Mircea Trofin | bdceefe | 2020-06-09 14:50:50 -0700 | [diff] [blame] | 1 | //===- MLInlineAdvisor.cpp - machine learned InlineAdvisor ----------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements the interface between the inliner and a learned model. |
| 10 | // It delegates model evaluation to either the AOT compiled model (the |
| 11 | // 'release' mode) or a runtime-loaded model (the 'development' case). |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
Nico Weber | 4fe912f | 2020-07-21 11:44:47 -0400 | [diff] [blame] | 14 | #include "llvm/Config/config.h" |
| 15 | #if defined(LLVM_HAVE_TF_AOT) || defined(LLVM_HAVE_TF_API) |
| 16 | |
Mircea Trofin | bdceefe | 2020-06-09 14:50:50 -0700 | [diff] [blame] | 17 | #include <limits> |
| 18 | #include <unordered_map> |
| 19 | #include <unordered_set> |
| 20 | |
| 21 | #include "llvm/ADT/SCCIterator.h" |
| 22 | #include "llvm/Analysis/CallGraph.h" |
Tarindu Jayatilaka | 418121c3 | 2020-07-22 09:52:53 -0700 | [diff] [blame] | 23 | #include "llvm/Analysis/FunctionPropertiesAnalysis.h" |
Mircea Trofin | bdceefe | 2020-06-09 14:50:50 -0700 | [diff] [blame] | 24 | #include "llvm/Analysis/InlineCost.h" |
Mircea Trofin | bdceefe | 2020-06-09 14:50:50 -0700 | [diff] [blame] | 25 | #include "llvm/Analysis/MLInlineAdvisor.h" |
| 26 | #include "llvm/Analysis/MLModelRunner.h" |
| 27 | #include "llvm/Analysis/OptimizationRemarkEmitter.h" |
| 28 | #include "llvm/Analysis/TargetLibraryInfo.h" |
| 29 | #include "llvm/Analysis/TargetTransformInfo.h" |
| 30 | #include "llvm/IR/InstIterator.h" |
| 31 | #include "llvm/IR/Instructions.h" |
| 32 | #include "llvm/IR/PassManager.h" |
| 33 | #include "llvm/Support/CommandLine.h" |
| 34 | #include "llvm/Support/Path.h" |
| 35 | |
| 36 | using namespace llvm; |
| 37 | |
| 38 | #define DEBUG_TYPE "inline-ml" |
| 39 | |
| 40 | static cl::opt<float> SizeIncreaseThreshold( |
| 41 | "ml-advisor-size-increase-threshold", cl::Hidden, |
| 42 | cl::desc("Maximum factor by which expected native size may increase before " |
| 43 | "blocking any further inlining."), |
| 44 | cl::init(2.0)); |
| 45 | |
| 46 | const std::array<std::string, NumberOfFeatures> llvm::FeatureNameMap{ |
| 47 | #define POPULATE_NAMES(INDEX_NAME, NAME, COMMENT) NAME, |
| 48 | INLINE_FEATURE_ITERATOR(POPULATE_NAMES) |
| 49 | #undef POPULATE_NAMES |
| 50 | }; |
| 51 | |
| 52 | const char *const llvm::DecisionName = "inlining_decision"; |
| 53 | const char *const llvm::DefaultDecisionName = "inlining_default"; |
| 54 | const char *const llvm::RewardName = "delta_size"; |
| 55 | |
| 56 | CallBase *getInlinableCS(Instruction &I) { |
| 57 | if (auto *CS = dyn_cast<CallBase>(&I)) |
| 58 | if (Function *Callee = CS->getCalledFunction()) { |
| 59 | if (!Callee->isDeclaration()) { |
| 60 | return CS; |
| 61 | } |
| 62 | } |
| 63 | return nullptr; |
| 64 | } |
| 65 | |
| 66 | MLInlineAdvisor::MLInlineAdvisor(Module &M, ModuleAnalysisManager &MAM, |
| 67 | std::unique_ptr<MLModelRunner> Runner) |
| 68 | : InlineAdvisor( |
| 69 | MAM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager()), |
| 70 | M(M), ModelRunner(std::move(Runner)), CG(new CallGraph(M)), |
| 71 | InitialIRSize(getModuleIRSize()), CurrentIRSize(InitialIRSize) { |
| 72 | assert(ModelRunner); |
| 73 | |
| 74 | // Extract the 'call site height' feature - the position of a call site |
| 75 | // relative to the farthest statically reachable SCC node. We don't mutate |
| 76 | // this value while inlining happens. Empirically, this feature proved |
| 77 | // critical in behavioral cloning - i.e. training a model to mimic the manual |
| 78 | // heuristic's decisions - and, thus, equally important for training for |
| 79 | // improvement. |
| 80 | for (auto I = scc_begin(CG.get()); !I.isAtEnd(); ++I) { |
| 81 | const std::vector<CallGraphNode *> &CGNodes = *I; |
| 82 | unsigned Level = 0; |
| 83 | for (auto *CGNode : CGNodes) { |
| 84 | Function *F = CGNode->getFunction(); |
| 85 | if (!F || F->isDeclaration()) |
| 86 | continue; |
| 87 | for (auto &I : instructions(F)) { |
| 88 | if (auto *CS = getInlinableCS(I)) { |
| 89 | auto *Called = CS->getCalledFunction(); |
| 90 | auto Pos = FunctionLevels.find(Called); |
| 91 | // In bottom up traversal, an inlinable callee is either in the |
| 92 | // same SCC, or to a function in a visited SCC. So not finding its |
| 93 | // level means we haven't visited it yet, meaning it's in this SCC. |
| 94 | if (Pos == FunctionLevels.end()) |
| 95 | continue; |
| 96 | Level = std::max(Level, Pos->second + 1); |
| 97 | } |
| 98 | } |
| 99 | } |
| 100 | for (auto *CGNode : CGNodes) { |
| 101 | Function *F = CGNode->getFunction(); |
| 102 | if (F && !F->isDeclaration()) |
| 103 | FunctionLevels[F] = Level; |
| 104 | } |
| 105 | } |
| 106 | } |
| 107 | |
| 108 | void MLInlineAdvisor::onPassEntry() { |
| 109 | // Function passes executed between InlinerPass runs may have changed the |
| 110 | // module-wide features. |
| 111 | NodeCount = 0; |
| 112 | EdgeCount = 0; |
| 113 | for (auto &F : M) |
| 114 | if (!F.isDeclaration()) { |
| 115 | ++NodeCount; |
| 116 | EdgeCount += getLocalCalls(F); |
| 117 | } |
| 118 | } |
| 119 | |
| 120 | int64_t MLInlineAdvisor::getLocalCalls(Function &F) { |
Tarindu Jayatilaka | 418121c3 | 2020-07-22 09:52:53 -0700 | [diff] [blame] | 121 | return FAM.getResult<FunctionPropertiesAnalysis>(F) |
| 122 | .DirectCallsToDefinedFunctions; |
Mircea Trofin | bdceefe | 2020-06-09 14:50:50 -0700 | [diff] [blame] | 123 | } |
| 124 | |
| 125 | // Update the internal state of the advisor, and force invalidate feature |
| 126 | // analysis. Currently, we maintain minimal (and very simple) global state - the |
| 127 | // number of functions and the number of static calls. We also keep track of the |
| 128 | // total IR size in this module, to stop misbehaving policies at a certain bloat |
| 129 | // factor (SizeIncreaseThreshold) |
| 130 | void MLInlineAdvisor::onSuccessfulInlining(const MLInlineAdvice &Advice, |
| 131 | bool CalleeWasDeleted) { |
| 132 | assert(!ForceStop); |
| 133 | Function *Caller = Advice.getCaller(); |
| 134 | Function *Callee = Advice.getCallee(); |
| 135 | |
| 136 | // The caller features aren't valid anymore. |
Tarindu Jayatilaka | 418121c3 | 2020-07-22 09:52:53 -0700 | [diff] [blame] | 137 | FAM.invalidate<FunctionPropertiesAnalysis>(*Caller); |
Mircea Trofin | bdceefe | 2020-06-09 14:50:50 -0700 | [diff] [blame] | 138 | int64_t IRSizeAfter = |
| 139 | getIRSize(*Caller) + (CalleeWasDeleted ? 0 : Advice.CalleeIRSize); |
| 140 | CurrentIRSize += IRSizeAfter - (Advice.CallerIRSize + Advice.CalleeIRSize); |
| 141 | if (CurrentIRSize > SizeIncreaseThreshold * InitialIRSize) |
| 142 | ForceStop = true; |
| 143 | |
| 144 | // We can delta-update module-wide features. We know the inlining only changed |
| 145 | // the caller, and maybe the callee (by deleting the latter). |
| 146 | // Nodes are simple to update. |
| 147 | // For edges, we 'forget' the edges that the caller and callee used to have |
| 148 | // before inlining, and add back what they currently have together. |
| 149 | int64_t NewCallerAndCalleeEdges = |
Tarindu Jayatilaka | 418121c3 | 2020-07-22 09:52:53 -0700 | [diff] [blame] | 150 | FAM.getResult<FunctionPropertiesAnalysis>(*Caller) |
Mircea Trofin | bdceefe | 2020-06-09 14:50:50 -0700 | [diff] [blame] | 151 | .DirectCallsToDefinedFunctions; |
| 152 | |
| 153 | if (CalleeWasDeleted) |
| 154 | --NodeCount; |
| 155 | else |
Tarindu Jayatilaka | 418121c3 | 2020-07-22 09:52:53 -0700 | [diff] [blame] | 156 | NewCallerAndCalleeEdges += |
| 157 | FAM.getResult<FunctionPropertiesAnalysis>(*Callee) |
| 158 | .DirectCallsToDefinedFunctions; |
Mircea Trofin | bdceefe | 2020-06-09 14:50:50 -0700 | [diff] [blame] | 159 | EdgeCount += (NewCallerAndCalleeEdges - Advice.CallerAndCalleeEdges); |
| 160 | assert(CurrentIRSize >= 0 && EdgeCount >= 0 && NodeCount >= 0); |
| 161 | } |
| 162 | |
| 163 | int64_t MLInlineAdvisor::getModuleIRSize() const { |
| 164 | int64_t Ret = 0; |
| 165 | for (auto &F : CG->getModule()) |
| 166 | if (!F.isDeclaration()) |
| 167 | Ret += getIRSize(F); |
| 168 | return Ret; |
| 169 | } |
| 170 | |
| 171 | std::unique_ptr<InlineAdvice> MLInlineAdvisor::getAdvice(CallBase &CB) { |
| 172 | auto &Caller = *CB.getCaller(); |
| 173 | auto &Callee = *CB.getCalledFunction(); |
| 174 | |
| 175 | auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & { |
| 176 | return FAM.getResult<AssumptionAnalysis>(F); |
| 177 | }; |
Mircea Trofin | bdceefe | 2020-06-09 14:50:50 -0700 | [diff] [blame] | 178 | auto &TIR = FAM.getResult<TargetIRAnalysis>(Callee); |
| 179 | auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(Caller); |
| 180 | |
Mircea Trofin | 5fe1026 | 2020-11-16 14:01:53 -0800 | [diff] [blame^] | 181 | auto MandatoryKind = MandatoryInlineAdvisor::getMandatoryKind(CB, FAM, ORE); |
Mircea Trofin | bdceefe | 2020-06-09 14:50:50 -0700 | [diff] [blame] | 182 | // If this is a "never inline" case, there won't be any changes to internal |
| 183 | // state we need to track, so we can just return the base InlineAdvice, which |
| 184 | // will do nothing interesting. |
| 185 | // Same thing if this is a recursive case. |
Mircea Trofin | 5fe1026 | 2020-11-16 14:01:53 -0800 | [diff] [blame^] | 186 | if (MandatoryKind == MandatoryInlineAdvisor::MandatoryInliningKind::Never || |
Mircea Trofin | bdceefe | 2020-06-09 14:50:50 -0700 | [diff] [blame] | 187 | &Caller == &Callee) |
| 188 | return std::make_unique<InlineAdvice>(this, CB, ORE, false); |
| 189 | |
Mircea Trofin | 5fe1026 | 2020-11-16 14:01:53 -0800 | [diff] [blame^] | 190 | bool Mandatory = |
| 191 | MandatoryKind == MandatoryInlineAdvisor::MandatoryInliningKind::Always; |
Mircea Trofin | bdceefe | 2020-06-09 14:50:50 -0700 | [diff] [blame] | 192 | |
| 193 | // If we need to stop, we won't want to track anymore any state changes, so |
| 194 | // we just return the base InlineAdvice, which acts as a noop. |
| 195 | if (ForceStop) { |
| 196 | ORE.emit([&] { |
| 197 | return OptimizationRemarkMissed(DEBUG_TYPE, "ForceStop", &CB) |
| 198 | << "Won't attempt inlining because module size grew too much."; |
| 199 | }); |
| 200 | return std::make_unique<InlineAdvice>(this, CB, ORE, Mandatory); |
| 201 | } |
| 202 | |
| 203 | int CostEstimate = 0; |
| 204 | if (!Mandatory) { |
| 205 | auto IsCallSiteInlinable = |
| 206 | llvm::getInliningCostEstimate(CB, TIR, GetAssumptionCache); |
| 207 | if (!IsCallSiteInlinable) { |
| 208 | // We can't inline this for correctness reasons, so return the base |
| 209 | // InlineAdvice, as we don't care about tracking any state changes (which |
| 210 | // won't happen). |
| 211 | return std::make_unique<InlineAdvice>(this, CB, ORE, false); |
| 212 | } |
| 213 | CostEstimate = *IsCallSiteInlinable; |
| 214 | } |
| 215 | |
| 216 | if (Mandatory) |
| 217 | return getMandatoryAdvice(CB, ORE); |
| 218 | |
| 219 | auto NrCtantParams = 0; |
| 220 | for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) { |
| 221 | NrCtantParams += (isa<Constant>(*I)); |
| 222 | } |
| 223 | |
Tarindu Jayatilaka | 418121c3 | 2020-07-22 09:52:53 -0700 | [diff] [blame] | 224 | auto &CallerBefore = FAM.getResult<FunctionPropertiesAnalysis>(Caller); |
| 225 | auto &CalleeBefore = FAM.getResult<FunctionPropertiesAnalysis>(Callee); |
Mircea Trofin | bdceefe | 2020-06-09 14:50:50 -0700 | [diff] [blame] | 226 | |
| 227 | ModelRunner->setFeature(FeatureIndex::CalleeBasicBlockCount, |
| 228 | CalleeBefore.BasicBlockCount); |
| 229 | ModelRunner->setFeature(FeatureIndex::CallSiteHeight, |
| 230 | FunctionLevels[&Caller]); |
| 231 | ModelRunner->setFeature(FeatureIndex::NodeCount, NodeCount); |
| 232 | ModelRunner->setFeature(FeatureIndex::NrCtantParams, NrCtantParams); |
| 233 | ModelRunner->setFeature(FeatureIndex::CostEstimate, CostEstimate); |
| 234 | ModelRunner->setFeature(FeatureIndex::EdgeCount, EdgeCount); |
| 235 | ModelRunner->setFeature(FeatureIndex::CallerUsers, CallerBefore.Uses); |
| 236 | ModelRunner->setFeature(FeatureIndex::CallerConditionallyExecutedBlocks, |
| 237 | CallerBefore.BlocksReachedFromConditionalInstruction); |
| 238 | ModelRunner->setFeature(FeatureIndex::CallerBasicBlockCount, |
| 239 | CallerBefore.BasicBlockCount); |
| 240 | ModelRunner->setFeature(FeatureIndex::CalleeConditionallyExecutedBlocks, |
| 241 | CalleeBefore.BlocksReachedFromConditionalInstruction); |
| 242 | ModelRunner->setFeature(FeatureIndex::CalleeUsers, CalleeBefore.Uses); |
| 243 | return getAdviceFromModel(CB, ORE); |
| 244 | } |
| 245 | |
| 246 | std::unique_ptr<MLInlineAdvice> |
| 247 | MLInlineAdvisor::getAdviceFromModel(CallBase &CB, |
| 248 | OptimizationRemarkEmitter &ORE) { |
| 249 | return std::make_unique<MLInlineAdvice>(this, CB, ORE, ModelRunner->run()); |
| 250 | } |
| 251 | |
| 252 | std::unique_ptr<MLInlineAdvice> |
| 253 | MLInlineAdvisor::getMandatoryAdvice(CallBase &CB, |
| 254 | OptimizationRemarkEmitter &ORE) { |
| 255 | return std::make_unique<MLInlineAdvice>(this, CB, ORE, true); |
| 256 | } |
| 257 | |
| 258 | void MLInlineAdvice::reportContextForRemark( |
| 259 | DiagnosticInfoOptimizationBase &OR) { |
| 260 | using namespace ore; |
| 261 | OR << NV("Callee", Callee->getName()); |
| 262 | for (size_t I = 0; I < NumberOfFeatures; ++I) |
| 263 | OR << NV(FeatureNameMap[I], getAdvisor()->getModelRunner().getFeature(I)); |
| 264 | OR << NV("ShouldInline", isInliningRecommended()); |
| 265 | } |
| 266 | |
| 267 | void MLInlineAdvice::recordInliningImpl() { |
| 268 | ORE.emit([&]() { |
| 269 | OptimizationRemark R(DEBUG_TYPE, "InliningSuccess", DLoc, Block); |
| 270 | reportContextForRemark(R); |
| 271 | return R; |
| 272 | }); |
| 273 | getAdvisor()->onSuccessfulInlining(*this, /*CalleeWasDeleted*/ false); |
| 274 | } |
| 275 | |
| 276 | void MLInlineAdvice::recordInliningWithCalleeDeletedImpl() { |
| 277 | ORE.emit([&]() { |
| 278 | OptimizationRemark R(DEBUG_TYPE, "InliningSuccessWithCalleeDeleted", DLoc, |
| 279 | Block); |
| 280 | reportContextForRemark(R); |
| 281 | return R; |
| 282 | }); |
| 283 | getAdvisor()->onSuccessfulInlining(*this, /*CalleeWasDeleted*/ true); |
| 284 | } |
| 285 | |
| 286 | void MLInlineAdvice::recordUnsuccessfulInliningImpl( |
| 287 | const InlineResult &Result) { |
| 288 | ORE.emit([&]() { |
| 289 | OptimizationRemarkMissed R(DEBUG_TYPE, "InliningAttemptedAndUnsuccessful", |
| 290 | DLoc, Block); |
| 291 | reportContextForRemark(R); |
| 292 | return R; |
| 293 | }); |
| 294 | } |
| 295 | void MLInlineAdvice::recordUnattemptedInliningImpl() { |
| 296 | ORE.emit([&]() { |
| 297 | OptimizationRemarkMissed R(DEBUG_TYPE, "IniningNotAttempted", DLoc, Block); |
| 298 | reportContextForRemark(R); |
| 299 | return R; |
| 300 | }); |
Nico Weber | 4fe912f | 2020-07-21 11:44:47 -0400 | [diff] [blame] | 301 | } |
| 302 | #endif // defined(LLVM_HAVE_TF_AOT) || defined(LLVM_HAVE_TF_API) |