000445 FPTypeMask = 7 << FPTypeShift,
446
447 // NotFP - The default, set for instructions that do not use FP registers.
448 NotFP = 0 << FPTypeShift,
449
450 // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
451 ZeroArgFP = 1 << FPTypeShift,
452
453 // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
454 OneArgFP = 2 << FPTypeShift,
455
456 // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
457 // result back to ST(0). For example, fcos, fsqrt, etc.
458 //
459 OneArgFPRW = 3 << FPTypeShift,
460
461 // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
462 // explicit argument, storing the result to either ST(0) or the implicit
463 // argument. For example: fadd, fsub, fmul, etc...
464 TwoArgFP = 4 << FPTypeShift,
465
466 // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
467 // explicit argument, but have no destination. Example: fucom, fucomi, ...
468 CompareFP = 5 << FPTypeShift,
469
470 // CondMovFP - "2 operand" floating point conditional move instructions.
471 CondMovFP = 6 << FPTypeShift,
472
473 // SpecialFP - Special instruction forms. Dispatch by opcode explicitly.
474 SpecialFP = 7 << FPTypeShift,
475
476 // Lock prefix
477 LOCKShift = FPTypeShift + 3,
478 LOCK = 1 << LOCKShift,
479
Craig Topperec688662014-01-31 07:00:55 +0000480 // REP prefix
481 REPShift = LOCKShift + 1,
482 REP = 1 << REPShift,
483
484 // Execution domain for SSE instructions.
485 // 0 means normal, non-SSE instruction.
486 SSEDomainShift = REPShift + 1,
Evan Cheng7e763d82011-07-25 18:43:53 +0000487
Craig Topperd402df32014-02-02 07:08:01 +0000488 // Encoding
489 EncodingShift = SSEDomainShift + 2,
490 EncodingMask = 0x3 << EncodingShift,
491
492 // VEX - encoding using 0xC4/0xC5
Craig Topperf655cdd2014-11-11 07:32:32 +0000493 VEX = 1 << EncodingShift,
Craig Topperd402df32014-02-02 07:08:01 +0000494
495 /// XOP - Opcode prefix used by XOP instructions.
Craig Topperf655cdd2014-11-11 07:32:32 +0000496 XOP = 2 << EncodingShift,
Craig Topperd402df32014-02-02 07:08:01 +0000497
498 // VEX_EVEX - Specifies that this instruction use EVEX form which provides
499 // syntax support up to 32 512-bit register operands and up to 7 16-bit
500 // mask operands as well as source operand data swizzling/memory operand
501 // conversion, eviction hint, and rounding mode.
Craig Topperf655cdd2014-11-11 07:32:32 +0000502 EVEX = 3 << EncodingShift,
Craig Topperd402df32014-02-02 07:08:01 +0000503
504 // Opcode
505 OpcodeShift = EncodingShift + 2,
Evan Cheng7e763d82011-07-25 18:43:53 +0000506
Evan Cheng7e763d82011-07-25 18:43:53 +0000507 /// VEX_W - Has a opcode specific functionality, but is used in the same
508 /// way as REX_W is for regular SSE instructions.
Craig Topperf655cdd2014-11-11 07:32:32 +0000509 VEX_WShift = OpcodeShift + 8,
510 VEX_W = 1ULL << VEX_WShift,
Evan Cheng7e763d82011-07-25 18:43:53 +0000511
512 /// VEX_4V - Used to specify an additional AVX/SSE register. Several 2
513 /// address instructions in SSE are represented as 3 address ones in AVX
514 /// and the additional register is encoded in VEX_VVVV prefix.
Craig Topperf655cdd2014-11-11 07:32:32 +0000515 VEX_4VShift = VEX_WShift + 1,
516 VEX_4V = 1ULL << VEX_4VShift,
Evan Cheng7e763d82011-07-25 18:43:53 +0000517
Evan Cheng7e763d82011-07-25 18:43:53 +0000518 /// VEX_L - Stands for a bit in the VEX opcode prefix meaning the current
519 /// instruction uses 256-bit wide registers. This is usually auto detected
520 /// if a VR256 register is used, but some AVX instructions also have this
521 /// field marked when using a f256 memory references.
Craig Topper5f8419d2016-08-22 07:38:50 +0000522 VEX_LShift = VEX_4VShift + 1,
Craig Topperf655cdd2014-11-11 07:32:32 +0000523 VEX_L = 1ULL << VEX_LShift,
Evan Cheng7e763d82011-07-25 18:43:53 +0000524
Elena Demikhovsky003e7d72013-07-28 08:28:38 +0000525 // EVEX_K - Set if this instruction requires masking
Craig Topper52254122016-08-22 01:37:16 +0000526 EVEX_KShift = VEX_LShift + 1,
Craig Topperf655cdd2014-11-11 07:32:32 +0000527 EVEX_K = 1ULL << EVEX_KShift,
Elena Demikhovsky003e7d72013-07-28 08:28:38 +0000528
529 // EVEX_Z - Set if this instruction has EVEX.Z field set.
Craig Topperf655cdd2014-11-11 07:32:32 +0000530 EVEX_ZShift = EVEX_KShift + 1,
531 EVEX_Z = 1ULL << EVEX_ZShift,
Elena Demikhovsky003e7d72013-07-28 08:28:38 +0000532
533 // EVEX_L2 - Set if this instruction has EVEX.L' field set.
Craig Topperf655cdd2014-11-11 07:32:32 +0000534 EVEX_L2Shift = EVEX_ZShift + 1,
535 EVEX_L2 = 1ULL << EVEX_L2Shift,
Elena Demikhovsky003e7d72013-07-28 08:28:38 +0000536
537 // EVEX_B - Set if this instruction has EVEX.B field set.
Craig Topperf655cdd2014-11-11 07:32:32 +0000538 EVEX_BShift = EVEX_L2Shift + 1,
539 EVEX_B = 1ULL << EVEX_BShift,
Elena Demikhovsky003e7d72013-07-28 08:28:38 +0000540
Adam Nemet54adb0f2014-07-17 17:04:50 +0000541 // The scaling factor for the AVX512's 8-bit compressed displacement.
Craig Topperf655cdd2014-11-11 07:32:32 +0000542 CD8_Scale_Shift = EVEX_BShift + 1,
543 CD8_Scale_Mask = 127ULL << CD8_Scale_Shift,
Elena Demikhovsky003e7d72013-07-28 08:28:38 +0000544
Evan Cheng7e763d82011-07-25 18:43:53 +0000545 /// Has3DNow0F0FOpcode - This flag indicates that the instruction uses the
546 /// wacky 0x0F 0x0F prefix for 3DNow! instructions. The manual documents
547 /// this as having a 0x0F prefix with a 0x0F opcode, and each instruction
548 /// storing a classifier in the imm8 field. To simplify our implementation,
549 /// we handle this by storeing the classifier in the opcode field and using
550 /// this flag to indicate that the encoder should do the wacky 3DNow! thing.
Adam Nemet54adb0f2014-07-17 17:04:50 +0000551 Has3DNow0F0FOpcodeShift = CD8_Scale_Shift + 7,
Craig Topperf655cdd2014-11-11 07:32:32 +0000552 Has3DNow0F0FOpcode = 1ULL << Has3DNow0F0FOpcodeShift,
Bruno Cardoso Lopes0f9a1f52011-11-25 19:33:42 +0000553
Elena Demikhovskyb19c9dc2014-01-13 12:55:03 +0000554 /// Explicitly specified rounding control
Craig Topper9b20fec2016-08-22 07:38:45 +0000555 EVEX_RCShift = Has3DNow0F0FOpcodeShift + 1,
Craig Topperf655cdd2014-11-11 07:32:32 +0000556 EVEX_RC = 1ULL << EVEX_RCShift
Evan Cheng7e763d82011-07-25 18:43:53 +0000557 };
558
559 // getBaseOpcodeFor - This function returns the "base" X86 opcode for the
560 // specified machine instruction.
561 //
Chandler Carruth5c0997f2012-06-20 08:39:33 +0000562 inline unsigned char getBaseOpcodeFor(uint64_t TSFlags) {
Evan Cheng7e763d82011-07-25 18:43:53 +0000563 return TSFlags >> X86II::OpcodeShift;
564 }
565
Chandler Carruth5c0997f2012-06-20 08:39:33 +0000566 inline bool hasImm(uint64_t TSFlags) {
Evan Cheng7e763d82011-07-25 18:43:53 +0000567 return (TSFlags & X86II::ImmMask) != 0;
568 }
569
570 /// getSizeOfImm - Decode the "size of immediate" field from the TSFlags field
571 /// of the specified instruction.
Chandler Carruth5c0997f2012-06-20 08:39:33 +0000572 inline unsigned getSizeOfImm(uint64_t TSFlags) {
Evan Cheng7e763d82011-07-25 18:43:53 +0000573 switch (TSFlags & X86II::ImmMask) {
Craig Topper4ed72782012-02-05 05:38:58 +0000574 default: llvm_unreachable("Unknown immediate size");
Evan Cheng7e763d82011-07-25 18:43:53 +0000575 case X86II::Imm8:
Craig Topperca0eda32016-08-22 01:37:19 +0000576 case X86II::Imm8PCRel:
577 case X86II::Imm8Reg: return 1;
Evan Cheng7e763d82011-07-25 18:43:53 +0000578 case X86II::Imm16:
579 case X86II::Imm16PCRel: return 2;
580 case X86II::Imm32:
David Woodhouse0b6c9492014-01-30 22:20:41 +0000581 case X86II::Imm32S:
Evan Cheng7e763d82011-07-25 18:43:53 +0000582 case X86II::Imm32PCRel: return 4;
583 case X86II::Imm64: return 8;
584 }
585 }
586
587 /// isImmPCRel - Return true if the immediate of the specified instruction's
588 /// TSFlags indicates that it is pc relative.
Chandler Carruth5c0997f2012-06-20 08:39:33 +0000589 inline unsigned isImmPCRel(uint64_t TSFlags) {
Evan Cheng7e763d82011-07-25 18:43:53 +0000590 switch (TSFlags & X86II::ImmMask) {
Craig Topper4ed72782012-02-05 05:38:58 +0000591 default: llvm_unreachable("Unknown immediate size");
Evan Cheng7e763d82011-07-25 18:43:53 +0000592 case X86II::Imm8PCRel:
593 case X86II::Imm16PCRel:
594 case X86II::Imm32PCRel:
595 return true;
596 case X86II::Imm8:
Craig Topperca0eda32016-08-22 01:37:19 +0000597 case X86II::Imm8Reg:
Evan Cheng7e763d82011-07-25 18:43:53 +0000598 case X86II::Imm16:
599 case X86II::Imm32:
David Woodhouse0b6c9492014-01-30 22:20:41 +0000600 case X86II::Imm32S:
601 case X86II::Imm64:
602 return false;
603 }
604 }
605
606 /// isImmSigned - Return true if the immediate of the specified instruction's
607 /// TSFlags indicates that it is signed.
608 inline unsigned isImmSigned(uint64_t TSFlags) {
609 switch (TSFlags & X86II::ImmMask) {
610 default: llvm_unreachable("Unknown immediate signedness");
611 case X86II::Imm32S:
612 return true;
613 case X86II::Imm8:
614 case X86II::Imm8PCRel:
Craig Topperca0eda32016-08-22 01:37:19 +0000615 case X86II::Imm8Reg:
David Woodhouse0b6c9492014-01-30 22:20:41 +0000616 case X86II::Imm16:
617 case X86II::Imm16PCRel:
618 case X86II::Imm32:
619 case X86II::Imm32PCRel:
Evan Cheng7e763d82011-07-25 18:43:53 +0000620 case X86II::Imm64:
621 return false;
622 }
623 }
624
Preston Gurdddf96b52013-04-10 20:11:59 +0000625 /// getOperandBias - compute any additional adjustment needed to
626 /// the offset to the start of the memory operand
627 /// in this instruction.
628 /// If this is a two-address instruction,skip one of the register operands.
629 /// FIXME: This should be handled during MCInst lowering.
Craig Topper5ef7a0f2016-08-25 04:16:10 +0000630 inline unsigned getOperandBias(const MCInstrDesc& Desc)
Preston Gurdddf96b52013-04-10 20:11:59 +0000631 {
632 unsigned NumOps = Desc.getNumOperands();
Preston Gurdddf96b52013-04-10 20:11:59 +0000633 if (NumOps > 1 && Desc.getOperandConstraint(1, MCOI::TIED_TO) == 0)
Craig Topper5ef7a0f2016-08-25 04:16:10 +0000634 return 1;
635 if (NumOps > 3 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
636 Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1)
Elena Demikhovsky003e7d72013-07-28 08:28:38 +0000637 // Special case for AVX-512 GATHER with 2 TIED_TO operands
638 // Skip the first 2 operands: dst, mask_wb
Craig Topper5ef7a0f2016-08-25 04:16:10 +0000639 return 2;
640 if (NumOps > 3 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
641 Desc.getOperandConstraint(NumOps - 1, MCOI::TIED_TO) == 1)
Preston Gurdddf96b52013-04-10 20:11:59 +0000642 // Special case for GATHER with 2 TIED_TO operands
643 // Skip the first 2 operands: dst, mask_wb
Craig Topper5ef7a0f2016-08-25 04:16:10 +0000644 return 2;
645 if (NumOps > 2 && Desc.getOperandConstraint(NumOps - 2, MCOI::TIED_TO) == 0)
Elena Demikhovsky003e7d72013-07-28 08:28:38 +0000646 // SCATTER
Craig Topper5ef7a0f2016-08-25 04:16:10 +0000647 return 1;
648 return 0;
Preston Gurdddf96b52013-04-10 20:11:59 +0000649 }
650
Evan Cheng7e763d82011-07-25 18:43:53 +0000651 /// getMemoryOperandNo - The function returns the MCInst operand # for the
652 /// first field of the memory operand. If the instruction doesn't have a
653 /// memory operand, this returns -1.
654 ///
655 /// Note that this ignores tied operands. If there is a tied register which
656 /// is duplicated in the MCInst (e.g. "EAX = addl EAX, [mem]") it is only
657 /// counted as one operand.
658 ///
Craig Topper477649a2016-04-28 05:58:46 +0000659 inline int getMemoryOperandNo(uint64_t TSFlags) {
Craig Topperf655cdd2014-11-11 07:32:32 +0000660 bool HasVEX_4V = TSFlags & X86II::VEX_4V;
Craig Topperf655cdd2014-11-11 07:32:32 +0000661 bool HasEVEX_K = TSFlags & X86II::EVEX_K;
662
Evan Cheng7e763d82011-07-25 18:43:53 +0000663 switch (TSFlags & X86II::FormMask) {
Craig Topper4ed72782012-02-05 05:38:58 +0000664 default: llvm_unreachable("Unknown FormMask value in getMemoryOperandNo!");
Evan Cheng7e763d82011-07-25 18:43:53 +0000665 case X86II::Pseudo:
666 case X86II::RawFrm:
667 case X86II::AddRegFrm:
Evan Cheng7e763d82011-07-25 18:43:53 +0000668 case X86II::RawFrmImm8:
669 case X86II::RawFrmImm16:
Craig Topper35da3d12014-01-16 07:36:58 +0000670 case X86II::RawFrmMemOffs:
David Woodhouse2ef8d9c2014-01-22 15:08:08 +0000671 case X86II::RawFrmSrc:
David Woodhouseb33c2ef2014-01-22 15:08:21 +0000672 case X86II::RawFrmDst:
David Woodhouse9bbf7ca2014-01-22 15:08:36 +0000673 case X86II::RawFrmDstSrc:
Craig Topper3fb423e2015-12-25 17:07:24 +0000674 return -1;
Evan Cheng7e763d82011-07-25 18:43:53 +0000675 case X86II::MRMDestMem:
676 return 0;
Craig Topper3dcdde22015-01-05 08:19:10 +0000677 case X86II::MRMSrcMem:
678 // Start from 1, skip any registers encoded in VEX_VVVV or I8IMM, or a
679 // mask register.
Craig Topper9b20fec2016-08-22 07:38:45 +0000680 return 1 + HasVEX_4V + HasEVEX_K;
Craig Topper5f8419d2016-08-22 07:38:50 +0000681 case X86II::MRMSrcMem4VOp3:
682 // Skip registers encoded in reg.
683 return 1 + HasEVEX_K;
Craig Topper9b20fec2016-08-22 07:38:45 +0000684 case X86II::MRMSrcMemOp4:
685 // Skip registers encoded in reg, VEX_VVVV, and I8IMM.
686 return 3;
Craig Topper61b62e52016-08-22 07:38:41 +0000687 case X86II::MRMDestReg:
688 case X86II::MRMSrcReg:
Craig Topper5f8419d2016-08-22 07:38:50 +0000689 case X86II::MRMSrcReg4VOp3:
Craig Topper9b20fec2016-08-22 07:38:45 +0000690 case X86II::MRMSrcRegOp4:
Craig Toppera0869dc2014-02-10 06:55:41 +0000691 case X86II::MRMXr:
Evan Cheng7e763d82011-07-25 18:43:53 +0000692 case X86II::MRM0r: case X86II::MRM1r:
693 case X86II::MRM2r: case X86II::MRM3r:
694 case X86II::MRM4r: case X86II::MRM5r:
695 case X86II::MRM6r: case X86II::MRM7r:
696 return -1;
Craig Toppera0869dc2014-02-10 06:55:41 +0000697 case X86II::MRMXm:
Evan Cheng7e763d82011-07-25 18:43:53 +0000698 case X86II::MRM0m: case X86II::MRM1m:
699 case X86II::MRM2m: case X86II::MRM3m:
700 case X86II::MRM4m: case X86II::MRM5m:
Craig Topper3dcdde22015-01-05 08:19:10 +0000701 case X86II::MRM6m: case X86II::MRM7m:
702 // Start from 0, skip registers encoded in VEX_VVVV or a mask register.
703 return 0 + HasVEX_4V + HasEVEX_K;
Craig Topper0d1fd552014-02-19 05:34:21 +0000704 case X86II::MRM_C0: case X86II::MRM_C1: case X86II::MRM_C2:
Craig Topper3453a432015-12-25 17:07:30 +0000705 case X86II::MRM_C3: case X86II::MRM_C4: case X86II::MRM_C5:
706 case X86II::MRM_C6: case X86II::MRM_C7: case X86II::MRM_C8:
Craig Topper0d1fd552014-02-19 05:34:21 +0000707 case X86II::MRM_C9: case X86II::MRM_CA: case X86II::MRM_CB:
Craig Topper3453a432015-12-25 17:07:30 +0000708 case X86II::MRM_CC: case X86II::MRM_CD: case X86II::MRM_CE:
Kevin Enderby0d928a12014-07-31 23:57:38 +0000709 case X86II::MRM_CF: case X86II::MRM_D0: case X86II::MRM_D1:
Craig Topper3453a432015-12-25 17:07:30 +0000710 case X86II::MRM_D2: case X86II::MRM_D3: case X86II::MRM_D4:
711 case X86II::MRM_D5: case X86II::MRM_D6: case X86II::MRM_D7:
712 case X86II::MRM_D8: case X86II::MRM_D9: case X86II::MRM_DA:
713 case X86II::MRM_DB: case X86II::MRM_DC: case X86II::MRM_DD:
714 case X86II::MRM_DE: case X86II::MRM_DF: case X86II::MRM_E0:
715 case X86II::MRM_E1: case X86II::MRM_E2: case X86II::MRM_E3:
716 case X86II::MRM_E4: case X86II::MRM_E5: case X86II::MRM_E6:
717 case X86II::MRM_E7: case X86II::MRM_E8: case X86II::MRM_E9:
718 case X86II::MRM_EA: case X86II::MRM_EB: case X86II::MRM_EC:
719 case X86II::MRM_ED: case X86II::MRM_EE: case X86II::MRM_EF:
720 case X86II::MRM_F0: case X86II::MRM_F1: case X86II::MRM_F2:
721 case X86II::MRM_F3: case X86II::MRM_F4: case X86II::MRM_F5:
722 case X86II::MRM_F6: case X86II::MRM_F7: case X86II::MRM_F8:
723 case X86II::MRM_F9: case X86II::MRM_FA: case X86II::MRM_FB:
724 case X86II::MRM_FC: case X86II::MRM_FD: case X86II::MRM_FE:
725 case X86II::MRM_FF:
Evan Cheng7e763d82011-07-25 18:43:53 +0000726 return -1;
727 }
728 }
729
730 /// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended (r8 or
731 /// higher) register? e.g. r8, xmm8, xmm13, etc.
Chandler Carruth5c0997f2012-06-20 08:39:33 +0000732 inline bool isX86_64ExtendedReg(unsigned RegNo) {
Craig Toppera11be0b2016-02-26 05:29:35 +0000733 if ((RegNo >= X86::XMM8 && RegNo <= X86::XMM15) ||
734 (RegNo >= X86::XMM24 && RegNo <= X86::XMM31) ||
735 (RegNo >= X86::YMM8 && RegNo <= X86::YMM15) ||
736 (RegNo >= X86::YMM24 && RegNo <= X86::YMM31) ||
737 (RegNo >= X86::ZMM8 && RegNo <= X86::ZMM15) ||
738 (RegNo >= X86::ZMM24 && RegNo <= X86::ZMM31))
Elena Demikhovsky003e7d72013-07-28 08:28:38 +0000739 return true;
740
Evan Cheng7e763d82011-07-25 18:43:53 +0000741 switch (RegNo) {
742 default: break;
743 case X86::R8: case X86::R9: case X86::R10: case X86::R11:
744 case X86::R12: case X86::R13: case X86::R14: case X86::R15:
745 case X86::R8D: case X86::R9D: case X86::R10D: case X86::R11D:
746 case X86::R12D: case X86::R13D: case X86::R14D: case X86::R15D:
747 case X86::R8W: case X86::R9W: case X86::R10W: case X86::R11W:
748 case X86::R12W: case X86::R13W: case X86::R14W: case X86::R15W:
749 case X86::R8B: case X86::R9B: case X86::R10B: case X86::R11B:
750 case X86::R12B: case X86::R13B: case X86::R14B: case X86::R15B:
Evan Cheng7e763d82011-07-25 18:43:53 +0000751 case X86::CR8: case X86::CR9: case X86::CR10: case X86::CR11:
752 case X86::CR12: case X86::CR13: case X86::CR14: case X86::CR15:
Craig Topper3fb423e2015-12-25 17:07:24 +0000753 return true;
Evan Cheng7e763d82011-07-25 18:43:53 +0000754 }
755 return false;
756 }
Elena Demikhovsky003e7d72013-07-28 08:28:38 +0000757
758 /// is32ExtendedReg - Is the MemoryOperand a 32 extended (zmm16 or higher)
759 /// registers? e.g. zmm21, etc.
760 static inline bool is32ExtendedReg(unsigned RegNo) {
Craig Toppera11be0b2016-02-26 05:29:35 +0000761 return ((RegNo >= X86::XMM16 && RegNo <= X86::XMM31) ||
762 (RegNo >= X86::YMM16 && RegNo <= X86::YMM31) ||
763 (RegNo >= X86::ZMM16 && RegNo <= X86::ZMM31));
Elena Demikhovsky003e7d72013-07-28 08:28:38 +0000764 }
765
Michael Liao5bf95782014-12-04 05:20:33 +0000766
Chandler Carruth5c0997f2012-06-20 08:39:33 +0000767 inline bool isX86_64NonExtLowByteReg(unsigned reg) {
Evan Cheng7e763d82011-07-25 18:43:53 +0000768 return (reg == X86::SPL || reg == X86::BPL ||
769 reg == X86::SIL || reg == X86::DIL);
770 }
Alexander Kornienkof00654e2015-06-23 09:49:53 +0000771}
Evan Cheng7e763d82011-07-25 18:43:53 +0000772
Alexander Kornienkof00654e2015-06-23 09:49:53 +0000773} // end namespace llvm;
Evan Cheng7e763d82011-07-25 18:43:53 +0000774
775#endif