Chris Lattner | a65e2f7 | 2010-01-05 05:57:49 +0000 | [diff] [blame] | 1 | //===- InstCombineLoadStoreAlloca.cpp -------------------------------------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file implements the visit functions for load, store and alloca. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "InstCombine.h" |
| 15 | #include "llvm/IntrinsicInst.h" |
| 16 | #include "llvm/Target/TargetData.h" |
| 17 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| 18 | #include "llvm/Transforms/Utils/Local.h" |
| 19 | #include "llvm/ADT/Statistic.h" |
| 20 | using namespace llvm; |
| 21 | |
| 22 | STATISTIC(NumDeadStore, "Number of dead stores eliminated"); |
| 23 | |
| 24 | Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) { |
| 25 | // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1 |
| 26 | if (AI.isArrayAllocation()) { // Check C != 1 |
| 27 | if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) { |
| 28 | const Type *NewTy = |
| 29 | ArrayType::get(AI.getAllocatedType(), C->getZExtValue()); |
| 30 | assert(isa<AllocaInst>(AI) && "Unknown type of allocation inst!"); |
| 31 | AllocaInst *New = Builder->CreateAlloca(NewTy, 0, AI.getName()); |
| 32 | New->setAlignment(AI.getAlignment()); |
| 33 | |
| 34 | // Scan to the end of the allocation instructions, to skip over a block of |
| 35 | // allocas if possible...also skip interleaved debug info |
| 36 | // |
| 37 | BasicBlock::iterator It = New; |
| 38 | while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It)) ++It; |
| 39 | |
| 40 | // Now that I is pointing to the first non-allocation-inst in the block, |
| 41 | // insert our getelementptr instruction... |
| 42 | // |
| 43 | Value *NullIdx =Constant::getNullValue(Type::getInt32Ty(AI.getContext())); |
| 44 | Value *Idx[2]; |
| 45 | Idx[0] = NullIdx; |
| 46 | Idx[1] = NullIdx; |
| 47 | Value *V = GetElementPtrInst::CreateInBounds(New, Idx, Idx + 2, |
| 48 | New->getName()+".sub", It); |
| 49 | |
| 50 | // Now make everything use the getelementptr instead of the original |
| 51 | // allocation. |
| 52 | return ReplaceInstUsesWith(AI, V); |
| 53 | } else if (isa<UndefValue>(AI.getArraySize())) { |
| 54 | return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType())); |
| 55 | } |
| 56 | } |
| 57 | |
| 58 | if (TD && isa<AllocaInst>(AI) && AI.getAllocatedType()->isSized()) { |
| 59 | // If alloca'ing a zero byte object, replace the alloca with a null pointer. |
| 60 | // Note that we only do this for alloca's, because malloc should allocate |
| 61 | // and return a unique pointer, even for a zero byte allocation. |
| 62 | if (TD->getTypeAllocSize(AI.getAllocatedType()) == 0) |
| 63 | return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType())); |
| 64 | |
| 65 | // If the alignment is 0 (unspecified), assign it the preferred alignment. |
| 66 | if (AI.getAlignment() == 0) |
| 67 | AI.setAlignment(TD->getPrefTypeAlignment(AI.getAllocatedType())); |
| 68 | } |
| 69 | |
| 70 | return 0; |
| 71 | } |
| 72 | |
| 73 | |
| 74 | /// InstCombineLoadCast - Fold 'load (cast P)' -> cast (load P)' when possible. |
| 75 | static Instruction *InstCombineLoadCast(InstCombiner &IC, LoadInst &LI, |
| 76 | const TargetData *TD) { |
| 77 | User *CI = cast<User>(LI.getOperand(0)); |
| 78 | Value *CastOp = CI->getOperand(0); |
| 79 | |
| 80 | const PointerType *DestTy = cast<PointerType>(CI->getType()); |
| 81 | const Type *DestPTy = DestTy->getElementType(); |
| 82 | if (const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) { |
| 83 | |
| 84 | // If the address spaces don't match, don't eliminate the cast. |
| 85 | if (DestTy->getAddressSpace() != SrcTy->getAddressSpace()) |
| 86 | return 0; |
| 87 | |
| 88 | const Type *SrcPTy = SrcTy->getElementType(); |
| 89 | |
| 90 | if (DestPTy->isInteger() || isa<PointerType>(DestPTy) || |
| 91 | isa<VectorType>(DestPTy)) { |
| 92 | // If the source is an array, the code below will not succeed. Check to |
| 93 | // see if a trivial 'gep P, 0, 0' will help matters. Only do this for |
| 94 | // constants. |
| 95 | if (const ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy)) |
| 96 | if (Constant *CSrc = dyn_cast<Constant>(CastOp)) |
| 97 | if (ASrcTy->getNumElements() != 0) { |
| 98 | Value *Idxs[2]; |
| 99 | Idxs[0] = Constant::getNullValue(Type::getInt32Ty(LI.getContext())); |
| 100 | Idxs[1] = Idxs[0]; |
| 101 | CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs, 2); |
| 102 | SrcTy = cast<PointerType>(CastOp->getType()); |
| 103 | SrcPTy = SrcTy->getElementType(); |
| 104 | } |
| 105 | |
| 106 | if (IC.getTargetData() && |
| 107 | (SrcPTy->isInteger() || isa<PointerType>(SrcPTy) || |
| 108 | isa<VectorType>(SrcPTy)) && |
| 109 | // Do not allow turning this into a load of an integer, which is then |
| 110 | // casted to a pointer, this pessimizes pointer analysis a lot. |
| 111 | (isa<PointerType>(SrcPTy) == isa<PointerType>(LI.getType())) && |
| 112 | IC.getTargetData()->getTypeSizeInBits(SrcPTy) == |
| 113 | IC.getTargetData()->getTypeSizeInBits(DestPTy)) { |
| 114 | |
| 115 | // Okay, we are casting from one integer or pointer type to another of |
| 116 | // the same size. Instead of casting the pointer before the load, cast |
| 117 | // the result of the loaded value. |
| 118 | Value *NewLoad = |
| 119 | IC.Builder->CreateLoad(CastOp, LI.isVolatile(), CI->getName()); |
| 120 | // Now cast the result of the load. |
| 121 | return new BitCastInst(NewLoad, LI.getType()); |
| 122 | } |
| 123 | } |
| 124 | } |
| 125 | return 0; |
| 126 | } |
| 127 | |
| 128 | Instruction *InstCombiner::visitLoadInst(LoadInst &LI) { |
| 129 | Value *Op = LI.getOperand(0); |
| 130 | |
| 131 | // Attempt to improve the alignment. |
| 132 | if (TD) { |
| 133 | unsigned KnownAlign = |
| 134 | GetOrEnforceKnownAlignment(Op, TD->getPrefTypeAlignment(LI.getType())); |
| 135 | if (KnownAlign > |
| 136 | (LI.getAlignment() == 0 ? TD->getABITypeAlignment(LI.getType()) : |
| 137 | LI.getAlignment())) |
| 138 | LI.setAlignment(KnownAlign); |
| 139 | } |
| 140 | |
| 141 | // load (cast X) --> cast (load X) iff safe. |
| 142 | if (isa<CastInst>(Op)) |
| 143 | if (Instruction *Res = InstCombineLoadCast(*this, LI, TD)) |
| 144 | return Res; |
| 145 | |
| 146 | // None of the following transforms are legal for volatile loads. |
| 147 | if (LI.isVolatile()) return 0; |
| 148 | |
| 149 | // Do really simple store-to-load forwarding and load CSE, to catch cases |
| 150 | // where there are several consequtive memory accesses to the same location, |
| 151 | // separated by a few arithmetic operations. |
| 152 | BasicBlock::iterator BBI = &LI; |
| 153 | if (Value *AvailableVal = FindAvailableLoadedValue(Op, LI.getParent(), BBI,6)) |
| 154 | return ReplaceInstUsesWith(LI, AvailableVal); |
| 155 | |
| 156 | // load(gep null, ...) -> unreachable |
| 157 | if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) { |
| 158 | const Value *GEPI0 = GEPI->getOperand(0); |
| 159 | // TODO: Consider a target hook for valid address spaces for this xform. |
| 160 | if (isa<ConstantPointerNull>(GEPI0) && GEPI->getPointerAddressSpace() == 0){ |
| 161 | // Insert a new store to null instruction before the load to indicate |
| 162 | // that this code is not reachable. We do this instead of inserting |
| 163 | // an unreachable instruction directly because we cannot modify the |
| 164 | // CFG. |
| 165 | new StoreInst(UndefValue::get(LI.getType()), |
| 166 | Constant::getNullValue(Op->getType()), &LI); |
| 167 | return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType())); |
| 168 | } |
| 169 | } |
| 170 | |
| 171 | // load null/undef -> unreachable |
| 172 | // TODO: Consider a target hook for valid address spaces for this xform. |
| 173 | if (isa<UndefValue>(Op) || |
| 174 | (isa<ConstantPointerNull>(Op) && LI.getPointerAddressSpace() == 0)) { |
| 175 | // Insert a new store to null instruction before the load to indicate that |
| 176 | // this code is not reachable. We do this instead of inserting an |
| 177 | // unreachable instruction directly because we cannot modify the CFG. |
| 178 | new StoreInst(UndefValue::get(LI.getType()), |
| 179 | Constant::getNullValue(Op->getType()), &LI); |
| 180 | return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType())); |
| 181 | } |
| 182 | |
| 183 | // Instcombine load (constantexpr_cast global) -> cast (load global) |
| 184 | if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op)) |
| 185 | if (CE->isCast()) |
| 186 | if (Instruction *Res = InstCombineLoadCast(*this, LI, TD)) |
| 187 | return Res; |
| 188 | |
| 189 | if (Op->hasOneUse()) { |
| 190 | // Change select and PHI nodes to select values instead of addresses: this |
| 191 | // helps alias analysis out a lot, allows many others simplifications, and |
| 192 | // exposes redundancy in the code. |
| 193 | // |
| 194 | // Note that we cannot do the transformation unless we know that the |
| 195 | // introduced loads cannot trap! Something like this is valid as long as |
| 196 | // the condition is always false: load (select bool %C, int* null, int* %G), |
| 197 | // but it would not be valid if we transformed it to load from null |
| 198 | // unconditionally. |
| 199 | // |
| 200 | if (SelectInst *SI = dyn_cast<SelectInst>(Op)) { |
| 201 | // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2). |
| 202 | if (isSafeToLoadUnconditionally(SI->getOperand(1), SI) && |
| 203 | isSafeToLoadUnconditionally(SI->getOperand(2), SI)) { |
| 204 | Value *V1 = Builder->CreateLoad(SI->getOperand(1), |
| 205 | SI->getOperand(1)->getName()+".val"); |
| 206 | Value *V2 = Builder->CreateLoad(SI->getOperand(2), |
| 207 | SI->getOperand(2)->getName()+".val"); |
| 208 | return SelectInst::Create(SI->getCondition(), V1, V2); |
| 209 | } |
| 210 | |
| 211 | // load (select (cond, null, P)) -> load P |
| 212 | if (Constant *C = dyn_cast<Constant>(SI->getOperand(1))) |
| 213 | if (C->isNullValue()) { |
| 214 | LI.setOperand(0, SI->getOperand(2)); |
| 215 | return &LI; |
| 216 | } |
| 217 | |
| 218 | // load (select (cond, P, null)) -> load P |
| 219 | if (Constant *C = dyn_cast<Constant>(SI->getOperand(2))) |
| 220 | if (C->isNullValue()) { |
| 221 | LI.setOperand(0, SI->getOperand(1)); |
| 222 | return &LI; |
| 223 | } |
| 224 | } |
| 225 | } |
| 226 | return 0; |
| 227 | } |
| 228 | |
| 229 | /// InstCombineStoreToCast - Fold store V, (cast P) -> store (cast V), P |
| 230 | /// when possible. This makes it generally easy to do alias analysis and/or |
| 231 | /// SROA/mem2reg of the memory object. |
| 232 | static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) { |
| 233 | User *CI = cast<User>(SI.getOperand(1)); |
| 234 | Value *CastOp = CI->getOperand(0); |
| 235 | |
| 236 | const Type *DestPTy = cast<PointerType>(CI->getType())->getElementType(); |
| 237 | const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType()); |
| 238 | if (SrcTy == 0) return 0; |
| 239 | |
| 240 | const Type *SrcPTy = SrcTy->getElementType(); |
| 241 | |
| 242 | if (!DestPTy->isInteger() && !isa<PointerType>(DestPTy)) |
| 243 | return 0; |
| 244 | |
| 245 | /// NewGEPIndices - If SrcPTy is an aggregate type, we can emit a "noop gep" |
| 246 | /// to its first element. This allows us to handle things like: |
| 247 | /// store i32 xxx, (bitcast {foo*, float}* %P to i32*) |
| 248 | /// on 32-bit hosts. |
| 249 | SmallVector<Value*, 4> NewGEPIndices; |
| 250 | |
| 251 | // If the source is an array, the code below will not succeed. Check to |
| 252 | // see if a trivial 'gep P, 0, 0' will help matters. Only do this for |
| 253 | // constants. |
| 254 | if (isa<ArrayType>(SrcPTy) || isa<StructType>(SrcPTy)) { |
| 255 | // Index through pointer. |
| 256 | Constant *Zero = Constant::getNullValue(Type::getInt32Ty(SI.getContext())); |
| 257 | NewGEPIndices.push_back(Zero); |
| 258 | |
| 259 | while (1) { |
| 260 | if (const StructType *STy = dyn_cast<StructType>(SrcPTy)) { |
| 261 | if (!STy->getNumElements()) /* Struct can be empty {} */ |
| 262 | break; |
| 263 | NewGEPIndices.push_back(Zero); |
| 264 | SrcPTy = STy->getElementType(0); |
| 265 | } else if (const ArrayType *ATy = dyn_cast<ArrayType>(SrcPTy)) { |
| 266 | NewGEPIndices.push_back(Zero); |
| 267 | SrcPTy = ATy->getElementType(); |
| 268 | } else { |
| 269 | break; |
| 270 | } |
| 271 | } |
| 272 | |
| 273 | SrcTy = PointerType::get(SrcPTy, SrcTy->getAddressSpace()); |
| 274 | } |
| 275 | |
| 276 | if (!SrcPTy->isInteger() && !isa<PointerType>(SrcPTy)) |
| 277 | return 0; |
| 278 | |
| 279 | // If the pointers point into different address spaces or if they point to |
| 280 | // values with different sizes, we can't do the transformation. |
| 281 | if (!IC.getTargetData() || |
| 282 | SrcTy->getAddressSpace() != |
| 283 | cast<PointerType>(CI->getType())->getAddressSpace() || |
| 284 | IC.getTargetData()->getTypeSizeInBits(SrcPTy) != |
| 285 | IC.getTargetData()->getTypeSizeInBits(DestPTy)) |
| 286 | return 0; |
| 287 | |
| 288 | // Okay, we are casting from one integer or pointer type to another of |
| 289 | // the same size. Instead of casting the pointer before |
| 290 | // the store, cast the value to be stored. |
| 291 | Value *NewCast; |
| 292 | Value *SIOp0 = SI.getOperand(0); |
| 293 | Instruction::CastOps opcode = Instruction::BitCast; |
| 294 | const Type* CastSrcTy = SIOp0->getType(); |
| 295 | const Type* CastDstTy = SrcPTy; |
| 296 | if (isa<PointerType>(CastDstTy)) { |
| 297 | if (CastSrcTy->isInteger()) |
| 298 | opcode = Instruction::IntToPtr; |
| 299 | } else if (isa<IntegerType>(CastDstTy)) { |
| 300 | if (isa<PointerType>(SIOp0->getType())) |
| 301 | opcode = Instruction::PtrToInt; |
| 302 | } |
| 303 | |
| 304 | // SIOp0 is a pointer to aggregate and this is a store to the first field, |
| 305 | // emit a GEP to index into its first field. |
| 306 | if (!NewGEPIndices.empty()) |
| 307 | CastOp = IC.Builder->CreateInBoundsGEP(CastOp, NewGEPIndices.begin(), |
| 308 | NewGEPIndices.end()); |
| 309 | |
| 310 | NewCast = IC.Builder->CreateCast(opcode, SIOp0, CastDstTy, |
| 311 | SIOp0->getName()+".c"); |
| 312 | return new StoreInst(NewCast, CastOp); |
| 313 | } |
| 314 | |
| 315 | /// equivalentAddressValues - Test if A and B will obviously have the same |
| 316 | /// value. This includes recognizing that %t0 and %t1 will have the same |
| 317 | /// value in code like this: |
| 318 | /// %t0 = getelementptr \@a, 0, 3 |
| 319 | /// store i32 0, i32* %t0 |
| 320 | /// %t1 = getelementptr \@a, 0, 3 |
| 321 | /// %t2 = load i32* %t1 |
| 322 | /// |
| 323 | static bool equivalentAddressValues(Value *A, Value *B) { |
| 324 | // Test if the values are trivially equivalent. |
| 325 | if (A == B) return true; |
| 326 | |
| 327 | // Test if the values come form identical arithmetic instructions. |
| 328 | // This uses isIdenticalToWhenDefined instead of isIdenticalTo because |
| 329 | // its only used to compare two uses within the same basic block, which |
| 330 | // means that they'll always either have the same value or one of them |
| 331 | // will have an undefined value. |
| 332 | if (isa<BinaryOperator>(A) || |
| 333 | isa<CastInst>(A) || |
| 334 | isa<PHINode>(A) || |
| 335 | isa<GetElementPtrInst>(A)) |
| 336 | if (Instruction *BI = dyn_cast<Instruction>(B)) |
| 337 | if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI)) |
| 338 | return true; |
| 339 | |
| 340 | // Otherwise they may not be equivalent. |
| 341 | return false; |
| 342 | } |
| 343 | |
| 344 | // If this instruction has two uses, one of which is a llvm.dbg.declare, |
| 345 | // return the llvm.dbg.declare. |
| 346 | DbgDeclareInst *InstCombiner::hasOneUsePlusDeclare(Value *V) { |
| 347 | if (!V->hasNUses(2)) |
| 348 | return 0; |
| 349 | for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); |
| 350 | UI != E; ++UI) { |
| 351 | if (DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(UI)) |
| 352 | return DI; |
| 353 | if (isa<BitCastInst>(UI) && UI->hasOneUse()) { |
| 354 | if (DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(UI->use_begin())) |
| 355 | return DI; |
| 356 | } |
| 357 | } |
| 358 | return 0; |
| 359 | } |
| 360 | |
| 361 | Instruction *InstCombiner::visitStoreInst(StoreInst &SI) { |
| 362 | Value *Val = SI.getOperand(0); |
| 363 | Value *Ptr = SI.getOperand(1); |
| 364 | |
| 365 | // If the RHS is an alloca with a single use, zapify the store, making the |
| 366 | // alloca dead. |
| 367 | // If the RHS is an alloca with a two uses, the other one being a |
| 368 | // llvm.dbg.declare, zapify the store and the declare, making the |
Eric Christopher | 84bd316 | 2010-01-19 01:20:15 +0000 | [diff] [blame] | 369 | // alloca dead. We must do this to prevent declares from affecting |
Chris Lattner | a65e2f7 | 2010-01-05 05:57:49 +0000 | [diff] [blame] | 370 | // codegen. |
| 371 | if (!SI.isVolatile()) { |
| 372 | if (Ptr->hasOneUse()) { |
| 373 | if (isa<AllocaInst>(Ptr)) |
| 374 | return EraseInstFromFunction(SI); |
| 375 | if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) { |
| 376 | if (isa<AllocaInst>(GEP->getOperand(0))) { |
| 377 | if (GEP->getOperand(0)->hasOneUse()) |
| 378 | return EraseInstFromFunction(SI); |
| 379 | if (DbgDeclareInst *DI = hasOneUsePlusDeclare(GEP->getOperand(0))) { |
| 380 | EraseInstFromFunction(*DI); |
| 381 | return EraseInstFromFunction(SI); |
| 382 | } |
| 383 | } |
| 384 | } |
| 385 | } |
| 386 | if (DbgDeclareInst *DI = hasOneUsePlusDeclare(Ptr)) { |
| 387 | EraseInstFromFunction(*DI); |
| 388 | return EraseInstFromFunction(SI); |
| 389 | } |
| 390 | } |
| 391 | |
| 392 | // Attempt to improve the alignment. |
| 393 | if (TD) { |
| 394 | unsigned KnownAlign = |
| 395 | GetOrEnforceKnownAlignment(Ptr, TD->getPrefTypeAlignment(Val->getType())); |
| 396 | if (KnownAlign > |
| 397 | (SI.getAlignment() == 0 ? TD->getABITypeAlignment(Val->getType()) : |
| 398 | SI.getAlignment())) |
| 399 | SI.setAlignment(KnownAlign); |
| 400 | } |
| 401 | |
| 402 | // Do really simple DSE, to catch cases where there are several consecutive |
| 403 | // stores to the same location, separated by a few arithmetic operations. This |
| 404 | // situation often occurs with bitfield accesses. |
| 405 | BasicBlock::iterator BBI = &SI; |
| 406 | for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts; |
| 407 | --ScanInsts) { |
| 408 | --BBI; |
Victor Hernandez | 5f8c8c0 | 2010-01-22 19:05:05 +0000 | [diff] [blame^] | 409 | // Don't count debug info directives, lest they affect codegen, |
| 410 | // and we skip pointer-to-pointer bitcasts, which are NOPs. |
| 411 | if (isa<DbgInfoIntrinsic>(BBI) || |
| 412 | (isa<BitCastInst>(BBI) && isa<PointerType>(BBI->getType()))) { |
Chris Lattner | a65e2f7 | 2010-01-05 05:57:49 +0000 | [diff] [blame] | 413 | ScanInsts++; |
| 414 | continue; |
| 415 | } |
| 416 | |
| 417 | if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) { |
| 418 | // Prev store isn't volatile, and stores to the same location? |
| 419 | if (!PrevSI->isVolatile() &&equivalentAddressValues(PrevSI->getOperand(1), |
| 420 | SI.getOperand(1))) { |
| 421 | ++NumDeadStore; |
| 422 | ++BBI; |
| 423 | EraseInstFromFunction(*PrevSI); |
| 424 | continue; |
| 425 | } |
| 426 | break; |
| 427 | } |
| 428 | |
| 429 | // If this is a load, we have to stop. However, if the loaded value is from |
| 430 | // the pointer we're loading and is producing the pointer we're storing, |
| 431 | // then *this* store is dead (X = load P; store X -> P). |
| 432 | if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) { |
| 433 | if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr) && |
| 434 | !SI.isVolatile()) |
| 435 | return EraseInstFromFunction(SI); |
| 436 | |
| 437 | // Otherwise, this is a load from some other location. Stores before it |
| 438 | // may not be dead. |
| 439 | break; |
| 440 | } |
| 441 | |
| 442 | // Don't skip over loads or things that can modify memory. |
| 443 | if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory()) |
| 444 | break; |
| 445 | } |
| 446 | |
| 447 | |
| 448 | if (SI.isVolatile()) return 0; // Don't hack volatile stores. |
| 449 | |
| 450 | // store X, null -> turns into 'unreachable' in SimplifyCFG |
| 451 | if (isa<ConstantPointerNull>(Ptr) && SI.getPointerAddressSpace() == 0) { |
| 452 | if (!isa<UndefValue>(Val)) { |
| 453 | SI.setOperand(0, UndefValue::get(Val->getType())); |
| 454 | if (Instruction *U = dyn_cast<Instruction>(Val)) |
| 455 | Worklist.Add(U); // Dropped a use. |
| 456 | } |
| 457 | return 0; // Do not modify these! |
| 458 | } |
| 459 | |
| 460 | // store undef, Ptr -> noop |
| 461 | if (isa<UndefValue>(Val)) |
| 462 | return EraseInstFromFunction(SI); |
| 463 | |
| 464 | // If the pointer destination is a cast, see if we can fold the cast into the |
| 465 | // source instead. |
| 466 | if (isa<CastInst>(Ptr)) |
| 467 | if (Instruction *Res = InstCombineStoreToCast(*this, SI)) |
| 468 | return Res; |
| 469 | if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) |
| 470 | if (CE->isCast()) |
| 471 | if (Instruction *Res = InstCombineStoreToCast(*this, SI)) |
| 472 | return Res; |
| 473 | |
| 474 | |
| 475 | // If this store is the last instruction in the basic block (possibly |
Victor Hernandez | 5f5abd5 | 2010-01-21 23:07:15 +0000 | [diff] [blame] | 476 | // excepting debug info instructions), and if the block ends with an |
| 477 | // unconditional branch, try to move it to the successor block. |
Chris Lattner | a65e2f7 | 2010-01-05 05:57:49 +0000 | [diff] [blame] | 478 | BBI = &SI; |
| 479 | do { |
| 480 | ++BBI; |
Victor Hernandez | 5f8c8c0 | 2010-01-22 19:05:05 +0000 | [diff] [blame^] | 481 | } while (isa<DbgInfoIntrinsic>(BBI) || |
| 482 | (isa<BitCastInst>(BBI) && isa<PointerType>(BBI->getType()))); |
Chris Lattner | a65e2f7 | 2010-01-05 05:57:49 +0000 | [diff] [blame] | 483 | if (BranchInst *BI = dyn_cast<BranchInst>(BBI)) |
| 484 | if (BI->isUnconditional()) |
| 485 | if (SimplifyStoreAtEndOfBlock(SI)) |
| 486 | return 0; // xform done! |
| 487 | |
| 488 | return 0; |
| 489 | } |
| 490 | |
| 491 | /// SimplifyStoreAtEndOfBlock - Turn things like: |
| 492 | /// if () { *P = v1; } else { *P = v2 } |
| 493 | /// into a phi node with a store in the successor. |
| 494 | /// |
| 495 | /// Simplify things like: |
| 496 | /// *P = v1; if () { *P = v2; } |
| 497 | /// into a phi node with a store in the successor. |
| 498 | /// |
| 499 | bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) { |
| 500 | BasicBlock *StoreBB = SI.getParent(); |
| 501 | |
| 502 | // Check to see if the successor block has exactly two incoming edges. If |
| 503 | // so, see if the other predecessor contains a store to the same location. |
| 504 | // if so, insert a PHI node (if needed) and move the stores down. |
| 505 | BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0); |
| 506 | |
| 507 | // Determine whether Dest has exactly two predecessors and, if so, compute |
| 508 | // the other predecessor. |
| 509 | pred_iterator PI = pred_begin(DestBB); |
| 510 | BasicBlock *OtherBB = 0; |
| 511 | if (*PI != StoreBB) |
| 512 | OtherBB = *PI; |
| 513 | ++PI; |
| 514 | if (PI == pred_end(DestBB)) |
| 515 | return false; |
| 516 | |
| 517 | if (*PI != StoreBB) { |
| 518 | if (OtherBB) |
| 519 | return false; |
| 520 | OtherBB = *PI; |
| 521 | } |
| 522 | if (++PI != pred_end(DestBB)) |
| 523 | return false; |
| 524 | |
| 525 | // Bail out if all the relevant blocks aren't distinct (this can happen, |
| 526 | // for example, if SI is in an infinite loop) |
| 527 | if (StoreBB == DestBB || OtherBB == DestBB) |
| 528 | return false; |
| 529 | |
| 530 | // Verify that the other block ends in a branch and is not otherwise empty. |
| 531 | BasicBlock::iterator BBI = OtherBB->getTerminator(); |
| 532 | BranchInst *OtherBr = dyn_cast<BranchInst>(BBI); |
| 533 | if (!OtherBr || BBI == OtherBB->begin()) |
| 534 | return false; |
| 535 | |
| 536 | // If the other block ends in an unconditional branch, check for the 'if then |
| 537 | // else' case. there is an instruction before the branch. |
| 538 | StoreInst *OtherStore = 0; |
| 539 | if (OtherBr->isUnconditional()) { |
| 540 | --BBI; |
| 541 | // Skip over debugging info. |
Victor Hernandez | 5f8c8c0 | 2010-01-22 19:05:05 +0000 | [diff] [blame^] | 542 | while (isa<DbgInfoIntrinsic>(BBI) || |
| 543 | (isa<BitCastInst>(BBI) && isa<PointerType>(BBI->getType()))) { |
Chris Lattner | a65e2f7 | 2010-01-05 05:57:49 +0000 | [diff] [blame] | 544 | if (BBI==OtherBB->begin()) |
| 545 | return false; |
| 546 | --BBI; |
| 547 | } |
| 548 | // If this isn't a store, isn't a store to the same location, or if the |
| 549 | // alignments differ, bail out. |
| 550 | OtherStore = dyn_cast<StoreInst>(BBI); |
| 551 | if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) || |
| 552 | OtherStore->getAlignment() != SI.getAlignment()) |
| 553 | return false; |
| 554 | } else { |
| 555 | // Otherwise, the other block ended with a conditional branch. If one of the |
| 556 | // destinations is StoreBB, then we have the if/then case. |
| 557 | if (OtherBr->getSuccessor(0) != StoreBB && |
| 558 | OtherBr->getSuccessor(1) != StoreBB) |
| 559 | return false; |
| 560 | |
| 561 | // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an |
| 562 | // if/then triangle. See if there is a store to the same ptr as SI that |
| 563 | // lives in OtherBB. |
| 564 | for (;; --BBI) { |
| 565 | // Check to see if we find the matching store. |
| 566 | if ((OtherStore = dyn_cast<StoreInst>(BBI))) { |
| 567 | if (OtherStore->getOperand(1) != SI.getOperand(1) || |
| 568 | OtherStore->getAlignment() != SI.getAlignment()) |
| 569 | return false; |
| 570 | break; |
| 571 | } |
| 572 | // If we find something that may be using or overwriting the stored |
| 573 | // value, or if we run out of instructions, we can't do the xform. |
| 574 | if (BBI->mayReadFromMemory() || BBI->mayWriteToMemory() || |
| 575 | BBI == OtherBB->begin()) |
| 576 | return false; |
| 577 | } |
| 578 | |
| 579 | // In order to eliminate the store in OtherBr, we have to |
| 580 | // make sure nothing reads or overwrites the stored value in |
| 581 | // StoreBB. |
| 582 | for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) { |
| 583 | // FIXME: This should really be AA driven. |
| 584 | if (I->mayReadFromMemory() || I->mayWriteToMemory()) |
| 585 | return false; |
| 586 | } |
| 587 | } |
| 588 | |
| 589 | // Insert a PHI node now if we need it. |
| 590 | Value *MergedVal = OtherStore->getOperand(0); |
| 591 | if (MergedVal != SI.getOperand(0)) { |
| 592 | PHINode *PN = PHINode::Create(MergedVal->getType(), "storemerge"); |
| 593 | PN->reserveOperandSpace(2); |
| 594 | PN->addIncoming(SI.getOperand(0), SI.getParent()); |
| 595 | PN->addIncoming(OtherStore->getOperand(0), OtherBB); |
| 596 | MergedVal = InsertNewInstBefore(PN, DestBB->front()); |
| 597 | } |
| 598 | |
| 599 | // Advance to a place where it is safe to insert the new store and |
| 600 | // insert it. |
| 601 | BBI = DestBB->getFirstNonPHI(); |
| 602 | InsertNewInstBefore(new StoreInst(MergedVal, SI.getOperand(1), |
| 603 | OtherStore->isVolatile(), |
| 604 | SI.getAlignment()), *BBI); |
| 605 | |
| 606 | // Nuke the old stores. |
| 607 | EraseInstFromFunction(SI); |
| 608 | EraseInstFromFunction(*OtherStore); |
| 609 | return true; |
| 610 | } |