blob: a051a5801140bc08e11bc1094da9c79ea5d76ad3 [file] [log] [blame]
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001//===--- RDFGraph.cpp -----------------------------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Target-independent, SSA-based data flow graph for register data flow (RDF).
11//
12#include "RDFGraph.h"
13
14#include "llvm/ADT/SetVector.h"
15#include "llvm/CodeGen/MachineBasicBlock.h"
16#include "llvm/CodeGen/MachineDominanceFrontier.h"
17#include "llvm/CodeGen/MachineDominators.h"
18#include "llvm/CodeGen/MachineFunction.h"
19#include "llvm/CodeGen/MachineRegisterInfo.h"
20#include "llvm/Target/TargetInstrInfo.h"
Krzysztof Parzyszek1d322202016-09-27 18:18:44 +000021#include "llvm/Target/TargetLowering.h"
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +000022#include "llvm/Target/TargetRegisterInfo.h"
23
24using namespace llvm;
25using namespace rdf;
26
27// Printing functions. Have them here first, so that the rest of the code
28// can use them.
Benjamin Kramer922efd72016-05-27 10:06:40 +000029namespace llvm {
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +000030namespace rdf {
31
32template<>
33raw_ostream &operator<< (raw_ostream &OS, const Print<RegisterRef> &P) {
34 auto &TRI = P.G.getTRI();
35 if (P.Obj.Reg > 0 && P.Obj.Reg < TRI.getNumRegs())
36 OS << TRI.getName(P.Obj.Reg);
37 else
38 OS << '#' << P.Obj.Reg;
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +000039 if (P.Obj.Sub != 0) {
40 LaneBitmask LM = P.G.getLMI().getLaneMaskForIndex(P.Obj.Sub);
41 OS << ":L" << PrintLaneMask(LM);
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +000042 }
43 return OS;
44}
45
46template<>
47raw_ostream &operator<< (raw_ostream &OS, const Print<NodeId> &P) {
48 auto NA = P.G.addr<NodeBase*>(P.Obj);
49 uint16_t Attrs = NA.Addr->getAttrs();
50 uint16_t Kind = NodeAttrs::kind(Attrs);
51 uint16_t Flags = NodeAttrs::flags(Attrs);
52 switch (NodeAttrs::type(Attrs)) {
53 case NodeAttrs::Code:
54 switch (Kind) {
55 case NodeAttrs::Func: OS << 'f'; break;
56 case NodeAttrs::Block: OS << 'b'; break;
57 case NodeAttrs::Stmt: OS << 's'; break;
58 case NodeAttrs::Phi: OS << 'p'; break;
59 default: OS << "c?"; break;
60 }
61 break;
62 case NodeAttrs::Ref:
Krzysztof Parzyszek1ff99522016-09-07 20:10:56 +000063 if (Flags & NodeAttrs::Undef)
64 OS << '/';
Krzysztof Parzyszek586fc122016-09-27 18:24:33 +000065 if (Flags & NodeAttrs::Dead)
66 OS << '\\';
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +000067 if (Flags & NodeAttrs::Preserving)
68 OS << '+';
69 if (Flags & NodeAttrs::Clobbering)
70 OS << '~';
71 switch (Kind) {
72 case NodeAttrs::Use: OS << 'u'; break;
73 case NodeAttrs::Def: OS << 'd'; break;
74 case NodeAttrs::Block: OS << 'b'; break;
75 default: OS << "r?"; break;
76 }
77 break;
78 default:
79 OS << '?';
80 break;
81 }
82 OS << P.Obj;
83 if (Flags & NodeAttrs::Shadow)
84 OS << '"';
85 return OS;
86}
87
88namespace {
89 void printRefHeader(raw_ostream &OS, const NodeAddr<RefNode*> RA,
90 const DataFlowGraph &G) {
91 OS << Print<NodeId>(RA.Id, G) << '<'
92 << Print<RegisterRef>(RA.Addr->getRegRef(), G) << '>';
93 if (RA.Addr->getFlags() & NodeAttrs::Fixed)
94 OS << '!';
95 }
96}
97
98template<>
99raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<DefNode*>> &P) {
100 printRefHeader(OS, P.Obj, P.G);
101 OS << '(';
102 if (NodeId N = P.Obj.Addr->getReachingDef())
103 OS << Print<NodeId>(N, P.G);
104 OS << ',';
105 if (NodeId N = P.Obj.Addr->getReachedDef())
106 OS << Print<NodeId>(N, P.G);
107 OS << ',';
108 if (NodeId N = P.Obj.Addr->getReachedUse())
109 OS << Print<NodeId>(N, P.G);
110 OS << "):";
111 if (NodeId N = P.Obj.Addr->getSibling())
112 OS << Print<NodeId>(N, P.G);
113 return OS;
114}
115
116template<>
117raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<UseNode*>> &P) {
118 printRefHeader(OS, P.Obj, P.G);
119 OS << '(';
120 if (NodeId N = P.Obj.Addr->getReachingDef())
121 OS << Print<NodeId>(N, P.G);
122 OS << "):";
123 if (NodeId N = P.Obj.Addr->getSibling())
124 OS << Print<NodeId>(N, P.G);
125 return OS;
126}
127
128template<>
129raw_ostream &operator<< (raw_ostream &OS,
130 const Print<NodeAddr<PhiUseNode*>> &P) {
131 printRefHeader(OS, P.Obj, P.G);
132 OS << '(';
133 if (NodeId N = P.Obj.Addr->getReachingDef())
134 OS << Print<NodeId>(N, P.G);
135 OS << ',';
136 if (NodeId N = P.Obj.Addr->getPredecessor())
137 OS << Print<NodeId>(N, P.G);
138 OS << "):";
139 if (NodeId N = P.Obj.Addr->getSibling())
140 OS << Print<NodeId>(N, P.G);
141 return OS;
142}
143
144template<>
145raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<RefNode*>> &P) {
146 switch (P.Obj.Addr->getKind()) {
147 case NodeAttrs::Def:
148 OS << PrintNode<DefNode*>(P.Obj, P.G);
149 break;
150 case NodeAttrs::Use:
151 if (P.Obj.Addr->getFlags() & NodeAttrs::PhiRef)
152 OS << PrintNode<PhiUseNode*>(P.Obj, P.G);
153 else
154 OS << PrintNode<UseNode*>(P.Obj, P.G);
155 break;
156 }
157 return OS;
158}
159
160template<>
161raw_ostream &operator<< (raw_ostream &OS, const Print<NodeList> &P) {
162 unsigned N = P.Obj.size();
163 for (auto I : P.Obj) {
164 OS << Print<NodeId>(I.Id, P.G);
165 if (--N)
166 OS << ' ';
167 }
168 return OS;
169}
170
171template<>
172raw_ostream &operator<< (raw_ostream &OS, const Print<NodeSet> &P) {
173 unsigned N = P.Obj.size();
174 for (auto I : P.Obj) {
175 OS << Print<NodeId>(I, P.G);
176 if (--N)
177 OS << ' ';
178 }
179 return OS;
180}
181
182namespace {
183 template <typename T>
184 struct PrintListV {
185 PrintListV(const NodeList &L, const DataFlowGraph &G) : List(L), G(G) {}
186 typedef T Type;
187 const NodeList &List;
188 const DataFlowGraph &G;
189 };
190
191 template <typename T>
192 raw_ostream &operator<< (raw_ostream &OS, const PrintListV<T> &P) {
193 unsigned N = P.List.size();
194 for (NodeAddr<T> A : P.List) {
195 OS << PrintNode<T>(A, P.G);
196 if (--N)
197 OS << ", ";
198 }
199 return OS;
200 }
201}
202
203template<>
204raw_ostream &operator<< (raw_ostream &OS, const Print<NodeAddr<PhiNode*>> &P) {
205 OS << Print<NodeId>(P.Obj.Id, P.G) << ": phi ["
206 << PrintListV<RefNode*>(P.Obj.Addr->members(P.G), P.G) << ']';
207 return OS;
208}
209
210template<>
211raw_ostream &operator<< (raw_ostream &OS,
212 const Print<NodeAddr<StmtNode*>> &P) {
Krzysztof Parzyszek670e0ca2016-09-22 20:58:19 +0000213 const MachineInstr &MI = *P.Obj.Addr->getCode();
214 unsigned Opc = MI.getOpcode();
215 OS << Print<NodeId>(P.Obj.Id, P.G) << ": " << P.G.getTII().getName(Opc);
Krzysztof Parzyszekab26e2d2016-10-03 17:54:33 +0000216 // Print the target for calls and branches (for readability).
217 if (MI.isCall() || MI.isBranch()) {
218 MachineInstr::const_mop_iterator T =
Krzysztof Parzyszek670e0ca2016-09-22 20:58:19 +0000219 find_if(MI.operands(),
220 [] (const MachineOperand &Op) -> bool {
Krzysztof Parzyszekab26e2d2016-10-03 17:54:33 +0000221 return Op.isMBB() || Op.isGlobal() || Op.isSymbol();
Krzysztof Parzyszek670e0ca2016-09-22 20:58:19 +0000222 });
Krzysztof Parzyszekab26e2d2016-10-03 17:54:33 +0000223 if (T != MI.operands_end()) {
224 OS << ' ';
225 if (T->isMBB())
226 OS << "BB#" << T->getMBB()->getNumber();
227 else if (T->isGlobal())
228 OS << T->getGlobal()->getName();
229 else if (T->isSymbol())
230 OS << T->getSymbolName();
Krzysztof Parzyszek670e0ca2016-09-22 20:58:19 +0000231 }
232 }
233 OS << " [" << PrintListV<RefNode*>(P.Obj.Addr->members(P.G), P.G) << ']';
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000234 return OS;
235}
236
237template<>
238raw_ostream &operator<< (raw_ostream &OS,
239 const Print<NodeAddr<InstrNode*>> &P) {
240 switch (P.Obj.Addr->getKind()) {
241 case NodeAttrs::Phi:
242 OS << PrintNode<PhiNode*>(P.Obj, P.G);
243 break;
244 case NodeAttrs::Stmt:
245 OS << PrintNode<StmtNode*>(P.Obj, P.G);
246 break;
247 default:
248 OS << "instr? " << Print<NodeId>(P.Obj.Id, P.G);
249 break;
250 }
251 return OS;
252}
253
254template<>
255raw_ostream &operator<< (raw_ostream &OS,
256 const Print<NodeAddr<BlockNode*>> &P) {
Krzysztof Parzyszek61d90322016-10-06 13:05:13 +0000257 MachineBasicBlock *BB = P.Obj.Addr->getCode();
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000258 unsigned NP = BB->pred_size();
259 std::vector<int> Ns;
260 auto PrintBBs = [&OS,&P] (std::vector<int> Ns) -> void {
261 unsigned N = Ns.size();
Krzysztof Parzyszek61d90322016-10-06 13:05:13 +0000262 for (int I : Ns) {
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000263 OS << "BB#" << I;
264 if (--N)
265 OS << ", ";
266 }
267 };
268
Krzysztof Parzyszekab26e2d2016-10-03 17:54:33 +0000269 OS << Print<NodeId>(P.Obj.Id, P.G) << ": --- BB#" << BB->getNumber()
270 << " --- preds(" << NP << "): ";
Krzysztof Parzyszek61d90322016-10-06 13:05:13 +0000271 for (MachineBasicBlock *B : BB->predecessors())
272 Ns.push_back(B->getNumber());
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000273 PrintBBs(Ns);
274
275 unsigned NS = BB->succ_size();
276 OS << " succs(" << NS << "): ";
277 Ns.clear();
Krzysztof Parzyszek61d90322016-10-06 13:05:13 +0000278 for (MachineBasicBlock *B : BB->successors())
279 Ns.push_back(B->getNumber());
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000280 PrintBBs(Ns);
281 OS << '\n';
282
283 for (auto I : P.Obj.Addr->members(P.G))
284 OS << PrintNode<InstrNode*>(I, P.G) << '\n';
285 return OS;
286}
287
288template<>
289raw_ostream &operator<< (raw_ostream &OS,
290 const Print<NodeAddr<FuncNode*>> &P) {
291 OS << "DFG dump:[\n" << Print<NodeId>(P.Obj.Id, P.G) << ": Function: "
292 << P.Obj.Addr->getCode()->getName() << '\n';
293 for (auto I : P.Obj.Addr->members(P.G))
294 OS << PrintNode<BlockNode*>(I, P.G) << '\n';
295 OS << "]\n";
296 return OS;
297}
298
299template<>
300raw_ostream &operator<< (raw_ostream &OS, const Print<RegisterSet> &P) {
301 OS << '{';
302 for (auto I : P.Obj)
303 OS << ' ' << Print<RegisterRef>(I, P.G);
304 OS << " }";
305 return OS;
306}
307
308template<>
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +0000309raw_ostream &operator<< (raw_ostream &OS, const Print<RegisterAggr> &P) {
310 P.Obj.print(OS);
311 return OS;
312}
313
314template<>
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000315raw_ostream &operator<< (raw_ostream &OS,
316 const Print<DataFlowGraph::DefStack> &P) {
317 for (auto I = P.Obj.top(), E = P.Obj.bottom(); I != E; ) {
318 OS << Print<NodeId>(I->Id, P.G)
319 << '<' << Print<RegisterRef>(I->Addr->getRegRef(), P.G) << '>';
320 I.down();
321 if (I != E)
322 OS << ' ';
323 }
324 return OS;
325}
326
327} // namespace rdf
Benjamin Kramer922efd72016-05-27 10:06:40 +0000328} // namespace llvm
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000329
330// Node allocation functions.
331//
332// Node allocator is like a slab memory allocator: it allocates blocks of
333// memory in sizes that are multiples of the size of a node. Each block has
334// the same size. Nodes are allocated from the currently active block, and
335// when it becomes full, a new one is created.
336// There is a mapping scheme between node id and its location in a block,
337// and within that block is described in the header file.
338//
339void NodeAllocator::startNewBlock() {
340 void *T = MemPool.Allocate(NodesPerBlock*NodeMemSize, NodeMemSize);
341 char *P = static_cast<char*>(T);
342 Blocks.push_back(P);
343 // Check if the block index is still within the allowed range, i.e. less
344 // than 2^N, where N is the number of bits in NodeId for the block index.
345 // BitsPerIndex is the number of bits per node index.
Simon Pilgrim99c6c292016-01-18 21:11:19 +0000346 assert((Blocks.size() < ((size_t)1 << (8*sizeof(NodeId)-BitsPerIndex))) &&
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000347 "Out of bits for block index");
348 ActiveEnd = P;
349}
350
351bool NodeAllocator::needNewBlock() {
352 if (Blocks.empty())
353 return true;
354
355 char *ActiveBegin = Blocks.back();
356 uint32_t Index = (ActiveEnd-ActiveBegin)/NodeMemSize;
357 return Index >= NodesPerBlock;
358}
359
360NodeAddr<NodeBase*> NodeAllocator::New() {
361 if (needNewBlock())
362 startNewBlock();
363
364 uint32_t ActiveB = Blocks.size()-1;
365 uint32_t Index = (ActiveEnd - Blocks[ActiveB])/NodeMemSize;
366 NodeAddr<NodeBase*> NA = { reinterpret_cast<NodeBase*>(ActiveEnd),
367 makeId(ActiveB, Index) };
368 ActiveEnd += NodeMemSize;
369 return NA;
370}
371
372NodeId NodeAllocator::id(const NodeBase *P) const {
373 uintptr_t A = reinterpret_cast<uintptr_t>(P);
374 for (unsigned i = 0, n = Blocks.size(); i != n; ++i) {
375 uintptr_t B = reinterpret_cast<uintptr_t>(Blocks[i]);
376 if (A < B || A >= B + NodesPerBlock*NodeMemSize)
377 continue;
378 uint32_t Idx = (A-B)/NodeMemSize;
379 return makeId(i, Idx);
380 }
381 llvm_unreachable("Invalid node address");
382}
383
384void NodeAllocator::clear() {
385 MemPool.Reset();
386 Blocks.clear();
387 ActiveEnd = nullptr;
388}
389
390
391// Insert node NA after "this" in the circular chain.
392void NodeBase::append(NodeAddr<NodeBase*> NA) {
393 NodeId Nx = Next;
394 // If NA is already "next", do nothing.
395 if (Next != NA.Id) {
396 Next = NA.Id;
397 NA.Addr->Next = Nx;
398 }
399}
400
401
402// Fundamental node manipulator functions.
403
404// Obtain the register reference from a reference node.
405RegisterRef RefNode::getRegRef() const {
406 assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref);
407 if (NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef)
408 return Ref.RR;
409 assert(Ref.Op != nullptr);
410 return { Ref.Op->getReg(), Ref.Op->getSubReg() };
411}
412
413// Set the register reference in the reference node directly (for references
414// in phi nodes).
415void RefNode::setRegRef(RegisterRef RR) {
416 assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref);
417 assert(NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef);
418 Ref.RR = RR;
419}
420
421// Set the register reference in the reference node based on a machine
422// operand (for references in statement nodes).
423void RefNode::setRegRef(MachineOperand *Op) {
424 assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref);
425 assert(!(NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef));
426 Ref.Op = Op;
427}
428
429// Get the owner of a given reference node.
430NodeAddr<NodeBase*> RefNode::getOwner(const DataFlowGraph &G) {
431 NodeAddr<NodeBase*> NA = G.addr<NodeBase*>(getNext());
432
433 while (NA.Addr != this) {
434 if (NA.Addr->getType() == NodeAttrs::Code)
435 return NA;
436 NA = G.addr<NodeBase*>(NA.Addr->getNext());
437 }
438 llvm_unreachable("No owner in circular list");
439}
440
441// Connect the def node to the reaching def node.
442void DefNode::linkToDef(NodeId Self, NodeAddr<DefNode*> DA) {
443 Ref.RD = DA.Id;
444 Ref.Sib = DA.Addr->getReachedDef();
445 DA.Addr->setReachedDef(Self);
446}
447
448// Connect the use node to the reaching def node.
449void UseNode::linkToDef(NodeId Self, NodeAddr<DefNode*> DA) {
450 Ref.RD = DA.Id;
451 Ref.Sib = DA.Addr->getReachedUse();
452 DA.Addr->setReachedUse(Self);
453}
454
455// Get the first member of the code node.
456NodeAddr<NodeBase*> CodeNode::getFirstMember(const DataFlowGraph &G) const {
457 if (Code.FirstM == 0)
458 return NodeAddr<NodeBase*>();
459 return G.addr<NodeBase*>(Code.FirstM);
460}
461
462// Get the last member of the code node.
463NodeAddr<NodeBase*> CodeNode::getLastMember(const DataFlowGraph &G) const {
464 if (Code.LastM == 0)
465 return NodeAddr<NodeBase*>();
466 return G.addr<NodeBase*>(Code.LastM);
467}
468
469// Add node NA at the end of the member list of the given code node.
470void CodeNode::addMember(NodeAddr<NodeBase*> NA, const DataFlowGraph &G) {
Krzysztof Parzyszek61d90322016-10-06 13:05:13 +0000471 NodeAddr<NodeBase*> ML = getLastMember(G);
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000472 if (ML.Id != 0) {
473 ML.Addr->append(NA);
474 } else {
475 Code.FirstM = NA.Id;
476 NodeId Self = G.id(this);
477 NA.Addr->setNext(Self);
478 }
479 Code.LastM = NA.Id;
480}
481
482// Add node NA after member node MA in the given code node.
483void CodeNode::addMemberAfter(NodeAddr<NodeBase*> MA, NodeAddr<NodeBase*> NA,
484 const DataFlowGraph &G) {
485 MA.Addr->append(NA);
486 if (Code.LastM == MA.Id)
487 Code.LastM = NA.Id;
488}
489
490// Remove member node NA from the given code node.
491void CodeNode::removeMember(NodeAddr<NodeBase*> NA, const DataFlowGraph &G) {
Krzysztof Parzyszek61d90322016-10-06 13:05:13 +0000492 NodeAddr<NodeBase*> MA = getFirstMember(G);
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000493 assert(MA.Id != 0);
494
495 // Special handling if the member to remove is the first member.
496 if (MA.Id == NA.Id) {
497 if (Code.LastM == MA.Id) {
498 // If it is the only member, set both first and last to 0.
499 Code.FirstM = Code.LastM = 0;
500 } else {
501 // Otherwise, advance the first member.
502 Code.FirstM = MA.Addr->getNext();
503 }
504 return;
505 }
506
507 while (MA.Addr != this) {
508 NodeId MX = MA.Addr->getNext();
509 if (MX == NA.Id) {
510 MA.Addr->setNext(NA.Addr->getNext());
511 // If the member to remove happens to be the last one, update the
512 // LastM indicator.
513 if (Code.LastM == NA.Id)
514 Code.LastM = MA.Id;
515 return;
516 }
517 MA = G.addr<NodeBase*>(MX);
518 }
519 llvm_unreachable("No such member");
520}
521
522// Return the list of all members of the code node.
523NodeList CodeNode::members(const DataFlowGraph &G) const {
524 static auto True = [] (NodeAddr<NodeBase*>) -> bool { return true; };
525 return members_if(True, G);
526}
527
528// Return the owner of the given instr node.
529NodeAddr<NodeBase*> InstrNode::getOwner(const DataFlowGraph &G) {
530 NodeAddr<NodeBase*> NA = G.addr<NodeBase*>(getNext());
531
532 while (NA.Addr != this) {
533 assert(NA.Addr->getType() == NodeAttrs::Code);
534 if (NA.Addr->getKind() == NodeAttrs::Block)
535 return NA;
536 NA = G.addr<NodeBase*>(NA.Addr->getNext());
537 }
538 llvm_unreachable("No owner in circular list");
539}
540
541// Add the phi node PA to the given block node.
542void BlockNode::addPhi(NodeAddr<PhiNode*> PA, const DataFlowGraph &G) {
Krzysztof Parzyszek61d90322016-10-06 13:05:13 +0000543 NodeAddr<NodeBase*> M = getFirstMember(G);
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000544 if (M.Id == 0) {
545 addMember(PA, G);
546 return;
547 }
548
549 assert(M.Addr->getType() == NodeAttrs::Code);
550 if (M.Addr->getKind() == NodeAttrs::Stmt) {
551 // If the first member of the block is a statement, insert the phi as
552 // the first member.
553 Code.FirstM = PA.Id;
554 PA.Addr->setNext(M.Id);
555 } else {
556 // If the first member is a phi, find the last phi, and append PA to it.
557 assert(M.Addr->getKind() == NodeAttrs::Phi);
558 NodeAddr<NodeBase*> MN = M;
559 do {
560 M = MN;
561 MN = G.addr<NodeBase*>(M.Addr->getNext());
562 assert(MN.Addr->getType() == NodeAttrs::Code);
563 } while (MN.Addr->getKind() == NodeAttrs::Phi);
564
565 // M is the last phi.
566 addMemberAfter(M, PA, G);
567 }
568}
569
570// Find the block node corresponding to the machine basic block BB in the
571// given func node.
572NodeAddr<BlockNode*> FuncNode::findBlock(const MachineBasicBlock *BB,
573 const DataFlowGraph &G) const {
574 auto EqBB = [BB] (NodeAddr<NodeBase*> NA) -> bool {
575 return NodeAddr<BlockNode*>(NA).Addr->getCode() == BB;
576 };
577 NodeList Ms = members_if(EqBB, G);
578 if (!Ms.empty())
579 return Ms[0];
580 return NodeAddr<BlockNode*>();
581}
582
583// Get the block node for the entry block in the given function.
584NodeAddr<BlockNode*> FuncNode::getEntryBlock(const DataFlowGraph &G) {
585 MachineBasicBlock *EntryB = &getCode()->front();
586 return findBlock(EntryB, G);
587}
588
589
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000590// Target operand information.
591//
592
593// For a given instruction, check if there are any bits of RR that can remain
594// unchanged across this def.
595bool TargetOperandInfo::isPreserving(const MachineInstr &In, unsigned OpNum)
596 const {
Duncan P. N. Exon Smith6307eb52016-02-23 02:46:52 +0000597 return TII.isPredicated(In);
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000598}
599
600// Check if the definition of RR produces an unspecified value.
601bool TargetOperandInfo::isClobbering(const MachineInstr &In, unsigned OpNum)
602 const {
603 if (In.isCall())
604 if (In.getOperand(OpNum).isImplicit())
605 return true;
606 return false;
607}
608
Krzysztof Parzyszekc5a4e262016-04-28 20:33:33 +0000609// Check if the given instruction specifically requires
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000610bool TargetOperandInfo::isFixedReg(const MachineInstr &In, unsigned OpNum)
611 const {
Krzysztof Parzyszekc5a4e262016-04-28 20:33:33 +0000612 if (In.isCall() || In.isReturn() || In.isInlineAsm())
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000613 return true;
Krzysztof Parzyszekbf90d5a2016-04-28 20:40:08 +0000614 // Check for a tail call.
615 if (In.isBranch())
Krzysztof Parzyszek61d90322016-10-06 13:05:13 +0000616 for (const MachineOperand &O : In.operands())
Krzysztof Parzyszekbf90d5a2016-04-28 20:40:08 +0000617 if (O.isGlobal() || O.isSymbol())
618 return true;
619
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000620 const MCInstrDesc &D = In.getDesc();
621 if (!D.getImplicitDefs() && !D.getImplicitUses())
622 return false;
623 const MachineOperand &Op = In.getOperand(OpNum);
624 // If there is a sub-register, treat the operand as non-fixed. Currently,
625 // fixed registers are those that are listed in the descriptor as implicit
626 // uses or defs, and those lists do not allow sub-registers.
627 if (Op.getSubReg() != 0)
628 return false;
Krzysztof Parzyszekc51f2392016-09-22 20:56:39 +0000629 uint32_t Reg = Op.getReg();
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000630 const MCPhysReg *ImpR = Op.isDef() ? D.getImplicitDefs()
631 : D.getImplicitUses();
632 if (!ImpR)
633 return false;
634 while (*ImpR)
635 if (*ImpR++ == Reg)
636 return true;
637 return false;
638}
639
640
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +0000641uint32_t RegisterAggr::getLargestSuperReg(uint32_t Reg) const {
642 uint32_t SuperReg = Reg;
643 while (true) {
644 MCSuperRegIterator SR(SuperReg, &TRI, false);
645 if (!SR.isValid())
646 return SuperReg;
647 SuperReg = *SR;
648 }
649 llvm_unreachable(nullptr);
650}
651
652LaneBitmask RegisterAggr::composeMaskForReg(uint32_t Reg, LaneBitmask LM,
653 uint32_t SuperR) const {
654 uint32_t SubR = TRI.getSubRegIndex(SuperR, Reg);
655 const TargetRegisterClass &RC = *TRI.getMinimalPhysRegClass(Reg);
656 return TRI.composeSubRegIndexLaneMask(SubR, LM & RC.LaneMask);
657}
658
659void RegisterAggr::setMaskRaw(uint32_t Reg, LaneBitmask LM) {
660 uint32_t SuperR = getLargestSuperReg(Reg);
661 LaneBitmask SuperM = composeMaskForReg(Reg, LM, SuperR);
662 auto F = Masks.find(SuperR);
663 if (F == Masks.end())
664 Masks.insert({SuperR, SuperM});
665 else
666 F->second |= SuperM;
667
668 // Visit all register units to see if there are any that were created
669 // by explicit aliases. Add those that were to the bit vector.
670 for (MCRegUnitIterator U(Reg, &TRI); U.isValid(); ++U) {
671 MCRegUnitRootIterator R(*U, &TRI);
672 ++R;
673 if (!R.isValid())
674 continue;
675 ExpAliasUnits.set(*U);
676 CheckUnits = true;
677 }
678}
679
680bool RegisterAggr::hasAliasOf(RegisterRef RR) const {
681 uint32_t SuperR = getLargestSuperReg(RR.Reg);
682 auto F = Masks.find(SuperR);
683 if (F != Masks.end()) {
684 LaneBitmask M = LMI.getLaneMaskForIndex(RR.Sub);
685 if (F->second & composeMaskForReg(RR.Reg, M, SuperR))
686 return true;
687 }
688 if (CheckUnits) {
689 for (MCRegUnitIterator U(RR.Reg, &TRI); U.isValid(); ++U)
690 if (ExpAliasUnits.test(*U))
691 return true;
692 }
693 return false;
694}
695
696bool RegisterAggr::hasCoverOf(RegisterRef RR) const {
697 uint32_t SuperR = getLargestSuperReg(RR.Reg);
698 auto F = Masks.find(SuperR);
699 if (F == Masks.end())
700 return false;
701 LaneBitmask M = LMI.getLaneMaskForIndex(RR.Sub);
702 LaneBitmask SuperM = composeMaskForReg(RR.Reg, M, SuperR);
703 return (SuperM & F->second) == SuperM;
704}
705
706RegisterAggr &RegisterAggr::insert(RegisterRef RR) {
707 setMaskRaw(RR.Reg, LMI.getLaneMaskForIndex(RR.Sub));
708 return *this;
709}
710
711RegisterAggr &RegisterAggr::insert(const RegisterAggr &RG) {
Krzysztof Parzyszek61d90322016-10-06 13:05:13 +0000712 for (std::pair<uint32_t,LaneBitmask> P : RG.Masks)
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +0000713 setMaskRaw(P.first, P.second);
714 return *this;
715}
716
717RegisterAggr &RegisterAggr::clear(RegisterRef RR) {
718 uint32_t SuperR = getLargestSuperReg(RR.Reg);
719 auto F = Masks.find(SuperR);
720 if (F == Masks.end())
721 return *this;
722 LaneBitmask M = LMI.getLaneMaskForIndex(RR.Sub);
723 LaneBitmask NewM = F->second & ~composeMaskForReg(RR.Reg, M, SuperR);
724 if (NewM == LaneBitmask(0))
725 Masks.erase(F);
726 else
727 F->second = NewM;
728 return *this;
729}
730
731void RegisterAggr::print(raw_ostream &OS) const {
732 OS << '{';
733 for (auto I : Masks)
734 OS << ' ' << PrintReg(I.first, &TRI) << ':' << PrintLaneMask(I.second);
735 OS << " }";
736}
737
738
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000739//
740// The data flow graph construction.
741//
742
743DataFlowGraph::DataFlowGraph(MachineFunction &mf, const TargetInstrInfo &tii,
744 const TargetRegisterInfo &tri, const MachineDominatorTree &mdt,
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +0000745 const MachineDominanceFrontier &mdf, const TargetOperandInfo &toi)
746 : TimeG("rdf"), MF(mf), TII(tii), TRI(tri), MDT(mdt), MDF(mdf), TOI(toi) {
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000747}
748
749
750// The implementation of the definition stack.
751// Each register reference has its own definition stack. In particular,
752// for a register references "Reg" and "Reg:subreg" will each have their
753// own definition stacks.
754
755// Construct a stack iterator.
756DataFlowGraph::DefStack::Iterator::Iterator(const DataFlowGraph::DefStack &S,
757 bool Top) : DS(S) {
758 if (!Top) {
759 // Initialize to bottom.
760 Pos = 0;
761 return;
762 }
763 // Initialize to the top, i.e. top-most non-delimiter (or 0, if empty).
764 Pos = DS.Stack.size();
765 while (Pos > 0 && DS.isDelimiter(DS.Stack[Pos-1]))
766 Pos--;
767}
768
769// Return the size of the stack, including block delimiters.
770unsigned DataFlowGraph::DefStack::size() const {
771 unsigned S = 0;
772 for (auto I = top(), E = bottom(); I != E; I.down())
773 S++;
774 return S;
775}
776
777// Remove the top entry from the stack. Remove all intervening delimiters
778// so that after this, the stack is either empty, or the top of the stack
779// is a non-delimiter.
780void DataFlowGraph::DefStack::pop() {
781 assert(!empty());
782 unsigned P = nextDown(Stack.size());
783 Stack.resize(P);
784}
785
786// Push a delimiter for block node N on the stack.
787void DataFlowGraph::DefStack::start_block(NodeId N) {
788 assert(N != 0);
789 Stack.push_back(NodeAddr<DefNode*>(nullptr, N));
790}
791
792// Remove all nodes from the top of the stack, until the delimited for
793// block node N is encountered. Remove the delimiter as well. In effect,
794// this will remove from the stack all definitions from block N.
795void DataFlowGraph::DefStack::clear_block(NodeId N) {
796 assert(N != 0);
797 unsigned P = Stack.size();
798 while (P > 0) {
799 bool Found = isDelimiter(Stack[P-1], N);
800 P--;
801 if (Found)
802 break;
803 }
804 // This will also remove the delimiter, if found.
805 Stack.resize(P);
806}
807
808// Move the stack iterator up by one.
809unsigned DataFlowGraph::DefStack::nextUp(unsigned P) const {
810 // Get the next valid position after P (skipping all delimiters).
811 // The input position P does not have to point to a non-delimiter.
812 unsigned SS = Stack.size();
813 bool IsDelim;
Krzysztof Parzyszek8dca45e2016-01-12 16:51:55 +0000814 assert(P < SS);
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000815 do {
816 P++;
817 IsDelim = isDelimiter(Stack[P-1]);
818 } while (P < SS && IsDelim);
819 assert(!IsDelim);
820 return P;
821}
822
823// Move the stack iterator down by one.
824unsigned DataFlowGraph::DefStack::nextDown(unsigned P) const {
825 // Get the preceding valid position before P (skipping all delimiters).
826 // The input position P does not have to point to a non-delimiter.
827 assert(P > 0 && P <= Stack.size());
828 bool IsDelim = isDelimiter(Stack[P-1]);
829 do {
830 if (--P == 0)
831 break;
832 IsDelim = isDelimiter(Stack[P-1]);
833 } while (P > 0 && IsDelim);
834 assert(!IsDelim);
835 return P;
836}
837
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +0000838
839// Register information.
840
841// Get the list of references aliased to RR. Lane masks are ignored.
842RegisterSet DataFlowGraph::getAliasSet(uint32_t Reg) const {
843 // Do not include RR in the alias set. For virtual registers return an
844 // empty set.
845 RegisterSet AS;
846 if (TargetRegisterInfo::isVirtualRegister(Reg))
847 return AS;
848 assert(TargetRegisterInfo::isPhysicalRegister(Reg));
849
850 for (MCRegAliasIterator AI(Reg, &TRI, false); AI.isValid(); ++AI)
851 AS.insert({*AI,0});
852 return AS;
853}
854
855RegisterSet DataFlowGraph::getLandingPadLiveIns() const {
856 RegisterSet LR;
Krzysztof Parzyszek1d322202016-09-27 18:18:44 +0000857 const Function &F = *MF.getFunction();
858 const Constant *PF = F.hasPersonalityFn() ? F.getPersonalityFn()
859 : nullptr;
860 const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering();
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +0000861 if (uint32_t R = TLI.getExceptionPointerRegister(PF))
862 LR.insert({R,0});
863 if (uint32_t R = TLI.getExceptionSelectorRegister(PF))
864 LR.insert({R,0});
Krzysztof Parzyszek1d322202016-09-27 18:18:44 +0000865 return LR;
866}
867
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000868// Node management functions.
869
870// Get the pointer to the node with the id N.
871NodeBase *DataFlowGraph::ptr(NodeId N) const {
872 if (N == 0)
873 return nullptr;
874 return Memory.ptr(N);
875}
876
877// Get the id of the node at the address P.
878NodeId DataFlowGraph::id(const NodeBase *P) const {
879 if (P == nullptr)
880 return 0;
881 return Memory.id(P);
882}
883
884// Allocate a new node and set the attributes to Attrs.
885NodeAddr<NodeBase*> DataFlowGraph::newNode(uint16_t Attrs) {
886 NodeAddr<NodeBase*> P = Memory.New();
887 P.Addr->init();
888 P.Addr->setAttrs(Attrs);
889 return P;
890}
891
892// Make a copy of the given node B, except for the data-flow links, which
893// are set to 0.
894NodeAddr<NodeBase*> DataFlowGraph::cloneNode(const NodeAddr<NodeBase*> B) {
895 NodeAddr<NodeBase*> NA = newNode(0);
896 memcpy(NA.Addr, B.Addr, sizeof(NodeBase));
897 // Ref nodes need to have the data-flow links reset.
898 if (NA.Addr->getType() == NodeAttrs::Ref) {
899 NodeAddr<RefNode*> RA = NA;
900 RA.Addr->setReachingDef(0);
901 RA.Addr->setSibling(0);
902 if (NA.Addr->getKind() == NodeAttrs::Def) {
903 NodeAddr<DefNode*> DA = NA;
904 DA.Addr->setReachedDef(0);
905 DA.Addr->setReachedUse(0);
906 }
907 }
908 return NA;
909}
910
911
912// Allocation routines for specific node types/kinds.
913
914NodeAddr<UseNode*> DataFlowGraph::newUse(NodeAddr<InstrNode*> Owner,
915 MachineOperand &Op, uint16_t Flags) {
916 NodeAddr<UseNode*> UA = newNode(NodeAttrs::Ref | NodeAttrs::Use | Flags);
917 UA.Addr->setRegRef(&Op);
918 return UA;
919}
920
921NodeAddr<PhiUseNode*> DataFlowGraph::newPhiUse(NodeAddr<PhiNode*> Owner,
922 RegisterRef RR, NodeAddr<BlockNode*> PredB, uint16_t Flags) {
923 NodeAddr<PhiUseNode*> PUA = newNode(NodeAttrs::Ref | NodeAttrs::Use | Flags);
924 assert(Flags & NodeAttrs::PhiRef);
925 PUA.Addr->setRegRef(RR);
926 PUA.Addr->setPredecessor(PredB.Id);
927 return PUA;
928}
929
930NodeAddr<DefNode*> DataFlowGraph::newDef(NodeAddr<InstrNode*> Owner,
931 MachineOperand &Op, uint16_t Flags) {
932 NodeAddr<DefNode*> DA = newNode(NodeAttrs::Ref | NodeAttrs::Def | Flags);
933 DA.Addr->setRegRef(&Op);
934 return DA;
935}
936
937NodeAddr<DefNode*> DataFlowGraph::newDef(NodeAddr<InstrNode*> Owner,
938 RegisterRef RR, uint16_t Flags) {
939 NodeAddr<DefNode*> DA = newNode(NodeAttrs::Ref | NodeAttrs::Def | Flags);
940 assert(Flags & NodeAttrs::PhiRef);
941 DA.Addr->setRegRef(RR);
942 return DA;
943}
944
945NodeAddr<PhiNode*> DataFlowGraph::newPhi(NodeAddr<BlockNode*> Owner) {
946 NodeAddr<PhiNode*> PA = newNode(NodeAttrs::Code | NodeAttrs::Phi);
947 Owner.Addr->addPhi(PA, *this);
948 return PA;
949}
950
951NodeAddr<StmtNode*> DataFlowGraph::newStmt(NodeAddr<BlockNode*> Owner,
952 MachineInstr *MI) {
953 NodeAddr<StmtNode*> SA = newNode(NodeAttrs::Code | NodeAttrs::Stmt);
954 SA.Addr->setCode(MI);
955 Owner.Addr->addMember(SA, *this);
956 return SA;
957}
958
959NodeAddr<BlockNode*> DataFlowGraph::newBlock(NodeAddr<FuncNode*> Owner,
960 MachineBasicBlock *BB) {
961 NodeAddr<BlockNode*> BA = newNode(NodeAttrs::Code | NodeAttrs::Block);
962 BA.Addr->setCode(BB);
963 Owner.Addr->addMember(BA, *this);
964 return BA;
965}
966
967NodeAddr<FuncNode*> DataFlowGraph::newFunc(MachineFunction *MF) {
968 NodeAddr<FuncNode*> FA = newNode(NodeAttrs::Code | NodeAttrs::Func);
969 FA.Addr->setCode(MF);
970 return FA;
971}
972
973// Build the data flow graph.
Krzysztof Parzyszek55874cf2016-04-28 20:17:06 +0000974void DataFlowGraph::build(unsigned Options) {
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000975 reset();
976 Func = newFunc(&MF);
977
978 if (MF.empty())
979 return;
980
Krzysztof Parzyszek61d90322016-10-06 13:05:13 +0000981 for (MachineBasicBlock &B : MF) {
982 NodeAddr<BlockNode*> BA = newBlock(Func, &B);
Krzysztof Parzyszek047149f2016-07-22 16:09:47 +0000983 BlockNodes.insert(std::make_pair(&B, BA));
Krzysztof Parzyszek61d90322016-10-06 13:05:13 +0000984 for (MachineInstr &I : B) {
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000985 if (I.isDebugValue())
986 continue;
987 buildStmt(BA, I);
988 }
989 }
990
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000991 NodeAddr<BlockNode*> EA = Func.Addr->getEntryBlock(*this);
Krzysztof Parzyszek1d322202016-09-27 18:18:44 +0000992 NodeList Blocks = Func.Addr->members(*this);
993
994 // Collect information about block references.
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +0000995 BlockRefsMap RefM;
996 buildBlockRefs(EA, RefM);
997
998 // Add function-entry phi nodes.
999 MachineRegisterInfo &MRI = MF.getRegInfo();
1000 for (auto I = MRI.livein_begin(), E = MRI.livein_end(); I != E; ++I) {
1001 NodeAddr<PhiNode*> PA = newPhi(EA);
1002 RegisterRef RR = { I->first, 0 };
1003 uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving;
1004 NodeAddr<DefNode*> DA = newDef(PA, RR, PhiFlags);
1005 PA.Addr->addMember(DA, *this);
1006 }
1007
Krzysztof Parzyszek1d322202016-09-27 18:18:44 +00001008 // Add phis for landing pads.
1009 // Landing pads, unlike usual backs blocks, are not entered through
1010 // branches in the program, or fall-throughs from other blocks. They
1011 // are entered from the exception handling runtime and target's ABI
1012 // may define certain registers as defined on entry to such a block.
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001013 RegisterSet EHRegs = getLandingPadLiveIns();
Krzysztof Parzyszek1d322202016-09-27 18:18:44 +00001014 if (!EHRegs.empty()) {
1015 for (NodeAddr<BlockNode*> BA : Blocks) {
1016 const MachineBasicBlock &B = *BA.Addr->getCode();
1017 if (!B.isEHPad())
1018 continue;
1019
1020 // Prepare a list of NodeIds of the block's predecessors.
1021 NodeList Preds;
1022 for (MachineBasicBlock *PB : B.predecessors())
1023 Preds.push_back(findBlock(PB));
1024
1025 // Build phi nodes for each live-in.
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001026 for (RegisterRef RR : EHRegs) {
Krzysztof Parzyszek1d322202016-09-27 18:18:44 +00001027 NodeAddr<PhiNode*> PA = newPhi(BA);
1028 uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving;
1029 // Add def:
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001030 NodeAddr<DefNode*> DA = newDef(PA, RR, PhiFlags);
Krzysztof Parzyszek1d322202016-09-27 18:18:44 +00001031 PA.Addr->addMember(DA, *this);
1032 // Add uses (no reaching defs for phi uses):
1033 for (NodeAddr<BlockNode*> PBA : Preds) {
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001034 NodeAddr<PhiUseNode*> PUA = newPhiUse(PA, RR, PBA);
Krzysztof Parzyszek1d322202016-09-27 18:18:44 +00001035 PA.Addr->addMember(PUA, *this);
1036 }
1037 }
1038 }
1039 }
1040
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001041 // Build a map "PhiM" which will contain, for each block, the set
1042 // of references that will require phi definitions in that block.
1043 BlockRefsMap PhiM;
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001044 for (NodeAddr<BlockNode*> BA : Blocks)
1045 recordDefsForDF(PhiM, RefM, BA);
1046 for (NodeAddr<BlockNode*> BA : Blocks)
1047 buildPhis(PhiM, RefM, BA);
1048
1049 // Link all the refs. This will recursively traverse the dominator tree.
1050 DefStackMap DM;
1051 linkBlockRefs(DM, EA);
1052
1053 // Finally, remove all unused phi nodes.
Krzysztof Parzyszek55874cf2016-04-28 20:17:06 +00001054 if (!(Options & BuildOptions::KeepDeadPhis))
1055 removeUnusedPhis();
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001056}
1057
1058// For each stack in the map DefM, push the delimiter for block B on it.
1059void DataFlowGraph::markBlock(NodeId B, DefStackMap &DefM) {
1060 // Push block delimiters.
1061 for (auto I = DefM.begin(), E = DefM.end(); I != E; ++I)
1062 I->second.start_block(B);
1063}
1064
1065// Remove all definitions coming from block B from each stack in DefM.
1066void DataFlowGraph::releaseBlock(NodeId B, DefStackMap &DefM) {
1067 // Pop all defs from this block from the definition stack. Defs that were
1068 // added to the map during the traversal of instructions will not have a
1069 // delimiter, but for those, the whole stack will be emptied.
1070 for (auto I = DefM.begin(), E = DefM.end(); I != E; ++I)
1071 I->second.clear_block(B);
1072
1073 // Finally, remove empty stacks from the map.
1074 for (auto I = DefM.begin(), E = DefM.end(), NextI = I; I != E; I = NextI) {
1075 NextI = std::next(I);
1076 // This preserves the validity of iterators other than I.
1077 if (I->second.empty())
1078 DefM.erase(I);
1079 }
1080}
1081
1082// Push all definitions from the instruction node IA to an appropriate
1083// stack in DefM.
1084void DataFlowGraph::pushDefs(NodeAddr<InstrNode*> IA, DefStackMap &DefM) {
1085 NodeList Defs = IA.Addr->members_if(IsDef, *this);
1086 NodeSet Visited;
1087#ifndef NDEBUG
1088 RegisterSet Defined;
1089#endif
1090
1091 // The important objectives of this function are:
1092 // - to be able to handle instructions both while the graph is being
1093 // constructed, and after the graph has been constructed, and
1094 // - maintain proper ordering of definitions on the stack for each
1095 // register reference:
1096 // - if there are two or more related defs in IA (i.e. coming from
1097 // the same machine operand), then only push one def on the stack,
1098 // - if there are multiple unrelated defs of non-overlapping
1099 // subregisters of S, then the stack for S will have both (in an
1100 // unspecified order), but the order does not matter from the data-
1101 // -flow perspective.
1102
1103 for (NodeAddr<DefNode*> DA : Defs) {
1104 if (Visited.count(DA.Id))
1105 continue;
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001106
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001107 NodeList Rel = getRelatedRefs(IA, DA);
1108 NodeAddr<DefNode*> PDA = Rel.front();
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001109 RegisterRef RR = PDA.Addr->getRegRef();
1110#ifndef NDEBUG
1111 // Assert if the register is defined in two or more unrelated defs.
1112 // This could happen if there are two or more def operands defining it.
1113 if (!Defined.insert(RR).second) {
Krzysztof Parzyszek61d90322016-10-06 13:05:13 +00001114 MachineInstr *MI = NodeAddr<StmtNode*>(IA).Addr->getCode();
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001115 dbgs() << "Multiple definitions of register: "
1116 << Print<RegisterRef>(RR, *this) << " in\n " << *MI
1117 << "in BB#" << MI->getParent()->getNumber() << '\n';
1118 llvm_unreachable(nullptr);
1119 }
1120#endif
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001121 // Push the definition on the stack for the register and all aliases.
1122 // The def stack traversal in linkNodeUp will check the exact aliasing.
1123 DefM[RR.Reg].push(DA);
1124 for (RegisterRef A : getAliasSet(RR.Reg /*FIXME? use RegisterRef*/)) {
1125 // Check that we don't push the same def twice.
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001126 assert(A != RR);
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001127 DefM[A.Reg].push(DA);
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001128 }
1129 // Mark all the related defs as visited.
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001130 for (NodeAddr<NodeBase*> T : Rel)
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001131 Visited.insert(T.Id);
1132 }
1133}
1134
1135// Return the list of all reference nodes related to RA, including RA itself.
1136// See "getNextRelated" for the meaning of a "related reference".
1137NodeList DataFlowGraph::getRelatedRefs(NodeAddr<InstrNode*> IA,
1138 NodeAddr<RefNode*> RA) const {
1139 assert(IA.Id != 0 && RA.Id != 0);
1140
1141 NodeList Refs;
1142 NodeId Start = RA.Id;
1143 do {
1144 Refs.push_back(RA);
1145 RA = getNextRelated(IA, RA);
1146 } while (RA.Id != 0 && RA.Id != Start);
1147 return Refs;
1148}
1149
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001150// Return true if RA and RB overlap, false otherwise.
1151bool DataFlowGraph::alias(RegisterRef RA, RegisterRef RB) const {
1152 // Handling of physical registers.
1153 bool IsPhysA = TargetRegisterInfo::isPhysicalRegister(RA.Reg);
1154 bool IsPhysB = TargetRegisterInfo::isPhysicalRegister(RB.Reg);
1155 if (IsPhysA != IsPhysB)
1156 return false;
1157 if (IsPhysA) {
1158 LaneBitmask LA = LMI.getLaneMaskForIndex(RA.Sub);
1159 LaneBitmask LB = LMI.getLaneMaskForIndex(RB.Sub);
1160
1161 MCRegUnitMaskIterator UMA(RA.Reg, &TRI);
1162 MCRegUnitMaskIterator UMB(RB.Reg, &TRI);
1163 // Reg units are returned in the numerical order.
1164 while (UMA.isValid() && UMB.isValid()) {
1165 std::pair<uint32_t,LaneBitmask> PA = *UMA;
1166 std::pair<uint32_t,LaneBitmask> PB = *UMB;
1167 // If the returned lane mask is 0, it should be treated as ~0
1168 // (or the lane mask from the given register ref should be ignored).
1169 // This can happen when a register has only one unit.
1170 if (PA.first < PB.first || (PA.second && !(PA.second & LA)))
1171 ++UMA;
1172 else if (PB.first < PA.first || (PB.second && !(PB.second & LB)))
1173 ++UMB;
1174 else
1175 return true;
1176 }
1177 return false;
1178 }
1179
1180 // Handling of virtual registers.
1181 bool IsVirtA = TargetRegisterInfo::isVirtualRegister(RA.Reg);
1182 bool IsVirtB = TargetRegisterInfo::isVirtualRegister(RB.Reg);
1183 if (IsVirtA != IsVirtB)
1184 return false;
1185 if (IsVirtA) {
1186 if (RA.Reg != RB.Reg)
1187 return false;
1188 // RA and RB refer to the same register. If any of them refer to the
1189 // whole register, they must be aliased.
1190 if (RA.Sub == 0 || RB.Sub == 0)
1191 return true;
1192 unsigned SA = TRI.getSubRegIdxSize(RA.Sub);
1193 unsigned OA = TRI.getSubRegIdxOffset(RA.Sub);
1194 unsigned SB = TRI.getSubRegIdxSize(RB.Sub);
1195 unsigned OB = TRI.getSubRegIdxOffset(RB.Sub);
1196 if (OA <= OB && OA+SA > OB)
1197 return true;
1198 if (OB <= OA && OB+SB > OA)
1199 return true;
1200 return false;
1201 }
1202
1203 return false;
1204}
1205
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001206
1207// Clear all information in the graph.
1208void DataFlowGraph::reset() {
1209 Memory.clear();
Krzysztof Parzyszek047149f2016-07-22 16:09:47 +00001210 BlockNodes.clear();
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001211 Func = NodeAddr<FuncNode*>();
1212}
1213
1214
1215// Return the next reference node in the instruction node IA that is related
1216// to RA. Conceptually, two reference nodes are related if they refer to the
1217// same instance of a register access, but differ in flags or other minor
1218// characteristics. Specific examples of related nodes are shadow reference
1219// nodes.
1220// Return the equivalent of nullptr if there are no more related references.
1221NodeAddr<RefNode*> DataFlowGraph::getNextRelated(NodeAddr<InstrNode*> IA,
1222 NodeAddr<RefNode*> RA) const {
1223 assert(IA.Id != 0 && RA.Id != 0);
1224
1225 auto Related = [RA](NodeAddr<RefNode*> TA) -> bool {
1226 if (TA.Addr->getKind() != RA.Addr->getKind())
1227 return false;
1228 if (TA.Addr->getRegRef() != RA.Addr->getRegRef())
1229 return false;
1230 return true;
1231 };
1232 auto RelatedStmt = [&Related,RA](NodeAddr<RefNode*> TA) -> bool {
1233 return Related(TA) &&
1234 &RA.Addr->getOp() == &TA.Addr->getOp();
1235 };
1236 auto RelatedPhi = [&Related,RA](NodeAddr<RefNode*> TA) -> bool {
1237 if (!Related(TA))
1238 return false;
1239 if (TA.Addr->getKind() != NodeAttrs::Use)
1240 return true;
1241 // For phi uses, compare predecessor blocks.
1242 const NodeAddr<const PhiUseNode*> TUA = TA;
1243 const NodeAddr<const PhiUseNode*> RUA = RA;
1244 return TUA.Addr->getPredecessor() == RUA.Addr->getPredecessor();
1245 };
1246
1247 RegisterRef RR = RA.Addr->getRegRef();
1248 if (IA.Addr->getKind() == NodeAttrs::Stmt)
1249 return RA.Addr->getNextRef(RR, RelatedStmt, true, *this);
1250 return RA.Addr->getNextRef(RR, RelatedPhi, true, *this);
1251}
1252
1253// Find the next node related to RA in IA that satisfies condition P.
1254// If such a node was found, return a pair where the second element is the
1255// located node. If such a node does not exist, return a pair where the
1256// first element is the element after which such a node should be inserted,
1257// and the second element is a null-address.
1258template <typename Predicate>
1259std::pair<NodeAddr<RefNode*>,NodeAddr<RefNode*>>
1260DataFlowGraph::locateNextRef(NodeAddr<InstrNode*> IA, NodeAddr<RefNode*> RA,
1261 Predicate P) const {
1262 assert(IA.Id != 0 && RA.Id != 0);
1263
1264 NodeAddr<RefNode*> NA;
1265 NodeId Start = RA.Id;
1266 while (true) {
1267 NA = getNextRelated(IA, RA);
1268 if (NA.Id == 0 || NA.Id == Start)
1269 break;
1270 if (P(NA))
1271 break;
1272 RA = NA;
1273 }
1274
1275 if (NA.Id != 0 && NA.Id != Start)
1276 return std::make_pair(RA, NA);
1277 return std::make_pair(RA, NodeAddr<RefNode*>());
1278}
1279
1280// Get the next shadow node in IA corresponding to RA, and optionally create
1281// such a node if it does not exist.
1282NodeAddr<RefNode*> DataFlowGraph::getNextShadow(NodeAddr<InstrNode*> IA,
1283 NodeAddr<RefNode*> RA, bool Create) {
1284 assert(IA.Id != 0 && RA.Id != 0);
1285
1286 uint16_t Flags = RA.Addr->getFlags() | NodeAttrs::Shadow;
1287 auto IsShadow = [Flags] (NodeAddr<RefNode*> TA) -> bool {
1288 return TA.Addr->getFlags() == Flags;
1289 };
1290 auto Loc = locateNextRef(IA, RA, IsShadow);
1291 if (Loc.second.Id != 0 || !Create)
1292 return Loc.second;
1293
1294 // Create a copy of RA and mark is as shadow.
1295 NodeAddr<RefNode*> NA = cloneNode(RA);
1296 NA.Addr->setFlags(Flags | NodeAttrs::Shadow);
1297 IA.Addr->addMemberAfter(Loc.first, NA, *this);
1298 return NA;
1299}
1300
1301// Get the next shadow node in IA corresponding to RA. Return null-address
1302// if such a node does not exist.
1303NodeAddr<RefNode*> DataFlowGraph::getNextShadow(NodeAddr<InstrNode*> IA,
1304 NodeAddr<RefNode*> RA) const {
1305 assert(IA.Id != 0 && RA.Id != 0);
1306 uint16_t Flags = RA.Addr->getFlags() | NodeAttrs::Shadow;
1307 auto IsShadow = [Flags] (NodeAddr<RefNode*> TA) -> bool {
1308 return TA.Addr->getFlags() == Flags;
1309 };
1310 return locateNextRef(IA, RA, IsShadow).second;
1311}
1312
1313// Create a new statement node in the block node BA that corresponds to
1314// the machine instruction MI.
1315void DataFlowGraph::buildStmt(NodeAddr<BlockNode*> BA, MachineInstr &In) {
Krzysztof Parzyszek61d90322016-10-06 13:05:13 +00001316 NodeAddr<StmtNode*> SA = newStmt(BA, &In);
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001317
Krzysztof Parzyszekbf90d5a2016-04-28 20:40:08 +00001318 auto isCall = [] (const MachineInstr &In) -> bool {
1319 if (In.isCall())
1320 return true;
1321 // Is tail call?
1322 if (In.isBranch())
Krzysztof Parzyszek61d90322016-10-06 13:05:13 +00001323 for (const MachineOperand &Op : In.operands())
Krzysztof Parzyszekbf90d5a2016-04-28 20:40:08 +00001324 if (Op.isGlobal() || Op.isSymbol())
1325 return true;
1326 return false;
1327 };
1328
Krzysztof Parzyszek1ff99522016-09-07 20:10:56 +00001329 auto isDefUndef = [this] (const MachineInstr &In, RegisterRef DR) -> bool {
1330 // This instruction defines DR. Check if there is a use operand that
1331 // would make DR live on entry to the instruction.
1332 for (const MachineOperand &UseOp : In.operands()) {
1333 if (!UseOp.isReg() || !UseOp.isUse() || UseOp.isUndef())
1334 continue;
1335 RegisterRef UR = { UseOp.getReg(), UseOp.getSubReg() };
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001336 if (alias(DR, UR))
Krzysztof Parzyszek1ff99522016-09-07 20:10:56 +00001337 return false;
1338 }
1339 return true;
1340 };
1341
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001342 // Collect a set of registers that this instruction implicitly uses
1343 // or defines. Implicit operands from an instruction will be ignored
1344 // unless they are listed here.
1345 RegisterSet ImpUses, ImpDefs;
1346 if (const uint16_t *ImpD = In.getDesc().getImplicitDefs())
1347 while (uint16_t R = *ImpD++)
1348 ImpDefs.insert({R, 0});
1349 if (const uint16_t *ImpU = In.getDesc().getImplicitUses())
1350 while (uint16_t R = *ImpU++)
1351 ImpUses.insert({R, 0});
1352
Krzysztof Parzyszek586fc122016-09-27 18:24:33 +00001353 bool IsCall = isCall(In);
1354 bool NeedsImplicit = IsCall || In.isInlineAsm() || In.isReturn();
Duncan P. N. Exon Smith6307eb52016-02-23 02:46:52 +00001355 bool IsPredicated = TII.isPredicated(In);
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001356 unsigned NumOps = In.getNumOperands();
1357
1358 // Avoid duplicate implicit defs. This will not detect cases of implicit
1359 // defs that define registers that overlap, but it is not clear how to
1360 // interpret that in the absence of explicit defs. Overlapping explicit
1361 // defs are likely illegal already.
1362 RegisterSet DoneDefs;
1363 // Process explicit defs first.
1364 for (unsigned OpN = 0; OpN < NumOps; ++OpN) {
1365 MachineOperand &Op = In.getOperand(OpN);
1366 if (!Op.isReg() || !Op.isDef() || Op.isImplicit())
1367 continue;
1368 RegisterRef RR = { Op.getReg(), Op.getSubReg() };
1369 uint16_t Flags = NodeAttrs::None;
Krzysztof Parzyszek1ff99522016-09-07 20:10:56 +00001370 if (TOI.isPreserving(In, OpN)) {
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001371 Flags |= NodeAttrs::Preserving;
Krzysztof Parzyszek1ff99522016-09-07 20:10:56 +00001372 // If the def is preserving, check if it is also undefined.
1373 if (isDefUndef(In, RR))
1374 Flags |= NodeAttrs::Undef;
1375 }
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001376 if (TOI.isClobbering(In, OpN))
1377 Flags |= NodeAttrs::Clobbering;
1378 if (TOI.isFixedReg(In, OpN))
1379 Flags |= NodeAttrs::Fixed;
Krzysztof Parzyszek586fc122016-09-27 18:24:33 +00001380 if (IsCall && Op.isDead())
1381 Flags |= NodeAttrs::Dead;
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001382 NodeAddr<DefNode*> DA = newDef(SA, Op, Flags);
1383 SA.Addr->addMember(DA, *this);
1384 DoneDefs.insert(RR);
1385 }
1386
1387 // Process implicit defs, skipping those that have already been added
1388 // as explicit.
1389 for (unsigned OpN = 0; OpN < NumOps; ++OpN) {
1390 MachineOperand &Op = In.getOperand(OpN);
1391 if (!Op.isReg() || !Op.isDef() || !Op.isImplicit())
1392 continue;
1393 RegisterRef RR = { Op.getReg(), Op.getSubReg() };
Krzysztof Parzyszekbf90d5a2016-04-28 20:40:08 +00001394 if (!NeedsImplicit && !ImpDefs.count(RR))
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001395 continue;
1396 if (DoneDefs.count(RR))
1397 continue;
1398 uint16_t Flags = NodeAttrs::None;
Krzysztof Parzyszek1ff99522016-09-07 20:10:56 +00001399 if (TOI.isPreserving(In, OpN)) {
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001400 Flags |= NodeAttrs::Preserving;
Krzysztof Parzyszek1ff99522016-09-07 20:10:56 +00001401 // If the def is preserving, check if it is also undefined.
1402 if (isDefUndef(In, RR))
1403 Flags |= NodeAttrs::Undef;
1404 }
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001405 if (TOI.isClobbering(In, OpN))
1406 Flags |= NodeAttrs::Clobbering;
1407 if (TOI.isFixedReg(In, OpN))
1408 Flags |= NodeAttrs::Fixed;
Krzysztof Parzyszek586fc122016-09-27 18:24:33 +00001409 if (IsCall && Op.isDead())
1410 Flags |= NodeAttrs::Dead;
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001411 NodeAddr<DefNode*> DA = newDef(SA, Op, Flags);
1412 SA.Addr->addMember(DA, *this);
1413 DoneDefs.insert(RR);
1414 }
1415
1416 for (unsigned OpN = 0; OpN < NumOps; ++OpN) {
1417 MachineOperand &Op = In.getOperand(OpN);
Krzysztof Parzyszek1ff99522016-09-07 20:10:56 +00001418 if (!Op.isReg() || !Op.isUse())
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001419 continue;
1420 RegisterRef RR = { Op.getReg(), Op.getSubReg() };
1421 // Add implicit uses on return and call instructions, and on predicated
1422 // instructions regardless of whether or not they appear in the instruction
1423 // descriptor's list.
1424 bool Implicit = Op.isImplicit();
Krzysztof Parzyszekbf90d5a2016-04-28 20:40:08 +00001425 bool TakeImplicit = NeedsImplicit || IsPredicated;
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001426 if (Implicit && !TakeImplicit && !ImpUses.count(RR))
1427 continue;
1428 uint16_t Flags = NodeAttrs::None;
Krzysztof Parzyszek1ff99522016-09-07 20:10:56 +00001429 if (Op.isUndef())
1430 Flags |= NodeAttrs::Undef;
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001431 if (TOI.isFixedReg(In, OpN))
1432 Flags |= NodeAttrs::Fixed;
1433 NodeAddr<UseNode*> UA = newUse(SA, Op, Flags);
1434 SA.Addr->addMember(UA, *this);
1435 }
1436}
1437
1438// Build a map that for each block will have the set of all references from
1439// that block, and from all blocks dominated by it.
1440void DataFlowGraph::buildBlockRefs(NodeAddr<BlockNode*> BA,
1441 BlockRefsMap &RefM) {
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001442 RegisterSet &Refs = RefM[BA.Id];
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001443 MachineDomTreeNode *N = MDT.getNode(BA.Addr->getCode());
1444 assert(N);
1445 for (auto I : *N) {
1446 MachineBasicBlock *SB = I->getBlock();
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001447 NodeAddr<BlockNode*> SBA = findBlock(SB);
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001448 buildBlockRefs(SBA, RefM);
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001449 const RegisterSet &RefsS = RefM[SBA.Id];
1450 Refs.insert(RefsS.begin(), RefsS.end());
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001451 }
1452
1453 for (NodeAddr<InstrNode*> IA : BA.Addr->members(*this))
1454 for (NodeAddr<RefNode*> RA : IA.Addr->members(*this))
1455 Refs.insert(RA.Addr->getRegRef());
1456}
1457
1458// Scan all defs in the block node BA and record in PhiM the locations of
1459// phi nodes corresponding to these defs.
1460void DataFlowGraph::recordDefsForDF(BlockRefsMap &PhiM, BlockRefsMap &RefM,
1461 NodeAddr<BlockNode*> BA) {
1462 // Check all defs from block BA and record them in each block in BA's
1463 // iterated dominance frontier. This information will later be used to
1464 // create phi nodes.
1465 MachineBasicBlock *BB = BA.Addr->getCode();
1466 assert(BB);
1467 auto DFLoc = MDF.find(BB);
1468 if (DFLoc == MDF.end() || DFLoc->second.empty())
1469 return;
1470
1471 // Traverse all instructions in the block and collect the set of all
1472 // defined references. For each reference there will be a phi created
1473 // in the block's iterated dominance frontier.
1474 // This is done to make sure that each defined reference gets only one
1475 // phi node, even if it is defined multiple times.
1476 RegisterSet Defs;
Krzysztof Parzyszek61d90322016-10-06 13:05:13 +00001477 for (NodeAddr<InstrNode*> IA : BA.Addr->members(*this))
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001478 for (NodeAddr<RefNode*> RA : IA.Addr->members_if(IsDef, *this))
1479 Defs.insert(RA.Addr->getRegRef());
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001480
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001481 // Calculate the iterated dominance frontier of BB.
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001482 const MachineDominanceFrontier::DomSetType &DF = DFLoc->second;
1483 SetVector<MachineBasicBlock*> IDF(DF.begin(), DF.end());
1484 for (unsigned i = 0; i < IDF.size(); ++i) {
1485 auto F = MDF.find(IDF[i]);
1486 if (F != MDF.end())
1487 IDF.insert(F->second.begin(), F->second.end());
1488 }
1489
1490 // Get the register references that are reachable from this block.
1491 RegisterSet &Refs = RefM[BA.Id];
1492 for (auto DB : IDF) {
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001493 NodeAddr<BlockNode*> DBA = findBlock(DB);
1494 const RegisterSet &RefsD = RefM[DBA.Id];
1495 Refs.insert(RefsD.begin(), RefsD.end());
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001496 }
1497
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001498 // Finally, add the set of defs to each block in the iterated dominance
1499 // frontier.
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001500 for (auto DB : IDF) {
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001501 NodeAddr<BlockNode*> DBA = findBlock(DB);
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001502 PhiM[DBA.Id].insert(Defs.begin(), Defs.end());
1503 }
1504}
1505
1506// Given the locations of phi nodes in the map PhiM, create the phi nodes
1507// that are located in the block node BA.
1508void DataFlowGraph::buildPhis(BlockRefsMap &PhiM, BlockRefsMap &RefM,
1509 NodeAddr<BlockNode*> BA) {
1510 // Check if this blocks has any DF defs, i.e. if there are any defs
1511 // that this block is in the iterated dominance frontier of.
1512 auto HasDF = PhiM.find(BA.Id);
1513 if (HasDF == PhiM.end() || HasDF->second.empty())
1514 return;
1515
1516 // First, remove all R in Refs in such that there exists T in Refs
1517 // such that T covers R. In other words, only leave those refs that
1518 // are not covered by another ref (i.e. maximal with respect to covering).
1519
1520 auto MaxCoverIn = [this] (RegisterRef RR, RegisterSet &RRs) -> RegisterRef {
Krzysztof Parzyszek61d90322016-10-06 13:05:13 +00001521 for (RegisterRef I : RRs)
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001522 if (I != RR && RegisterAggr::isCoverOf(I, RR, LMI, TRI))
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001523 RR = I;
1524 return RR;
1525 };
1526
1527 RegisterSet MaxDF;
Krzysztof Parzyszek61d90322016-10-06 13:05:13 +00001528 for (RegisterRef I : HasDF->second)
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001529 MaxDF.insert(MaxCoverIn(I, HasDF->second));
1530
1531 std::vector<RegisterRef> MaxRefs;
Krzysztof Parzyszek61d90322016-10-06 13:05:13 +00001532 RegisterSet &RefB = RefM[BA.Id];
1533 for (RegisterRef I : MaxDF)
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001534 MaxRefs.push_back(MaxCoverIn(I, RefB));
1535
1536 // Now, for each R in MaxRefs, get the alias closure of R. If the closure
1537 // only has R in it, create a phi a def for R. Otherwise, create a phi,
1538 // and add a def for each S in the closure.
1539
1540 // Sort the refs so that the phis will be created in a deterministic order.
1541 std::sort(MaxRefs.begin(), MaxRefs.end());
1542 // Remove duplicates.
1543 auto NewEnd = std::unique(MaxRefs.begin(), MaxRefs.end());
1544 MaxRefs.erase(NewEnd, MaxRefs.end());
1545
1546 auto Aliased = [this,&MaxRefs](RegisterRef RR,
1547 std::vector<unsigned> &Closure) -> bool {
Krzysztof Parzyszek61d90322016-10-06 13:05:13 +00001548 for (unsigned I : Closure)
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001549 if (alias(RR, MaxRefs[I]))
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001550 return true;
1551 return false;
1552 };
1553
1554 // Prepare a list of NodeIds of the block's predecessors.
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001555 NodeList Preds;
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001556 const MachineBasicBlock *MBB = BA.Addr->getCode();
Krzysztof Parzyszek61d90322016-10-06 13:05:13 +00001557 for (MachineBasicBlock *PB : MBB->predecessors())
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001558 Preds.push_back(findBlock(PB));
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001559
1560 while (!MaxRefs.empty()) {
1561 // Put the first element in the closure, and then add all subsequent
1562 // elements from MaxRefs to it, if they alias at least one element
1563 // already in the closure.
1564 // ClosureIdx: vector of indices in MaxRefs of members of the closure.
1565 std::vector<unsigned> ClosureIdx = { 0 };
1566 for (unsigned i = 1; i != MaxRefs.size(); ++i)
1567 if (Aliased(MaxRefs[i], ClosureIdx))
1568 ClosureIdx.push_back(i);
1569
1570 // Build a phi for the closure.
1571 unsigned CS = ClosureIdx.size();
1572 NodeAddr<PhiNode*> PA = newPhi(BA);
1573
1574 // Add defs.
1575 for (unsigned X = 0; X != CS; ++X) {
1576 RegisterRef RR = MaxRefs[ClosureIdx[X]];
1577 uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving;
1578 NodeAddr<DefNode*> DA = newDef(PA, RR, PhiFlags);
1579 PA.Addr->addMember(DA, *this);
1580 }
1581 // Add phi uses.
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001582 for (NodeAddr<BlockNode*> PBA : Preds) {
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001583 for (unsigned X = 0; X != CS; ++X) {
1584 RegisterRef RR = MaxRefs[ClosureIdx[X]];
1585 NodeAddr<PhiUseNode*> PUA = newPhiUse(PA, RR, PBA);
1586 PA.Addr->addMember(PUA, *this);
1587 }
1588 }
1589
1590 // Erase from MaxRefs all elements in the closure.
1591 auto Begin = MaxRefs.begin();
1592 for (unsigned i = ClosureIdx.size(); i != 0; --i)
1593 MaxRefs.erase(Begin + ClosureIdx[i-1]);
1594 }
1595}
1596
1597// Remove any unneeded phi nodes that were created during the build process.
1598void DataFlowGraph::removeUnusedPhis() {
1599 // This will remove unused phis, i.e. phis where each def does not reach
1600 // any uses or other defs. This will not detect or remove circular phi
1601 // chains that are otherwise dead. Unused/dead phis are created during
1602 // the build process and this function is intended to remove these cases
1603 // that are easily determinable to be unnecessary.
1604
1605 SetVector<NodeId> PhiQ;
1606 for (NodeAddr<BlockNode*> BA : Func.Addr->members(*this)) {
1607 for (auto P : BA.Addr->members_if(IsPhi, *this))
1608 PhiQ.insert(P.Id);
1609 }
1610
1611 static auto HasUsedDef = [](NodeList &Ms) -> bool {
Krzysztof Parzyszek61d90322016-10-06 13:05:13 +00001612 for (NodeAddr<NodeBase*> M : Ms) {
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001613 if (M.Addr->getKind() != NodeAttrs::Def)
1614 continue;
1615 NodeAddr<DefNode*> DA = M;
1616 if (DA.Addr->getReachedDef() != 0 || DA.Addr->getReachedUse() != 0)
1617 return true;
1618 }
1619 return false;
1620 };
1621
1622 // Any phi, if it is removed, may affect other phis (make them dead).
1623 // For each removed phi, collect the potentially affected phis and add
1624 // them back to the queue.
1625 while (!PhiQ.empty()) {
1626 auto PA = addr<PhiNode*>(PhiQ[0]);
1627 PhiQ.remove(PA.Id);
1628 NodeList Refs = PA.Addr->members(*this);
1629 if (HasUsedDef(Refs))
1630 continue;
1631 for (NodeAddr<RefNode*> RA : Refs) {
1632 if (NodeId RD = RA.Addr->getReachingDef()) {
1633 auto RDA = addr<DefNode*>(RD);
1634 NodeAddr<InstrNode*> OA = RDA.Addr->getOwner(*this);
1635 if (IsPhi(OA))
1636 PhiQ.insert(OA.Id);
1637 }
1638 if (RA.Addr->isDef())
Krzysztof Parzyszek69e670d52016-01-18 20:41:34 +00001639 unlinkDef(RA, true);
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001640 else
Krzysztof Parzyszek69e670d52016-01-18 20:41:34 +00001641 unlinkUse(RA, true);
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001642 }
1643 NodeAddr<BlockNode*> BA = PA.Addr->getOwner(*this);
1644 BA.Addr->removeMember(PA, *this);
1645 }
1646}
1647
1648// For a given reference node TA in an instruction node IA, connect the
1649// reaching def of TA to the appropriate def node. Create any shadow nodes
1650// as appropriate.
1651template <typename T>
1652void DataFlowGraph::linkRefUp(NodeAddr<InstrNode*> IA, NodeAddr<T> TA,
1653 DefStack &DS) {
1654 if (DS.empty())
1655 return;
1656 RegisterRef RR = TA.Addr->getRegRef();
1657 NodeAddr<T> TAP;
1658
1659 // References from the def stack that have been examined so far.
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001660 RegisterAggr Defs(LMI, TRI);
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001661
1662 for (auto I = DS.top(), E = DS.bottom(); I != E; I.down()) {
1663 RegisterRef QR = I->Addr->getRegRef();
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001664
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001665 // Skip all defs that are aliased to any of the defs that we have already
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001666 // seen. If this completes a cover of RR, stop the stack traversal.
1667 bool Alias = Defs.hasAliasOf(QR);
1668 bool Cover = Defs.insert(QR).hasCoverOf(RR);
1669 if (Alias) {
1670 if (Cover)
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001671 break;
1672 continue;
1673 }
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001674
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001675 // The reaching def.
1676 NodeAddr<DefNode*> RDA = *I;
1677
1678 // Pick the reached node.
1679 if (TAP.Id == 0) {
1680 TAP = TA;
1681 } else {
1682 // Mark the existing ref as "shadow" and create a new shadow.
1683 TAP.Addr->setFlags(TAP.Addr->getFlags() | NodeAttrs::Shadow);
1684 TAP = getNextShadow(IA, TAP, true);
1685 }
1686
1687 // Create the link.
1688 TAP.Addr->linkToDef(TAP.Id, RDA);
1689
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001690 if (Cover)
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001691 break;
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001692 }
1693}
1694
1695// Create data-flow links for all reference nodes in the statement node SA.
1696void DataFlowGraph::linkStmtRefs(DefStackMap &DefM, NodeAddr<StmtNode*> SA) {
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001697#ifndef NDEBUG
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001698 RegisterSet Defs;
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001699#endif
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001700
1701 // Link all nodes (upwards in the data-flow) with their reaching defs.
1702 for (NodeAddr<RefNode*> RA : SA.Addr->members(*this)) {
1703 uint16_t Kind = RA.Addr->getKind();
1704 assert(Kind == NodeAttrs::Def || Kind == NodeAttrs::Use);
1705 RegisterRef RR = RA.Addr->getRegRef();
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001706#ifndef NDEBUG
1707 // Do not expect multiple defs of the same reference.
1708 assert(Kind != NodeAttrs::Def || !Defs.count(RR));
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001709 Defs.insert(RR);
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001710#endif
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001711
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001712 auto F = DefM.find(RR.Reg);
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001713 if (F == DefM.end())
1714 continue;
1715 DefStack &DS = F->second;
1716 if (Kind == NodeAttrs::Use)
1717 linkRefUp<UseNode*>(SA, RA, DS);
1718 else if (Kind == NodeAttrs::Def)
1719 linkRefUp<DefNode*>(SA, RA, DS);
1720 else
1721 llvm_unreachable("Unexpected node in instruction");
1722 }
1723}
1724
1725// Create data-flow links for all instructions in the block node BA. This
1726// will include updating any phi nodes in BA.
1727void DataFlowGraph::linkBlockRefs(DefStackMap &DefM, NodeAddr<BlockNode*> BA) {
1728 // Push block delimiters.
1729 markBlock(BA.Id, DefM);
1730
Krzysztof Parzyszek89757432016-05-05 22:00:44 +00001731 assert(BA.Addr && "block node address is needed to create a data-flow link");
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001732 // For each non-phi instruction in the block, link all the defs and uses
1733 // to their reaching defs. For any member of the block (including phis),
1734 // push the defs on the corresponding stacks.
1735 for (NodeAddr<InstrNode*> IA : BA.Addr->members(*this)) {
1736 // Ignore phi nodes here. They will be linked part by part from the
1737 // predecessors.
1738 if (IA.Addr->getKind() == NodeAttrs::Stmt)
1739 linkStmtRefs(DefM, IA);
1740
1741 // Push the definitions on the stack.
1742 pushDefs(IA, DefM);
1743 }
1744
1745 // Recursively process all children in the dominator tree.
1746 MachineDomTreeNode *N = MDT.getNode(BA.Addr->getCode());
1747 for (auto I : *N) {
1748 MachineBasicBlock *SB = I->getBlock();
Krzysztof Parzyszek61d90322016-10-06 13:05:13 +00001749 NodeAddr<BlockNode*> SBA = findBlock(SB);
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001750 linkBlockRefs(DefM, SBA);
1751 }
1752
1753 // Link the phi uses from the successor blocks.
1754 auto IsUseForBA = [BA](NodeAddr<NodeBase*> NA) -> bool {
1755 if (NA.Addr->getKind() != NodeAttrs::Use)
1756 return false;
1757 assert(NA.Addr->getFlags() & NodeAttrs::PhiRef);
1758 NodeAddr<PhiUseNode*> PUA = NA;
1759 return PUA.Addr->getPredecessor() == BA.Id;
1760 };
Krzysztof Parzyszek1d322202016-09-27 18:18:44 +00001761
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001762 RegisterSet EHLiveIns = getLandingPadLiveIns();
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001763 MachineBasicBlock *MBB = BA.Addr->getCode();
Krzysztof Parzyszek1d322202016-09-27 18:18:44 +00001764
Krzysztof Parzyszek61d90322016-10-06 13:05:13 +00001765 for (MachineBasicBlock *SB : MBB->successors()) {
Krzysztof Parzyszek1d322202016-09-27 18:18:44 +00001766 bool IsEHPad = SB->isEHPad();
1767 NodeAddr<BlockNode*> SBA = findBlock(SB);
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001768 for (NodeAddr<InstrNode*> IA : SBA.Addr->members_if(IsPhi, *this)) {
Krzysztof Parzyszek1d322202016-09-27 18:18:44 +00001769 // Do not link phi uses for landing pad live-ins.
1770 if (IsEHPad) {
1771 // Find what register this phi is for.
1772 NodeAddr<RefNode*> RA = IA.Addr->getFirstMember(*this);
1773 assert(RA.Id != 0);
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001774 if (EHLiveIns.count(RA.Addr->getRegRef()))
Krzysztof Parzyszek1d322202016-09-27 18:18:44 +00001775 continue;
1776 }
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001777 // Go over each phi use associated with MBB, and link it.
1778 for (auto U : IA.Addr->members_if(IsUseForBA, *this)) {
1779 NodeAddr<PhiUseNode*> PUA = U;
1780 RegisterRef RR = PUA.Addr->getRegRef();
Krzysztof Parzyszeka77fe4e2016-10-03 17:14:48 +00001781 linkRefUp<UseNode*>(IA, PUA, DefM[RR.Reg]);
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001782 }
1783 }
1784 }
1785
1786 // Pop all defs from this block from the definition stacks.
1787 releaseBlock(BA.Id, DefM);
1788}
1789
1790// Remove the use node UA from any data-flow and structural links.
Krzysztof Parzyszek69e670d52016-01-18 20:41:34 +00001791void DataFlowGraph::unlinkUseDF(NodeAddr<UseNode*> UA) {
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001792 NodeId RD = UA.Addr->getReachingDef();
1793 NodeId Sib = UA.Addr->getSibling();
1794
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001795 if (RD == 0) {
1796 assert(Sib == 0);
1797 return;
1798 }
1799
1800 auto RDA = addr<DefNode*>(RD);
1801 auto TA = addr<UseNode*>(RDA.Addr->getReachedUse());
1802 if (TA.Id == UA.Id) {
1803 RDA.Addr->setReachedUse(Sib);
1804 return;
1805 }
1806
1807 while (TA.Id != 0) {
1808 NodeId S = TA.Addr->getSibling();
1809 if (S == UA.Id) {
1810 TA.Addr->setSibling(UA.Addr->getSibling());
1811 return;
1812 }
1813 TA = addr<UseNode*>(S);
1814 }
1815}
1816
1817// Remove the def node DA from any data-flow and structural links.
Krzysztof Parzyszek69e670d52016-01-18 20:41:34 +00001818void DataFlowGraph::unlinkDefDF(NodeAddr<DefNode*> DA) {
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001819 //
1820 // RD
1821 // | reached
1822 // | def
1823 // :
1824 // .
1825 // +----+
1826 // ... -- | DA | -- ... -- 0 : sibling chain of DA
1827 // +----+
1828 // | | reached
1829 // | : def
1830 // | .
1831 // | ... : Siblings (defs)
1832 // |
1833 // : reached
1834 // . use
1835 // ... : sibling chain of reached uses
1836
1837 NodeId RD = DA.Addr->getReachingDef();
1838
1839 // Visit all siblings of the reached def and reset their reaching defs.
1840 // Also, defs reached by DA are now "promoted" to being reached by RD,
1841 // so all of them will need to be spliced into the sibling chain where
1842 // DA belongs.
1843 auto getAllNodes = [this] (NodeId N) -> NodeList {
1844 NodeList Res;
1845 while (N) {
1846 auto RA = addr<RefNode*>(N);
1847 // Keep the nodes in the exact sibling order.
1848 Res.push_back(RA);
1849 N = RA.Addr->getSibling();
1850 }
1851 return Res;
1852 };
1853 NodeList ReachedDefs = getAllNodes(DA.Addr->getReachedDef());
1854 NodeList ReachedUses = getAllNodes(DA.Addr->getReachedUse());
1855
1856 if (RD == 0) {
1857 for (NodeAddr<RefNode*> I : ReachedDefs)
1858 I.Addr->setSibling(0);
1859 for (NodeAddr<RefNode*> I : ReachedUses)
1860 I.Addr->setSibling(0);
1861 }
1862 for (NodeAddr<DefNode*> I : ReachedDefs)
1863 I.Addr->setReachingDef(RD);
1864 for (NodeAddr<UseNode*> I : ReachedUses)
1865 I.Addr->setReachingDef(RD);
1866
1867 NodeId Sib = DA.Addr->getSibling();
1868 if (RD == 0) {
1869 assert(Sib == 0);
1870 return;
1871 }
1872
1873 // Update the reaching def node and remove DA from the sibling list.
1874 auto RDA = addr<DefNode*>(RD);
1875 auto TA = addr<DefNode*>(RDA.Addr->getReachedDef());
1876 if (TA.Id == DA.Id) {
1877 // If DA is the first reached def, just update the RD's reached def
1878 // to the DA's sibling.
1879 RDA.Addr->setReachedDef(Sib);
1880 } else {
1881 // Otherwise, traverse the sibling list of the reached defs and remove
1882 // DA from it.
1883 while (TA.Id != 0) {
1884 NodeId S = TA.Addr->getSibling();
1885 if (S == DA.Id) {
1886 TA.Addr->setSibling(Sib);
1887 break;
1888 }
1889 TA = addr<DefNode*>(S);
1890 }
1891 }
1892
1893 // Splice the DA's reached defs into the RDA's reached def chain.
1894 if (!ReachedDefs.empty()) {
1895 auto Last = NodeAddr<DefNode*>(ReachedDefs.back());
1896 Last.Addr->setSibling(RDA.Addr->getReachedDef());
1897 RDA.Addr->setReachedDef(ReachedDefs.front().Id);
1898 }
1899 // Splice the DA's reached uses into the RDA's reached use chain.
1900 if (!ReachedUses.empty()) {
1901 auto Last = NodeAddr<UseNode*>(ReachedUses.back());
1902 Last.Addr->setSibling(RDA.Addr->getReachedUse());
1903 RDA.Addr->setReachedUse(ReachedUses.front().Id);
1904 }
Krzysztof Parzyszekb5b5a1d2016-01-12 15:09:49 +00001905}