| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1 | //====- X86SpeculativeLoadHardening.cpp - A Spectre v1 mitigation ---------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | /// \file |
| 10 | /// |
| 11 | /// Provide a pass which mitigates speculative execution attacks which operate |
| 12 | /// by speculating incorrectly past some predicate (a type check, bounds check, |
| 13 | /// or other condition) to reach a load with invalid inputs and leak the data |
| 14 | /// accessed by that load using a side channel out of the speculative domain. |
| 15 | /// |
| 16 | /// For details on the attacks, see the first variant in both the Project Zero |
| 17 | /// writeup and the Spectre paper: |
| 18 | /// https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html |
| 19 | /// https://spectreattack.com/spectre.pdf |
| 20 | /// |
| 21 | //===----------------------------------------------------------------------===// |
| 22 | |
| 23 | #include "X86.h" |
| 24 | #include "X86InstrBuilder.h" |
| 25 | #include "X86InstrInfo.h" |
| 26 | #include "X86Subtarget.h" |
| 27 | #include "llvm/ADT/ArrayRef.h" |
| 28 | #include "llvm/ADT/DenseMap.h" |
| Chandler Carruth | 4b0028a | 2018-07-19 11:13:58 +0000 | [diff] [blame] | 29 | #include "llvm/ADT/Optional.h" |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 30 | #include "llvm/ADT/STLExtras.h" |
| 31 | #include "llvm/ADT/ScopeExit.h" |
| 32 | #include "llvm/ADT/SmallPtrSet.h" |
| 33 | #include "llvm/ADT/SmallSet.h" |
| 34 | #include "llvm/ADT/SmallVector.h" |
| 35 | #include "llvm/ADT/SparseBitVector.h" |
| 36 | #include "llvm/ADT/Statistic.h" |
| 37 | #include "llvm/CodeGen/MachineBasicBlock.h" |
| 38 | #include "llvm/CodeGen/MachineConstantPool.h" |
| 39 | #include "llvm/CodeGen/MachineFunction.h" |
| 40 | #include "llvm/CodeGen/MachineFunctionPass.h" |
| 41 | #include "llvm/CodeGen/MachineInstr.h" |
| 42 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
| 43 | #include "llvm/CodeGen/MachineModuleInfo.h" |
| 44 | #include "llvm/CodeGen/MachineOperand.h" |
| 45 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
| 46 | #include "llvm/CodeGen/MachineSSAUpdater.h" |
| 47 | #include "llvm/CodeGen/TargetInstrInfo.h" |
| 48 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
| 49 | #include "llvm/CodeGen/TargetSchedule.h" |
| 50 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| 51 | #include "llvm/IR/DebugLoc.h" |
| 52 | #include "llvm/MC/MCSchedule.h" |
| 53 | #include "llvm/Pass.h" |
| 54 | #include "llvm/Support/CommandLine.h" |
| 55 | #include "llvm/Support/Debug.h" |
| 56 | #include "llvm/Support/raw_ostream.h" |
| 57 | #include <algorithm> |
| 58 | #include <cassert> |
| 59 | #include <iterator> |
| 60 | #include <utility> |
| 61 | |
| 62 | using namespace llvm; |
| 63 | |
| 64 | #define PASS_KEY "x86-speculative-load-hardening" |
| 65 | #define DEBUG_TYPE PASS_KEY |
| 66 | |
| 67 | STATISTIC(NumCondBranchesTraced, "Number of conditional branches traced"); |
| 68 | STATISTIC(NumBranchesUntraced, "Number of branches unable to trace"); |
| 69 | STATISTIC(NumAddrRegsHardened, |
| 70 | "Number of address mode used registers hardaned"); |
| 71 | STATISTIC(NumPostLoadRegsHardened, |
| 72 | "Number of post-load register values hardened"); |
| 73 | STATISTIC(NumInstsInserted, "Number of instructions inserted"); |
| 74 | STATISTIC(NumLFENCEsInserted, "Number of lfence instructions inserted"); |
| 75 | |
| 76 | static cl::opt<bool> HardenEdgesWithLFENCE( |
| 77 | PASS_KEY "-lfence", |
| 78 | cl::desc( |
| 79 | "Use LFENCE along each conditional edge to harden against speculative " |
| 80 | "loads rather than conditional movs and poisoned pointers."), |
| 81 | cl::init(false), cl::Hidden); |
| 82 | |
| 83 | static cl::opt<bool> EnablePostLoadHardening( |
| 84 | PASS_KEY "-post-load", |
| 85 | cl::desc("Harden the value loaded *after* it is loaded by " |
| 86 | "flushing the loaded bits to 1. This is hard to do " |
| 87 | "in general but can be done easily for GPRs."), |
| 88 | cl::init(true), cl::Hidden); |
| 89 | |
| 90 | static cl::opt<bool> FenceCallAndRet( |
| 91 | PASS_KEY "-fence-call-and-ret", |
| 92 | cl::desc("Use a full speculation fence to harden both call and ret edges " |
| 93 | "rather than a lighter weight mitigation."), |
| 94 | cl::init(false), cl::Hidden); |
| 95 | |
| 96 | static cl::opt<bool> HardenInterprocedurally( |
| 97 | PASS_KEY "-ip", |
| 98 | cl::desc("Harden interprocedurally by passing our state in and out of " |
| 99 | "functions in the high bits of the stack pointer."), |
| 100 | cl::init(true), cl::Hidden); |
| 101 | |
| 102 | static cl::opt<bool> |
| 103 | HardenLoads(PASS_KEY "-loads", |
| 104 | cl::desc("Sanitize loads from memory. When disable, no " |
| 105 | "significant security is provided."), |
| 106 | cl::init(true), cl::Hidden); |
| 107 | |
| 108 | namespace llvm { |
| 109 | |
| 110 | void initializeX86SpeculativeLoadHardeningPassPass(PassRegistry &); |
| 111 | |
| 112 | } // end namespace llvm |
| 113 | |
| 114 | namespace { |
| 115 | |
| 116 | class X86SpeculativeLoadHardeningPass : public MachineFunctionPass { |
| 117 | public: |
| 118 | X86SpeculativeLoadHardeningPass() : MachineFunctionPass(ID) { |
| 119 | initializeX86SpeculativeLoadHardeningPassPass( |
| 120 | *PassRegistry::getPassRegistry()); |
| 121 | } |
| 122 | |
| 123 | StringRef getPassName() const override { |
| 124 | return "X86 speculative load hardening"; |
| 125 | } |
| 126 | bool runOnMachineFunction(MachineFunction &MF) override; |
| 127 | void getAnalysisUsage(AnalysisUsage &AU) const override; |
| 128 | |
| 129 | /// Pass identification, replacement for typeid. |
| 130 | static char ID; |
| 131 | |
| 132 | private: |
| 133 | /// The information about a block's conditional terminators needed to trace |
| 134 | /// our predicate state through the exiting edges. |
| 135 | struct BlockCondInfo { |
| 136 | MachineBasicBlock *MBB; |
| 137 | |
| 138 | // We mostly have one conditional branch, and in extremely rare cases have |
| 139 | // two. Three and more are so rare as to be unimportant for compile time. |
| 140 | SmallVector<MachineInstr *, 2> CondBrs; |
| 141 | |
| 142 | MachineInstr *UncondBr; |
| 143 | }; |
| 144 | |
| Chandler Carruth | 4b0028a | 2018-07-19 11:13:58 +0000 | [diff] [blame] | 145 | /// Manages the predicate state traced through the program. |
| 146 | struct PredState { |
| 147 | unsigned InitialReg; |
| 148 | unsigned PoisonReg; |
| 149 | |
| 150 | const TargetRegisterClass *RC; |
| 151 | MachineSSAUpdater SSA; |
| 152 | |
| 153 | PredState(MachineFunction &MF, const TargetRegisterClass *RC) |
| 154 | : RC(RC), SSA(MF) {} |
| 155 | }; |
| 156 | |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 157 | const X86Subtarget *Subtarget; |
| 158 | MachineRegisterInfo *MRI; |
| 159 | const X86InstrInfo *TII; |
| 160 | const TargetRegisterInfo *TRI; |
| Chandler Carruth | 4b0028a | 2018-07-19 11:13:58 +0000 | [diff] [blame] | 161 | |
| 162 | Optional<PredState> PS; |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 163 | |
| 164 | void hardenEdgesWithLFENCE(MachineFunction &MF); |
| 165 | |
| 166 | SmallVector<BlockCondInfo, 16> collectBlockCondInfo(MachineFunction &MF); |
| 167 | |
| Chandler Carruth | 4b0028a | 2018-07-19 11:13:58 +0000 | [diff] [blame] | 168 | SmallVector<MachineInstr *, 16> |
| 169 | tracePredStateThroughCFG(MachineFunction &MF, ArrayRef<BlockCondInfo> Infos); |
| 170 | |
| Chandler Carruth | 0477b40 | 2018-07-23 04:01:34 +0000 | [diff] [blame] | 171 | void hardenAllLoads(MachineFunction &MF); |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 172 | |
| 173 | unsigned saveEFLAGS(MachineBasicBlock &MBB, |
| 174 | MachineBasicBlock::iterator InsertPt, DebugLoc Loc); |
| 175 | void restoreEFLAGS(MachineBasicBlock &MBB, |
| 176 | MachineBasicBlock::iterator InsertPt, DebugLoc Loc, |
| 177 | unsigned OFReg); |
| 178 | |
| 179 | void mergePredStateIntoSP(MachineBasicBlock &MBB, |
| 180 | MachineBasicBlock::iterator InsertPt, DebugLoc Loc, |
| 181 | unsigned PredStateReg); |
| 182 | unsigned extractPredStateFromSP(MachineBasicBlock &MBB, |
| 183 | MachineBasicBlock::iterator InsertPt, |
| 184 | DebugLoc Loc); |
| 185 | |
| 186 | void |
| 187 | hardenLoadAddr(MachineInstr &MI, MachineOperand &BaseMO, |
| Chandler Carruth | 4b0028a | 2018-07-19 11:13:58 +0000 | [diff] [blame] | 188 | MachineOperand &IndexMO, |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 189 | SmallDenseMap<unsigned, unsigned, 32> &AddrRegToHardenedReg); |
| 190 | MachineInstr * |
| 191 | sinkPostLoadHardenedInst(MachineInstr &MI, |
| Chandler Carruth | fa065aa | 2018-07-16 14:58:32 +0000 | [diff] [blame] | 192 | SmallPtrSetImpl<MachineInstr *> &HardenedInstrs); |
| 193 | bool canHardenRegister(unsigned Reg); |
| Chandler Carruth | 4b0028a | 2018-07-19 11:13:58 +0000 | [diff] [blame] | 194 | void hardenPostLoad(MachineInstr &MI); |
| Chandler Carruth | a3a03ac | 2018-07-19 23:46:24 +0000 | [diff] [blame] | 195 | void hardenReturnInstr(MachineInstr &MI); |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 196 | }; |
| 197 | |
| 198 | } // end anonymous namespace |
| 199 | |
| 200 | char X86SpeculativeLoadHardeningPass::ID = 0; |
| 201 | |
| 202 | void X86SpeculativeLoadHardeningPass::getAnalysisUsage( |
| 203 | AnalysisUsage &AU) const { |
| 204 | MachineFunctionPass::getAnalysisUsage(AU); |
| 205 | } |
| 206 | |
| 207 | static MachineBasicBlock &splitEdge(MachineBasicBlock &MBB, |
| 208 | MachineBasicBlock &Succ, int SuccCount, |
| 209 | MachineInstr *Br, MachineInstr *&UncondBr, |
| 210 | const X86InstrInfo &TII) { |
| 211 | assert(!Succ.isEHPad() && "Shouldn't get edges to EH pads!"); |
| 212 | |
| 213 | MachineFunction &MF = *MBB.getParent(); |
| 214 | |
| 215 | MachineBasicBlock &NewMBB = *MF.CreateMachineBasicBlock(); |
| 216 | |
| 217 | // We have to insert the new block immediately after the current one as we |
| 218 | // don't know what layout-successor relationships the successor has and we |
| 219 | // may not be able to (and generally don't want to) try to fix those up. |
| 220 | MF.insert(std::next(MachineFunction::iterator(&MBB)), &NewMBB); |
| 221 | |
| 222 | // Update the branch instruction if necessary. |
| 223 | if (Br) { |
| 224 | assert(Br->getOperand(0).getMBB() == &Succ && |
| 225 | "Didn't start with the right target!"); |
| 226 | Br->getOperand(0).setMBB(&NewMBB); |
| 227 | |
| 228 | // If this successor was reached through a branch rather than fallthrough, |
| 229 | // we might have *broken* fallthrough and so need to inject a new |
| 230 | // unconditional branch. |
| 231 | if (!UncondBr) { |
| 232 | MachineBasicBlock &OldLayoutSucc = |
| 233 | *std::next(MachineFunction::iterator(&NewMBB)); |
| 234 | assert(MBB.isSuccessor(&OldLayoutSucc) && |
| 235 | "Without an unconditional branch, the old layout successor should " |
| 236 | "be an actual successor!"); |
| 237 | auto BrBuilder = |
| 238 | BuildMI(&MBB, DebugLoc(), TII.get(X86::JMP_1)).addMBB(&OldLayoutSucc); |
| 239 | // Update the unconditional branch now that we've added one. |
| 240 | UncondBr = &*BrBuilder; |
| 241 | } |
| 242 | |
| 243 | // Insert unconditional "jump Succ" instruction in the new block if |
| 244 | // necessary. |
| 245 | if (!NewMBB.isLayoutSuccessor(&Succ)) { |
| 246 | SmallVector<MachineOperand, 4> Cond; |
| 247 | TII.insertBranch(NewMBB, &Succ, nullptr, Cond, Br->getDebugLoc()); |
| 248 | } |
| 249 | } else { |
| 250 | assert(!UncondBr && |
| 251 | "Cannot have a branchless successor and an unconditional branch!"); |
| 252 | assert(NewMBB.isLayoutSuccessor(&Succ) && |
| 253 | "A non-branch successor must have been a layout successor before " |
| 254 | "and now is a layout successor of the new block."); |
| 255 | } |
| 256 | |
| 257 | // If this is the only edge to the successor, we can just replace it in the |
| 258 | // CFG. Otherwise we need to add a new entry in the CFG for the new |
| 259 | // successor. |
| 260 | if (SuccCount == 1) { |
| 261 | MBB.replaceSuccessor(&Succ, &NewMBB); |
| 262 | } else { |
| 263 | MBB.splitSuccessor(&Succ, &NewMBB); |
| 264 | } |
| 265 | |
| 266 | // Hook up the edge from the new basic block to the old successor in the CFG. |
| 267 | NewMBB.addSuccessor(&Succ); |
| 268 | |
| 269 | // Fix PHI nodes in Succ so they refer to NewMBB instead of MBB. |
| 270 | for (MachineInstr &MI : Succ) { |
| 271 | if (!MI.isPHI()) |
| 272 | break; |
| 273 | for (int OpIdx = 1, NumOps = MI.getNumOperands(); OpIdx < NumOps; |
| 274 | OpIdx += 2) { |
| 275 | MachineOperand &OpV = MI.getOperand(OpIdx); |
| 276 | MachineOperand &OpMBB = MI.getOperand(OpIdx + 1); |
| 277 | assert(OpMBB.isMBB() && "Block operand to a PHI is not a block!"); |
| 278 | if (OpMBB.getMBB() != &MBB) |
| 279 | continue; |
| 280 | |
| 281 | // If this is the last edge to the succesor, just replace MBB in the PHI |
| 282 | if (SuccCount == 1) { |
| 283 | OpMBB.setMBB(&NewMBB); |
| 284 | break; |
| 285 | } |
| 286 | |
| 287 | // Otherwise, append a new pair of operands for the new incoming edge. |
| 288 | MI.addOperand(MF, OpV); |
| 289 | MI.addOperand(MF, MachineOperand::CreateMBB(&NewMBB)); |
| 290 | break; |
| 291 | } |
| 292 | } |
| 293 | |
| 294 | // Inherit live-ins from the successor |
| 295 | for (auto &LI : Succ.liveins()) |
| 296 | NewMBB.addLiveIn(LI); |
| 297 | |
| 298 | LLVM_DEBUG(dbgs() << " Split edge from '" << MBB.getName() << "' to '" |
| 299 | << Succ.getName() << "'.\n"); |
| 300 | return NewMBB; |
| 301 | } |
| 302 | |
| Chandler Carruth | 3ffcc03 | 2018-07-15 23:46:36 +0000 | [diff] [blame] | 303 | /// Removing duplicate PHI operands to leave the PHI in a canonical and |
| 304 | /// predictable form. |
| 305 | /// |
| 306 | /// FIXME: It's really frustrating that we have to do this, but SSA-form in MIR |
| 307 | /// isn't what you might expect. We may have multiple entries in PHI nodes for |
| 308 | /// a single predecessor. This makes CFG-updating extremely complex, so here we |
| 309 | /// simplify all PHI nodes to a model even simpler than the IR's model: exactly |
| 310 | /// one entry per predecessor, regardless of how many edges there are. |
| 311 | static void canonicalizePHIOperands(MachineFunction &MF) { |
| 312 | SmallPtrSet<MachineBasicBlock *, 4> Preds; |
| 313 | SmallVector<int, 4> DupIndices; |
| 314 | for (auto &MBB : MF) |
| 315 | for (auto &MI : MBB) { |
| 316 | if (!MI.isPHI()) |
| 317 | break; |
| 318 | |
| 319 | // First we scan the operands of the PHI looking for duplicate entries |
| 320 | // a particular predecessor. We retain the operand index of each duplicate |
| 321 | // entry found. |
| 322 | for (int OpIdx = 1, NumOps = MI.getNumOperands(); OpIdx < NumOps; |
| 323 | OpIdx += 2) |
| 324 | if (!Preds.insert(MI.getOperand(OpIdx + 1).getMBB()).second) |
| 325 | DupIndices.push_back(OpIdx); |
| 326 | |
| 327 | // Now walk the duplicate indices, removing both the block and value. Note |
| 328 | // that these are stored as a vector making this element-wise removal |
| 329 | // :w |
| 330 | // potentially quadratic. |
| 331 | // |
| 332 | // FIXME: It is really frustrating that we have to use a quadratic |
| 333 | // removal algorithm here. There should be a better way, but the use-def |
| 334 | // updates required make that impossible using the public API. |
| 335 | // |
| 336 | // Note that we have to process these backwards so that we don't |
| 337 | // invalidate other indices with each removal. |
| 338 | while (!DupIndices.empty()) { |
| 339 | int OpIdx = DupIndices.pop_back_val(); |
| 340 | // Remove both the block and value operand, again in reverse order to |
| 341 | // preserve indices. |
| 342 | MI.RemoveOperand(OpIdx + 1); |
| 343 | MI.RemoveOperand(OpIdx); |
| 344 | } |
| 345 | |
| 346 | Preds.clear(); |
| 347 | } |
| 348 | } |
| 349 | |
| Chandler Carruth | 3620b99 | 2018-07-16 10:46:16 +0000 | [diff] [blame] | 350 | /// Helper to scan a function for loads vulnerable to misspeculation that we |
| 351 | /// want to harden. |
| 352 | /// |
| 353 | /// We use this to avoid making changes to functions where there is nothing we |
| 354 | /// need to do to harden against misspeculation. |
| 355 | static bool hasVulnerableLoad(MachineFunction &MF) { |
| 356 | for (MachineBasicBlock &MBB : MF) { |
| 357 | for (MachineInstr &MI : MBB) { |
| 358 | // Loads within this basic block after an LFENCE are not at risk of |
| 359 | // speculatively executing with invalid predicates from prior control |
| 360 | // flow. So break out of this block but continue scanning the function. |
| 361 | if (MI.getOpcode() == X86::LFENCE) |
| 362 | break; |
| 363 | |
| 364 | // Looking for loads only. |
| 365 | if (!MI.mayLoad()) |
| 366 | continue; |
| 367 | |
| 368 | // An MFENCE is modeled as a load but isn't vulnerable to misspeculation. |
| 369 | if (MI.getOpcode() == X86::MFENCE) |
| 370 | continue; |
| 371 | |
| 372 | // We found a load. |
| 373 | return true; |
| 374 | } |
| 375 | } |
| 376 | |
| 377 | // No loads found. |
| 378 | return false; |
| 379 | } |
| 380 | |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 381 | bool X86SpeculativeLoadHardeningPass::runOnMachineFunction( |
| 382 | MachineFunction &MF) { |
| 383 | LLVM_DEBUG(dbgs() << "********** " << getPassName() << " : " << MF.getName() |
| 384 | << " **********\n"); |
| 385 | |
| 386 | Subtarget = &MF.getSubtarget<X86Subtarget>(); |
| 387 | MRI = &MF.getRegInfo(); |
| 388 | TII = Subtarget->getInstrInfo(); |
| 389 | TRI = Subtarget->getRegisterInfo(); |
| Chandler Carruth | 4b0028a | 2018-07-19 11:13:58 +0000 | [diff] [blame] | 390 | |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 391 | // FIXME: Support for 32-bit. |
| Chandler Carruth | 4b0028a | 2018-07-19 11:13:58 +0000 | [diff] [blame] | 392 | PS.emplace(MF, &X86::GR64_NOSPRegClass); |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 393 | |
| 394 | if (MF.begin() == MF.end()) |
| 395 | // Nothing to do for a degenerate empty function... |
| 396 | return false; |
| 397 | |
| 398 | // We support an alternative hardening technique based on a debug flag. |
| 399 | if (HardenEdgesWithLFENCE) { |
| 400 | hardenEdgesWithLFENCE(MF); |
| 401 | return true; |
| 402 | } |
| 403 | |
| 404 | // Create a dummy debug loc to use for all the generated code here. |
| 405 | DebugLoc Loc; |
| 406 | |
| 407 | MachineBasicBlock &Entry = *MF.begin(); |
| 408 | auto EntryInsertPt = Entry.SkipPHIsLabelsAndDebug(Entry.begin()); |
| 409 | |
| 410 | // Do a quick scan to see if we have any checkable loads. |
| Chandler Carruth | 3620b99 | 2018-07-16 10:46:16 +0000 | [diff] [blame] | 411 | bool HasVulnerableLoad = hasVulnerableLoad(MF); |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 412 | |
| 413 | // See if we have any conditional branching blocks that we will need to trace |
| 414 | // predicate state through. |
| 415 | SmallVector<BlockCondInfo, 16> Infos = collectBlockCondInfo(MF); |
| 416 | |
| 417 | // If we have no interesting conditions or loads, nothing to do here. |
| Chandler Carruth | 3620b99 | 2018-07-16 10:46:16 +0000 | [diff] [blame] | 418 | if (!HasVulnerableLoad && Infos.empty()) |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 419 | return true; |
| 420 | |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 421 | // The poison value is required to be an all-ones value for many aspects of |
| 422 | // this mitigation. |
| 423 | const int PoisonVal = -1; |
| Chandler Carruth | 4b0028a | 2018-07-19 11:13:58 +0000 | [diff] [blame] | 424 | PS->PoisonReg = MRI->createVirtualRegister(PS->RC); |
| 425 | BuildMI(Entry, EntryInsertPt, Loc, TII->get(X86::MOV64ri32), PS->PoisonReg) |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 426 | .addImm(PoisonVal); |
| 427 | ++NumInstsInserted; |
| 428 | |
| 429 | // If we have loads being hardened and we've asked for call and ret edges to |
| 430 | // get a full fence-based mitigation, inject that fence. |
| Chandler Carruth | 3620b99 | 2018-07-16 10:46:16 +0000 | [diff] [blame] | 431 | if (HasVulnerableLoad && FenceCallAndRet) { |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 432 | // We need to insert an LFENCE at the start of the function to suspend any |
| 433 | // incoming misspeculation from the caller. This helps two-fold: the caller |
| 434 | // may not have been protected as this code has been, and this code gets to |
| 435 | // not take any specific action to protect across calls. |
| 436 | // FIXME: We could skip this for functions which unconditionally return |
| 437 | // a constant. |
| 438 | BuildMI(Entry, EntryInsertPt, Loc, TII->get(X86::LFENCE)); |
| 439 | ++NumInstsInserted; |
| 440 | ++NumLFENCEsInserted; |
| 441 | } |
| 442 | |
| Chandler Carruth | fb503ac | 2018-07-14 09:32:37 +0000 | [diff] [blame] | 443 | // If we guarded the entry with an LFENCE and have no conditionals to protect |
| 444 | // in blocks, then we're done. |
| 445 | if (FenceCallAndRet && Infos.empty()) |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 446 | // We may have changed the function's code at this point to insert fences. |
| 447 | return true; |
| 448 | |
| 449 | // For every basic block in the function which can b |
| 450 | if (HardenInterprocedurally && !FenceCallAndRet) { |
| 451 | // Set up the predicate state by extracting it from the incoming stack |
| 452 | // pointer so we pick up any misspeculation in our caller. |
| Chandler Carruth | 4b0028a | 2018-07-19 11:13:58 +0000 | [diff] [blame] | 453 | PS->InitialReg = extractPredStateFromSP(Entry, EntryInsertPt, Loc); |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 454 | } else { |
| 455 | // Otherwise, just build the predicate state itself by zeroing a register |
| 456 | // as we don't need any initial state. |
| Chandler Carruth | 4b0028a | 2018-07-19 11:13:58 +0000 | [diff] [blame] | 457 | PS->InitialReg = MRI->createVirtualRegister(PS->RC); |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 458 | unsigned PredStateSubReg = MRI->createVirtualRegister(&X86::GR32RegClass); |
| 459 | auto ZeroI = BuildMI(Entry, EntryInsertPt, Loc, TII->get(X86::MOV32r0), |
| 460 | PredStateSubReg); |
| 461 | ++NumInstsInserted; |
| 462 | MachineOperand *ZeroEFLAGSDefOp = |
| 463 | ZeroI->findRegisterDefOperand(X86::EFLAGS); |
| 464 | assert(ZeroEFLAGSDefOp && ZeroEFLAGSDefOp->isImplicit() && |
| 465 | "Must have an implicit def of EFLAGS!"); |
| 466 | ZeroEFLAGSDefOp->setIsDead(true); |
| 467 | BuildMI(Entry, EntryInsertPt, Loc, TII->get(X86::SUBREG_TO_REG), |
| Chandler Carruth | 4b0028a | 2018-07-19 11:13:58 +0000 | [diff] [blame] | 468 | PS->InitialReg) |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 469 | .addImm(0) |
| 470 | .addReg(PredStateSubReg) |
| 471 | .addImm(X86::sub_32bit); |
| 472 | } |
| 473 | |
| 474 | // We're going to need to trace predicate state throughout the function's |
| 475 | // CFG. Prepare for this by setting up our initial state of PHIs with unique |
| 476 | // predecessor entries and all the initial predicate state. |
| Chandler Carruth | 3ffcc03 | 2018-07-15 23:46:36 +0000 | [diff] [blame] | 477 | canonicalizePHIOperands(MF); |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 478 | |
| 479 | // Track the updated values in an SSA updater to rewrite into SSA form at the |
| 480 | // end. |
| Chandler Carruth | 4b0028a | 2018-07-19 11:13:58 +0000 | [diff] [blame] | 481 | PS->SSA.Initialize(PS->InitialReg); |
| 482 | PS->SSA.AddAvailableValue(&Entry, PS->InitialReg); |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 483 | |
| Chandler Carruth | 4b0028a | 2018-07-19 11:13:58 +0000 | [diff] [blame] | 484 | // Trace through the CFG. |
| 485 | auto CMovs = tracePredStateThroughCFG(MF, Infos); |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 486 | |
| 487 | // We may also enter basic blocks in this function via exception handling |
| 488 | // control flow. Here, if we are hardening interprocedurally, we need to |
| 489 | // re-capture the predicate state from the throwing code. In the Itanium ABI, |
| 490 | // the throw will always look like a call to __cxa_throw and will have the |
| 491 | // predicate state in the stack pointer, so extract fresh predicate state from |
| 492 | // the stack pointer and make it available in SSA. |
| 493 | // FIXME: Handle non-itanium ABI EH models. |
| 494 | if (HardenInterprocedurally) { |
| 495 | for (MachineBasicBlock &MBB : MF) { |
| 496 | assert(!MBB.isEHScopeEntry() && "Only Itanium ABI EH supported!"); |
| 497 | assert(!MBB.isEHFuncletEntry() && "Only Itanium ABI EH supported!"); |
| 498 | assert(!MBB.isCleanupFuncletEntry() && "Only Itanium ABI EH supported!"); |
| 499 | if (!MBB.isEHPad()) |
| 500 | continue; |
| Chandler Carruth | 4b0028a | 2018-07-19 11:13:58 +0000 | [diff] [blame] | 501 | PS->SSA.AddAvailableValue( |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 502 | &MBB, |
| 503 | extractPredStateFromSP(MBB, MBB.SkipPHIsAndLabels(MBB.begin()), Loc)); |
| 504 | } |
| 505 | } |
| 506 | |
| Chandler Carruth | 0477b40 | 2018-07-23 04:01:34 +0000 | [diff] [blame] | 507 | // Now harden all of the loads in the function using the predicate state. |
| 508 | hardenAllLoads(MF); |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 509 | |
| 510 | // Now rewrite all the uses of the pred state using the SSA updater so that |
| 511 | // we track updates through the CFG. |
| 512 | for (MachineInstr *CMovI : CMovs) |
| 513 | for (MachineOperand &Op : CMovI->operands()) { |
| Chandler Carruth | 4b0028a | 2018-07-19 11:13:58 +0000 | [diff] [blame] | 514 | if (!Op.isReg() || Op.getReg() != PS->InitialReg) |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 515 | continue; |
| 516 | |
| Chandler Carruth | 4b0028a | 2018-07-19 11:13:58 +0000 | [diff] [blame] | 517 | PS->SSA.RewriteUse(Op); |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 518 | } |
| 519 | |
| 520 | // If we are hardening interprocedurally, find each returning block and |
| 521 | // protect the caller from being returned to through misspeculation. |
| 522 | if (HardenInterprocedurally) |
| 523 | for (MachineBasicBlock &MBB : MF) { |
| 524 | if (MBB.empty()) |
| 525 | continue; |
| 526 | |
| 527 | MachineInstr &MI = MBB.back(); |
| Chandler Carruth | 1d926fb | 2018-07-23 07:56:15 +0000 | [diff] [blame] | 528 | |
| 529 | // We only care about returns that are not also calls. For calls, that |
| 530 | // happen to also be returns (tail calls) we will have already handled |
| 531 | // them as calls. |
| 532 | if (!MI.isReturn() || MI.isCall()) |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 533 | continue; |
| 534 | |
| Chandler Carruth | a3a03ac | 2018-07-19 23:46:24 +0000 | [diff] [blame] | 535 | hardenReturnInstr(MI); |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 536 | } |
| 537 | |
| 538 | LLVM_DEBUG(dbgs() << "Final speculative load hardened function:\n"; MF.dump(); |
| 539 | dbgs() << "\n"; MF.verify(this)); |
| 540 | return true; |
| 541 | } |
| 542 | |
| 543 | /// Implements the naive hardening approach of putting an LFENCE after every |
| 544 | /// potentially mis-predicted control flow construct. |
| 545 | /// |
| 546 | /// We include this as an alternative mostly for the purpose of comparison. The |
| 547 | /// performance impact of this is expected to be extremely severe and not |
| 548 | /// practical for any real-world users. |
| 549 | void X86SpeculativeLoadHardeningPass::hardenEdgesWithLFENCE( |
| 550 | MachineFunction &MF) { |
| 551 | // First, we scan the function looking for blocks that are reached along edges |
| 552 | // that we might want to harden. |
| 553 | SmallSetVector<MachineBasicBlock *, 8> Blocks; |
| 554 | for (MachineBasicBlock &MBB : MF) { |
| 555 | // If there are no or only one successor, nothing to do here. |
| 556 | if (MBB.succ_size() <= 1) |
| 557 | continue; |
| 558 | |
| 559 | // Skip blocks unless their terminators start with a branch. Other |
| 560 | // terminators don't seem interesting for guarding against misspeculation. |
| 561 | auto TermIt = MBB.getFirstTerminator(); |
| 562 | if (TermIt == MBB.end() || !TermIt->isBranch()) |
| 563 | continue; |
| 564 | |
| 565 | // Add all the non-EH-pad succossors to the blocks we want to harden. We |
| 566 | // skip EH pads because there isn't really a condition of interest on |
| 567 | // entering. |
| 568 | for (MachineBasicBlock *SuccMBB : MBB.successors()) |
| 569 | if (!SuccMBB->isEHPad()) |
| 570 | Blocks.insert(SuccMBB); |
| 571 | } |
| 572 | |
| 573 | for (MachineBasicBlock *MBB : Blocks) { |
| 574 | auto InsertPt = MBB->SkipPHIsAndLabels(MBB->begin()); |
| 575 | BuildMI(*MBB, InsertPt, DebugLoc(), TII->get(X86::LFENCE)); |
| 576 | ++NumInstsInserted; |
| 577 | ++NumLFENCEsInserted; |
| 578 | } |
| 579 | } |
| 580 | |
| 581 | SmallVector<X86SpeculativeLoadHardeningPass::BlockCondInfo, 16> |
| 582 | X86SpeculativeLoadHardeningPass::collectBlockCondInfo(MachineFunction &MF) { |
| 583 | SmallVector<BlockCondInfo, 16> Infos; |
| 584 | |
| 585 | // Walk the function and build up a summary for each block's conditions that |
| 586 | // we need to trace through. |
| 587 | for (MachineBasicBlock &MBB : MF) { |
| 588 | // If there are no or only one successor, nothing to do here. |
| 589 | if (MBB.succ_size() <= 1) |
| 590 | continue; |
| 591 | |
| 592 | // We want to reliably handle any conditional branch terminators in the |
| 593 | // MBB, so we manually analyze the branch. We can handle all of the |
| 594 | // permutations here, including ones that analyze branch cannot. |
| 595 | // |
| 596 | // The approach is to walk backwards across the terminators, resetting at |
| 597 | // any unconditional non-indirect branch, and track all conditional edges |
| 598 | // to basic blocks as well as the fallthrough or unconditional successor |
| 599 | // edge. For each conditional edge, we track the target and the opposite |
| 600 | // condition code in order to inject a "no-op" cmov into that successor |
| 601 | // that will harden the predicate. For the fallthrough/unconditional |
| 602 | // edge, we inject a separate cmov for each conditional branch with |
| 603 | // matching condition codes. This effectively implements an "and" of the |
| 604 | // condition flags, even if there isn't a single condition flag that would |
| 605 | // directly implement that. We don't bother trying to optimize either of |
| 606 | // these cases because if such an optimization is possible, LLVM should |
| 607 | // have optimized the conditional *branches* in that way already to reduce |
| 608 | // instruction count. This late, we simply assume the minimal number of |
| 609 | // branch instructions is being emitted and use that to guide our cmov |
| 610 | // insertion. |
| 611 | |
| 612 | BlockCondInfo Info = {&MBB, {}, nullptr}; |
| 613 | |
| 614 | // Now walk backwards through the terminators and build up successors they |
| 615 | // reach and the conditions. |
| 616 | for (MachineInstr &MI : llvm::reverse(MBB)) { |
| 617 | // Once we've handled all the terminators, we're done. |
| 618 | if (!MI.isTerminator()) |
| 619 | break; |
| 620 | |
| 621 | // If we see a non-branch terminator, we can't handle anything so bail. |
| 622 | if (!MI.isBranch()) { |
| 623 | Info.CondBrs.clear(); |
| 624 | break; |
| 625 | } |
| 626 | |
| 627 | // If we see an unconditional branch, reset our state, clear any |
| 628 | // fallthrough, and set this is the "else" successor. |
| 629 | if (MI.getOpcode() == X86::JMP_1) { |
| 630 | Info.CondBrs.clear(); |
| 631 | Info.UncondBr = &MI; |
| 632 | continue; |
| 633 | } |
| 634 | |
| 635 | // If we get an invalid condition, we have an indirect branch or some |
| 636 | // other unanalyzable "fallthrough" case. We model this as a nullptr for |
| 637 | // the destination so we can still guard any conditional successors. |
| 638 | // Consider code sequences like: |
| 639 | // ``` |
| 640 | // jCC L1 |
| 641 | // jmpq *%rax |
| 642 | // ``` |
| 643 | // We still want to harden the edge to `L1`. |
| 644 | if (X86::getCondFromBranchOpc(MI.getOpcode()) == X86::COND_INVALID) { |
| 645 | Info.CondBrs.clear(); |
| 646 | Info.UncondBr = &MI; |
| 647 | continue; |
| 648 | } |
| 649 | |
| 650 | // We have a vanilla conditional branch, add it to our list. |
| 651 | Info.CondBrs.push_back(&MI); |
| 652 | } |
| 653 | if (Info.CondBrs.empty()) { |
| 654 | ++NumBranchesUntraced; |
| 655 | LLVM_DEBUG(dbgs() << "WARNING: unable to secure successors of block:\n"; |
| 656 | MBB.dump()); |
| 657 | continue; |
| 658 | } |
| 659 | |
| 660 | Infos.push_back(Info); |
| 661 | } |
| 662 | |
| 663 | return Infos; |
| 664 | } |
| 665 | |
| Chandler Carruth | 4b0028a | 2018-07-19 11:13:58 +0000 | [diff] [blame] | 666 | /// Trace the predicate state through the CFG, instrumenting each conditional |
| 667 | /// branch such that misspeculation through an edge will poison the predicate |
| 668 | /// state. |
| 669 | /// |
| 670 | /// Returns the list of inserted CMov instructions so that they can have their |
| 671 | /// uses of the predicate state rewritten into proper SSA form once it is |
| 672 | /// complete. |
| 673 | SmallVector<MachineInstr *, 16> |
| 674 | X86SpeculativeLoadHardeningPass::tracePredStateThroughCFG( |
| 675 | MachineFunction &MF, ArrayRef<BlockCondInfo> Infos) { |
| 676 | // Collect the inserted cmov instructions so we can rewrite their uses of the |
| 677 | // predicate state into SSA form. |
| 678 | SmallVector<MachineInstr *, 16> CMovs; |
| 679 | |
| 680 | // Now walk all of the basic blocks looking for ones that end in conditional |
| 681 | // jumps where we need to update this register along each edge. |
| 682 | for (const BlockCondInfo &Info : Infos) { |
| 683 | MachineBasicBlock &MBB = *Info.MBB; |
| 684 | const SmallVectorImpl<MachineInstr *> &CondBrs = Info.CondBrs; |
| 685 | MachineInstr *UncondBr = Info.UncondBr; |
| 686 | |
| 687 | LLVM_DEBUG(dbgs() << "Tracing predicate through block: " << MBB.getName() |
| 688 | << "\n"); |
| 689 | ++NumCondBranchesTraced; |
| 690 | |
| 691 | // Compute the non-conditional successor as either the target of any |
| 692 | // unconditional branch or the layout successor. |
| 693 | MachineBasicBlock *UncondSucc = |
| 694 | UncondBr ? (UncondBr->getOpcode() == X86::JMP_1 |
| 695 | ? UncondBr->getOperand(0).getMBB() |
| 696 | : nullptr) |
| 697 | : &*std::next(MachineFunction::iterator(&MBB)); |
| 698 | |
| 699 | // Count how many edges there are to any given successor. |
| 700 | SmallDenseMap<MachineBasicBlock *, int> SuccCounts; |
| 701 | if (UncondSucc) |
| 702 | ++SuccCounts[UncondSucc]; |
| 703 | for (auto *CondBr : CondBrs) |
| 704 | ++SuccCounts[CondBr->getOperand(0).getMBB()]; |
| 705 | |
| 706 | // A lambda to insert cmov instructions into a block checking all of the |
| 707 | // condition codes in a sequence. |
| 708 | auto BuildCheckingBlockForSuccAndConds = |
| 709 | [&](MachineBasicBlock &MBB, MachineBasicBlock &Succ, int SuccCount, |
| 710 | MachineInstr *Br, MachineInstr *&UncondBr, |
| 711 | ArrayRef<X86::CondCode> Conds) { |
| 712 | // First, we split the edge to insert the checking block into a safe |
| 713 | // location. |
| 714 | auto &CheckingMBB = |
| 715 | (SuccCount == 1 && Succ.pred_size() == 1) |
| 716 | ? Succ |
| 717 | : splitEdge(MBB, Succ, SuccCount, Br, UncondBr, *TII); |
| 718 | |
| 719 | bool LiveEFLAGS = Succ.isLiveIn(X86::EFLAGS); |
| 720 | if (!LiveEFLAGS) |
| 721 | CheckingMBB.addLiveIn(X86::EFLAGS); |
| 722 | |
| 723 | // Now insert the cmovs to implement the checks. |
| 724 | auto InsertPt = CheckingMBB.begin(); |
| 725 | assert((InsertPt == CheckingMBB.end() || !InsertPt->isPHI()) && |
| 726 | "Should never have a PHI in the initial checking block as it " |
| 727 | "always has a single predecessor!"); |
| 728 | |
| 729 | // We will wire each cmov to each other, but need to start with the |
| 730 | // incoming pred state. |
| 731 | unsigned CurStateReg = PS->InitialReg; |
| 732 | |
| 733 | for (X86::CondCode Cond : Conds) { |
| 734 | int PredStateSizeInBytes = TRI->getRegSizeInBits(*PS->RC) / 8; |
| 735 | auto CMovOp = X86::getCMovFromCond(Cond, PredStateSizeInBytes); |
| 736 | |
| 737 | unsigned UpdatedStateReg = MRI->createVirtualRegister(PS->RC); |
| 738 | // Note that we intentionally use an empty debug location so that |
| 739 | // this picks up the preceding location. |
| 740 | auto CMovI = BuildMI(CheckingMBB, InsertPt, DebugLoc(), |
| 741 | TII->get(CMovOp), UpdatedStateReg) |
| 742 | .addReg(CurStateReg) |
| 743 | .addReg(PS->PoisonReg); |
| 744 | // If this is the last cmov and the EFLAGS weren't originally |
| 745 | // live-in, mark them as killed. |
| 746 | if (!LiveEFLAGS && Cond == Conds.back()) |
| 747 | CMovI->findRegisterUseOperand(X86::EFLAGS)->setIsKill(true); |
| 748 | |
| 749 | ++NumInstsInserted; |
| 750 | LLVM_DEBUG(dbgs() << " Inserting cmov: "; CMovI->dump(); |
| 751 | dbgs() << "\n"); |
| 752 | |
| 753 | // The first one of the cmovs will be using the top level |
| 754 | // `PredStateReg` and need to get rewritten into SSA form. |
| 755 | if (CurStateReg == PS->InitialReg) |
| 756 | CMovs.push_back(&*CMovI); |
| 757 | |
| 758 | // The next cmov should start from this one's def. |
| 759 | CurStateReg = UpdatedStateReg; |
| 760 | } |
| 761 | |
| 762 | // And put the last one into the available values for SSA form of our |
| 763 | // predicate state. |
| 764 | PS->SSA.AddAvailableValue(&CheckingMBB, CurStateReg); |
| 765 | }; |
| 766 | |
| 767 | std::vector<X86::CondCode> UncondCodeSeq; |
| 768 | for (auto *CondBr : CondBrs) { |
| 769 | MachineBasicBlock &Succ = *CondBr->getOperand(0).getMBB(); |
| 770 | int &SuccCount = SuccCounts[&Succ]; |
| 771 | |
| 772 | X86::CondCode Cond = X86::getCondFromBranchOpc(CondBr->getOpcode()); |
| 773 | X86::CondCode InvCond = X86::GetOppositeBranchCondition(Cond); |
| 774 | UncondCodeSeq.push_back(Cond); |
| 775 | |
| 776 | BuildCheckingBlockForSuccAndConds(MBB, Succ, SuccCount, CondBr, UncondBr, |
| 777 | {InvCond}); |
| 778 | |
| 779 | // Decrement the successor count now that we've split one of the edges. |
| 780 | // We need to keep the count of edges to the successor accurate in order |
| 781 | // to know above when to *replace* the successor in the CFG vs. just |
| 782 | // adding the new successor. |
| 783 | --SuccCount; |
| 784 | } |
| 785 | |
| 786 | // Since we may have split edges and changed the number of successors, |
| 787 | // normalize the probabilities. This avoids doing it each time we split an |
| 788 | // edge. |
| 789 | MBB.normalizeSuccProbs(); |
| 790 | |
| 791 | // Finally, we need to insert cmovs into the "fallthrough" edge. Here, we |
| 792 | // need to intersect the other condition codes. We can do this by just |
| 793 | // doing a cmov for each one. |
| 794 | if (!UncondSucc) |
| 795 | // If we have no fallthrough to protect (perhaps it is an indirect jump?) |
| 796 | // just skip this and continue. |
| 797 | continue; |
| 798 | |
| 799 | assert(SuccCounts[UncondSucc] == 1 && |
| 800 | "We should never have more than one edge to the unconditional " |
| 801 | "successor at this point because every other edge must have been " |
| 802 | "split above!"); |
| 803 | |
| 804 | // Sort and unique the codes to minimize them. |
| 805 | llvm::sort(UncondCodeSeq.begin(), UncondCodeSeq.end()); |
| 806 | UncondCodeSeq.erase(std::unique(UncondCodeSeq.begin(), UncondCodeSeq.end()), |
| 807 | UncondCodeSeq.end()); |
| 808 | |
| 809 | // Build a checking version of the successor. |
| 810 | BuildCheckingBlockForSuccAndConds(MBB, *UncondSucc, /*SuccCount*/ 1, |
| 811 | UncondBr, UncondBr, UncondCodeSeq); |
| 812 | } |
| 813 | |
| 814 | return CMovs; |
| 815 | } |
| 816 | |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 817 | /// Returns true if the instruction has no behavior (specified or otherwise) |
| 818 | /// that is based on the value of any of its register operands |
| 819 | /// |
| 820 | /// A classical example of something that is inherently not data invariant is an |
| 821 | /// indirect jump -- the destination is loaded into icache based on the bits set |
| 822 | /// in the jump destination register. |
| 823 | /// |
| 824 | /// FIXME: This should become part of our instruction tables. |
| 825 | static bool isDataInvariant(MachineInstr &MI) { |
| 826 | switch (MI.getOpcode()) { |
| 827 | default: |
| 828 | // By default, assume that the instruction is not data invariant. |
| 829 | return false; |
| 830 | |
| Chandler Carruth | fa065aa | 2018-07-16 14:58:32 +0000 | [diff] [blame] | 831 | // Some target-independent operations that trivially lower to data-invariant |
| 832 | // instructions. |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 833 | case TargetOpcode::COPY: |
| Chandler Carruth | fa065aa | 2018-07-16 14:58:32 +0000 | [diff] [blame] | 834 | case TargetOpcode::INSERT_SUBREG: |
| 835 | case TargetOpcode::SUBREG_TO_REG: |
| 836 | return true; |
| 837 | |
| 838 | // On x86 it is believed that imul is constant time w.r.t. the loaded data. |
| 839 | // However, they set flags and are perhaps the most surprisingly constant |
| 840 | // time operations so we call them out here separately. |
| 841 | case X86::IMUL16rr: |
| 842 | case X86::IMUL16rri8: |
| 843 | case X86::IMUL16rri: |
| 844 | case X86::IMUL32rr: |
| 845 | case X86::IMUL32rri8: |
| 846 | case X86::IMUL32rri: |
| 847 | case X86::IMUL64rr: |
| 848 | case X86::IMUL64rri32: |
| 849 | case X86::IMUL64rri8: |
| 850 | |
| 851 | // Bit scanning and counting instructions that are somewhat surprisingly |
| 852 | // constant time as they scan across bits and do other fairly complex |
| 853 | // operations like popcnt, but are believed to be constant time on x86. |
| 854 | // However, these set flags. |
| 855 | case X86::BSF16rr: |
| 856 | case X86::BSF32rr: |
| 857 | case X86::BSF64rr: |
| 858 | case X86::BSR16rr: |
| 859 | case X86::BSR32rr: |
| 860 | case X86::BSR64rr: |
| 861 | case X86::LZCNT16rr: |
| 862 | case X86::LZCNT32rr: |
| 863 | case X86::LZCNT64rr: |
| 864 | case X86::POPCNT16rr: |
| 865 | case X86::POPCNT32rr: |
| 866 | case X86::POPCNT64rr: |
| 867 | case X86::TZCNT16rr: |
| 868 | case X86::TZCNT32rr: |
| 869 | case X86::TZCNT64rr: |
| 870 | |
| 871 | // Bit manipulation instructions are effectively combinations of basic |
| 872 | // arithmetic ops, and should still execute in constant time. These also |
| 873 | // set flags. |
| 874 | case X86::BLCFILL32rr: |
| 875 | case X86::BLCFILL64rr: |
| 876 | case X86::BLCI32rr: |
| 877 | case X86::BLCI64rr: |
| 878 | case X86::BLCIC32rr: |
| 879 | case X86::BLCIC64rr: |
| 880 | case X86::BLCMSK32rr: |
| 881 | case X86::BLCMSK64rr: |
| 882 | case X86::BLCS32rr: |
| 883 | case X86::BLCS64rr: |
| 884 | case X86::BLSFILL32rr: |
| 885 | case X86::BLSFILL64rr: |
| 886 | case X86::BLSI32rr: |
| 887 | case X86::BLSI64rr: |
| 888 | case X86::BLSIC32rr: |
| 889 | case X86::BLSIC64rr: |
| 890 | case X86::BLSMSK32rr: |
| 891 | case X86::BLSMSK64rr: |
| 892 | case X86::BLSR32rr: |
| 893 | case X86::BLSR64rr: |
| 894 | case X86::TZMSK32rr: |
| 895 | case X86::TZMSK64rr: |
| 896 | |
| 897 | // Bit extracting and clearing instructions should execute in constant time, |
| 898 | // and set flags. |
| 899 | case X86::BEXTR32rr: |
| 900 | case X86::BEXTR64rr: |
| 901 | case X86::BEXTRI32ri: |
| 902 | case X86::BEXTRI64ri: |
| 903 | case X86::BZHI32rr: |
| 904 | case X86::BZHI64rr: |
| 905 | |
| Chandler Carruth | c0cb573 | 2018-07-17 18:07:59 +0000 | [diff] [blame] | 906 | // Shift and rotate. |
| 907 | case X86::ROL8r1: case X86::ROL16r1: case X86::ROL32r1: case X86::ROL64r1: |
| 908 | case X86::ROL8rCL: case X86::ROL16rCL: case X86::ROL32rCL: case X86::ROL64rCL: |
| 909 | case X86::ROL8ri: case X86::ROL16ri: case X86::ROL32ri: case X86::ROL64ri: |
| 910 | case X86::ROR8r1: case X86::ROR16r1: case X86::ROR32r1: case X86::ROR64r1: |
| 911 | case X86::ROR8rCL: case X86::ROR16rCL: case X86::ROR32rCL: case X86::ROR64rCL: |
| 912 | case X86::ROR8ri: case X86::ROR16ri: case X86::ROR32ri: case X86::ROR64ri: |
| 913 | case X86::SAR8r1: case X86::SAR16r1: case X86::SAR32r1: case X86::SAR64r1: |
| 914 | case X86::SAR8rCL: case X86::SAR16rCL: case X86::SAR32rCL: case X86::SAR64rCL: |
| 915 | case X86::SAR8ri: case X86::SAR16ri: case X86::SAR32ri: case X86::SAR64ri: |
| 916 | case X86::SHL8r1: case X86::SHL16r1: case X86::SHL32r1: case X86::SHL64r1: |
| 917 | case X86::SHL8rCL: case X86::SHL16rCL: case X86::SHL32rCL: case X86::SHL64rCL: |
| 918 | case X86::SHL8ri: case X86::SHL16ri: case X86::SHL32ri: case X86::SHL64ri: |
| 919 | case X86::SHR8r1: case X86::SHR16r1: case X86::SHR32r1: case X86::SHR64r1: |
| 920 | case X86::SHR8rCL: case X86::SHR16rCL: case X86::SHR32rCL: case X86::SHR64rCL: |
| 921 | case X86::SHR8ri: case X86::SHR16ri: case X86::SHR32ri: case X86::SHR64ri: |
| 922 | case X86::SHLD16rrCL: case X86::SHLD32rrCL: case X86::SHLD64rrCL: |
| 923 | case X86::SHLD16rri8: case X86::SHLD32rri8: case X86::SHLD64rri8: |
| 924 | case X86::SHRD16rrCL: case X86::SHRD32rrCL: case X86::SHRD64rrCL: |
| 925 | case X86::SHRD16rri8: case X86::SHRD32rri8: case X86::SHRD64rri8: |
| 926 | |
| Chandler Carruth | fa065aa | 2018-07-16 14:58:32 +0000 | [diff] [blame] | 927 | // Basic arithmetic is constant time on the input but does set flags. |
| 928 | case X86::ADC8rr: case X86::ADC8ri: |
| 929 | case X86::ADC16rr: case X86::ADC16ri: case X86::ADC16ri8: |
| 930 | case X86::ADC32rr: case X86::ADC32ri: case X86::ADC32ri8: |
| 931 | case X86::ADC64rr: case X86::ADC64ri8: case X86::ADC64ri32: |
| 932 | case X86::ADD8rr: case X86::ADD8ri: |
| 933 | case X86::ADD16rr: case X86::ADD16ri: case X86::ADD16ri8: |
| 934 | case X86::ADD32rr: case X86::ADD32ri: case X86::ADD32ri8: |
| 935 | case X86::ADD64rr: case X86::ADD64ri8: case X86::ADD64ri32: |
| 936 | case X86::AND8rr: case X86::AND8ri: |
| 937 | case X86::AND16rr: case X86::AND16ri: case X86::AND16ri8: |
| 938 | case X86::AND32rr: case X86::AND32ri: case X86::AND32ri8: |
| 939 | case X86::AND64rr: case X86::AND64ri8: case X86::AND64ri32: |
| 940 | case X86::OR8rr: case X86::OR8ri: |
| 941 | case X86::OR16rr: case X86::OR16ri: case X86::OR16ri8: |
| 942 | case X86::OR32rr: case X86::OR32ri: case X86::OR32ri8: |
| 943 | case X86::OR64rr: case X86::OR64ri8: case X86::OR64ri32: |
| 944 | case X86::SBB8rr: case X86::SBB8ri: |
| 945 | case X86::SBB16rr: case X86::SBB16ri: case X86::SBB16ri8: |
| 946 | case X86::SBB32rr: case X86::SBB32ri: case X86::SBB32ri8: |
| 947 | case X86::SBB64rr: case X86::SBB64ri8: case X86::SBB64ri32: |
| 948 | case X86::SUB8rr: case X86::SUB8ri: |
| 949 | case X86::SUB16rr: case X86::SUB16ri: case X86::SUB16ri8: |
| 950 | case X86::SUB32rr: case X86::SUB32ri: case X86::SUB32ri8: |
| 951 | case X86::SUB64rr: case X86::SUB64ri8: case X86::SUB64ri32: |
| 952 | case X86::XOR8rr: case X86::XOR8ri: |
| 953 | case X86::XOR16rr: case X86::XOR16ri: case X86::XOR16ri8: |
| 954 | case X86::XOR32rr: case X86::XOR32ri: case X86::XOR32ri8: |
| 955 | case X86::XOR64rr: case X86::XOR64ri8: case X86::XOR64ri32: |
| 956 | // Arithmetic with just 32-bit and 64-bit variants and no immediates. |
| 957 | case X86::ADCX32rr: case X86::ADCX64rr: |
| 958 | case X86::ADOX32rr: case X86::ADOX64rr: |
| 959 | case X86::ANDN32rr: case X86::ANDN64rr: |
| Chandler Carruth | c0cb573 | 2018-07-17 18:07:59 +0000 | [diff] [blame] | 960 | // Unary arithmetic operations. |
| Chandler Carruth | fa065aa | 2018-07-16 14:58:32 +0000 | [diff] [blame] | 961 | case X86::DEC8r: case X86::DEC16r: case X86::DEC32r: case X86::DEC64r: |
| Chandler Carruth | c0cb573 | 2018-07-17 18:07:59 +0000 | [diff] [blame] | 962 | case X86::INC8r: case X86::INC16r: case X86::INC32r: case X86::INC64r: |
| 963 | case X86::NEG8r: case X86::NEG16r: case X86::NEG32r: case X86::NEG64r: |
| Chandler Carruth | fa065aa | 2018-07-16 14:58:32 +0000 | [diff] [blame] | 964 | // Check whether the EFLAGS implicit-def is dead. We assume that this will |
| 965 | // always find the implicit-def because this code should only be reached |
| 966 | // for instructions that do in fact implicitly def this. |
| 967 | if (!MI.findRegisterDefOperand(X86::EFLAGS)->isDead()) { |
| 968 | // If we would clobber EFLAGS that are used, just bail for now. |
| 969 | LLVM_DEBUG(dbgs() << " Unable to harden post-load due to EFLAGS: "; |
| 970 | MI.dump(); dbgs() << "\n"); |
| 971 | return false; |
| 972 | } |
| 973 | |
| 974 | // Otherwise, fallthrough to handle these the same as instructions that |
| 975 | // don't set EFLAGS. |
| 976 | LLVM_FALLTHROUGH; |
| 977 | |
| Chandler Carruth | c0cb573 | 2018-07-17 18:07:59 +0000 | [diff] [blame] | 978 | // Unlike other arithmetic, NOT doesn't set EFLAGS. |
| 979 | case X86::NOT8r: case X86::NOT16r: case X86::NOT32r: case X86::NOT64r: |
| 980 | |
| 981 | // Various move instructions used to zero or sign extend things. Note that we |
| 982 | // intentionally don't support the _NOREX variants as we can't handle that |
| 983 | // register constraint anyways. |
| 984 | case X86::MOVSX16rr8: |
| 985 | case X86::MOVSX32rr8: case X86::MOVSX32rr16: |
| 986 | case X86::MOVSX64rr8: case X86::MOVSX64rr16: case X86::MOVSX64rr32: |
| 987 | case X86::MOVZX16rr8: |
| 988 | case X86::MOVZX32rr8: case X86::MOVZX32rr16: |
| 989 | case X86::MOVZX64rr8: case X86::MOVZX64rr16: |
| 990 | case X86::MOV32rr: |
| Chandler Carruth | fa065aa | 2018-07-16 14:58:32 +0000 | [diff] [blame] | 991 | |
| 992 | // Arithmetic instructions that are both constant time and don't set flags. |
| 993 | case X86::RORX32ri: |
| 994 | case X86::RORX64ri: |
| 995 | case X86::SARX32rr: |
| 996 | case X86::SARX64rr: |
| 997 | case X86::SHLX32rr: |
| 998 | case X86::SHLX64rr: |
| 999 | case X86::SHRX32rr: |
| 1000 | case X86::SHRX64rr: |
| 1001 | |
| 1002 | // LEA doesn't actually access memory, and its arithmetic is constant time. |
| 1003 | case X86::LEA16r: |
| 1004 | case X86::LEA32r: |
| 1005 | case X86::LEA64_32r: |
| 1006 | case X86::LEA64r: |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1007 | return true; |
| 1008 | } |
| 1009 | } |
| 1010 | |
| 1011 | /// Returns true if the instruction has no behavior (specified or otherwise) |
| 1012 | /// that is based on the value loaded from memory or the value of any |
| 1013 | /// non-address register operands. |
| 1014 | /// |
| 1015 | /// For example, if the latency of the instruction is dependent on the |
| 1016 | /// particular bits set in any of the registers *or* any of the bits loaded from |
| 1017 | /// memory. |
| 1018 | /// |
| 1019 | /// A classical example of something that is inherently not data invariant is an |
| 1020 | /// indirect jump -- the destination is loaded into icache based on the bits set |
| 1021 | /// in the jump destination register. |
| 1022 | /// |
| 1023 | /// FIXME: This should become part of our instruction tables. |
| 1024 | static bool isDataInvariantLoad(MachineInstr &MI) { |
| 1025 | switch (MI.getOpcode()) { |
| 1026 | default: |
| 1027 | // By default, assume that the load will immediately leak. |
| 1028 | return false; |
| 1029 | |
| Craig Topper | 445abf7 | 2018-07-13 22:41:46 +0000 | [diff] [blame] | 1030 | // On x86 it is believed that imul is constant time w.r.t. the loaded data. |
| 1031 | // However, they set flags and are perhaps the most surprisingly constant |
| 1032 | // time operations so we call them out here separately. |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1033 | case X86::IMUL16rm: |
| 1034 | case X86::IMUL16rmi8: |
| 1035 | case X86::IMUL16rmi: |
| 1036 | case X86::IMUL32rm: |
| 1037 | case X86::IMUL32rmi8: |
| 1038 | case X86::IMUL32rmi: |
| 1039 | case X86::IMUL64rm: |
| 1040 | case X86::IMUL64rmi32: |
| 1041 | case X86::IMUL64rmi8: |
| 1042 | |
| Craig Topper | 445abf7 | 2018-07-13 22:41:46 +0000 | [diff] [blame] | 1043 | // Bit scanning and counting instructions that are somewhat surprisingly |
| 1044 | // constant time as they scan across bits and do other fairly complex |
| 1045 | // operations like popcnt, but are believed to be constant time on x86. |
| 1046 | // However, these set flags. |
| 1047 | case X86::BSF16rm: |
| 1048 | case X86::BSF32rm: |
| 1049 | case X86::BSF64rm: |
| 1050 | case X86::BSR16rm: |
| 1051 | case X86::BSR32rm: |
| 1052 | case X86::BSR64rm: |
| 1053 | case X86::LZCNT16rm: |
| 1054 | case X86::LZCNT32rm: |
| 1055 | case X86::LZCNT64rm: |
| 1056 | case X86::POPCNT16rm: |
| 1057 | case X86::POPCNT32rm: |
| 1058 | case X86::POPCNT64rm: |
| 1059 | case X86::TZCNT16rm: |
| 1060 | case X86::TZCNT32rm: |
| 1061 | case X86::TZCNT64rm: |
| 1062 | |
| 1063 | // Bit manipulation instructions are effectively combinations of basic |
| 1064 | // arithmetic ops, and should still execute in constant time. These also |
| 1065 | // set flags. |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1066 | case X86::BLCFILL32rm: |
| 1067 | case X86::BLCFILL64rm: |
| 1068 | case X86::BLCI32rm: |
| 1069 | case X86::BLCI64rm: |
| 1070 | case X86::BLCIC32rm: |
| 1071 | case X86::BLCIC64rm: |
| 1072 | case X86::BLCMSK32rm: |
| 1073 | case X86::BLCMSK64rm: |
| 1074 | case X86::BLCS32rm: |
| 1075 | case X86::BLCS64rm: |
| 1076 | case X86::BLSFILL32rm: |
| 1077 | case X86::BLSFILL64rm: |
| 1078 | case X86::BLSI32rm: |
| 1079 | case X86::BLSI64rm: |
| 1080 | case X86::BLSIC32rm: |
| 1081 | case X86::BLSIC64rm: |
| 1082 | case X86::BLSMSK32rm: |
| 1083 | case X86::BLSMSK64rm: |
| 1084 | case X86::BLSR32rm: |
| 1085 | case X86::BLSR64rm: |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1086 | case X86::TZMSK32rm: |
| 1087 | case X86::TZMSK64rm: |
| 1088 | |
| Craig Topper | 445abf7 | 2018-07-13 22:41:46 +0000 | [diff] [blame] | 1089 | // Bit extracting and clearing instructions should execute in constant time, |
| 1090 | // and set flags. |
| 1091 | case X86::BEXTR32rm: |
| 1092 | case X86::BEXTR64rm: |
| 1093 | case X86::BEXTRI32mi: |
| 1094 | case X86::BEXTRI64mi: |
| 1095 | case X86::BZHI32rm: |
| 1096 | case X86::BZHI64rm: |
| 1097 | |
| 1098 | // Basic arithmetic is constant time on the input but does set flags. |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1099 | case X86::ADC8rm: |
| 1100 | case X86::ADC16rm: |
| 1101 | case X86::ADC32rm: |
| 1102 | case X86::ADC64rm: |
| 1103 | case X86::ADCX32rm: |
| 1104 | case X86::ADCX64rm: |
| 1105 | case X86::ADD8rm: |
| 1106 | case X86::ADD16rm: |
| 1107 | case X86::ADD32rm: |
| 1108 | case X86::ADD64rm: |
| 1109 | case X86::ADOX32rm: |
| 1110 | case X86::ADOX64rm: |
| 1111 | case X86::AND8rm: |
| 1112 | case X86::AND16rm: |
| 1113 | case X86::AND32rm: |
| 1114 | case X86::AND64rm: |
| 1115 | case X86::ANDN32rm: |
| 1116 | case X86::ANDN64rm: |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1117 | case X86::OR8rm: |
| 1118 | case X86::OR16rm: |
| 1119 | case X86::OR32rm: |
| 1120 | case X86::OR64rm: |
| 1121 | case X86::SBB8rm: |
| 1122 | case X86::SBB16rm: |
| 1123 | case X86::SBB32rm: |
| 1124 | case X86::SBB64rm: |
| 1125 | case X86::SUB8rm: |
| 1126 | case X86::SUB16rm: |
| 1127 | case X86::SUB32rm: |
| 1128 | case X86::SUB64rm: |
| 1129 | case X86::XOR8rm: |
| 1130 | case X86::XOR16rm: |
| 1131 | case X86::XOR32rm: |
| 1132 | case X86::XOR64rm: |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1133 | // Check whether the EFLAGS implicit-def is dead. We assume that this will |
| 1134 | // always find the implicit-def because this code should only be reached |
| 1135 | // for instructions that do in fact implicitly def this. |
| 1136 | if (!MI.findRegisterDefOperand(X86::EFLAGS)->isDead()) { |
| 1137 | // If we would clobber EFLAGS that are used, just bail for now. |
| 1138 | LLVM_DEBUG(dbgs() << " Unable to harden post-load due to EFLAGS: "; |
| 1139 | MI.dump(); dbgs() << "\n"); |
| 1140 | return false; |
| 1141 | } |
| 1142 | |
| 1143 | // Otherwise, fallthrough to handle these the same as instructions that |
| 1144 | // don't set EFLAGS. |
| 1145 | LLVM_FALLTHROUGH; |
| 1146 | |
| Craig Topper | 445abf7 | 2018-07-13 22:41:46 +0000 | [diff] [blame] | 1147 | // Integer multiply w/o affecting flags is still believed to be constant |
| 1148 | // time on x86. Called out separately as this is among the most surprising |
| 1149 | // instructions to exhibit that behavior. |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1150 | case X86::MULX32rm: |
| 1151 | case X86::MULX64rm: |
| 1152 | |
| Craig Topper | 445abf7 | 2018-07-13 22:41:46 +0000 | [diff] [blame] | 1153 | // Arithmetic instructions that are both constant time and don't set flags. |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1154 | case X86::RORX32mi: |
| 1155 | case X86::RORX64mi: |
| 1156 | case X86::SARX32rm: |
| 1157 | case X86::SARX64rm: |
| 1158 | case X86::SHLX32rm: |
| 1159 | case X86::SHLX64rm: |
| 1160 | case X86::SHRX32rm: |
| 1161 | case X86::SHRX64rm: |
| 1162 | |
| Craig Topper | 445abf7 | 2018-07-13 22:41:46 +0000 | [diff] [blame] | 1163 | // Conversions are believed to be constant time and don't set flags. |
| Craig Topper | 41fa858 | 2018-07-13 22:41:50 +0000 | [diff] [blame] | 1164 | case X86::CVTTSD2SI64rm: case X86::VCVTTSD2SI64rm: case X86::VCVTTSD2SI64Zrm: |
| 1165 | case X86::CVTTSD2SIrm: case X86::VCVTTSD2SIrm: case X86::VCVTTSD2SIZrm: |
| 1166 | case X86::CVTTSS2SI64rm: case X86::VCVTTSS2SI64rm: case X86::VCVTTSS2SI64Zrm: |
| 1167 | case X86::CVTTSS2SIrm: case X86::VCVTTSS2SIrm: case X86::VCVTTSS2SIZrm: |
| 1168 | case X86::CVTSI2SDrm: case X86::VCVTSI2SDrm: case X86::VCVTSI2SDZrm: |
| 1169 | case X86::CVTSI2SSrm: case X86::VCVTSI2SSrm: case X86::VCVTSI2SSZrm: |
| 1170 | case X86::CVTSI642SDrm: case X86::VCVTSI642SDrm: case X86::VCVTSI642SDZrm: |
| 1171 | case X86::CVTSI642SSrm: case X86::VCVTSI642SSrm: case X86::VCVTSI642SSZrm: |
| 1172 | case X86::CVTSS2SDrm: case X86::VCVTSS2SDrm: case X86::VCVTSS2SDZrm: |
| 1173 | case X86::CVTSD2SSrm: case X86::VCVTSD2SSrm: case X86::VCVTSD2SSZrm: |
| 1174 | // AVX512 added unsigned integer conversions. |
| 1175 | case X86::VCVTTSD2USI64Zrm: |
| 1176 | case X86::VCVTTSD2USIZrm: |
| 1177 | case X86::VCVTTSS2USI64Zrm: |
| 1178 | case X86::VCVTTSS2USIZrm: |
| 1179 | case X86::VCVTUSI2SDZrm: |
| 1180 | case X86::VCVTUSI642SDZrm: |
| 1181 | case X86::VCVTUSI2SSZrm: |
| 1182 | case X86::VCVTUSI642SSZrm: |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1183 | |
| Craig Topper | 445abf7 | 2018-07-13 22:41:46 +0000 | [diff] [blame] | 1184 | // Loads to register don't set flags. |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1185 | case X86::MOV8rm: |
| 1186 | case X86::MOV8rm_NOREX: |
| 1187 | case X86::MOV16rm: |
| 1188 | case X86::MOV32rm: |
| 1189 | case X86::MOV64rm: |
| 1190 | case X86::MOVSX16rm8: |
| 1191 | case X86::MOVSX32rm16: |
| 1192 | case X86::MOVSX32rm8: |
| 1193 | case X86::MOVSX32rm8_NOREX: |
| 1194 | case X86::MOVSX64rm16: |
| 1195 | case X86::MOVSX64rm32: |
| 1196 | case X86::MOVSX64rm8: |
| 1197 | case X86::MOVZX16rm8: |
| 1198 | case X86::MOVZX32rm16: |
| 1199 | case X86::MOVZX32rm8: |
| 1200 | case X86::MOVZX32rm8_NOREX: |
| 1201 | case X86::MOVZX64rm16: |
| 1202 | case X86::MOVZX64rm8: |
| 1203 | return true; |
| 1204 | } |
| 1205 | } |
| 1206 | |
| 1207 | static bool isEFLAGSLive(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, |
| 1208 | const TargetRegisterInfo &TRI) { |
| 1209 | // Check if EFLAGS are alive by seeing if there is a def of them or they |
| 1210 | // live-in, and then seeing if that def is in turn used. |
| 1211 | for (MachineInstr &MI : llvm::reverse(llvm::make_range(MBB.begin(), I))) { |
| 1212 | if (MachineOperand *DefOp = MI.findRegisterDefOperand(X86::EFLAGS)) { |
| 1213 | // If the def is dead, then EFLAGS is not live. |
| 1214 | if (DefOp->isDead()) |
| 1215 | return false; |
| 1216 | |
| 1217 | // Otherwise we've def'ed it, and it is live. |
| 1218 | return true; |
| 1219 | } |
| 1220 | // While at this instruction, also check if we use and kill EFLAGS |
| 1221 | // which means it isn't live. |
| 1222 | if (MI.killsRegister(X86::EFLAGS, &TRI)) |
| 1223 | return false; |
| 1224 | } |
| 1225 | |
| 1226 | // If we didn't find anything conclusive (neither definitely alive or |
| 1227 | // definitely dead) return whether it lives into the block. |
| 1228 | return MBB.isLiveIn(X86::EFLAGS); |
| 1229 | } |
| 1230 | |
| Chandler Carruth | 0477b40 | 2018-07-23 04:01:34 +0000 | [diff] [blame] | 1231 | /// Harden all of the loads (including implicit loads) in the function. |
| 1232 | /// |
| 1233 | /// This operates in two passes. First, we analyze the loads to determine which |
| 1234 | /// strategy will be used to harden them: hardening the address or hardening the |
| 1235 | /// loaded value when loaded into a register amenable to hardening. We have to |
| 1236 | /// process these first because the two strategies may interact -- later |
| 1237 | /// hardening may change what strategy we wish to use. We also will analyze |
| 1238 | /// data dependencies between loads and avoid hardening those loads that are |
| 1239 | /// data dependent on a load with a hardened address. We also skip hardening |
| 1240 | /// loads already behind an LFENCE as that is sufficient to harden them against |
| 1241 | /// misspeculation. |
| 1242 | /// |
| 1243 | /// Second, we apply the hardening steps we determined necessary in the first |
| 1244 | /// pass. |
| 1245 | /// |
| 1246 | /// These two passes are applied to each basic block. We operate one block at |
| 1247 | /// a time to simplify reasoning about reachability and sequencing. |
| 1248 | void X86SpeculativeLoadHardeningPass::hardenAllLoads(MachineFunction &MF) { |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1249 | // If the actual checking of loads is disabled, skip doing anything here. |
| 1250 | if (!HardenLoads) |
| 1251 | return; |
| 1252 | |
| 1253 | SmallPtrSet<MachineInstr *, 16> HardenPostLoad; |
| 1254 | SmallPtrSet<MachineInstr *, 16> HardenLoadAddr; |
| 1255 | |
| 1256 | SmallSet<unsigned, 16> HardenedAddrRegs; |
| 1257 | |
| 1258 | SmallDenseMap<unsigned, unsigned, 32> AddrRegToHardenedReg; |
| 1259 | |
| 1260 | // Track the set of load-dependent registers through the basic block. Because |
| 1261 | // the values of these registers have an existing data dependency on a loaded |
| 1262 | // value which we would have checked, we can omit any checks on them. |
| 1263 | SparseBitVector<> LoadDepRegs; |
| 1264 | |
| 1265 | for (MachineBasicBlock &MBB : MF) { |
| 1266 | // We harden the loads of a basic block in several passes: |
| 1267 | // |
| 1268 | // 1) Collect all the loads which can have their loaded value hardened |
| 1269 | // and all the loads that instead need their address hardened. During |
| 1270 | // this walk we propagate load dependence for address hardened loads and |
| 1271 | // also look for LFENCE to stop hardening wherever possible. When |
| 1272 | // deciding whether or not to harden the loaded value or not, we check |
| 1273 | // to see if any registers used in the address will have been hardened |
| 1274 | // at this point and if so, harden any remaining address registers as |
| 1275 | // that often successfully re-uses hardened addresses and minimizes |
| 1276 | // instructions. FIXME: We should consider an aggressive mode where we |
| 1277 | // continue to keep as many loads value hardened even when some address |
| 1278 | // register hardening would be free (due to reuse). |
| 1279 | for (MachineInstr &MI : MBB) { |
| 1280 | // We naively assume that all def'ed registers of an instruction have |
| 1281 | // a data dependency on all of their operands. |
| 1282 | // FIXME: Do a more careful analysis of x86 to build a conservative model |
| 1283 | // here. |
| 1284 | if (llvm::any_of(MI.uses(), [&](MachineOperand &Op) { |
| 1285 | return Op.isReg() && LoadDepRegs.test(Op.getReg()); |
| 1286 | })) |
| 1287 | for (MachineOperand &Def : MI.defs()) |
| 1288 | if (Def.isReg()) |
| 1289 | LoadDepRegs.set(Def.getReg()); |
| 1290 | |
| 1291 | // Both Intel and AMD are guiding that they will change the semantics of |
| 1292 | // LFENCE to be a speculation barrier, so if we see an LFENCE, there is |
| 1293 | // no more need to guard things in this block. |
| 1294 | if (MI.getOpcode() == X86::LFENCE) |
| 1295 | break; |
| 1296 | |
| 1297 | // If this instruction cannot load, nothing to do. |
| 1298 | if (!MI.mayLoad()) |
| 1299 | continue; |
| 1300 | |
| 1301 | // Some instructions which "load" are trivially safe or unimportant. |
| 1302 | if (MI.getOpcode() == X86::MFENCE) |
| 1303 | continue; |
| 1304 | |
| 1305 | // Extract the memory operand information about this instruction. |
| 1306 | // FIXME: This doesn't handle loading pseudo instructions which we often |
| 1307 | // could handle with similarly generic logic. We probably need to add an |
| 1308 | // MI-layer routine similar to the MC-layer one we use here which maps |
| 1309 | // pseudos much like this maps real instructions. |
| 1310 | const MCInstrDesc &Desc = MI.getDesc(); |
| 1311 | int MemRefBeginIdx = X86II::getMemoryOperandNo(Desc.TSFlags); |
| 1312 | if (MemRefBeginIdx < 0) { |
| 1313 | LLVM_DEBUG(dbgs() << "WARNING: unable to harden loading instruction: "; |
| 1314 | MI.dump()); |
| 1315 | continue; |
| 1316 | } |
| 1317 | |
| 1318 | MemRefBeginIdx += X86II::getOperandBias(Desc); |
| 1319 | |
| 1320 | MachineOperand &BaseMO = MI.getOperand(MemRefBeginIdx + X86::AddrBaseReg); |
| 1321 | MachineOperand &IndexMO = |
| 1322 | MI.getOperand(MemRefBeginIdx + X86::AddrIndexReg); |
| 1323 | |
| 1324 | // If we have at least one (non-frame-index, non-RIP) register operand, |
| 1325 | // and neither operand is load-dependent, we need to check the load. |
| 1326 | unsigned BaseReg = 0, IndexReg = 0; |
| 1327 | if (!BaseMO.isFI() && BaseMO.getReg() != X86::RIP && |
| 1328 | BaseMO.getReg() != X86::NoRegister) |
| 1329 | BaseReg = BaseMO.getReg(); |
| 1330 | if (IndexMO.getReg() != X86::NoRegister) |
| 1331 | IndexReg = IndexMO.getReg(); |
| 1332 | |
| 1333 | if (!BaseReg && !IndexReg) |
| 1334 | // No register operands! |
| 1335 | continue; |
| 1336 | |
| 1337 | // If any register operand is dependent, this load is dependent and we |
| 1338 | // needn't check it. |
| 1339 | // FIXME: Is this true in the case where we are hardening loads after |
| 1340 | // they complete? Unclear, need to investigate. |
| 1341 | if ((BaseReg && LoadDepRegs.test(BaseReg)) || |
| 1342 | (IndexReg && LoadDepRegs.test(IndexReg))) |
| 1343 | continue; |
| 1344 | |
| Chandler Carruth | e66a6f4 | 2018-07-16 11:38:48 +0000 | [diff] [blame] | 1345 | // If post-load hardening is enabled, this load is compatible with |
| 1346 | // post-load hardening, and we aren't already going to harden one of the |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1347 | // address registers, queue it up to be hardened post-load. Notably, even |
| 1348 | // once hardened this won't introduce a useful dependency that could prune |
| 1349 | // out subsequent loads. |
| Chandler Carruth | fa065aa | 2018-07-16 14:58:32 +0000 | [diff] [blame] | 1350 | if (EnablePostLoadHardening && isDataInvariantLoad(MI) && |
| 1351 | MI.getDesc().getNumDefs() == 1 && MI.getOperand(0).isReg() && |
| 1352 | canHardenRegister(MI.getOperand(0).getReg()) && |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1353 | !HardenedAddrRegs.count(BaseReg) && |
| 1354 | !HardenedAddrRegs.count(IndexReg)) { |
| 1355 | HardenPostLoad.insert(&MI); |
| 1356 | HardenedAddrRegs.insert(MI.getOperand(0).getReg()); |
| 1357 | continue; |
| 1358 | } |
| 1359 | |
| 1360 | // Record this instruction for address hardening and record its register |
| 1361 | // operands as being address-hardened. |
| 1362 | HardenLoadAddr.insert(&MI); |
| 1363 | if (BaseReg) |
| 1364 | HardenedAddrRegs.insert(BaseReg); |
| 1365 | if (IndexReg) |
| 1366 | HardenedAddrRegs.insert(IndexReg); |
| 1367 | |
| 1368 | for (MachineOperand &Def : MI.defs()) |
| 1369 | if (Def.isReg()) |
| 1370 | LoadDepRegs.set(Def.getReg()); |
| 1371 | } |
| 1372 | |
| 1373 | // Now re-walk the instructions in the basic block, and apply whichever |
| 1374 | // hardening strategy we have elected. Note that we do this in a second |
| 1375 | // pass specifically so that we have the complete set of instructions for |
| 1376 | // which we will do post-load hardening and can defer it in certain |
| 1377 | // circumstances. |
| 1378 | // |
| 1379 | // FIXME: This could probably be made even more effective by doing it |
| 1380 | // across the entire function. Rather than just walking the flat list |
| 1381 | // backwards here, we could walk the function in PO and each block bottom |
| 1382 | // up, allowing us to in some cases sink hardening across block blocks. As |
| 1383 | // long as the in-block predicate state is used at the eventual hardening |
| 1384 | // site, this remains safe. |
| 1385 | for (MachineInstr &MI : MBB) { |
| 1386 | // We cannot both require hardening the def of a load and its address. |
| 1387 | assert(!(HardenLoadAddr.count(&MI) && HardenPostLoad.count(&MI)) && |
| 1388 | "Requested to harden both the address and def of a load!"); |
| 1389 | |
| 1390 | // Check if this is a load whose address needs to be hardened. |
| 1391 | if (HardenLoadAddr.erase(&MI)) { |
| 1392 | const MCInstrDesc &Desc = MI.getDesc(); |
| 1393 | int MemRefBeginIdx = X86II::getMemoryOperandNo(Desc.TSFlags); |
| 1394 | assert(MemRefBeginIdx >= 0 && "Cannot have an invalid index here!"); |
| 1395 | |
| 1396 | MemRefBeginIdx += X86II::getOperandBias(Desc); |
| 1397 | |
| 1398 | MachineOperand &BaseMO = |
| 1399 | MI.getOperand(MemRefBeginIdx + X86::AddrBaseReg); |
| 1400 | MachineOperand &IndexMO = |
| 1401 | MI.getOperand(MemRefBeginIdx + X86::AddrIndexReg); |
| Chandler Carruth | 4b0028a | 2018-07-19 11:13:58 +0000 | [diff] [blame] | 1402 | hardenLoadAddr(MI, BaseMO, IndexMO, AddrRegToHardenedReg); |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1403 | continue; |
| 1404 | } |
| 1405 | |
| 1406 | // Test if this instruction is one of our post load instructions (and |
| 1407 | // remove it from the set if so). |
| 1408 | if (HardenPostLoad.erase(&MI)) { |
| 1409 | assert(!MI.isCall() && "Must not try to post-load harden a call!"); |
| 1410 | |
| 1411 | // If this is a data-invariant load, we want to try and sink any |
| 1412 | // hardening as far as possible. |
| 1413 | if (isDataInvariantLoad(MI)) { |
| 1414 | // Sink the instruction we'll need to harden as far as we can down the |
| 1415 | // graph. |
| 1416 | MachineInstr *SunkMI = sinkPostLoadHardenedInst(MI, HardenPostLoad); |
| 1417 | |
| 1418 | // If we managed to sink this instruction, update everything so we |
| 1419 | // harden that instruction when we reach it in the instruction |
| 1420 | // sequence. |
| 1421 | if (SunkMI != &MI) { |
| 1422 | // If in sinking there was no instruction needing to be hardened, |
| 1423 | // we're done. |
| 1424 | if (!SunkMI) |
| 1425 | continue; |
| 1426 | |
| 1427 | // Otherwise, add this to the set of defs we harden. |
| 1428 | HardenPostLoad.insert(SunkMI); |
| 1429 | continue; |
| 1430 | } |
| 1431 | } |
| 1432 | |
| 1433 | // The register def'ed by this instruction is trivially hardened so map |
| 1434 | // it to itself. |
| 1435 | AddrRegToHardenedReg[MI.getOperand(0).getReg()] = |
| 1436 | MI.getOperand(0).getReg(); |
| 1437 | |
| Chandler Carruth | 4b0028a | 2018-07-19 11:13:58 +0000 | [diff] [blame] | 1438 | hardenPostLoad(MI); |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1439 | continue; |
| 1440 | } |
| 1441 | |
| 1442 | // After we finish processing the instruction and doing any hardening |
| 1443 | // necessary for it, we need to handle transferring the predicate state |
| 1444 | // into a call and recovering it after the call returns (if it returns). |
| 1445 | if (!MI.isCall()) |
| 1446 | continue; |
| 1447 | |
| 1448 | // If we're not hardening interprocedurally, we can just skip calls. |
| 1449 | if (!HardenInterprocedurally) |
| 1450 | continue; |
| 1451 | |
| 1452 | auto InsertPt = MI.getIterator(); |
| 1453 | DebugLoc Loc = MI.getDebugLoc(); |
| 1454 | |
| 1455 | // First, we transfer the predicate state into the called function by |
| 1456 | // merging it into the stack pointer. This will kill the current def of |
| 1457 | // the state. |
| Chandler Carruth | 4b0028a | 2018-07-19 11:13:58 +0000 | [diff] [blame] | 1458 | unsigned StateReg = PS->SSA.GetValueAtEndOfBlock(&MBB); |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1459 | mergePredStateIntoSP(MBB, InsertPt, Loc, StateReg); |
| 1460 | |
| 1461 | // If this call is also a return (because it is a tail call) we're done. |
| 1462 | if (MI.isReturn()) |
| 1463 | continue; |
| 1464 | |
| 1465 | // Otherwise we need to step past the call and recover the predicate |
| 1466 | // state from SP after the return, and make this new state available. |
| 1467 | ++InsertPt; |
| 1468 | unsigned NewStateReg = extractPredStateFromSP(MBB, InsertPt, Loc); |
| Chandler Carruth | 4b0028a | 2018-07-19 11:13:58 +0000 | [diff] [blame] | 1469 | PS->SSA.AddAvailableValue(&MBB, NewStateReg); |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1470 | } |
| 1471 | |
| 1472 | HardenPostLoad.clear(); |
| 1473 | HardenLoadAddr.clear(); |
| 1474 | HardenedAddrRegs.clear(); |
| 1475 | AddrRegToHardenedReg.clear(); |
| 1476 | |
| 1477 | // Currently, we only track data-dependent loads within a basic block. |
| 1478 | // FIXME: We should see if this is necessary or if we could be more |
| 1479 | // aggressive here without opening up attack avenues. |
| 1480 | LoadDepRegs.clear(); |
| 1481 | } |
| 1482 | } |
| 1483 | |
| 1484 | /// Save EFLAGS into the returned GPR. This can in turn be restored with |
| 1485 | /// `restoreEFLAGS`. |
| 1486 | /// |
| 1487 | /// Note that LLVM can only lower very simple patterns of saved and restored |
| 1488 | /// EFLAGS registers. The restore should always be within the same basic block |
| 1489 | /// as the save so that no PHI nodes are inserted. |
| 1490 | unsigned X86SpeculativeLoadHardeningPass::saveEFLAGS( |
| 1491 | MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt, |
| 1492 | DebugLoc Loc) { |
| 1493 | // FIXME: Hard coding this to a 32-bit register class seems weird, but matches |
| 1494 | // what instruction selection does. |
| 1495 | unsigned Reg = MRI->createVirtualRegister(&X86::GR32RegClass); |
| 1496 | // We directly copy the FLAGS register and rely on later lowering to clean |
| 1497 | // this up into the appropriate setCC instructions. |
| 1498 | BuildMI(MBB, InsertPt, Loc, TII->get(X86::COPY), Reg).addReg(X86::EFLAGS); |
| 1499 | ++NumInstsInserted; |
| 1500 | return Reg; |
| 1501 | } |
| 1502 | |
| 1503 | /// Restore EFLAGS from the provided GPR. This should be produced by |
| 1504 | /// `saveEFLAGS`. |
| 1505 | /// |
| 1506 | /// This must be done within the same basic block as the save in order to |
| 1507 | /// reliably lower. |
| 1508 | void X86SpeculativeLoadHardeningPass::restoreEFLAGS( |
| 1509 | MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt, DebugLoc Loc, |
| 1510 | unsigned Reg) { |
| 1511 | BuildMI(MBB, InsertPt, Loc, TII->get(X86::COPY), X86::EFLAGS).addReg(Reg); |
| 1512 | ++NumInstsInserted; |
| 1513 | } |
| 1514 | |
| 1515 | /// Takes the current predicate state (in a register) and merges it into the |
| 1516 | /// stack pointer. The state is essentially a single bit, but we merge this in |
| 1517 | /// a way that won't form non-canonical pointers and also will be preserved |
| 1518 | /// across normal stack adjustments. |
| 1519 | void X86SpeculativeLoadHardeningPass::mergePredStateIntoSP( |
| 1520 | MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt, DebugLoc Loc, |
| 1521 | unsigned PredStateReg) { |
| Chandler Carruth | 4b0028a | 2018-07-19 11:13:58 +0000 | [diff] [blame] | 1522 | unsigned TmpReg = MRI->createVirtualRegister(PS->RC); |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1523 | // FIXME: This hard codes a shift distance based on the number of bits needed |
| 1524 | // to stay canonical on 64-bit. We should compute this somehow and support |
| 1525 | // 32-bit as part of that. |
| 1526 | auto ShiftI = BuildMI(MBB, InsertPt, Loc, TII->get(X86::SHL64ri), TmpReg) |
| 1527 | .addReg(PredStateReg, RegState::Kill) |
| 1528 | .addImm(47); |
| 1529 | ShiftI->addRegisterDead(X86::EFLAGS, TRI); |
| 1530 | ++NumInstsInserted; |
| 1531 | auto OrI = BuildMI(MBB, InsertPt, Loc, TII->get(X86::OR64rr), X86::RSP) |
| 1532 | .addReg(X86::RSP) |
| 1533 | .addReg(TmpReg, RegState::Kill); |
| 1534 | OrI->addRegisterDead(X86::EFLAGS, TRI); |
| 1535 | ++NumInstsInserted; |
| 1536 | } |
| 1537 | |
| 1538 | /// Extracts the predicate state stored in the high bits of the stack pointer. |
| 1539 | unsigned X86SpeculativeLoadHardeningPass::extractPredStateFromSP( |
| 1540 | MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt, |
| 1541 | DebugLoc Loc) { |
| Chandler Carruth | 4b0028a | 2018-07-19 11:13:58 +0000 | [diff] [blame] | 1542 | unsigned PredStateReg = MRI->createVirtualRegister(PS->RC); |
| 1543 | unsigned TmpReg = MRI->createVirtualRegister(PS->RC); |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1544 | |
| 1545 | // We know that the stack pointer will have any preserved predicate state in |
| 1546 | // its high bit. We just want to smear this across the other bits. Turns out, |
| 1547 | // this is exactly what an arithmetic right shift does. |
| 1548 | BuildMI(MBB, InsertPt, Loc, TII->get(TargetOpcode::COPY), TmpReg) |
| 1549 | .addReg(X86::RSP); |
| 1550 | auto ShiftI = |
| 1551 | BuildMI(MBB, InsertPt, Loc, TII->get(X86::SAR64ri), PredStateReg) |
| 1552 | .addReg(TmpReg, RegState::Kill) |
| Chandler Carruth | 4b0028a | 2018-07-19 11:13:58 +0000 | [diff] [blame] | 1553 | .addImm(TRI->getRegSizeInBits(*PS->RC) - 1); |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1554 | ShiftI->addRegisterDead(X86::EFLAGS, TRI); |
| 1555 | ++NumInstsInserted; |
| 1556 | |
| 1557 | return PredStateReg; |
| 1558 | } |
| 1559 | |
| 1560 | void X86SpeculativeLoadHardeningPass::hardenLoadAddr( |
| 1561 | MachineInstr &MI, MachineOperand &BaseMO, MachineOperand &IndexMO, |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1562 | SmallDenseMap<unsigned, unsigned, 32> &AddrRegToHardenedReg) { |
| 1563 | MachineBasicBlock &MBB = *MI.getParent(); |
| 1564 | DebugLoc Loc = MI.getDebugLoc(); |
| 1565 | |
| 1566 | // Check if EFLAGS are alive by seeing if there is a def of them or they |
| 1567 | // live-in, and then seeing if that def is in turn used. |
| 1568 | bool EFLAGSLive = isEFLAGSLive(MBB, MI.getIterator(), *TRI); |
| 1569 | |
| 1570 | SmallVector<MachineOperand *, 2> HardenOpRegs; |
| 1571 | |
| 1572 | if (BaseMO.isFI()) { |
| 1573 | // A frame index is never a dynamically controllable load, so only |
| 1574 | // harden it if we're covering fixed address loads as well. |
| 1575 | LLVM_DEBUG( |
| 1576 | dbgs() << " Skipping hardening base of explicit stack frame load: "; |
| 1577 | MI.dump(); dbgs() << "\n"); |
| 1578 | } else if (BaseMO.getReg() == X86::RIP || |
| 1579 | BaseMO.getReg() == X86::NoRegister) { |
| 1580 | // For both RIP-relative addressed loads or absolute loads, we cannot |
| 1581 | // meaningfully harden them because the address being loaded has no |
| 1582 | // dynamic component. |
| 1583 | // |
| 1584 | // FIXME: When using a segment base (like TLS does) we end up with the |
| 1585 | // dynamic address being the base plus -1 because we can't mutate the |
| 1586 | // segment register here. This allows the signed 32-bit offset to point at |
| 1587 | // valid segment-relative addresses and load them successfully. |
| 1588 | LLVM_DEBUG( |
| 1589 | dbgs() << " Cannot harden base of " |
| 1590 | << (BaseMO.getReg() == X86::RIP ? "RIP-relative" : "no-base") |
| 1591 | << " address in a load!"); |
| 1592 | } else { |
| 1593 | assert(BaseMO.isReg() && |
| 1594 | "Only allowed to have a frame index or register base."); |
| 1595 | HardenOpRegs.push_back(&BaseMO); |
| 1596 | } |
| 1597 | |
| 1598 | if (IndexMO.getReg() != X86::NoRegister && |
| 1599 | (HardenOpRegs.empty() || |
| 1600 | HardenOpRegs.front()->getReg() != IndexMO.getReg())) |
| 1601 | HardenOpRegs.push_back(&IndexMO); |
| 1602 | |
| 1603 | assert((HardenOpRegs.size() == 1 || HardenOpRegs.size() == 2) && |
| 1604 | "Should have exactly one or two registers to harden!"); |
| 1605 | assert((HardenOpRegs.size() == 1 || |
| 1606 | HardenOpRegs[0]->getReg() != HardenOpRegs[1]->getReg()) && |
| 1607 | "Should not have two of the same registers!"); |
| 1608 | |
| 1609 | // Remove any registers that have alreaded been checked. |
| 1610 | llvm::erase_if(HardenOpRegs, [&](MachineOperand *Op) { |
| 1611 | // See if this operand's register has already been checked. |
| 1612 | auto It = AddrRegToHardenedReg.find(Op->getReg()); |
| 1613 | if (It == AddrRegToHardenedReg.end()) |
| 1614 | // Not checked, so retain this one. |
| 1615 | return false; |
| 1616 | |
| 1617 | // Otherwise, we can directly update this operand and remove it. |
| 1618 | Op->setReg(It->second); |
| 1619 | return true; |
| 1620 | }); |
| 1621 | // If there are none left, we're done. |
| 1622 | if (HardenOpRegs.empty()) |
| 1623 | return; |
| 1624 | |
| 1625 | // Compute the current predicate state. |
| Chandler Carruth | 4b0028a | 2018-07-19 11:13:58 +0000 | [diff] [blame] | 1626 | unsigned StateReg = PS->SSA.GetValueAtEndOfBlock(&MBB); |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1627 | |
| 1628 | auto InsertPt = MI.getIterator(); |
| 1629 | |
| 1630 | // If EFLAGS are live and we don't have access to instructions that avoid |
| 1631 | // clobbering EFLAGS we need to save and restore them. This in turn makes |
| 1632 | // the EFLAGS no longer live. |
| 1633 | unsigned FlagsReg = 0; |
| 1634 | if (EFLAGSLive && !Subtarget->hasBMI2()) { |
| 1635 | EFLAGSLive = false; |
| 1636 | FlagsReg = saveEFLAGS(MBB, InsertPt, Loc); |
| 1637 | } |
| 1638 | |
| 1639 | for (MachineOperand *Op : HardenOpRegs) { |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1640 | unsigned OpReg = Op->getReg(); |
| Chandler Carruth | cdf0add | 2018-07-16 04:17:51 +0000 | [diff] [blame] | 1641 | auto *OpRC = MRI->getRegClass(OpReg); |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1642 | unsigned TmpReg = MRI->createVirtualRegister(OpRC); |
| 1643 | |
| Chandler Carruth | cdf0add | 2018-07-16 04:17:51 +0000 | [diff] [blame] | 1644 | // If this is a vector register, we'll need somewhat custom logic to handle |
| 1645 | // hardening it. |
| 1646 | if (!Subtarget->hasVLX() && (OpRC->hasSuperClassEq(&X86::VR128RegClass) || |
| 1647 | OpRC->hasSuperClassEq(&X86::VR256RegClass))) { |
| 1648 | assert(Subtarget->hasAVX2() && "AVX2-specific register classes!"); |
| 1649 | bool Is128Bit = OpRC->hasSuperClassEq(&X86::VR128RegClass); |
| 1650 | |
| 1651 | // Move our state into a vector register. |
| 1652 | // FIXME: We could skip this at the cost of longer encodings with AVX-512 |
| 1653 | // but that doesn't seem likely worth it. |
| 1654 | unsigned VStateReg = MRI->createVirtualRegister(&X86::VR128RegClass); |
| 1655 | auto MovI = |
| 1656 | BuildMI(MBB, InsertPt, Loc, TII->get(X86::VMOV64toPQIrr), VStateReg) |
| 1657 | .addReg(StateReg); |
| 1658 | (void)MovI; |
| 1659 | ++NumInstsInserted; |
| 1660 | LLVM_DEBUG(dbgs() << " Inserting mov: "; MovI->dump(); dbgs() << "\n"); |
| 1661 | |
| 1662 | // Broadcast it across the vector register. |
| 1663 | unsigned VBStateReg = MRI->createVirtualRegister(OpRC); |
| 1664 | auto BroadcastI = BuildMI(MBB, InsertPt, Loc, |
| 1665 | TII->get(Is128Bit ? X86::VPBROADCASTQrr |
| 1666 | : X86::VPBROADCASTQYrr), |
| 1667 | VBStateReg) |
| 1668 | .addReg(VStateReg); |
| 1669 | (void)BroadcastI; |
| 1670 | ++NumInstsInserted; |
| 1671 | LLVM_DEBUG(dbgs() << " Inserting broadcast: "; BroadcastI->dump(); |
| 1672 | dbgs() << "\n"); |
| 1673 | |
| 1674 | // Merge our potential poison state into the value with a vector or. |
| 1675 | auto OrI = |
| 1676 | BuildMI(MBB, InsertPt, Loc, |
| 1677 | TII->get(Is128Bit ? X86::VPORrr : X86::VPORYrr), TmpReg) |
| 1678 | .addReg(VBStateReg) |
| 1679 | .addReg(OpReg); |
| 1680 | (void)OrI; |
| 1681 | ++NumInstsInserted; |
| 1682 | LLVM_DEBUG(dbgs() << " Inserting or: "; OrI->dump(); dbgs() << "\n"); |
| 1683 | } else if (OpRC->hasSuperClassEq(&X86::VR128XRegClass) || |
| 1684 | OpRC->hasSuperClassEq(&X86::VR256XRegClass) || |
| 1685 | OpRC->hasSuperClassEq(&X86::VR512RegClass)) { |
| 1686 | assert(Subtarget->hasAVX512() && "AVX512-specific register classes!"); |
| 1687 | bool Is128Bit = OpRC->hasSuperClassEq(&X86::VR128XRegClass); |
| 1688 | bool Is256Bit = OpRC->hasSuperClassEq(&X86::VR256XRegClass); |
| 1689 | if (Is128Bit || Is256Bit) |
| 1690 | assert(Subtarget->hasVLX() && "AVX512VL-specific register classes!"); |
| 1691 | |
| 1692 | // Broadcast our state into a vector register. |
| 1693 | unsigned VStateReg = MRI->createVirtualRegister(OpRC); |
| 1694 | unsigned BroadcastOp = |
| 1695 | Is128Bit ? X86::VPBROADCASTQrZ128r |
| 1696 | : Is256Bit ? X86::VPBROADCASTQrZ256r : X86::VPBROADCASTQrZr; |
| 1697 | auto BroadcastI = |
| 1698 | BuildMI(MBB, InsertPt, Loc, TII->get(BroadcastOp), VStateReg) |
| 1699 | .addReg(StateReg); |
| 1700 | (void)BroadcastI; |
| 1701 | ++NumInstsInserted; |
| 1702 | LLVM_DEBUG(dbgs() << " Inserting broadcast: "; BroadcastI->dump(); |
| 1703 | dbgs() << "\n"); |
| 1704 | |
| 1705 | // Merge our potential poison state into the value with a vector or. |
| 1706 | unsigned OrOp = Is128Bit ? X86::VPORQZ128rr |
| 1707 | : Is256Bit ? X86::VPORQZ256rr : X86::VPORQZrr; |
| 1708 | auto OrI = BuildMI(MBB, InsertPt, Loc, TII->get(OrOp), TmpReg) |
| 1709 | .addReg(VStateReg) |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1710 | .addReg(OpReg); |
| Chandler Carruth | bc46bca | 2018-07-16 04:42:27 +0000 | [diff] [blame] | 1711 | (void)OrI; |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1712 | ++NumInstsInserted; |
| 1713 | LLVM_DEBUG(dbgs() << " Inserting or: "; OrI->dump(); dbgs() << "\n"); |
| 1714 | } else { |
| Chandler Carruth | cdf0add | 2018-07-16 04:17:51 +0000 | [diff] [blame] | 1715 | // FIXME: Need to support GR32 here for 32-bit code. |
| 1716 | assert(OpRC->hasSuperClassEq(&X86::GR64RegClass) && |
| 1717 | "Not a supported register class for address hardening!"); |
| 1718 | |
| 1719 | if (!EFLAGSLive) { |
| 1720 | // Merge our potential poison state into the value with an or. |
| 1721 | auto OrI = BuildMI(MBB, InsertPt, Loc, TII->get(X86::OR64rr), TmpReg) |
| 1722 | .addReg(StateReg) |
| 1723 | .addReg(OpReg); |
| 1724 | OrI->addRegisterDead(X86::EFLAGS, TRI); |
| 1725 | ++NumInstsInserted; |
| 1726 | LLVM_DEBUG(dbgs() << " Inserting or: "; OrI->dump(); dbgs() << "\n"); |
| 1727 | } else { |
| 1728 | // We need to avoid touching EFLAGS so shift out all but the least |
| 1729 | // significant bit using the instruction that doesn't update flags. |
| 1730 | auto ShiftI = |
| 1731 | BuildMI(MBB, InsertPt, Loc, TII->get(X86::SHRX64rr), TmpReg) |
| 1732 | .addReg(OpReg) |
| 1733 | .addReg(StateReg); |
| 1734 | (void)ShiftI; |
| 1735 | ++NumInstsInserted; |
| 1736 | LLVM_DEBUG(dbgs() << " Inserting shrx: "; ShiftI->dump(); |
| 1737 | dbgs() << "\n"); |
| 1738 | } |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1739 | } |
| 1740 | |
| 1741 | // Record this register as checked and update the operand. |
| 1742 | assert(!AddrRegToHardenedReg.count(Op->getReg()) && |
| 1743 | "Should not have checked this register yet!"); |
| 1744 | AddrRegToHardenedReg[Op->getReg()] = TmpReg; |
| 1745 | Op->setReg(TmpReg); |
| 1746 | ++NumAddrRegsHardened; |
| 1747 | } |
| 1748 | |
| 1749 | // And restore the flags if needed. |
| 1750 | if (FlagsReg) |
| 1751 | restoreEFLAGS(MBB, InsertPt, Loc, FlagsReg); |
| 1752 | } |
| 1753 | |
| 1754 | MachineInstr *X86SpeculativeLoadHardeningPass::sinkPostLoadHardenedInst( |
| Chandler Carruth | fa065aa | 2018-07-16 14:58:32 +0000 | [diff] [blame] | 1755 | MachineInstr &InitialMI, SmallPtrSetImpl<MachineInstr *> &HardenedInstrs) { |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1756 | assert(isDataInvariantLoad(InitialMI) && |
| 1757 | "Cannot get here with a non-invariant load!"); |
| 1758 | |
| 1759 | // See if we can sink hardening the loaded value. |
| 1760 | auto SinkCheckToSingleUse = |
| 1761 | [&](MachineInstr &MI) -> Optional<MachineInstr *> { |
| 1762 | unsigned DefReg = MI.getOperand(0).getReg(); |
| 1763 | |
| 1764 | // We need to find a single use which we can sink the check. We can |
| 1765 | // primarily do this because many uses may already end up checked on their |
| 1766 | // own. |
| 1767 | MachineInstr *SingleUseMI = nullptr; |
| 1768 | for (MachineInstr &UseMI : MRI->use_instructions(DefReg)) { |
| 1769 | // If we're already going to harden this use, it is data invariant and |
| Chandler Carruth | fa065aa | 2018-07-16 14:58:32 +0000 | [diff] [blame] | 1770 | // within our block. |
| 1771 | if (HardenedInstrs.count(&UseMI)) { |
| 1772 | if (!isDataInvariantLoad(UseMI)) { |
| 1773 | // If we've already decided to harden a non-load, we must have sunk |
| 1774 | // some other post-load hardened instruction to it and it must itself |
| 1775 | // be data-invariant. |
| 1776 | assert(isDataInvariant(UseMI) && |
| 1777 | "Data variant instruction being hardened!"); |
| 1778 | continue; |
| 1779 | } |
| 1780 | |
| 1781 | // Otherwise, this is a load and the load component can't be data |
| 1782 | // invariant so check how this register is being used. |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1783 | const MCInstrDesc &Desc = UseMI.getDesc(); |
| 1784 | int MemRefBeginIdx = X86II::getMemoryOperandNo(Desc.TSFlags); |
| 1785 | assert(MemRefBeginIdx >= 0 && |
| 1786 | "Should always have mem references here!"); |
| 1787 | MemRefBeginIdx += X86II::getOperandBias(Desc); |
| 1788 | |
| 1789 | MachineOperand &BaseMO = |
| 1790 | UseMI.getOperand(MemRefBeginIdx + X86::AddrBaseReg); |
| 1791 | MachineOperand &IndexMO = |
| 1792 | UseMI.getOperand(MemRefBeginIdx + X86::AddrIndexReg); |
| 1793 | if ((BaseMO.isReg() && BaseMO.getReg() == DefReg) || |
| 1794 | (IndexMO.isReg() && IndexMO.getReg() == DefReg)) |
| 1795 | // The load uses the register as part of its address making it not |
| 1796 | // invariant. |
| 1797 | return {}; |
| 1798 | |
| 1799 | continue; |
| 1800 | } |
| 1801 | |
| 1802 | if (SingleUseMI) |
| 1803 | // We already have a single use, this would make two. Bail. |
| 1804 | return {}; |
| 1805 | |
| 1806 | // If this single use isn't data invariant, isn't in this block, or has |
| 1807 | // interfering EFLAGS, we can't sink the hardening to it. |
| 1808 | if (!isDataInvariant(UseMI) || UseMI.getParent() != MI.getParent()) |
| 1809 | return {}; |
| 1810 | |
| 1811 | // If this instruction defines multiple registers bail as we won't harden |
| 1812 | // all of them. |
| 1813 | if (UseMI.getDesc().getNumDefs() > 1) |
| 1814 | return {}; |
| 1815 | |
| 1816 | // If this register isn't a virtual register we can't walk uses of sanely, |
| 1817 | // just bail. Also check that its register class is one of the ones we |
| 1818 | // can harden. |
| 1819 | unsigned UseDefReg = UseMI.getOperand(0).getReg(); |
| 1820 | if (!TRI->isVirtualRegister(UseDefReg) || |
| Chandler Carruth | fa065aa | 2018-07-16 14:58:32 +0000 | [diff] [blame] | 1821 | !canHardenRegister(UseDefReg)) |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1822 | return {}; |
| 1823 | |
| 1824 | SingleUseMI = &UseMI; |
| 1825 | } |
| 1826 | |
| 1827 | // If SingleUseMI is still null, there is no use that needs its own |
| 1828 | // checking. Otherwise, it is the single use that needs checking. |
| 1829 | return {SingleUseMI}; |
| 1830 | }; |
| 1831 | |
| 1832 | MachineInstr *MI = &InitialMI; |
| 1833 | while (Optional<MachineInstr *> SingleUse = SinkCheckToSingleUse(*MI)) { |
| 1834 | // Update which MI we're checking now. |
| 1835 | MI = *SingleUse; |
| 1836 | if (!MI) |
| 1837 | break; |
| 1838 | } |
| 1839 | |
| 1840 | return MI; |
| 1841 | } |
| 1842 | |
| Chandler Carruth | fa065aa | 2018-07-16 14:58:32 +0000 | [diff] [blame] | 1843 | bool X86SpeculativeLoadHardeningPass::canHardenRegister(unsigned Reg) { |
| 1844 | auto *RC = MRI->getRegClass(Reg); |
| 1845 | int RegBytes = TRI->getRegSizeInBits(*RC) / 8; |
| 1846 | if (RegBytes > 8) |
| 1847 | // We don't support post-load hardening of vectors. |
| Chandler Carruth | e66a6f4 | 2018-07-16 11:38:48 +0000 | [diff] [blame] | 1848 | return false; |
| 1849 | |
| Chandler Carruth | fa065aa | 2018-07-16 14:58:32 +0000 | [diff] [blame] | 1850 | // If this register class is explicitly constrained to a class that doesn't |
| 1851 | // require REX prefix, we may not be able to satisfy that constraint when |
| 1852 | // emitting the hardening instructions, so bail out here. |
| 1853 | // FIXME: This seems like a pretty lame hack. The way this comes up is when we |
| 1854 | // end up both with a NOREX and REX-only register as operands to the hardening |
| 1855 | // instructions. It would be better to fix that code to handle this situation |
| 1856 | // rather than hack around it in this way. |
| 1857 | const TargetRegisterClass *NOREXRegClasses[] = { |
| 1858 | &X86::GR8_NOREXRegClass, &X86::GR16_NOREXRegClass, |
| 1859 | &X86::GR32_NOREXRegClass, &X86::GR64_NOREXRegClass}; |
| 1860 | if (RC == NOREXRegClasses[Log2_32(RegBytes)]) |
| Chandler Carruth | e66a6f4 | 2018-07-16 11:38:48 +0000 | [diff] [blame] | 1861 | return false; |
| 1862 | |
| 1863 | const TargetRegisterClass *GPRRegClasses[] = { |
| 1864 | &X86::GR8RegClass, &X86::GR16RegClass, &X86::GR32RegClass, |
| 1865 | &X86::GR64RegClass}; |
| Chandler Carruth | fa065aa | 2018-07-16 14:58:32 +0000 | [diff] [blame] | 1866 | return RC->hasSuperClassEq(GPRRegClasses[Log2_32(RegBytes)]); |
| Chandler Carruth | e66a6f4 | 2018-07-16 11:38:48 +0000 | [diff] [blame] | 1867 | } |
| 1868 | |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1869 | // We can harden non-leaking loads into register without touching the address |
| 1870 | // by just hiding all of the loaded bits. We use an `or` instruction to do |
| 1871 | // this because having the poison value be all ones allows us to use the same |
| 1872 | // value below. And the goal is just for the loaded bits to not be exposed to |
| 1873 | // execution and coercing them to one is sufficient. |
| Chandler Carruth | 4b0028a | 2018-07-19 11:13:58 +0000 | [diff] [blame] | 1874 | void X86SpeculativeLoadHardeningPass::hardenPostLoad(MachineInstr &MI) { |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1875 | MachineBasicBlock &MBB = *MI.getParent(); |
| 1876 | DebugLoc Loc = MI.getDebugLoc(); |
| 1877 | |
| 1878 | // For all of these, the def'ed register operand is operand zero. |
| 1879 | auto &DefOp = MI.getOperand(0); |
| 1880 | unsigned OldDefReg = DefOp.getReg(); |
| Chandler Carruth | fa065aa | 2018-07-16 14:58:32 +0000 | [diff] [blame] | 1881 | assert(canHardenRegister(OldDefReg) && |
| 1882 | "Cannot harden this instruction's defined register!"); |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1883 | |
| 1884 | auto *DefRC = MRI->getRegClass(OldDefReg); |
| 1885 | int DefRegBytes = TRI->getRegSizeInBits(*DefRC) / 8; |
| 1886 | |
| 1887 | unsigned OrOpCodes[] = {X86::OR8rr, X86::OR16rr, X86::OR32rr, X86::OR64rr}; |
| 1888 | unsigned OrOpCode = OrOpCodes[Log2_32(DefRegBytes)]; |
| 1889 | |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1890 | unsigned SubRegImms[] = {X86::sub_8bit, X86::sub_16bit, X86::sub_32bit}; |
| 1891 | |
| 1892 | auto GetStateRegInRC = [&](const TargetRegisterClass &RC) { |
| Chandler Carruth | 4b0028a | 2018-07-19 11:13:58 +0000 | [diff] [blame] | 1893 | unsigned StateReg = PS->SSA.GetValueAtEndOfBlock(&MBB); |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1894 | |
| 1895 | int Bytes = TRI->getRegSizeInBits(RC) / 8; |
| 1896 | // FIXME: Need to teach this about 32-bit mode. |
| 1897 | if (Bytes != 8) { |
| 1898 | unsigned SubRegImm = SubRegImms[Log2_32(Bytes)]; |
| 1899 | unsigned NarrowStateReg = MRI->createVirtualRegister(&RC); |
| 1900 | BuildMI(MBB, MI.getIterator(), Loc, TII->get(TargetOpcode::COPY), |
| 1901 | NarrowStateReg) |
| 1902 | .addReg(StateReg, 0, SubRegImm); |
| 1903 | StateReg = NarrowStateReg; |
| 1904 | } |
| 1905 | return StateReg; |
| 1906 | }; |
| 1907 | |
| 1908 | auto InsertPt = std::next(MI.getIterator()); |
| 1909 | unsigned FlagsReg = 0; |
| Chandler Carruth | b46c22d | 2018-07-24 00:21:59 +0000 | [diff] [blame] | 1910 | if (isEFLAGSLive(MBB, InsertPt, *TRI)) |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1911 | FlagsReg = saveEFLAGS(MBB, InsertPt, Loc); |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1912 | |
| Chandler Carruth | b46c22d | 2018-07-24 00:21:59 +0000 | [diff] [blame] | 1913 | unsigned StateReg = GetStateRegInRC(*DefRC); |
| 1914 | unsigned NewDefReg = MRI->createVirtualRegister(DefRC); |
| 1915 | DefOp.setReg(NewDefReg); |
| 1916 | auto OrI = BuildMI(MBB, InsertPt, Loc, TII->get(OrOpCode), OldDefReg) |
| 1917 | .addReg(StateReg) |
| 1918 | .addReg(NewDefReg); |
| 1919 | OrI->addRegisterDead(X86::EFLAGS, TRI); |
| 1920 | ++NumInstsInserted; |
| 1921 | LLVM_DEBUG(dbgs() << " Inserting or: "; OrI->dump(); dbgs() << "\n"); |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1922 | |
| 1923 | if (FlagsReg) |
| 1924 | restoreEFLAGS(MBB, InsertPt, Loc, FlagsReg); |
| 1925 | |
| 1926 | ++NumPostLoadRegsHardened; |
| 1927 | } |
| 1928 | |
| Chandler Carruth | a3a03ac | 2018-07-19 23:46:24 +0000 | [diff] [blame] | 1929 | /// Harden a return instruction. |
| 1930 | /// |
| 1931 | /// Returns implicitly perform a load which we need to harden. Without hardening |
| 1932 | /// this load, an attacker my speculatively write over the return address to |
| 1933 | /// steer speculation of the return to an attacker controlled address. This is |
| 1934 | /// called Spectre v1.1 or Bounds Check Bypass Store (BCBS) and is described in |
| 1935 | /// this paper: |
| 1936 | /// https://people.csail.mit.edu/vlk/spectre11.pdf |
| 1937 | /// |
| 1938 | /// We can harden this by introducing an LFENCE that will delay any load of the |
| 1939 | /// return address until prior instructions have retired (and thus are not being |
| 1940 | /// speculated), or we can harden the address used by the implicit load: the |
| 1941 | /// stack pointer. |
| 1942 | /// |
| 1943 | /// If we are not using an LFENCE, hardening the stack pointer has an additional |
| 1944 | /// benefit: it allows us to pass the predicate state accumulated in this |
| 1945 | /// function back to the caller. In the absence of a BCBS attack on the return, |
| 1946 | /// the caller will typically be resumed and speculatively executed due to the |
| 1947 | /// Return Stack Buffer (RSB) prediction which is very accurate and has a high |
| 1948 | /// priority. It is possible that some code from the caller will be executed |
| 1949 | /// speculatively even during a BCBS-attacked return until the steering takes |
| 1950 | /// effect. Whenever this happens, the caller can recover the (poisoned) |
| 1951 | /// predicate state from the stack pointer and continue to harden loads. |
| 1952 | void X86SpeculativeLoadHardeningPass::hardenReturnInstr(MachineInstr &MI) { |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1953 | MachineBasicBlock &MBB = *MI.getParent(); |
| 1954 | DebugLoc Loc = MI.getDebugLoc(); |
| 1955 | auto InsertPt = MI.getIterator(); |
| 1956 | |
| 1957 | if (FenceCallAndRet) { |
| 1958 | // Simply forcibly block speculation of loads out of the function by using |
| 1959 | // an LFENCE. This is potentially a heavy-weight mitigation strategy, but |
| 1960 | // should be secure, is simple from an ABI perspective, and the cost can be |
| 1961 | // minimized through inlining. |
| 1962 | // |
| 1963 | // FIXME: We should investigate ways to establish a strong data-dependency |
| 1964 | // on the return. However, poisoning the stack pointer is unlikely to work |
| 1965 | // because the return is *predicted* rather than relying on the load of the |
| 1966 | // return address to actually resolve. |
| 1967 | BuildMI(MBB, InsertPt, Loc, TII->get(X86::LFENCE)); |
| 1968 | ++NumInstsInserted; |
| 1969 | ++NumLFENCEsInserted; |
| 1970 | return; |
| 1971 | } |
| 1972 | |
| 1973 | // Take our predicate state, shift it to the high 17 bits (so that we keep |
| 1974 | // pointers canonical) and merge it into RSP. This will allow the caller to |
| 1975 | // extract it when we return (speculatively). |
| Chandler Carruth | 4b0028a | 2018-07-19 11:13:58 +0000 | [diff] [blame] | 1976 | mergePredStateIntoSP(MBB, InsertPt, Loc, PS->SSA.GetValueAtEndOfBlock(&MBB)); |
| Chandler Carruth | 90358e1 | 2018-07-13 11:13:58 +0000 | [diff] [blame] | 1977 | } |
| 1978 | |
| 1979 | INITIALIZE_PASS_BEGIN(X86SpeculativeLoadHardeningPass, DEBUG_TYPE, |
| 1980 | "X86 speculative load hardener", false, false) |
| 1981 | INITIALIZE_PASS_END(X86SpeculativeLoadHardeningPass, DEBUG_TYPE, |
| 1982 | "X86 speculative load hardener", false, false) |
| 1983 | |
| 1984 | FunctionPass *llvm::createX86SpeculativeLoadHardeningPass() { |
| 1985 | return new X86SpeculativeLoadHardeningPass(); |
| 1986 | } |