blob: 9b6ff1eb1366df3f923975fdc234e9450e445e21 [file] [log] [blame]
Chris Lattnerd43023a2002-08-02 16:43:03 +00001//===- Dominators.cpp - Dominator Calculation -----------------------------===//
Misha Brukmanb1c93172005-04-21 23:48:37 +00002//
John Criswell482202a2003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattnerf3ebc3f2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanb1c93172005-04-21 23:48:37 +00007//
John Criswell482202a2003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattner081aabc2001-07-02 05:46:38 +00009//
Chris Lattnerd43023a2002-08-02 16:43:03 +000010// This file implements simple dominator construction algorithms for finding
11// forward dominators. Postdominators are available in libanalysis, but are not
12// included in libvmcore, because it's not needed. Forward dominators are
13// needed to support the Verifier pass.
Chris Lattner081aabc2001-07-02 05:46:38 +000014//
15//===----------------------------------------------------------------------===//
16
Chandler Carruth5ad5f152014-01-13 09:26:24 +000017#include "llvm/IR/Dominators.h"
Reid Spencer7c16caa2004-09-01 22:55:40 +000018#include "llvm/ADT/DepthFirstIterator.h"
Devang Patel5a1bd402007-03-27 20:50:46 +000019#include "llvm/ADT/SmallPtrSet.h"
Chris Lattnerc63d4c22007-08-08 05:51:24 +000020#include "llvm/ADT/SmallVector.h"
Chandler Carruth1305dc32014-03-04 11:45:46 +000021#include "llvm/IR/CFG.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000022#include "llvm/IR/Instructions.h"
Chandler Carruth64764b42015-01-14 10:19:28 +000023#include "llvm/IR/PassManager.h"
Dan Gohman4dbb3012009-09-28 00:27:48 +000024#include "llvm/Support/CommandLine.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000025#include "llvm/Support/Compiler.h"
26#include "llvm/Support/Debug.h"
Chandler Carruthe509db42014-01-13 10:52:56 +000027#include "llvm/Support/GenericDomTreeConstruction.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000028#include "llvm/Support/raw_ostream.h"
Chris Lattnerc5e0be62004-06-05 00:24:59 +000029#include <algorithm>
Chris Lattner189d19f2003-11-21 20:23:48 +000030using namespace llvm;
Brian Gaeke960707c2003-11-11 22:41:34 +000031
Dan Gohman4dbb3012009-09-28 00:27:48 +000032// Always verify dominfo if expensive checking is enabled.
33#ifdef XDEBUG
Dan Gohmanb29cda92010-04-15 17:08:50 +000034static bool VerifyDomInfo = true;
Dan Gohman4dbb3012009-09-28 00:27:48 +000035#else
Dan Gohmanb29cda92010-04-15 17:08:50 +000036static bool VerifyDomInfo = false;
Dan Gohman4dbb3012009-09-28 00:27:48 +000037#endif
38static cl::opt<bool,true>
39VerifyDomInfoX("verify-dom-info", cl::location(VerifyDomInfo),
40 cl::desc("Verify dominator info (time consuming)"));
41
Rafael Espindolacc80cde2012-08-16 15:09:43 +000042bool BasicBlockEdge::isSingleEdge() const {
43 const TerminatorInst *TI = Start->getTerminator();
44 unsigned NumEdgesToEnd = 0;
45 for (unsigned int i = 0, n = TI->getNumSuccessors(); i < n; ++i) {
46 if (TI->getSuccessor(i) == End)
47 ++NumEdgesToEnd;
48 if (NumEdgesToEnd >= 2)
49 return false;
50 }
51 assert(NumEdgesToEnd == 1);
52 return true;
Rafael Espindola11870772012-08-10 14:05:55 +000053}
54
Chris Lattnerc385beb2001-07-06 16:58:22 +000055//===----------------------------------------------------------------------===//
Owen Andersonf35a1db2007-04-15 08:47:27 +000056// DominatorTree Implementation
Chris Lattner00f51672003-12-07 00:38:08 +000057//===----------------------------------------------------------------------===//
58//
Owen Anderson84c357f2007-09-23 21:31:44 +000059// Provide public access to DominatorTree information. Implementation details
Chandler Carruthe509db42014-01-13 10:52:56 +000060// can be found in Dominators.h, GenericDomTree.h, and
61// GenericDomTreeConstruction.h.
Chris Lattner00f51672003-12-07 00:38:08 +000062//
63//===----------------------------------------------------------------------===//
64
John McCall086bb4e2009-12-19 00:55:12 +000065TEMPLATE_INSTANTIATION(class llvm::DomTreeNodeBase<BasicBlock>);
66TEMPLATE_INSTANTIATION(class llvm::DominatorTreeBase<BasicBlock>);
Owen Anderson41878012007-10-16 19:59:25 +000067
Rafael Espindola30616362014-02-14 22:36:16 +000068#define LLVM_COMMA ,
69TEMPLATE_INSTANTIATION(void llvm::Calculate<Function LLVM_COMMA BasicBlock *>(
Rafael Espindola56b663b2014-02-16 14:12:35 +000070 DominatorTreeBase<GraphTraits<BasicBlock *>::NodeType> &DT LLVM_COMMA
71 Function &F));
72TEMPLATE_INSTANTIATION(
73 void llvm::Calculate<Function LLVM_COMMA Inverse<BasicBlock *> >(
74 DominatorTreeBase<GraphTraits<Inverse<BasicBlock *> >::NodeType> &DT
75 LLVM_COMMA Function &F));
Rafael Espindola30616362014-02-14 22:36:16 +000076#undef LLVM_COMMA
77
Rafael Espindola94df2672012-02-26 02:19:19 +000078// dominates - Return true if Def dominates a use in User. This performs
79// the special checks necessary if Def and User are in the same basic block.
80// Note that Def doesn't dominate a use in Def itself!
81bool DominatorTree::dominates(const Instruction *Def,
82 const Instruction *User) const {
83 const BasicBlock *UseBB = User->getParent();
84 const BasicBlock *DefBB = Def->getParent();
Rafael Espindola082d4822012-02-18 19:46:02 +000085
Rafael Espindolaa53c46a2012-03-30 16:46:21 +000086 // Any unreachable use is dominated, even if Def == User.
87 if (!isReachableFromEntry(UseBB))
88 return true;
89
90 // Unreachable definitions don't dominate anything.
91 if (!isReachableFromEntry(DefBB))
92 return false;
Rafael Espindola082d4822012-02-18 19:46:02 +000093
Rafael Espindola94df2672012-02-26 02:19:19 +000094 // An instruction doesn't dominate a use in itself.
95 if (Def == User)
Chris Lattner22151ce2009-09-21 22:30:50 +000096 return false;
Rafael Espindola082d4822012-02-18 19:46:02 +000097
Rafael Espindola94df2672012-02-26 02:19:19 +000098 // The value defined by an invoke dominates an instruction only if
99 // it dominates every instruction in UseBB.
100 // A PHI is dominated only if the instruction dominates every possible use
101 // in the UseBB.
102 if (isa<InvokeInst>(Def) || isa<PHINode>(User))
103 return dominates(Def, UseBB);
104
105 if (DefBB != UseBB)
106 return dominates(DefBB, UseBB);
107
108 // Loop through the basic block until we find Def or User.
109 BasicBlock::const_iterator I = DefBB->begin();
110 for (; &*I != Def && &*I != User; ++I)
Chris Lattner22151ce2009-09-21 22:30:50 +0000111 /*empty*/;
Rafael Espindola082d4822012-02-18 19:46:02 +0000112
Rafael Espindola94df2672012-02-26 02:19:19 +0000113 return &*I == Def;
114}
115
116// true if Def would dominate a use in any instruction in UseBB.
117// note that dominates(Def, Def->getParent()) is false.
118bool DominatorTree::dominates(const Instruction *Def,
119 const BasicBlock *UseBB) const {
120 const BasicBlock *DefBB = Def->getParent();
121
Rafael Espindolaa53c46a2012-03-30 16:46:21 +0000122 // Any unreachable use is dominated, even if DefBB == UseBB.
123 if (!isReachableFromEntry(UseBB))
124 return true;
125
126 // Unreachable definitions don't dominate anything.
127 if (!isReachableFromEntry(DefBB))
128 return false;
Rafael Espindola94df2672012-02-26 02:19:19 +0000129
130 if (DefBB == UseBB)
131 return false;
132
133 const InvokeInst *II = dyn_cast<InvokeInst>(Def);
134 if (!II)
135 return dominates(DefBB, UseBB);
136
137 // Invoke results are only usable in the normal destination, not in the
138 // exceptional destination.
139 BasicBlock *NormalDest = II->getNormalDest();
Rafael Espindola59564072012-08-07 17:30:46 +0000140 BasicBlockEdge E(DefBB, NormalDest);
141 return dominates(E, UseBB);
142}
143
144bool DominatorTree::dominates(const BasicBlockEdge &BBE,
145 const BasicBlock *UseBB) const {
Rafael Espindola9a167352012-08-17 18:21:28 +0000146 // Assert that we have a single edge. We could handle them by simply
147 // returning false, but since isSingleEdge is linear on the number of
148 // edges, the callers can normally handle them more efficiently.
149 assert(BBE.isSingleEdge());
150
Rafael Espindola59564072012-08-07 17:30:46 +0000151 // If the BB the edge ends in doesn't dominate the use BB, then the
152 // edge also doesn't.
153 const BasicBlock *Start = BBE.getStart();
154 const BasicBlock *End = BBE.getEnd();
155 if (!dominates(End, UseBB))
Rafael Espindola94df2672012-02-26 02:19:19 +0000156 return false;
157
Rafael Espindola59564072012-08-07 17:30:46 +0000158 // Simple case: if the end BB has a single predecessor, the fact that it
159 // dominates the use block implies that the edge also does.
160 if (End->getSinglePredecessor())
Rafael Espindola94df2672012-02-26 02:19:19 +0000161 return true;
162
163 // The normal edge from the invoke is critical. Conceptually, what we would
164 // like to do is split it and check if the new block dominates the use.
165 // With X being the new block, the graph would look like:
166 //
167 // DefBB
168 // /\ . .
169 // / \ . .
170 // / \ . .
171 // / \ | |
172 // A X B C
173 // | \ | /
174 // . \|/
175 // . NormalDest
176 // .
177 //
Sylvestre Ledru91ce36c2012-09-27 10:14:43 +0000178 // Given the definition of dominance, NormalDest is dominated by X iff X
Rafael Espindola94df2672012-02-26 02:19:19 +0000179 // dominates all of NormalDest's predecessors (X, B, C in the example). X
180 // trivially dominates itself, so we only have to find if it dominates the
181 // other predecessors. Since the only way out of X is via NormalDest, X can
182 // only properly dominate a node if NormalDest dominates that node too.
Duncan P. N. Exon Smith6c990152014-07-21 17:06:51 +0000183 for (const_pred_iterator PI = pred_begin(End), E = pred_end(End);
184 PI != E; ++PI) {
185 const BasicBlock *BB = *PI;
Rafael Espindola59564072012-08-07 17:30:46 +0000186 if (BB == Start)
Rafael Espindola94df2672012-02-26 02:19:19 +0000187 continue;
188
Rafael Espindola59564072012-08-07 17:30:46 +0000189 if (!dominates(End, BB))
Rafael Espindola94df2672012-02-26 02:19:19 +0000190 return false;
191 }
192 return true;
Chris Lattner22151ce2009-09-21 22:30:50 +0000193}
Dan Gohman73273272012-04-12 23:31:46 +0000194
Chandler Carruth73523022014-01-13 13:07:17 +0000195bool DominatorTree::dominates(const BasicBlockEdge &BBE, const Use &U) const {
Rafael Espindola9a167352012-08-17 18:21:28 +0000196 // Assert that we have a single edge. We could handle them by simply
197 // returning false, but since isSingleEdge is linear on the number of
198 // edges, the callers can normally handle them more efficiently.
199 assert(BBE.isSingleEdge());
200
Rafael Espindola59564072012-08-07 17:30:46 +0000201 Instruction *UserInst = cast<Instruction>(U.getUser());
202 // A PHI in the end of the edge is dominated by it.
203 PHINode *PN = dyn_cast<PHINode>(UserInst);
204 if (PN && PN->getParent() == BBE.getEnd() &&
205 PN->getIncomingBlock(U) == BBE.getStart())
206 return true;
207
208 // Otherwise use the edge-dominates-block query, which
209 // handles the crazy critical edge cases properly.
210 const BasicBlock *UseBB;
211 if (PN)
212 UseBB = PN->getIncomingBlock(U);
213 else
214 UseBB = UserInst->getParent();
215 return dominates(BBE, UseBB);
216}
217
Chandler Carruth73523022014-01-13 13:07:17 +0000218bool DominatorTree::dominates(const Instruction *Def, const Use &U) const {
Rafael Espindola59564072012-08-07 17:30:46 +0000219 Instruction *UserInst = cast<Instruction>(U.getUser());
Dan Gohman73273272012-04-12 23:31:46 +0000220 const BasicBlock *DefBB = Def->getParent();
221
222 // Determine the block in which the use happens. PHI nodes use
223 // their operands on edges; simulate this by thinking of the use
224 // happening at the end of the predecessor block.
225 const BasicBlock *UseBB;
226 if (PHINode *PN = dyn_cast<PHINode>(UserInst))
227 UseBB = PN->getIncomingBlock(U);
228 else
229 UseBB = UserInst->getParent();
230
231 // Any unreachable use is dominated, even if Def == User.
232 if (!isReachableFromEntry(UseBB))
233 return true;
234
235 // Unreachable definitions don't dominate anything.
236 if (!isReachableFromEntry(DefBB))
237 return false;
238
239 // Invoke instructions define their return values on the edges
240 // to their normal successors, so we have to handle them specially.
241 // Among other things, this means they don't dominate anything in
242 // their own block, except possibly a phi, so we don't need to
243 // walk the block in any case.
244 if (const InvokeInst *II = dyn_cast<InvokeInst>(Def)) {
Rafael Espindola59564072012-08-07 17:30:46 +0000245 BasicBlock *NormalDest = II->getNormalDest();
246 BasicBlockEdge E(DefBB, NormalDest);
247 return dominates(E, U);
Dan Gohman73273272012-04-12 23:31:46 +0000248 }
249
250 // If the def and use are in different blocks, do a simple CFG dominator
251 // tree query.
252 if (DefBB != UseBB)
253 return dominates(DefBB, UseBB);
254
255 // Ok, def and use are in the same block. If the def is an invoke, it
256 // doesn't dominate anything in the block. If it's a PHI, it dominates
257 // everything in the block.
258 if (isa<PHINode>(UserInst))
259 return true;
260
261 // Otherwise, just loop through the basic block until we find Def or User.
262 BasicBlock::const_iterator I = DefBB->begin();
263 for (; &*I != Def && &*I != UserInst; ++I)
264 /*empty*/;
265
266 return &*I != UserInst;
267}
268
269bool DominatorTree::isReachableFromEntry(const Use &U) const {
270 Instruction *I = dyn_cast<Instruction>(U.getUser());
271
272 // ConstantExprs aren't really reachable from the entry block, but they
273 // don't need to be treated like unreachable code either.
274 if (!I) return true;
275
276 // PHI nodes use their operands on their incoming edges.
277 if (PHINode *PN = dyn_cast<PHINode>(I))
278 return isReachableFromEntry(PN->getIncomingBlock(U));
279
280 // Everything else uses their operands in their own block.
281 return isReachableFromEntry(I->getParent());
282}
Chandler Carruth73523022014-01-13 13:07:17 +0000283
284void DominatorTree::verifyDomTree() const {
285 if (!VerifyDomInfo)
286 return;
287
288 Function &F = *getRoot()->getParent();
289
290 DominatorTree OtherDT;
291 OtherDT.recalculate(F);
292 if (compare(OtherDT)) {
293 errs() << "DominatorTree is not up to date!\nComputed:\n";
294 print(errs());
295 errs() << "\nActual:\n";
296 OtherDT.print(errs());
297 abort();
298 }
299}
300
301//===----------------------------------------------------------------------===//
Chandler Carruth64764b42015-01-14 10:19:28 +0000302// DominatorTreeAnalysis and related pass implementations
303//===----------------------------------------------------------------------===//
304//
305// This implements the DominatorTreeAnalysis which is used with the new pass
306// manager. It also implements some methods from utility passes.
307//
308//===----------------------------------------------------------------------===//
309
310DominatorTree DominatorTreeAnalysis::run(Function &F) {
311 DominatorTree DT;
312 DT.recalculate(F);
313 return DT;
314}
315
316char DominatorTreeAnalysis::PassID;
317
318DominatorTreePrinterPass::DominatorTreePrinterPass(raw_ostream &OS) : OS(OS) {}
319
320PreservedAnalyses DominatorTreePrinterPass::run(Function &F,
321 FunctionAnalysisManager *AM) {
322 OS << "DominatorTree for function: " << F.getName() << "\n";
323 AM->getResult<DominatorTreeAnalysis>(F).print(OS);
324
325 return PreservedAnalyses::all();
326}
327
328PreservedAnalyses DominatorTreeVerifierPass::run(Function &F,
329 FunctionAnalysisManager *AM) {
330 AM->getResult<DominatorTreeAnalysis>(F).verifyDomTree();
331
332 return PreservedAnalyses::all();
333}
334
335//===----------------------------------------------------------------------===//
Chandler Carruth73523022014-01-13 13:07:17 +0000336// DominatorTreeWrapperPass Implementation
337//===----------------------------------------------------------------------===//
338//
Chandler Carruth64764b42015-01-14 10:19:28 +0000339// The implementation details of the wrapper pass that holds a DominatorTree
340// suitable for use with the legacy pass manager.
Chandler Carruth73523022014-01-13 13:07:17 +0000341//
342//===----------------------------------------------------------------------===//
343
344char DominatorTreeWrapperPass::ID = 0;
345INITIALIZE_PASS(DominatorTreeWrapperPass, "domtree",
346 "Dominator Tree Construction", true, true)
347
348bool DominatorTreeWrapperPass::runOnFunction(Function &F) {
349 DT.recalculate(F);
350 return false;
351}
352
353void DominatorTreeWrapperPass::verifyAnalysis() const { DT.verifyDomTree(); }
354
355void DominatorTreeWrapperPass::print(raw_ostream &OS, const Module *) const {
356 DT.print(OS);
357}
358