blob: fe8575d5d34b997f2ed00862068b02a118a24a5f [file] [log] [blame]
Guy Benyei11169dd2012-12-18 14:30:41 +00001//===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Implements C++ name mangling according to the Itanium C++ ABI,
11// which is used in GCC 3.2 and newer (and many compilers that are
12// ABI-compatible with GCC):
13//
14// http://www.codesourcery.com/public/cxx-abi/abi.html
15//
16//===----------------------------------------------------------------------===//
17#include "clang/AST/Mangle.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/Attr.h"
20#include "clang/AST/Decl.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclTemplate.h"
24#include "clang/AST/ExprCXX.h"
25#include "clang/AST/ExprObjC.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/Basic/ABI.h"
28#include "clang/Basic/SourceManager.h"
29#include "clang/Basic/TargetInfo.h"
30#include "llvm/ADT/StringExtras.h"
31#include "llvm/Support/ErrorHandling.h"
32#include "llvm/Support/raw_ostream.h"
33
34#define MANGLE_CHECKER 0
35
36#if MANGLE_CHECKER
37#include <cxxabi.h>
38#endif
39
40using namespace clang;
41
42namespace {
43
44/// \brief Retrieve the declaration context that should be used when mangling
45/// the given declaration.
46static const DeclContext *getEffectiveDeclContext(const Decl *D) {
47 // The ABI assumes that lambda closure types that occur within
48 // default arguments live in the context of the function. However, due to
49 // the way in which Clang parses and creates function declarations, this is
50 // not the case: the lambda closure type ends up living in the context
51 // where the function itself resides, because the function declaration itself
52 // had not yet been created. Fix the context here.
53 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
54 if (RD->isLambda())
55 if (ParmVarDecl *ContextParam
56 = dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl()))
57 return ContextParam->getDeclContext();
58 }
Eli Friedman0cd23352013-07-10 01:33:19 +000059
60 // Perform the same check for block literals.
61 if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
62 if (ParmVarDecl *ContextParam
63 = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl()))
64 return ContextParam->getDeclContext();
65 }
Guy Benyei11169dd2012-12-18 14:30:41 +000066
Eli Friedman95f50122013-07-02 17:52:28 +000067 const DeclContext *DC = D->getDeclContext();
68 if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(DC))
69 return getEffectiveDeclContext(CD);
70
71 return DC;
Guy Benyei11169dd2012-12-18 14:30:41 +000072}
73
74static const DeclContext *getEffectiveParentContext(const DeclContext *DC) {
75 return getEffectiveDeclContext(cast<Decl>(DC));
76}
Eli Friedman95f50122013-07-02 17:52:28 +000077
78static bool isLocalContainerContext(const DeclContext *DC) {
79 return isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC) || isa<BlockDecl>(DC);
80}
81
Eli Friedmaneecc09a2013-07-05 20:27:40 +000082static const RecordDecl *GetLocalClassDecl(const Decl *D) {
Eli Friedman92821742013-07-02 02:01:18 +000083 const DeclContext *DC = getEffectiveDeclContext(D);
Guy Benyei11169dd2012-12-18 14:30:41 +000084 while (!DC->isNamespace() && !DC->isTranslationUnit()) {
Eli Friedman95f50122013-07-02 17:52:28 +000085 if (isLocalContainerContext(DC))
Eli Friedmaneecc09a2013-07-05 20:27:40 +000086 return dyn_cast<RecordDecl>(D);
Eli Friedman92821742013-07-02 02:01:18 +000087 D = cast<Decl>(DC);
88 DC = getEffectiveDeclContext(D);
Guy Benyei11169dd2012-12-18 14:30:41 +000089 }
90 return 0;
91}
92
93static const FunctionDecl *getStructor(const FunctionDecl *fn) {
94 if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate())
95 return ftd->getTemplatedDecl();
96
97 return fn;
98}
99
100static const NamedDecl *getStructor(const NamedDecl *decl) {
101 const FunctionDecl *fn = dyn_cast_or_null<FunctionDecl>(decl);
102 return (fn ? getStructor(fn) : decl);
103}
104
105static const unsigned UnknownArity = ~0U;
106
Timur Iskhodzhanov67455222013-10-03 06:26:13 +0000107class ItaniumMangleContextImpl : public ItaniumMangleContext {
Guy Benyei11169dd2012-12-18 14:30:41 +0000108 llvm::DenseMap<const TagDecl *, uint64_t> AnonStructIds;
Eli Friedman3b7d46c2013-07-10 00:30:46 +0000109 typedef std::pair<const DeclContext*, IdentifierInfo*> DiscriminatorKeyTy;
110 llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator;
Guy Benyei11169dd2012-12-18 14:30:41 +0000111 llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier;
112
113public:
Timur Iskhodzhanov67455222013-10-03 06:26:13 +0000114 explicit ItaniumMangleContextImpl(ASTContext &Context,
115 DiagnosticsEngine &Diags)
116 : ItaniumMangleContext(Context, Diags) {}
Guy Benyei11169dd2012-12-18 14:30:41 +0000117
118 uint64_t getAnonymousStructId(const TagDecl *TD) {
119 std::pair<llvm::DenseMap<const TagDecl *,
120 uint64_t>::iterator, bool> Result =
121 AnonStructIds.insert(std::make_pair(TD, AnonStructIds.size()));
122 return Result.first->second;
123 }
124
Guy Benyei11169dd2012-12-18 14:30:41 +0000125 /// @name Mangler Entry Points
126 /// @{
127
128 bool shouldMangleDeclName(const NamedDecl *D);
129 void mangleName(const NamedDecl *D, raw_ostream &);
130 void mangleThunk(const CXXMethodDecl *MD,
131 const ThunkInfo &Thunk,
132 raw_ostream &);
133 void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
134 const ThisAdjustment &ThisAdjustment,
135 raw_ostream &);
136 void mangleReferenceTemporary(const VarDecl *D,
137 raw_ostream &);
138 void mangleCXXVTable(const CXXRecordDecl *RD,
139 raw_ostream &);
140 void mangleCXXVTT(const CXXRecordDecl *RD,
141 raw_ostream &);
142 void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset,
143 const CXXRecordDecl *Type,
144 raw_ostream &);
145 void mangleCXXRTTI(QualType T, raw_ostream &);
146 void mangleCXXRTTIName(QualType T, raw_ostream &);
147 void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
148 raw_ostream &);
149 void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
150 raw_ostream &);
151
Reid Klecknerd8110b62013-09-10 20:14:30 +0000152 void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &);
Reid Kleckner1ece9fc2013-09-10 20:43:12 +0000153 void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out);
Reid Klecknerd8110b62013-09-10 20:14:30 +0000154 void mangleDynamicAtExitDestructor(const VarDecl *D, raw_ostream &Out);
Richard Smith2fd1d7a2013-04-19 16:42:07 +0000155 void mangleItaniumThreadLocalInit(const VarDecl *D, raw_ostream &);
156 void mangleItaniumThreadLocalWrapper(const VarDecl *D, raw_ostream &);
Guy Benyei11169dd2012-12-18 14:30:41 +0000157
Guy Benyei11169dd2012-12-18 14:30:41 +0000158 bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
Eli Friedman3b7d46c2013-07-10 00:30:46 +0000159 // Lambda closure types are already numbered.
Guy Benyei11169dd2012-12-18 14:30:41 +0000160 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(ND))
Eli Friedman3b7d46c2013-07-10 00:30:46 +0000161 if (RD->isLambda())
Guy Benyei11169dd2012-12-18 14:30:41 +0000162 return false;
Eli Friedman3b7d46c2013-07-10 00:30:46 +0000163
164 // Anonymous tags are already numbered.
165 if (const TagDecl *Tag = dyn_cast<TagDecl>(ND)) {
166 if (Tag->getName().empty() && !Tag->getTypedefNameForAnonDecl())
167 return false;
168 }
169
170 // Use the canonical number for externally visible decls.
171 if (ND->isExternallyVisible()) {
172 unsigned discriminator = getASTContext().getManglingNumber(ND);
173 if (discriminator == 1)
174 return false;
175 disc = discriminator - 2;
176 return true;
177 }
178
179 // Make up a reasonable number for internal decls.
Guy Benyei11169dd2012-12-18 14:30:41 +0000180 unsigned &discriminator = Uniquifier[ND];
Eli Friedman3b7d46c2013-07-10 00:30:46 +0000181 if (!discriminator) {
182 const DeclContext *DC = getEffectiveDeclContext(ND);
183 discriminator = ++Discriminator[std::make_pair(DC, ND->getIdentifier())];
184 }
Guy Benyei11169dd2012-12-18 14:30:41 +0000185 if (discriminator == 1)
186 return false;
187 disc = discriminator-2;
188 return true;
189 }
190 /// @}
191};
192
193/// CXXNameMangler - Manage the mangling of a single name.
194class CXXNameMangler {
Timur Iskhodzhanov67455222013-10-03 06:26:13 +0000195 ItaniumMangleContextImpl &Context;
Guy Benyei11169dd2012-12-18 14:30:41 +0000196 raw_ostream &Out;
197
198 /// The "structor" is the top-level declaration being mangled, if
199 /// that's not a template specialization; otherwise it's the pattern
200 /// for that specialization.
201 const NamedDecl *Structor;
202 unsigned StructorType;
203
204 /// SeqID - The next subsitution sequence number.
205 unsigned SeqID;
206
207 class FunctionTypeDepthState {
208 unsigned Bits;
209
210 enum { InResultTypeMask = 1 };
211
212 public:
213 FunctionTypeDepthState() : Bits(0) {}
214
215 /// The number of function types we're inside.
216 unsigned getDepth() const {
217 return Bits >> 1;
218 }
219
220 /// True if we're in the return type of the innermost function type.
221 bool isInResultType() const {
222 return Bits & InResultTypeMask;
223 }
224
225 FunctionTypeDepthState push() {
226 FunctionTypeDepthState tmp = *this;
227 Bits = (Bits & ~InResultTypeMask) + 2;
228 return tmp;
229 }
230
231 void enterResultType() {
232 Bits |= InResultTypeMask;
233 }
234
235 void leaveResultType() {
236 Bits &= ~InResultTypeMask;
237 }
238
239 void pop(FunctionTypeDepthState saved) {
240 assert(getDepth() == saved.getDepth() + 1);
241 Bits = saved.Bits;
242 }
243
244 } FunctionTypeDepth;
245
246 llvm::DenseMap<uintptr_t, unsigned> Substitutions;
247
248 ASTContext &getASTContext() const { return Context.getASTContext(); }
249
250public:
Timur Iskhodzhanov67455222013-10-03 06:26:13 +0000251 CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
Guy Benyei11169dd2012-12-18 14:30:41 +0000252 const NamedDecl *D = 0)
253 : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(0),
254 SeqID(0) {
255 // These can't be mangled without a ctor type or dtor type.
256 assert(!D || (!isa<CXXDestructorDecl>(D) &&
257 !isa<CXXConstructorDecl>(D)));
258 }
Timur Iskhodzhanov67455222013-10-03 06:26:13 +0000259 CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
Guy Benyei11169dd2012-12-18 14:30:41 +0000260 const CXXConstructorDecl *D, CXXCtorType Type)
261 : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
262 SeqID(0) { }
Timur Iskhodzhanov67455222013-10-03 06:26:13 +0000263 CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
Guy Benyei11169dd2012-12-18 14:30:41 +0000264 const CXXDestructorDecl *D, CXXDtorType Type)
265 : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
266 SeqID(0) { }
267
268#if MANGLE_CHECKER
269 ~CXXNameMangler() {
270 if (Out.str()[0] == '\01')
271 return;
272
273 int status = 0;
274 char *result = abi::__cxa_demangle(Out.str().str().c_str(), 0, 0, &status);
275 assert(status == 0 && "Could not demangle mangled name!");
276 free(result);
277 }
278#endif
279 raw_ostream &getStream() { return Out; }
280
281 void mangle(const NamedDecl *D, StringRef Prefix = "_Z");
282 void mangleCallOffset(int64_t NonVirtual, int64_t Virtual);
283 void mangleNumber(const llvm::APSInt &I);
284 void mangleNumber(int64_t Number);
285 void mangleFloat(const llvm::APFloat &F);
286 void mangleFunctionEncoding(const FunctionDecl *FD);
287 void mangleName(const NamedDecl *ND);
288 void mangleType(QualType T);
289 void mangleNameOrStandardSubstitution(const NamedDecl *ND);
290
291private:
292 bool mangleSubstitution(const NamedDecl *ND);
293 bool mangleSubstitution(QualType T);
294 bool mangleSubstitution(TemplateName Template);
295 bool mangleSubstitution(uintptr_t Ptr);
296
297 void mangleExistingSubstitution(QualType type);
298 void mangleExistingSubstitution(TemplateName name);
299
300 bool mangleStandardSubstitution(const NamedDecl *ND);
301
302 void addSubstitution(const NamedDecl *ND) {
303 ND = cast<NamedDecl>(ND->getCanonicalDecl());
304
305 addSubstitution(reinterpret_cast<uintptr_t>(ND));
306 }
307 void addSubstitution(QualType T);
308 void addSubstitution(TemplateName Template);
309 void addSubstitution(uintptr_t Ptr);
310
311 void mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
312 NamedDecl *firstQualifierLookup,
313 bool recursive = false);
314 void mangleUnresolvedName(NestedNameSpecifier *qualifier,
315 NamedDecl *firstQualifierLookup,
316 DeclarationName name,
317 unsigned KnownArity = UnknownArity);
318
319 void mangleName(const TemplateDecl *TD,
320 const TemplateArgument *TemplateArgs,
321 unsigned NumTemplateArgs);
322 void mangleUnqualifiedName(const NamedDecl *ND) {
323 mangleUnqualifiedName(ND, ND->getDeclName(), UnknownArity);
324 }
325 void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name,
326 unsigned KnownArity);
327 void mangleUnscopedName(const NamedDecl *ND);
328 void mangleUnscopedTemplateName(const TemplateDecl *ND);
329 void mangleUnscopedTemplateName(TemplateName);
330 void mangleSourceName(const IdentifierInfo *II);
Eli Friedman95f50122013-07-02 17:52:28 +0000331 void mangleLocalName(const Decl *D);
332 void mangleBlockForPrefix(const BlockDecl *Block);
333 void mangleUnqualifiedBlock(const BlockDecl *Block);
Guy Benyei11169dd2012-12-18 14:30:41 +0000334 void mangleLambda(const CXXRecordDecl *Lambda);
335 void mangleNestedName(const NamedDecl *ND, const DeclContext *DC,
336 bool NoFunction=false);
337 void mangleNestedName(const TemplateDecl *TD,
338 const TemplateArgument *TemplateArgs,
339 unsigned NumTemplateArgs);
340 void manglePrefix(NestedNameSpecifier *qualifier);
341 void manglePrefix(const DeclContext *DC, bool NoFunction=false);
342 void manglePrefix(QualType type);
Eli Friedman86af13f02013-07-05 18:41:30 +0000343 void mangleTemplatePrefix(const TemplateDecl *ND, bool NoFunction=false);
Guy Benyei11169dd2012-12-18 14:30:41 +0000344 void mangleTemplatePrefix(TemplateName Template);
345 void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity);
346 void mangleQualifiers(Qualifiers Quals);
347 void mangleRefQualifier(RefQualifierKind RefQualifier);
348
349 void mangleObjCMethodName(const ObjCMethodDecl *MD);
350
351 // Declare manglers for every type class.
352#define ABSTRACT_TYPE(CLASS, PARENT)
353#define NON_CANONICAL_TYPE(CLASS, PARENT)
354#define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T);
355#include "clang/AST/TypeNodes.def"
356
357 void mangleType(const TagType*);
358 void mangleType(TemplateName);
359 void mangleBareFunctionType(const FunctionType *T,
360 bool MangleReturnType);
361 void mangleNeonVectorType(const VectorType *T);
Tim Northover2fe823a2013-08-01 09:23:19 +0000362 void mangleAArch64NeonVectorType(const VectorType *T);
Guy Benyei11169dd2012-12-18 14:30:41 +0000363
364 void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value);
365 void mangleMemberExpr(const Expr *base, bool isArrow,
366 NestedNameSpecifier *qualifier,
367 NamedDecl *firstQualifierLookup,
368 DeclarationName name,
369 unsigned knownArity);
370 void mangleExpression(const Expr *E, unsigned Arity = UnknownArity);
371 void mangleCXXCtorType(CXXCtorType T);
372 void mangleCXXDtorType(CXXDtorType T);
373
374 void mangleTemplateArgs(const ASTTemplateArgumentListInfo &TemplateArgs);
375 void mangleTemplateArgs(const TemplateArgument *TemplateArgs,
376 unsigned NumTemplateArgs);
377 void mangleTemplateArgs(const TemplateArgumentList &AL);
378 void mangleTemplateArg(TemplateArgument A);
379
380 void mangleTemplateParameter(unsigned Index);
381
382 void mangleFunctionParam(const ParmVarDecl *parm);
383};
384
385}
386
Timur Iskhodzhanov67455222013-10-03 06:26:13 +0000387bool ItaniumMangleContextImpl::shouldMangleDeclName(const NamedDecl *D) {
Guy Benyei11169dd2012-12-18 14:30:41 +0000388 // In C, functions with no attributes never need to be mangled. Fastpath them.
389 if (!getASTContext().getLangOpts().CPlusPlus && !D->hasAttrs())
390 return false;
391
392 // Any decl can be declared with __asm("foo") on it, and this takes precedence
393 // over all other naming in the .o file.
394 if (D->hasAttr<AsmLabelAttr>())
395 return true;
396
Guy Benyei11169dd2012-12-18 14:30:41 +0000397 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
Rafael Espindola5bda63f2013-02-14 01:47:04 +0000398 if (FD) {
399 LanguageLinkage L = FD->getLanguageLinkage();
400 // Overloadable functions need mangling.
401 if (FD->hasAttr<OverloadableAttr>())
402 return true;
403
Rafael Espindola3e0e33d2013-02-14 15:38:59 +0000404 // "main" is not mangled.
405 if (FD->isMain())
Rafael Espindola5bda63f2013-02-14 01:47:04 +0000406 return false;
407
408 // C++ functions and those whose names are not a simple identifier need
409 // mangling.
410 if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage)
411 return true;
Rafael Espindola46d2b6b2013-02-14 03:31:26 +0000412
Rafael Espindola3e0e33d2013-02-14 15:38:59 +0000413 // C functions are not mangled.
414 if (L == CLanguageLinkage)
415 return false;
Rafael Espindola5bda63f2013-02-14 01:47:04 +0000416 }
Guy Benyei11169dd2012-12-18 14:30:41 +0000417
418 // Otherwise, no mangling is done outside C++ mode.
419 if (!getASTContext().getLangOpts().CPlusPlus)
420 return false;
421
Rafael Espindola5bda63f2013-02-14 01:47:04 +0000422 const VarDecl *VD = dyn_cast<VarDecl>(D);
423 if (VD) {
424 // C variables are not mangled.
425 if (VD->isExternC())
426 return false;
427
428 // Variables at global scope with non-internal linkage are not mangled
Guy Benyei11169dd2012-12-18 14:30:41 +0000429 const DeclContext *DC = getEffectiveDeclContext(D);
430 // Check for extern variable declared locally.
431 if (DC->isFunctionOrMethod() && D->hasLinkage())
432 while (!DC->isNamespace() && !DC->isTranslationUnit())
433 DC = getEffectiveParentContext(DC);
Larisse Voufo39a1e502013-08-06 01:03:05 +0000434 if (DC->isTranslationUnit() && D->getFormalLinkage() != InternalLinkage &&
435 !isa<VarTemplateSpecializationDecl>(D))
Guy Benyei11169dd2012-12-18 14:30:41 +0000436 return false;
437 }
438
Guy Benyei11169dd2012-12-18 14:30:41 +0000439 return true;
440}
441
442void CXXNameMangler::mangle(const NamedDecl *D, StringRef Prefix) {
443 // Any decl can be declared with __asm("foo") on it, and this takes precedence
444 // over all other naming in the .o file.
445 if (const AsmLabelAttr *ALA = D->getAttr<AsmLabelAttr>()) {
446 // If we have an asm name, then we use it as the mangling.
447
448 // Adding the prefix can cause problems when one file has a "foo" and
449 // another has a "\01foo". That is known to happen on ELF with the
450 // tricks normally used for producing aliases (PR9177). Fortunately the
451 // llvm mangler on ELF is a nop, so we can just avoid adding the \01
452 // marker. We also avoid adding the marker if this is an alias for an
453 // LLVM intrinsic.
454 StringRef UserLabelPrefix =
455 getASTContext().getTargetInfo().getUserLabelPrefix();
456 if (!UserLabelPrefix.empty() && !ALA->getLabel().startswith("llvm."))
457 Out << '\01'; // LLVM IR Marker for __asm("foo")
458
459 Out << ALA->getLabel();
460 return;
461 }
462
463 // <mangled-name> ::= _Z <encoding>
464 // ::= <data name>
465 // ::= <special-name>
466 Out << Prefix;
467 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
468 mangleFunctionEncoding(FD);
469 else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
470 mangleName(VD);
471 else
472 mangleName(cast<FieldDecl>(D));
473}
474
475void CXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) {
476 // <encoding> ::= <function name> <bare-function-type>
477 mangleName(FD);
478
479 // Don't mangle in the type if this isn't a decl we should typically mangle.
480 if (!Context.shouldMangleDeclName(FD))
481 return;
482
483 // Whether the mangling of a function type includes the return type depends on
484 // the context and the nature of the function. The rules for deciding whether
485 // the return type is included are:
486 //
487 // 1. Template functions (names or types) have return types encoded, with
488 // the exceptions listed below.
489 // 2. Function types not appearing as part of a function name mangling,
490 // e.g. parameters, pointer types, etc., have return type encoded, with the
491 // exceptions listed below.
492 // 3. Non-template function names do not have return types encoded.
493 //
494 // The exceptions mentioned in (1) and (2) above, for which the return type is
495 // never included, are
496 // 1. Constructors.
497 // 2. Destructors.
498 // 3. Conversion operator functions, e.g. operator int.
499 bool MangleReturnType = false;
500 if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) {
501 if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) ||
502 isa<CXXConversionDecl>(FD)))
503 MangleReturnType = true;
504
505 // Mangle the type of the primary template.
506 FD = PrimaryTemplate->getTemplatedDecl();
507 }
508
509 mangleBareFunctionType(FD->getType()->getAs<FunctionType>(),
510 MangleReturnType);
511}
512
513static const DeclContext *IgnoreLinkageSpecDecls(const DeclContext *DC) {
514 while (isa<LinkageSpecDecl>(DC)) {
515 DC = getEffectiveParentContext(DC);
516 }
517
518 return DC;
519}
520
521/// isStd - Return whether a given namespace is the 'std' namespace.
522static bool isStd(const NamespaceDecl *NS) {
523 if (!IgnoreLinkageSpecDecls(getEffectiveParentContext(NS))
524 ->isTranslationUnit())
525 return false;
526
527 const IdentifierInfo *II = NS->getOriginalNamespace()->getIdentifier();
528 return II && II->isStr("std");
529}
530
531// isStdNamespace - Return whether a given decl context is a toplevel 'std'
532// namespace.
533static bool isStdNamespace(const DeclContext *DC) {
534 if (!DC->isNamespace())
535 return false;
536
537 return isStd(cast<NamespaceDecl>(DC));
538}
539
540static const TemplateDecl *
541isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) {
542 // Check if we have a function template.
543 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)){
544 if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
545 TemplateArgs = FD->getTemplateSpecializationArgs();
546 return TD;
547 }
548 }
549
550 // Check if we have a class template.
551 if (const ClassTemplateSpecializationDecl *Spec =
552 dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
553 TemplateArgs = &Spec->getTemplateArgs();
554 return Spec->getSpecializedTemplate();
555 }
556
Larisse Voufo39a1e502013-08-06 01:03:05 +0000557 // Check if we have a variable template.
558 if (const VarTemplateSpecializationDecl *Spec =
559 dyn_cast<VarTemplateSpecializationDecl>(ND)) {
560 TemplateArgs = &Spec->getTemplateArgs();
561 return Spec->getSpecializedTemplate();
562 }
563
Guy Benyei11169dd2012-12-18 14:30:41 +0000564 return 0;
565}
566
567static bool isLambda(const NamedDecl *ND) {
568 const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(ND);
569 if (!Record)
570 return false;
571
572 return Record->isLambda();
573}
574
575void CXXNameMangler::mangleName(const NamedDecl *ND) {
576 // <name> ::= <nested-name>
577 // ::= <unscoped-name>
578 // ::= <unscoped-template-name> <template-args>
579 // ::= <local-name>
580 //
581 const DeclContext *DC = getEffectiveDeclContext(ND);
582
583 // If this is an extern variable declared locally, the relevant DeclContext
584 // is that of the containing namespace, or the translation unit.
585 // FIXME: This is a hack; extern variables declared locally should have
586 // a proper semantic declaration context!
Eli Friedman95f50122013-07-02 17:52:28 +0000587 if (isLocalContainerContext(DC) && ND->hasLinkage() && !isLambda(ND))
Guy Benyei11169dd2012-12-18 14:30:41 +0000588 while (!DC->isNamespace() && !DC->isTranslationUnit())
589 DC = getEffectiveParentContext(DC);
590 else if (GetLocalClassDecl(ND)) {
591 mangleLocalName(ND);
592 return;
593 }
594
595 DC = IgnoreLinkageSpecDecls(DC);
596
597 if (DC->isTranslationUnit() || isStdNamespace(DC)) {
598 // Check if we have a template.
599 const TemplateArgumentList *TemplateArgs = 0;
600 if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
601 mangleUnscopedTemplateName(TD);
602 mangleTemplateArgs(*TemplateArgs);
603 return;
604 }
605
606 mangleUnscopedName(ND);
607 return;
608 }
609
Eli Friedman95f50122013-07-02 17:52:28 +0000610 if (isLocalContainerContext(DC)) {
Guy Benyei11169dd2012-12-18 14:30:41 +0000611 mangleLocalName(ND);
612 return;
613 }
614
615 mangleNestedName(ND, DC);
616}
617void CXXNameMangler::mangleName(const TemplateDecl *TD,
618 const TemplateArgument *TemplateArgs,
619 unsigned NumTemplateArgs) {
620 const DeclContext *DC = IgnoreLinkageSpecDecls(getEffectiveDeclContext(TD));
621
622 if (DC->isTranslationUnit() || isStdNamespace(DC)) {
623 mangleUnscopedTemplateName(TD);
624 mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
625 } else {
626 mangleNestedName(TD, TemplateArgs, NumTemplateArgs);
627 }
628}
629
630void CXXNameMangler::mangleUnscopedName(const NamedDecl *ND) {
631 // <unscoped-name> ::= <unqualified-name>
632 // ::= St <unqualified-name> # ::std::
633
634 if (isStdNamespace(IgnoreLinkageSpecDecls(getEffectiveDeclContext(ND))))
635 Out << "St";
636
637 mangleUnqualifiedName(ND);
638}
639
640void CXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *ND) {
641 // <unscoped-template-name> ::= <unscoped-name>
642 // ::= <substitution>
643 if (mangleSubstitution(ND))
644 return;
645
646 // <template-template-param> ::= <template-param>
647 if (const TemplateTemplateParmDecl *TTP
648 = dyn_cast<TemplateTemplateParmDecl>(ND)) {
649 mangleTemplateParameter(TTP->getIndex());
650 return;
651 }
652
653 mangleUnscopedName(ND->getTemplatedDecl());
654 addSubstitution(ND);
655}
656
657void CXXNameMangler::mangleUnscopedTemplateName(TemplateName Template) {
658 // <unscoped-template-name> ::= <unscoped-name>
659 // ::= <substitution>
660 if (TemplateDecl *TD = Template.getAsTemplateDecl())
661 return mangleUnscopedTemplateName(TD);
662
663 if (mangleSubstitution(Template))
664 return;
665
666 DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
667 assert(Dependent && "Not a dependent template name?");
668 if (const IdentifierInfo *Id = Dependent->getIdentifier())
669 mangleSourceName(Id);
670 else
671 mangleOperatorName(Dependent->getOperator(), UnknownArity);
672
673 addSubstitution(Template);
674}
675
676void CXXNameMangler::mangleFloat(const llvm::APFloat &f) {
677 // ABI:
678 // Floating-point literals are encoded using a fixed-length
679 // lowercase hexadecimal string corresponding to the internal
680 // representation (IEEE on Itanium), high-order bytes first,
681 // without leading zeroes. For example: "Lf bf800000 E" is -1.0f
682 // on Itanium.
683 // The 'without leading zeroes' thing seems to be an editorial
684 // mistake; see the discussion on cxx-abi-dev beginning on
685 // 2012-01-16.
686
687 // Our requirements here are just barely weird enough to justify
688 // using a custom algorithm instead of post-processing APInt::toString().
689
690 llvm::APInt valueBits = f.bitcastToAPInt();
691 unsigned numCharacters = (valueBits.getBitWidth() + 3) / 4;
692 assert(numCharacters != 0);
693
694 // Allocate a buffer of the right number of characters.
Dmitri Gribenkof8579502013-01-12 19:30:44 +0000695 SmallVector<char, 20> buffer;
Guy Benyei11169dd2012-12-18 14:30:41 +0000696 buffer.set_size(numCharacters);
697
698 // Fill the buffer left-to-right.
699 for (unsigned stringIndex = 0; stringIndex != numCharacters; ++stringIndex) {
700 // The bit-index of the next hex digit.
701 unsigned digitBitIndex = 4 * (numCharacters - stringIndex - 1);
702
703 // Project out 4 bits starting at 'digitIndex'.
704 llvm::integerPart hexDigit
705 = valueBits.getRawData()[digitBitIndex / llvm::integerPartWidth];
706 hexDigit >>= (digitBitIndex % llvm::integerPartWidth);
707 hexDigit &= 0xF;
708
709 // Map that over to a lowercase hex digit.
710 static const char charForHex[16] = {
711 '0', '1', '2', '3', '4', '5', '6', '7',
712 '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
713 };
714 buffer[stringIndex] = charForHex[hexDigit];
715 }
716
717 Out.write(buffer.data(), numCharacters);
718}
719
720void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) {
721 if (Value.isSigned() && Value.isNegative()) {
722 Out << 'n';
723 Value.abs().print(Out, /*signed*/ false);
724 } else {
725 Value.print(Out, /*signed*/ false);
726 }
727}
728
729void CXXNameMangler::mangleNumber(int64_t Number) {
730 // <number> ::= [n] <non-negative decimal integer>
731 if (Number < 0) {
732 Out << 'n';
733 Number = -Number;
734 }
735
736 Out << Number;
737}
738
739void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) {
740 // <call-offset> ::= h <nv-offset> _
741 // ::= v <v-offset> _
742 // <nv-offset> ::= <offset number> # non-virtual base override
743 // <v-offset> ::= <offset number> _ <virtual offset number>
744 // # virtual base override, with vcall offset
745 if (!Virtual) {
746 Out << 'h';
747 mangleNumber(NonVirtual);
748 Out << '_';
749 return;
750 }
751
752 Out << 'v';
753 mangleNumber(NonVirtual);
754 Out << '_';
755 mangleNumber(Virtual);
756 Out << '_';
757}
758
759void CXXNameMangler::manglePrefix(QualType type) {
760 if (const TemplateSpecializationType *TST =
761 type->getAs<TemplateSpecializationType>()) {
762 if (!mangleSubstitution(QualType(TST, 0))) {
763 mangleTemplatePrefix(TST->getTemplateName());
764
765 // FIXME: GCC does not appear to mangle the template arguments when
766 // the template in question is a dependent template name. Should we
767 // emulate that badness?
768 mangleTemplateArgs(TST->getArgs(), TST->getNumArgs());
769 addSubstitution(QualType(TST, 0));
770 }
771 } else if (const DependentTemplateSpecializationType *DTST
772 = type->getAs<DependentTemplateSpecializationType>()) {
773 TemplateName Template
774 = getASTContext().getDependentTemplateName(DTST->getQualifier(),
775 DTST->getIdentifier());
776 mangleTemplatePrefix(Template);
777
778 // FIXME: GCC does not appear to mangle the template arguments when
779 // the template in question is a dependent template name. Should we
780 // emulate that badness?
781 mangleTemplateArgs(DTST->getArgs(), DTST->getNumArgs());
782 } else {
783 // We use the QualType mangle type variant here because it handles
784 // substitutions.
785 mangleType(type);
786 }
787}
788
789/// Mangle everything prior to the base-unresolved-name in an unresolved-name.
790///
791/// \param firstQualifierLookup - the entity found by unqualified lookup
792/// for the first name in the qualifier, if this is for a member expression
793/// \param recursive - true if this is being called recursively,
794/// i.e. if there is more prefix "to the right".
795void CXXNameMangler::mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
796 NamedDecl *firstQualifierLookup,
797 bool recursive) {
798
799 // x, ::x
800 // <unresolved-name> ::= [gs] <base-unresolved-name>
801
802 // T::x / decltype(p)::x
803 // <unresolved-name> ::= sr <unresolved-type> <base-unresolved-name>
804
805 // T::N::x /decltype(p)::N::x
806 // <unresolved-name> ::= srN <unresolved-type> <unresolved-qualifier-level>+ E
807 // <base-unresolved-name>
808
809 // A::x, N::y, A<T>::z; "gs" means leading "::"
810 // <unresolved-name> ::= [gs] sr <unresolved-qualifier-level>+ E
811 // <base-unresolved-name>
812
813 switch (qualifier->getKind()) {
814 case NestedNameSpecifier::Global:
815 Out << "gs";
816
817 // We want an 'sr' unless this is the entire NNS.
818 if (recursive)
819 Out << "sr";
820
821 // We never want an 'E' here.
822 return;
823
824 case NestedNameSpecifier::Namespace:
825 if (qualifier->getPrefix())
826 mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
827 /*recursive*/ true);
828 else
829 Out << "sr";
830 mangleSourceName(qualifier->getAsNamespace()->getIdentifier());
831 break;
832 case NestedNameSpecifier::NamespaceAlias:
833 if (qualifier->getPrefix())
834 mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
835 /*recursive*/ true);
836 else
837 Out << "sr";
838 mangleSourceName(qualifier->getAsNamespaceAlias()->getIdentifier());
839 break;
840
841 case NestedNameSpecifier::TypeSpec:
842 case NestedNameSpecifier::TypeSpecWithTemplate: {
843 const Type *type = qualifier->getAsType();
844
845 // We only want to use an unresolved-type encoding if this is one of:
846 // - a decltype
847 // - a template type parameter
848 // - a template template parameter with arguments
849 // In all of these cases, we should have no prefix.
850 if (qualifier->getPrefix()) {
851 mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
852 /*recursive*/ true);
853 } else {
854 // Otherwise, all the cases want this.
855 Out << "sr";
856 }
857
858 // Only certain other types are valid as prefixes; enumerate them.
859 switch (type->getTypeClass()) {
860 case Type::Builtin:
861 case Type::Complex:
Reid Kleckner8a365022013-06-24 17:51:48 +0000862 case Type::Decayed:
Guy Benyei11169dd2012-12-18 14:30:41 +0000863 case Type::Pointer:
864 case Type::BlockPointer:
865 case Type::LValueReference:
866 case Type::RValueReference:
867 case Type::MemberPointer:
868 case Type::ConstantArray:
869 case Type::IncompleteArray:
870 case Type::VariableArray:
871 case Type::DependentSizedArray:
872 case Type::DependentSizedExtVector:
873 case Type::Vector:
874 case Type::ExtVector:
875 case Type::FunctionProto:
876 case Type::FunctionNoProto:
877 case Type::Enum:
878 case Type::Paren:
879 case Type::Elaborated:
880 case Type::Attributed:
881 case Type::Auto:
882 case Type::PackExpansion:
883 case Type::ObjCObject:
884 case Type::ObjCInterface:
885 case Type::ObjCObjectPointer:
886 case Type::Atomic:
887 llvm_unreachable("type is illegal as a nested name specifier");
888
889 case Type::SubstTemplateTypeParmPack:
890 // FIXME: not clear how to mangle this!
891 // template <class T...> class A {
892 // template <class U...> void foo(decltype(T::foo(U())) x...);
893 // };
894 Out << "_SUBSTPACK_";
895 break;
896
897 // <unresolved-type> ::= <template-param>
898 // ::= <decltype>
899 // ::= <template-template-param> <template-args>
900 // (this last is not official yet)
901 case Type::TypeOfExpr:
902 case Type::TypeOf:
903 case Type::Decltype:
904 case Type::TemplateTypeParm:
905 case Type::UnaryTransform:
906 case Type::SubstTemplateTypeParm:
907 unresolvedType:
908 assert(!qualifier->getPrefix());
909
910 // We only get here recursively if we're followed by identifiers.
911 if (recursive) Out << 'N';
912
913 // This seems to do everything we want. It's not really
914 // sanctioned for a substituted template parameter, though.
915 mangleType(QualType(type, 0));
916
917 // We never want to print 'E' directly after an unresolved-type,
918 // so we return directly.
919 return;
920
921 case Type::Typedef:
922 mangleSourceName(cast<TypedefType>(type)->getDecl()->getIdentifier());
923 break;
924
925 case Type::UnresolvedUsing:
926 mangleSourceName(cast<UnresolvedUsingType>(type)->getDecl()
927 ->getIdentifier());
928 break;
929
930 case Type::Record:
931 mangleSourceName(cast<RecordType>(type)->getDecl()->getIdentifier());
932 break;
933
934 case Type::TemplateSpecialization: {
935 const TemplateSpecializationType *tst
936 = cast<TemplateSpecializationType>(type);
937 TemplateName name = tst->getTemplateName();
938 switch (name.getKind()) {
939 case TemplateName::Template:
940 case TemplateName::QualifiedTemplate: {
941 TemplateDecl *temp = name.getAsTemplateDecl();
942
943 // If the base is a template template parameter, this is an
944 // unresolved type.
945 assert(temp && "no template for template specialization type");
946 if (isa<TemplateTemplateParmDecl>(temp)) goto unresolvedType;
947
948 mangleSourceName(temp->getIdentifier());
949 break;
950 }
951
952 case TemplateName::OverloadedTemplate:
953 case TemplateName::DependentTemplate:
954 llvm_unreachable("invalid base for a template specialization type");
955
956 case TemplateName::SubstTemplateTemplateParm: {
957 SubstTemplateTemplateParmStorage *subst
958 = name.getAsSubstTemplateTemplateParm();
959 mangleExistingSubstitution(subst->getReplacement());
960 break;
961 }
962
963 case TemplateName::SubstTemplateTemplateParmPack: {
964 // FIXME: not clear how to mangle this!
965 // template <template <class U> class T...> class A {
966 // template <class U...> void foo(decltype(T<U>::foo) x...);
967 // };
968 Out << "_SUBSTPACK_";
969 break;
970 }
971 }
972
973 mangleTemplateArgs(tst->getArgs(), tst->getNumArgs());
974 break;
975 }
976
977 case Type::InjectedClassName:
978 mangleSourceName(cast<InjectedClassNameType>(type)->getDecl()
979 ->getIdentifier());
980 break;
981
982 case Type::DependentName:
983 mangleSourceName(cast<DependentNameType>(type)->getIdentifier());
984 break;
985
986 case Type::DependentTemplateSpecialization: {
987 const DependentTemplateSpecializationType *tst
988 = cast<DependentTemplateSpecializationType>(type);
989 mangleSourceName(tst->getIdentifier());
990 mangleTemplateArgs(tst->getArgs(), tst->getNumArgs());
991 break;
992 }
993 }
994 break;
995 }
996
997 case NestedNameSpecifier::Identifier:
998 // Member expressions can have these without prefixes.
999 if (qualifier->getPrefix()) {
1000 mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
1001 /*recursive*/ true);
1002 } else if (firstQualifierLookup) {
1003
1004 // Try to make a proper qualifier out of the lookup result, and
1005 // then just recurse on that.
1006 NestedNameSpecifier *newQualifier;
1007 if (TypeDecl *typeDecl = dyn_cast<TypeDecl>(firstQualifierLookup)) {
1008 QualType type = getASTContext().getTypeDeclType(typeDecl);
1009
1010 // Pretend we had a different nested name specifier.
1011 newQualifier = NestedNameSpecifier::Create(getASTContext(),
1012 /*prefix*/ 0,
1013 /*template*/ false,
1014 type.getTypePtr());
1015 } else if (NamespaceDecl *nspace =
1016 dyn_cast<NamespaceDecl>(firstQualifierLookup)) {
1017 newQualifier = NestedNameSpecifier::Create(getASTContext(),
1018 /*prefix*/ 0,
1019 nspace);
1020 } else if (NamespaceAliasDecl *alias =
1021 dyn_cast<NamespaceAliasDecl>(firstQualifierLookup)) {
1022 newQualifier = NestedNameSpecifier::Create(getASTContext(),
1023 /*prefix*/ 0,
1024 alias);
1025 } else {
1026 // No sensible mangling to do here.
1027 newQualifier = 0;
1028 }
1029
1030 if (newQualifier)
1031 return mangleUnresolvedPrefix(newQualifier, /*lookup*/ 0, recursive);
1032
1033 } else {
1034 Out << "sr";
1035 }
1036
1037 mangleSourceName(qualifier->getAsIdentifier());
1038 break;
1039 }
1040
1041 // If this was the innermost part of the NNS, and we fell out to
1042 // here, append an 'E'.
1043 if (!recursive)
1044 Out << 'E';
1045}
1046
1047/// Mangle an unresolved-name, which is generally used for names which
1048/// weren't resolved to specific entities.
1049void CXXNameMangler::mangleUnresolvedName(NestedNameSpecifier *qualifier,
1050 NamedDecl *firstQualifierLookup,
1051 DeclarationName name,
1052 unsigned knownArity) {
1053 if (qualifier) mangleUnresolvedPrefix(qualifier, firstQualifierLookup);
1054 mangleUnqualifiedName(0, name, knownArity);
1055}
1056
1057static const FieldDecl *FindFirstNamedDataMember(const RecordDecl *RD) {
1058 assert(RD->isAnonymousStructOrUnion() &&
1059 "Expected anonymous struct or union!");
1060
1061 for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
1062 I != E; ++I) {
1063 if (I->getIdentifier())
1064 return *I;
1065
1066 if (const RecordType *RT = I->getType()->getAs<RecordType>())
1067 if (const FieldDecl *NamedDataMember =
1068 FindFirstNamedDataMember(RT->getDecl()))
1069 return NamedDataMember;
1070 }
1071
1072 // We didn't find a named data member.
1073 return 0;
1074}
1075
1076void CXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
1077 DeclarationName Name,
1078 unsigned KnownArity) {
1079 // <unqualified-name> ::= <operator-name>
1080 // ::= <ctor-dtor-name>
1081 // ::= <source-name>
1082 switch (Name.getNameKind()) {
1083 case DeclarationName::Identifier: {
1084 if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) {
1085 // We must avoid conflicts between internally- and externally-
1086 // linked variable and function declaration names in the same TU:
1087 // void test() { extern void foo(); }
1088 // static void foo();
1089 // This naming convention is the same as that followed by GCC,
1090 // though it shouldn't actually matter.
Rafael Espindola3ae00052013-05-13 00:12:11 +00001091 if (ND && ND->getFormalLinkage() == InternalLinkage &&
Guy Benyei11169dd2012-12-18 14:30:41 +00001092 getEffectiveDeclContext(ND)->isFileContext())
1093 Out << 'L';
1094
1095 mangleSourceName(II);
1096 break;
1097 }
1098
1099 // Otherwise, an anonymous entity. We must have a declaration.
1100 assert(ND && "mangling empty name without declaration");
1101
1102 if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
1103 if (NS->isAnonymousNamespace()) {
1104 // This is how gcc mangles these names.
1105 Out << "12_GLOBAL__N_1";
1106 break;
1107 }
1108 }
1109
1110 if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1111 // We must have an anonymous union or struct declaration.
1112 const RecordDecl *RD =
1113 cast<RecordDecl>(VD->getType()->getAs<RecordType>()->getDecl());
1114
1115 // Itanium C++ ABI 5.1.2:
1116 //
1117 // For the purposes of mangling, the name of an anonymous union is
1118 // considered to be the name of the first named data member found by a
1119 // pre-order, depth-first, declaration-order walk of the data members of
1120 // the anonymous union. If there is no such data member (i.e., if all of
1121 // the data members in the union are unnamed), then there is no way for
1122 // a program to refer to the anonymous union, and there is therefore no
1123 // need to mangle its name.
1124 const FieldDecl *FD = FindFirstNamedDataMember(RD);
1125
1126 // It's actually possible for various reasons for us to get here
1127 // with an empty anonymous struct / union. Fortunately, it
1128 // doesn't really matter what name we generate.
1129 if (!FD) break;
1130 assert(FD->getIdentifier() && "Data member name isn't an identifier!");
1131
1132 mangleSourceName(FD->getIdentifier());
1133 break;
1134 }
John McCall924046f2013-04-10 06:08:21 +00001135
1136 // Class extensions have no name as a category, and it's possible
1137 // for them to be the semantic parent of certain declarations
1138 // (primarily, tag decls defined within declarations). Such
1139 // declarations will always have internal linkage, so the name
1140 // doesn't really matter, but we shouldn't crash on them. For
1141 // safety, just handle all ObjC containers here.
1142 if (isa<ObjCContainerDecl>(ND))
1143 break;
Guy Benyei11169dd2012-12-18 14:30:41 +00001144
1145 // We must have an anonymous struct.
1146 const TagDecl *TD = cast<TagDecl>(ND);
1147 if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
1148 assert(TD->getDeclContext() == D->getDeclContext() &&
1149 "Typedef should not be in another decl context!");
1150 assert(D->getDeclName().getAsIdentifierInfo() &&
1151 "Typedef was not named!");
1152 mangleSourceName(D->getDeclName().getAsIdentifierInfo());
1153 break;
1154 }
1155
1156 // <unnamed-type-name> ::= <closure-type-name>
1157 //
1158 // <closure-type-name> ::= Ul <lambda-sig> E [ <nonnegative number> ] _
1159 // <lambda-sig> ::= <parameter-type>+ # Parameter types or 'v' for 'void'.
1160 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) {
1161 if (Record->isLambda() && Record->getLambdaManglingNumber()) {
1162 mangleLambda(Record);
1163 break;
1164 }
1165 }
1166
Eli Friedman3b7d46c2013-07-10 00:30:46 +00001167 if (TD->isExternallyVisible()) {
1168 unsigned UnnamedMangle = getASTContext().getManglingNumber(TD);
Guy Benyei11169dd2012-12-18 14:30:41 +00001169 Out << "Ut";
Eli Friedman3b7d46c2013-07-10 00:30:46 +00001170 if (UnnamedMangle > 1)
1171 Out << llvm::utostr(UnnamedMangle - 2);
Guy Benyei11169dd2012-12-18 14:30:41 +00001172 Out << '_';
1173 break;
1174 }
1175
1176 // Get a unique id for the anonymous struct.
1177 uint64_t AnonStructId = Context.getAnonymousStructId(TD);
1178
1179 // Mangle it as a source name in the form
1180 // [n] $_<id>
1181 // where n is the length of the string.
1182 SmallString<8> Str;
1183 Str += "$_";
1184 Str += llvm::utostr(AnonStructId);
1185
1186 Out << Str.size();
1187 Out << Str.str();
1188 break;
1189 }
1190
1191 case DeclarationName::ObjCZeroArgSelector:
1192 case DeclarationName::ObjCOneArgSelector:
1193 case DeclarationName::ObjCMultiArgSelector:
1194 llvm_unreachable("Can't mangle Objective-C selector names here!");
1195
1196 case DeclarationName::CXXConstructorName:
1197 if (ND == Structor)
1198 // If the named decl is the C++ constructor we're mangling, use the type
1199 // we were given.
1200 mangleCXXCtorType(static_cast<CXXCtorType>(StructorType));
1201 else
1202 // Otherwise, use the complete constructor name. This is relevant if a
1203 // class with a constructor is declared within a constructor.
1204 mangleCXXCtorType(Ctor_Complete);
1205 break;
1206
1207 case DeclarationName::CXXDestructorName:
1208 if (ND == Structor)
1209 // If the named decl is the C++ destructor we're mangling, use the type we
1210 // were given.
1211 mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
1212 else
1213 // Otherwise, use the complete destructor name. This is relevant if a
1214 // class with a destructor is declared within a destructor.
1215 mangleCXXDtorType(Dtor_Complete);
1216 break;
1217
1218 case DeclarationName::CXXConversionFunctionName:
1219 // <operator-name> ::= cv <type> # (cast)
1220 Out << "cv";
1221 mangleType(Name.getCXXNameType());
1222 break;
1223
1224 case DeclarationName::CXXOperatorName: {
1225 unsigned Arity;
1226 if (ND) {
1227 Arity = cast<FunctionDecl>(ND)->getNumParams();
1228
1229 // If we have a C++ member function, we need to include the 'this' pointer.
1230 // FIXME: This does not make sense for operators that are static, but their
1231 // names stay the same regardless of the arity (operator new for instance).
1232 if (isa<CXXMethodDecl>(ND))
1233 Arity++;
1234 } else
1235 Arity = KnownArity;
1236
1237 mangleOperatorName(Name.getCXXOverloadedOperator(), Arity);
1238 break;
1239 }
1240
1241 case DeclarationName::CXXLiteralOperatorName:
1242 // FIXME: This mangling is not yet official.
1243 Out << "li";
1244 mangleSourceName(Name.getCXXLiteralIdentifier());
1245 break;
1246
1247 case DeclarationName::CXXUsingDirective:
1248 llvm_unreachable("Can't mangle a using directive name!");
1249 }
1250}
1251
1252void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) {
1253 // <source-name> ::= <positive length number> <identifier>
1254 // <number> ::= [n] <non-negative decimal integer>
1255 // <identifier> ::= <unqualified source code identifier>
1256 Out << II->getLength() << II->getName();
1257}
1258
1259void CXXNameMangler::mangleNestedName(const NamedDecl *ND,
1260 const DeclContext *DC,
1261 bool NoFunction) {
1262 // <nested-name>
1263 // ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E
1264 // ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix>
1265 // <template-args> E
1266
1267 Out << 'N';
1268 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND)) {
1269 mangleQualifiers(Qualifiers::fromCVRMask(Method->getTypeQualifiers()));
1270 mangleRefQualifier(Method->getRefQualifier());
1271 }
1272
1273 // Check if we have a template.
1274 const TemplateArgumentList *TemplateArgs = 0;
1275 if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
Eli Friedman86af13f02013-07-05 18:41:30 +00001276 mangleTemplatePrefix(TD, NoFunction);
Guy Benyei11169dd2012-12-18 14:30:41 +00001277 mangleTemplateArgs(*TemplateArgs);
1278 }
1279 else {
1280 manglePrefix(DC, NoFunction);
1281 mangleUnqualifiedName(ND);
1282 }
1283
1284 Out << 'E';
1285}
1286void CXXNameMangler::mangleNestedName(const TemplateDecl *TD,
1287 const TemplateArgument *TemplateArgs,
1288 unsigned NumTemplateArgs) {
1289 // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E
1290
1291 Out << 'N';
1292
1293 mangleTemplatePrefix(TD);
1294 mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
1295
1296 Out << 'E';
1297}
1298
Eli Friedman95f50122013-07-02 17:52:28 +00001299void CXXNameMangler::mangleLocalName(const Decl *D) {
Guy Benyei11169dd2012-12-18 14:30:41 +00001300 // <local-name> := Z <function encoding> E <entity name> [<discriminator>]
1301 // := Z <function encoding> E s [<discriminator>]
1302 // <local-name> := Z <function encoding> E d [ <parameter number> ]
1303 // _ <entity name>
1304 // <discriminator> := _ <non-negative number>
Eli Friedman95f50122013-07-02 17:52:28 +00001305 assert(isa<NamedDecl>(D) || isa<BlockDecl>(D));
Eli Friedmaneecc09a2013-07-05 20:27:40 +00001306 const RecordDecl *RD = GetLocalClassDecl(D);
Eli Friedman95f50122013-07-02 17:52:28 +00001307 const DeclContext *DC = getEffectiveDeclContext(RD ? RD : D);
Guy Benyei11169dd2012-12-18 14:30:41 +00001308
1309 Out << 'Z';
1310
Eli Friedman92821742013-07-02 02:01:18 +00001311 if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC))
1312 mangleObjCMethodName(MD);
1313 else if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC))
Eli Friedman95f50122013-07-02 17:52:28 +00001314 mangleBlockForPrefix(BD);
Eli Friedman92821742013-07-02 02:01:18 +00001315 else
1316 mangleFunctionEncoding(cast<FunctionDecl>(DC));
Guy Benyei11169dd2012-12-18 14:30:41 +00001317
Eli Friedman92821742013-07-02 02:01:18 +00001318 Out << 'E';
1319
1320 if (RD) {
Guy Benyei11169dd2012-12-18 14:30:41 +00001321 // The parameter number is omitted for the last parameter, 0 for the
1322 // second-to-last parameter, 1 for the third-to-last parameter, etc. The
1323 // <entity name> will of course contain a <closure-type-name>: Its
1324 // numbering will be local to the particular argument in which it appears
1325 // -- other default arguments do not affect its encoding.
Eli Friedmaneecc09a2013-07-05 20:27:40 +00001326 const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD);
1327 if (CXXRD->isLambda()) {
Guy Benyei11169dd2012-12-18 14:30:41 +00001328 if (const ParmVarDecl *Parm
Eli Friedmaneecc09a2013-07-05 20:27:40 +00001329 = dyn_cast_or_null<ParmVarDecl>(CXXRD->getLambdaContextDecl())) {
Guy Benyei11169dd2012-12-18 14:30:41 +00001330 if (const FunctionDecl *Func
1331 = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
1332 Out << 'd';
1333 unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
1334 if (Num > 1)
1335 mangleNumber(Num - 2);
1336 Out << '_';
Guy Benyei11169dd2012-12-18 14:30:41 +00001337 }
1338 }
1339 }
1340
1341 // Mangle the name relative to the closest enclosing function.
Eli Friedman95f50122013-07-02 17:52:28 +00001342 // equality ok because RD derived from ND above
1343 if (D == RD) {
1344 mangleUnqualifiedName(RD);
1345 } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
1346 manglePrefix(getEffectiveDeclContext(BD), true /*NoFunction*/);
1347 mangleUnqualifiedBlock(BD);
1348 } else {
1349 const NamedDecl *ND = cast<NamedDecl>(D);
Eli Friedman92821742013-07-02 02:01:18 +00001350 mangleNestedName(ND, getEffectiveDeclContext(ND), true /*NoFunction*/);
Eli Friedman95f50122013-07-02 17:52:28 +00001351 }
Eli Friedman0cd23352013-07-10 01:33:19 +00001352 } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
1353 // Mangle a block in a default parameter; see above explanation for
1354 // lambdas.
1355 if (const ParmVarDecl *Parm
1356 = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl())) {
1357 if (const FunctionDecl *Func
1358 = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
1359 Out << 'd';
1360 unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
1361 if (Num > 1)
1362 mangleNumber(Num - 2);
1363 Out << '_';
1364 }
1365 }
1366
1367 mangleUnqualifiedBlock(BD);
Eli Friedman3b7d46c2013-07-10 00:30:46 +00001368 } else {
Eli Friedman0cd23352013-07-10 01:33:19 +00001369 mangleUnqualifiedName(cast<NamedDecl>(D));
Guy Benyei11169dd2012-12-18 14:30:41 +00001370 }
Eli Friedman0cd23352013-07-10 01:33:19 +00001371
Eli Friedman3b7d46c2013-07-10 00:30:46 +00001372 if (const NamedDecl *ND = dyn_cast<NamedDecl>(RD ? RD : D)) {
1373 unsigned disc;
1374 if (Context.getNextDiscriminator(ND, disc)) {
1375 if (disc < 10)
1376 Out << '_' << disc;
1377 else
1378 Out << "__" << disc << '_';
1379 }
1380 }
Eli Friedman95f50122013-07-02 17:52:28 +00001381}
1382
1383void CXXNameMangler::mangleBlockForPrefix(const BlockDecl *Block) {
1384 if (GetLocalClassDecl(Block)) {
1385 mangleLocalName(Block);
1386 return;
1387 }
1388 const DeclContext *DC = getEffectiveDeclContext(Block);
1389 if (isLocalContainerContext(DC)) {
1390 mangleLocalName(Block);
1391 return;
1392 }
1393 manglePrefix(getEffectiveDeclContext(Block));
1394 mangleUnqualifiedBlock(Block);
1395}
1396
1397void CXXNameMangler::mangleUnqualifiedBlock(const BlockDecl *Block) {
1398 if (Decl *Context = Block->getBlockManglingContextDecl()) {
1399 if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
1400 Context->getDeclContext()->isRecord()) {
1401 if (const IdentifierInfo *Name
1402 = cast<NamedDecl>(Context)->getIdentifier()) {
1403 mangleSourceName(Name);
1404 Out << 'M';
1405 }
1406 }
1407 }
1408
1409 // If we have a block mangling number, use it.
1410 unsigned Number = Block->getBlockManglingNumber();
1411 // Otherwise, just make up a number. It doesn't matter what it is because
1412 // the symbol in question isn't externally visible.
1413 if (!Number)
1414 Number = Context.getBlockId(Block, false);
1415 Out << "Ub";
1416 if (Number > 1)
1417 Out << Number - 2;
1418 Out << '_';
Guy Benyei11169dd2012-12-18 14:30:41 +00001419}
1420
1421void CXXNameMangler::mangleLambda(const CXXRecordDecl *Lambda) {
1422 // If the context of a closure type is an initializer for a class member
1423 // (static or nonstatic), it is encoded in a qualified name with a final
1424 // <prefix> of the form:
1425 //
1426 // <data-member-prefix> := <member source-name> M
1427 //
1428 // Technically, the data-member-prefix is part of the <prefix>. However,
1429 // since a closure type will always be mangled with a prefix, it's easier
1430 // to emit that last part of the prefix here.
1431 if (Decl *Context = Lambda->getLambdaContextDecl()) {
1432 if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
1433 Context->getDeclContext()->isRecord()) {
1434 if (const IdentifierInfo *Name
1435 = cast<NamedDecl>(Context)->getIdentifier()) {
1436 mangleSourceName(Name);
1437 Out << 'M';
1438 }
1439 }
1440 }
1441
1442 Out << "Ul";
1443 const FunctionProtoType *Proto = Lambda->getLambdaTypeInfo()->getType()->
1444 getAs<FunctionProtoType>();
1445 mangleBareFunctionType(Proto, /*MangleReturnType=*/false);
1446 Out << "E";
1447
1448 // The number is omitted for the first closure type with a given
1449 // <lambda-sig> in a given context; it is n-2 for the nth closure type
1450 // (in lexical order) with that same <lambda-sig> and context.
1451 //
1452 // The AST keeps track of the number for us.
1453 unsigned Number = Lambda->getLambdaManglingNumber();
1454 assert(Number > 0 && "Lambda should be mangled as an unnamed class");
1455 if (Number > 1)
1456 mangleNumber(Number - 2);
1457 Out << '_';
1458}
1459
1460void CXXNameMangler::manglePrefix(NestedNameSpecifier *qualifier) {
1461 switch (qualifier->getKind()) {
1462 case NestedNameSpecifier::Global:
1463 // nothing
1464 return;
1465
1466 case NestedNameSpecifier::Namespace:
1467 mangleName(qualifier->getAsNamespace());
1468 return;
1469
1470 case NestedNameSpecifier::NamespaceAlias:
1471 mangleName(qualifier->getAsNamespaceAlias()->getNamespace());
1472 return;
1473
1474 case NestedNameSpecifier::TypeSpec:
1475 case NestedNameSpecifier::TypeSpecWithTemplate:
1476 manglePrefix(QualType(qualifier->getAsType(), 0));
1477 return;
1478
1479 case NestedNameSpecifier::Identifier:
1480 // Member expressions can have these without prefixes, but that
1481 // should end up in mangleUnresolvedPrefix instead.
1482 assert(qualifier->getPrefix());
1483 manglePrefix(qualifier->getPrefix());
1484
1485 mangleSourceName(qualifier->getAsIdentifier());
1486 return;
1487 }
1488
1489 llvm_unreachable("unexpected nested name specifier");
1490}
1491
1492void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) {
1493 // <prefix> ::= <prefix> <unqualified-name>
1494 // ::= <template-prefix> <template-args>
1495 // ::= <template-param>
1496 // ::= # empty
1497 // ::= <substitution>
1498
1499 DC = IgnoreLinkageSpecDecls(DC);
1500
1501 if (DC->isTranslationUnit())
1502 return;
1503
Eli Friedman95f50122013-07-02 17:52:28 +00001504 if (NoFunction && isLocalContainerContext(DC))
1505 return;
Eli Friedman7e346a82013-07-01 20:22:57 +00001506
Eli Friedman95f50122013-07-02 17:52:28 +00001507 assert(!isLocalContainerContext(DC));
1508
Guy Benyei11169dd2012-12-18 14:30:41 +00001509 const NamedDecl *ND = cast<NamedDecl>(DC);
1510 if (mangleSubstitution(ND))
1511 return;
1512
1513 // Check if we have a template.
1514 const TemplateArgumentList *TemplateArgs = 0;
1515 if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
1516 mangleTemplatePrefix(TD);
1517 mangleTemplateArgs(*TemplateArgs);
Eli Friedman95f50122013-07-02 17:52:28 +00001518 } else {
Guy Benyei11169dd2012-12-18 14:30:41 +00001519 manglePrefix(getEffectiveDeclContext(ND), NoFunction);
1520 mangleUnqualifiedName(ND);
1521 }
1522
1523 addSubstitution(ND);
1524}
1525
1526void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) {
1527 // <template-prefix> ::= <prefix> <template unqualified-name>
1528 // ::= <template-param>
1529 // ::= <substitution>
1530 if (TemplateDecl *TD = Template.getAsTemplateDecl())
1531 return mangleTemplatePrefix(TD);
1532
1533 if (QualifiedTemplateName *Qualified = Template.getAsQualifiedTemplateName())
1534 manglePrefix(Qualified->getQualifier());
1535
1536 if (OverloadedTemplateStorage *Overloaded
1537 = Template.getAsOverloadedTemplate()) {
1538 mangleUnqualifiedName(0, (*Overloaded->begin())->getDeclName(),
1539 UnknownArity);
1540 return;
1541 }
1542
1543 DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
1544 assert(Dependent && "Unknown template name kind?");
1545 manglePrefix(Dependent->getQualifier());
1546 mangleUnscopedTemplateName(Template);
1547}
1548
Eli Friedman86af13f02013-07-05 18:41:30 +00001549void CXXNameMangler::mangleTemplatePrefix(const TemplateDecl *ND,
1550 bool NoFunction) {
Guy Benyei11169dd2012-12-18 14:30:41 +00001551 // <template-prefix> ::= <prefix> <template unqualified-name>
1552 // ::= <template-param>
1553 // ::= <substitution>
1554 // <template-template-param> ::= <template-param>
1555 // <substitution>
1556
1557 if (mangleSubstitution(ND))
1558 return;
1559
1560 // <template-template-param> ::= <template-param>
1561 if (const TemplateTemplateParmDecl *TTP
1562 = dyn_cast<TemplateTemplateParmDecl>(ND)) {
1563 mangleTemplateParameter(TTP->getIndex());
1564 return;
1565 }
1566
Eli Friedman86af13f02013-07-05 18:41:30 +00001567 manglePrefix(getEffectiveDeclContext(ND), NoFunction);
Guy Benyei11169dd2012-12-18 14:30:41 +00001568 mangleUnqualifiedName(ND->getTemplatedDecl());
1569 addSubstitution(ND);
1570}
1571
1572/// Mangles a template name under the production <type>. Required for
1573/// template template arguments.
1574/// <type> ::= <class-enum-type>
1575/// ::= <template-param>
1576/// ::= <substitution>
1577void CXXNameMangler::mangleType(TemplateName TN) {
1578 if (mangleSubstitution(TN))
1579 return;
1580
1581 TemplateDecl *TD = 0;
1582
1583 switch (TN.getKind()) {
1584 case TemplateName::QualifiedTemplate:
1585 TD = TN.getAsQualifiedTemplateName()->getTemplateDecl();
1586 goto HaveDecl;
1587
1588 case TemplateName::Template:
1589 TD = TN.getAsTemplateDecl();
1590 goto HaveDecl;
1591
1592 HaveDecl:
1593 if (isa<TemplateTemplateParmDecl>(TD))
1594 mangleTemplateParameter(cast<TemplateTemplateParmDecl>(TD)->getIndex());
1595 else
1596 mangleName(TD);
1597 break;
1598
1599 case TemplateName::OverloadedTemplate:
1600 llvm_unreachable("can't mangle an overloaded template name as a <type>");
1601
1602 case TemplateName::DependentTemplate: {
1603 const DependentTemplateName *Dependent = TN.getAsDependentTemplateName();
1604 assert(Dependent->isIdentifier());
1605
1606 // <class-enum-type> ::= <name>
1607 // <name> ::= <nested-name>
1608 mangleUnresolvedPrefix(Dependent->getQualifier(), 0);
1609 mangleSourceName(Dependent->getIdentifier());
1610 break;
1611 }
1612
1613 case TemplateName::SubstTemplateTemplateParm: {
1614 // Substituted template parameters are mangled as the substituted
1615 // template. This will check for the substitution twice, which is
1616 // fine, but we have to return early so that we don't try to *add*
1617 // the substitution twice.
1618 SubstTemplateTemplateParmStorage *subst
1619 = TN.getAsSubstTemplateTemplateParm();
1620 mangleType(subst->getReplacement());
1621 return;
1622 }
1623
1624 case TemplateName::SubstTemplateTemplateParmPack: {
1625 // FIXME: not clear how to mangle this!
1626 // template <template <class> class T...> class A {
1627 // template <template <class> class U...> void foo(B<T,U> x...);
1628 // };
1629 Out << "_SUBSTPACK_";
1630 break;
1631 }
1632 }
1633
1634 addSubstitution(TN);
1635}
1636
1637void
1638CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) {
1639 switch (OO) {
1640 // <operator-name> ::= nw # new
1641 case OO_New: Out << "nw"; break;
1642 // ::= na # new[]
1643 case OO_Array_New: Out << "na"; break;
1644 // ::= dl # delete
1645 case OO_Delete: Out << "dl"; break;
1646 // ::= da # delete[]
1647 case OO_Array_Delete: Out << "da"; break;
1648 // ::= ps # + (unary)
1649 // ::= pl # + (binary or unknown)
1650 case OO_Plus:
1651 Out << (Arity == 1? "ps" : "pl"); break;
1652 // ::= ng # - (unary)
1653 // ::= mi # - (binary or unknown)
1654 case OO_Minus:
1655 Out << (Arity == 1? "ng" : "mi"); break;
1656 // ::= ad # & (unary)
1657 // ::= an # & (binary or unknown)
1658 case OO_Amp:
1659 Out << (Arity == 1? "ad" : "an"); break;
1660 // ::= de # * (unary)
1661 // ::= ml # * (binary or unknown)
1662 case OO_Star:
1663 // Use binary when unknown.
1664 Out << (Arity == 1? "de" : "ml"); break;
1665 // ::= co # ~
1666 case OO_Tilde: Out << "co"; break;
1667 // ::= dv # /
1668 case OO_Slash: Out << "dv"; break;
1669 // ::= rm # %
1670 case OO_Percent: Out << "rm"; break;
1671 // ::= or # |
1672 case OO_Pipe: Out << "or"; break;
1673 // ::= eo # ^
1674 case OO_Caret: Out << "eo"; break;
1675 // ::= aS # =
1676 case OO_Equal: Out << "aS"; break;
1677 // ::= pL # +=
1678 case OO_PlusEqual: Out << "pL"; break;
1679 // ::= mI # -=
1680 case OO_MinusEqual: Out << "mI"; break;
1681 // ::= mL # *=
1682 case OO_StarEqual: Out << "mL"; break;
1683 // ::= dV # /=
1684 case OO_SlashEqual: Out << "dV"; break;
1685 // ::= rM # %=
1686 case OO_PercentEqual: Out << "rM"; break;
1687 // ::= aN # &=
1688 case OO_AmpEqual: Out << "aN"; break;
1689 // ::= oR # |=
1690 case OO_PipeEqual: Out << "oR"; break;
1691 // ::= eO # ^=
1692 case OO_CaretEqual: Out << "eO"; break;
1693 // ::= ls # <<
1694 case OO_LessLess: Out << "ls"; break;
1695 // ::= rs # >>
1696 case OO_GreaterGreater: Out << "rs"; break;
1697 // ::= lS # <<=
1698 case OO_LessLessEqual: Out << "lS"; break;
1699 // ::= rS # >>=
1700 case OO_GreaterGreaterEqual: Out << "rS"; break;
1701 // ::= eq # ==
1702 case OO_EqualEqual: Out << "eq"; break;
1703 // ::= ne # !=
1704 case OO_ExclaimEqual: Out << "ne"; break;
1705 // ::= lt # <
1706 case OO_Less: Out << "lt"; break;
1707 // ::= gt # >
1708 case OO_Greater: Out << "gt"; break;
1709 // ::= le # <=
1710 case OO_LessEqual: Out << "le"; break;
1711 // ::= ge # >=
1712 case OO_GreaterEqual: Out << "ge"; break;
1713 // ::= nt # !
1714 case OO_Exclaim: Out << "nt"; break;
1715 // ::= aa # &&
1716 case OO_AmpAmp: Out << "aa"; break;
1717 // ::= oo # ||
1718 case OO_PipePipe: Out << "oo"; break;
1719 // ::= pp # ++
1720 case OO_PlusPlus: Out << "pp"; break;
1721 // ::= mm # --
1722 case OO_MinusMinus: Out << "mm"; break;
1723 // ::= cm # ,
1724 case OO_Comma: Out << "cm"; break;
1725 // ::= pm # ->*
1726 case OO_ArrowStar: Out << "pm"; break;
1727 // ::= pt # ->
1728 case OO_Arrow: Out << "pt"; break;
1729 // ::= cl # ()
1730 case OO_Call: Out << "cl"; break;
1731 // ::= ix # []
1732 case OO_Subscript: Out << "ix"; break;
1733
1734 // ::= qu # ?
1735 // The conditional operator can't be overloaded, but we still handle it when
1736 // mangling expressions.
1737 case OO_Conditional: Out << "qu"; break;
1738
1739 case OO_None:
1740 case NUM_OVERLOADED_OPERATORS:
1741 llvm_unreachable("Not an overloaded operator");
1742 }
1743}
1744
1745void CXXNameMangler::mangleQualifiers(Qualifiers Quals) {
1746 // <CV-qualifiers> ::= [r] [V] [K] # restrict (C99), volatile, const
1747 if (Quals.hasRestrict())
1748 Out << 'r';
1749 if (Quals.hasVolatile())
1750 Out << 'V';
1751 if (Quals.hasConst())
1752 Out << 'K';
1753
1754 if (Quals.hasAddressSpace()) {
David Tweed31d09b02013-09-13 12:04:22 +00001755 // Address space extension:
Guy Benyei11169dd2012-12-18 14:30:41 +00001756 //
David Tweed31d09b02013-09-13 12:04:22 +00001757 // <type> ::= U <target-addrspace>
1758 // <type> ::= U <OpenCL-addrspace>
1759 // <type> ::= U <CUDA-addrspace>
1760
Guy Benyei11169dd2012-12-18 14:30:41 +00001761 SmallString<64> ASString;
David Tweed31d09b02013-09-13 12:04:22 +00001762 unsigned AS = Quals.getAddressSpace();
David Tweed31d09b02013-09-13 12:04:22 +00001763
1764 if (Context.getASTContext().addressSpaceMapManglingFor(AS)) {
1765 // <target-addrspace> ::= "AS" <address-space-number>
1766 unsigned TargetAS = Context.getASTContext().getTargetAddressSpace(AS);
1767 ASString = "AS" + llvm::utostr_32(TargetAS);
1768 } else {
1769 switch (AS) {
1770 default: llvm_unreachable("Not a language specific address space");
1771 // <OpenCL-addrspace> ::= "CL" [ "global" | "local" | "constant" ]
1772 case LangAS::opencl_global: ASString = "CLglobal"; break;
1773 case LangAS::opencl_local: ASString = "CLlocal"; break;
1774 case LangAS::opencl_constant: ASString = "CLconstant"; break;
1775 // <CUDA-addrspace> ::= "CU" [ "device" | "constant" | "shared" ]
1776 case LangAS::cuda_device: ASString = "CUdevice"; break;
1777 case LangAS::cuda_constant: ASString = "CUconstant"; break;
1778 case LangAS::cuda_shared: ASString = "CUshared"; break;
1779 }
1780 }
Guy Benyei11169dd2012-12-18 14:30:41 +00001781 Out << 'U' << ASString.size() << ASString;
1782 }
1783
1784 StringRef LifetimeName;
1785 switch (Quals.getObjCLifetime()) {
1786 // Objective-C ARC Extension:
1787 //
1788 // <type> ::= U "__strong"
1789 // <type> ::= U "__weak"
1790 // <type> ::= U "__autoreleasing"
1791 case Qualifiers::OCL_None:
1792 break;
1793
1794 case Qualifiers::OCL_Weak:
1795 LifetimeName = "__weak";
1796 break;
1797
1798 case Qualifiers::OCL_Strong:
1799 LifetimeName = "__strong";
1800 break;
1801
1802 case Qualifiers::OCL_Autoreleasing:
1803 LifetimeName = "__autoreleasing";
1804 break;
1805
1806 case Qualifiers::OCL_ExplicitNone:
1807 // The __unsafe_unretained qualifier is *not* mangled, so that
1808 // __unsafe_unretained types in ARC produce the same manglings as the
1809 // equivalent (but, naturally, unqualified) types in non-ARC, providing
1810 // better ABI compatibility.
1811 //
1812 // It's safe to do this because unqualified 'id' won't show up
1813 // in any type signatures that need to be mangled.
1814 break;
1815 }
1816 if (!LifetimeName.empty())
1817 Out << 'U' << LifetimeName.size() << LifetimeName;
1818}
1819
1820void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
1821 // <ref-qualifier> ::= R # lvalue reference
1822 // ::= O # rvalue-reference
Guy Benyei11169dd2012-12-18 14:30:41 +00001823 switch (RefQualifier) {
1824 case RQ_None:
1825 break;
1826
1827 case RQ_LValue:
1828 Out << 'R';
1829 break;
1830
1831 case RQ_RValue:
1832 Out << 'O';
1833 break;
1834 }
1835}
1836
1837void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
1838 Context.mangleObjCMethodName(MD, Out);
1839}
1840
1841void CXXNameMangler::mangleType(QualType T) {
1842 // If our type is instantiation-dependent but not dependent, we mangle
1843 // it as it was written in the source, removing any top-level sugar.
1844 // Otherwise, use the canonical type.
1845 //
1846 // FIXME: This is an approximation of the instantiation-dependent name
1847 // mangling rules, since we should really be using the type as written and
1848 // augmented via semantic analysis (i.e., with implicit conversions and
1849 // default template arguments) for any instantiation-dependent type.
1850 // Unfortunately, that requires several changes to our AST:
1851 // - Instantiation-dependent TemplateSpecializationTypes will need to be
1852 // uniqued, so that we can handle substitutions properly
1853 // - Default template arguments will need to be represented in the
1854 // TemplateSpecializationType, since they need to be mangled even though
1855 // they aren't written.
1856 // - Conversions on non-type template arguments need to be expressed, since
1857 // they can affect the mangling of sizeof/alignof.
1858 if (!T->isInstantiationDependentType() || T->isDependentType())
1859 T = T.getCanonicalType();
1860 else {
1861 // Desugar any types that are purely sugar.
1862 do {
1863 // Don't desugar through template specialization types that aren't
1864 // type aliases. We need to mangle the template arguments as written.
1865 if (const TemplateSpecializationType *TST
1866 = dyn_cast<TemplateSpecializationType>(T))
1867 if (!TST->isTypeAlias())
1868 break;
1869
1870 QualType Desugared
1871 = T.getSingleStepDesugaredType(Context.getASTContext());
1872 if (Desugared == T)
1873 break;
1874
1875 T = Desugared;
1876 } while (true);
1877 }
1878 SplitQualType split = T.split();
1879 Qualifiers quals = split.Quals;
1880 const Type *ty = split.Ty;
1881
1882 bool isSubstitutable = quals || !isa<BuiltinType>(T);
1883 if (isSubstitutable && mangleSubstitution(T))
1884 return;
1885
1886 // If we're mangling a qualified array type, push the qualifiers to
1887 // the element type.
1888 if (quals && isa<ArrayType>(T)) {
1889 ty = Context.getASTContext().getAsArrayType(T);
1890 quals = Qualifiers();
1891
1892 // Note that we don't update T: we want to add the
1893 // substitution at the original type.
1894 }
1895
1896 if (quals) {
1897 mangleQualifiers(quals);
1898 // Recurse: even if the qualified type isn't yet substitutable,
1899 // the unqualified type might be.
1900 mangleType(QualType(ty, 0));
1901 } else {
1902 switch (ty->getTypeClass()) {
1903#define ABSTRACT_TYPE(CLASS, PARENT)
1904#define NON_CANONICAL_TYPE(CLASS, PARENT) \
1905 case Type::CLASS: \
1906 llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
1907 return;
1908#define TYPE(CLASS, PARENT) \
1909 case Type::CLASS: \
1910 mangleType(static_cast<const CLASS##Type*>(ty)); \
1911 break;
1912#include "clang/AST/TypeNodes.def"
1913 }
1914 }
1915
1916 // Add the substitution.
1917 if (isSubstitutable)
1918 addSubstitution(T);
1919}
1920
1921void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) {
1922 if (!mangleStandardSubstitution(ND))
1923 mangleName(ND);
1924}
1925
1926void CXXNameMangler::mangleType(const BuiltinType *T) {
1927 // <type> ::= <builtin-type>
1928 // <builtin-type> ::= v # void
1929 // ::= w # wchar_t
1930 // ::= b # bool
1931 // ::= c # char
1932 // ::= a # signed char
1933 // ::= h # unsigned char
1934 // ::= s # short
1935 // ::= t # unsigned short
1936 // ::= i # int
1937 // ::= j # unsigned int
1938 // ::= l # long
1939 // ::= m # unsigned long
1940 // ::= x # long long, __int64
1941 // ::= y # unsigned long long, __int64
1942 // ::= n # __int128
1943 // UNSUPPORTED: ::= o # unsigned __int128
1944 // ::= f # float
1945 // ::= d # double
1946 // ::= e # long double, __float80
1947 // UNSUPPORTED: ::= g # __float128
1948 // UNSUPPORTED: ::= Dd # IEEE 754r decimal floating point (64 bits)
1949 // UNSUPPORTED: ::= De # IEEE 754r decimal floating point (128 bits)
1950 // UNSUPPORTED: ::= Df # IEEE 754r decimal floating point (32 bits)
1951 // ::= Dh # IEEE 754r half-precision floating point (16 bits)
1952 // ::= Di # char32_t
1953 // ::= Ds # char16_t
1954 // ::= Dn # std::nullptr_t (i.e., decltype(nullptr))
1955 // ::= u <source-name> # vendor extended type
1956 switch (T->getKind()) {
1957 case BuiltinType::Void: Out << 'v'; break;
1958 case BuiltinType::Bool: Out << 'b'; break;
1959 case BuiltinType::Char_U: case BuiltinType::Char_S: Out << 'c'; break;
1960 case BuiltinType::UChar: Out << 'h'; break;
1961 case BuiltinType::UShort: Out << 't'; break;
1962 case BuiltinType::UInt: Out << 'j'; break;
1963 case BuiltinType::ULong: Out << 'm'; break;
1964 case BuiltinType::ULongLong: Out << 'y'; break;
1965 case BuiltinType::UInt128: Out << 'o'; break;
1966 case BuiltinType::SChar: Out << 'a'; break;
1967 case BuiltinType::WChar_S:
1968 case BuiltinType::WChar_U: Out << 'w'; break;
1969 case BuiltinType::Char16: Out << "Ds"; break;
1970 case BuiltinType::Char32: Out << "Di"; break;
1971 case BuiltinType::Short: Out << 's'; break;
1972 case BuiltinType::Int: Out << 'i'; break;
1973 case BuiltinType::Long: Out << 'l'; break;
1974 case BuiltinType::LongLong: Out << 'x'; break;
1975 case BuiltinType::Int128: Out << 'n'; break;
1976 case BuiltinType::Half: Out << "Dh"; break;
1977 case BuiltinType::Float: Out << 'f'; break;
1978 case BuiltinType::Double: Out << 'd'; break;
1979 case BuiltinType::LongDouble: Out << 'e'; break;
1980 case BuiltinType::NullPtr: Out << "Dn"; break;
1981
1982#define BUILTIN_TYPE(Id, SingletonId)
1983#define PLACEHOLDER_TYPE(Id, SingletonId) \
1984 case BuiltinType::Id:
1985#include "clang/AST/BuiltinTypes.def"
1986 case BuiltinType::Dependent:
1987 llvm_unreachable("mangling a placeholder type");
1988 case BuiltinType::ObjCId: Out << "11objc_object"; break;
1989 case BuiltinType::ObjCClass: Out << "10objc_class"; break;
1990 case BuiltinType::ObjCSel: Out << "13objc_selector"; break;
Guy Benyeid8a08ea2012-12-18 14:38:23 +00001991 case BuiltinType::OCLImage1d: Out << "11ocl_image1d"; break;
1992 case BuiltinType::OCLImage1dArray: Out << "16ocl_image1darray"; break;
1993 case BuiltinType::OCLImage1dBuffer: Out << "17ocl_image1dbuffer"; break;
1994 case BuiltinType::OCLImage2d: Out << "11ocl_image2d"; break;
1995 case BuiltinType::OCLImage2dArray: Out << "16ocl_image2darray"; break;
1996 case BuiltinType::OCLImage3d: Out << "11ocl_image3d"; break;
Guy Benyei61054192013-02-07 10:55:47 +00001997 case BuiltinType::OCLSampler: Out << "11ocl_sampler"; break;
Guy Benyei1b4fb3e2013-01-20 12:31:11 +00001998 case BuiltinType::OCLEvent: Out << "9ocl_event"; break;
Guy Benyei11169dd2012-12-18 14:30:41 +00001999 }
2000}
2001
2002// <type> ::= <function-type>
2003// <function-type> ::= [<CV-qualifiers>] F [Y]
2004// <bare-function-type> [<ref-qualifier>] E
Guy Benyei11169dd2012-12-18 14:30:41 +00002005void CXXNameMangler::mangleType(const FunctionProtoType *T) {
2006 // Mangle CV-qualifiers, if present. These are 'this' qualifiers,
2007 // e.g. "const" in "int (A::*)() const".
2008 mangleQualifiers(Qualifiers::fromCVRMask(T->getTypeQuals()));
2009
2010 Out << 'F';
2011
2012 // FIXME: We don't have enough information in the AST to produce the 'Y'
2013 // encoding for extern "C" function types.
2014 mangleBareFunctionType(T, /*MangleReturnType=*/true);
2015
2016 // Mangle the ref-qualifier, if present.
2017 mangleRefQualifier(T->getRefQualifier());
2018
2019 Out << 'E';
2020}
2021void CXXNameMangler::mangleType(const FunctionNoProtoType *T) {
2022 llvm_unreachable("Can't mangle K&R function prototypes");
2023}
2024void CXXNameMangler::mangleBareFunctionType(const FunctionType *T,
2025 bool MangleReturnType) {
2026 // We should never be mangling something without a prototype.
2027 const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
2028
2029 // Record that we're in a function type. See mangleFunctionParam
2030 // for details on what we're trying to achieve here.
2031 FunctionTypeDepthState saved = FunctionTypeDepth.push();
2032
2033 // <bare-function-type> ::= <signature type>+
2034 if (MangleReturnType) {
2035 FunctionTypeDepth.enterResultType();
2036 mangleType(Proto->getResultType());
2037 FunctionTypeDepth.leaveResultType();
2038 }
2039
2040 if (Proto->getNumArgs() == 0 && !Proto->isVariadic()) {
2041 // <builtin-type> ::= v # void
2042 Out << 'v';
2043
2044 FunctionTypeDepth.pop(saved);
2045 return;
2046 }
2047
2048 for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),
2049 ArgEnd = Proto->arg_type_end();
2050 Arg != ArgEnd; ++Arg)
2051 mangleType(Context.getASTContext().getSignatureParameterType(*Arg));
2052
2053 FunctionTypeDepth.pop(saved);
2054
2055 // <builtin-type> ::= z # ellipsis
2056 if (Proto->isVariadic())
2057 Out << 'z';
2058}
2059
2060// <type> ::= <class-enum-type>
2061// <class-enum-type> ::= <name>
2062void CXXNameMangler::mangleType(const UnresolvedUsingType *T) {
2063 mangleName(T->getDecl());
2064}
2065
2066// <type> ::= <class-enum-type>
2067// <class-enum-type> ::= <name>
2068void CXXNameMangler::mangleType(const EnumType *T) {
2069 mangleType(static_cast<const TagType*>(T));
2070}
2071void CXXNameMangler::mangleType(const RecordType *T) {
2072 mangleType(static_cast<const TagType*>(T));
2073}
2074void CXXNameMangler::mangleType(const TagType *T) {
2075 mangleName(T->getDecl());
2076}
2077
2078// <type> ::= <array-type>
2079// <array-type> ::= A <positive dimension number> _ <element type>
2080// ::= A [<dimension expression>] _ <element type>
2081void CXXNameMangler::mangleType(const ConstantArrayType *T) {
2082 Out << 'A' << T->getSize() << '_';
2083 mangleType(T->getElementType());
2084}
2085void CXXNameMangler::mangleType(const VariableArrayType *T) {
2086 Out << 'A';
2087 // decayed vla types (size 0) will just be skipped.
2088 if (T->getSizeExpr())
2089 mangleExpression(T->getSizeExpr());
2090 Out << '_';
2091 mangleType(T->getElementType());
2092}
2093void CXXNameMangler::mangleType(const DependentSizedArrayType *T) {
2094 Out << 'A';
2095 mangleExpression(T->getSizeExpr());
2096 Out << '_';
2097 mangleType(T->getElementType());
2098}
2099void CXXNameMangler::mangleType(const IncompleteArrayType *T) {
2100 Out << "A_";
2101 mangleType(T->getElementType());
2102}
2103
2104// <type> ::= <pointer-to-member-type>
2105// <pointer-to-member-type> ::= M <class type> <member type>
2106void CXXNameMangler::mangleType(const MemberPointerType *T) {
2107 Out << 'M';
2108 mangleType(QualType(T->getClass(), 0));
2109 QualType PointeeType = T->getPointeeType();
2110 if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) {
2111 mangleType(FPT);
2112
2113 // Itanium C++ ABI 5.1.8:
2114 //
2115 // The type of a non-static member function is considered to be different,
2116 // for the purposes of substitution, from the type of a namespace-scope or
2117 // static member function whose type appears similar. The types of two
2118 // non-static member functions are considered to be different, for the
2119 // purposes of substitution, if the functions are members of different
2120 // classes. In other words, for the purposes of substitution, the class of
2121 // which the function is a member is considered part of the type of
2122 // function.
2123
2124 // Given that we already substitute member function pointers as a
2125 // whole, the net effect of this rule is just to unconditionally
2126 // suppress substitution on the function type in a member pointer.
2127 // We increment the SeqID here to emulate adding an entry to the
2128 // substitution table.
2129 ++SeqID;
2130 } else
2131 mangleType(PointeeType);
2132}
2133
2134// <type> ::= <template-param>
2135void CXXNameMangler::mangleType(const TemplateTypeParmType *T) {
2136 mangleTemplateParameter(T->getIndex());
2137}
2138
2139// <type> ::= <template-param>
2140void CXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T) {
2141 // FIXME: not clear how to mangle this!
2142 // template <class T...> class A {
2143 // template <class U...> void foo(T(*)(U) x...);
2144 // };
2145 Out << "_SUBSTPACK_";
2146}
2147
2148// <type> ::= P <type> # pointer-to
2149void CXXNameMangler::mangleType(const PointerType *T) {
2150 Out << 'P';
2151 mangleType(T->getPointeeType());
2152}
2153void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) {
2154 Out << 'P';
2155 mangleType(T->getPointeeType());
2156}
2157
2158// <type> ::= R <type> # reference-to
2159void CXXNameMangler::mangleType(const LValueReferenceType *T) {
2160 Out << 'R';
2161 mangleType(T->getPointeeType());
2162}
2163
2164// <type> ::= O <type> # rvalue reference-to (C++0x)
2165void CXXNameMangler::mangleType(const RValueReferenceType *T) {
2166 Out << 'O';
2167 mangleType(T->getPointeeType());
2168}
2169
2170// <type> ::= C <type> # complex pair (C 2000)
2171void CXXNameMangler::mangleType(const ComplexType *T) {
2172 Out << 'C';
2173 mangleType(T->getElementType());
2174}
2175
2176// ARM's ABI for Neon vector types specifies that they should be mangled as
2177// if they are structs (to match ARM's initial implementation). The
2178// vector type must be one of the special types predefined by ARM.
2179void CXXNameMangler::mangleNeonVectorType(const VectorType *T) {
2180 QualType EltType = T->getElementType();
2181 assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
2182 const char *EltName = 0;
2183 if (T->getVectorKind() == VectorType::NeonPolyVector) {
2184 switch (cast<BuiltinType>(EltType)->getKind()) {
2185 case BuiltinType::SChar: EltName = "poly8_t"; break;
2186 case BuiltinType::Short: EltName = "poly16_t"; break;
2187 default: llvm_unreachable("unexpected Neon polynomial vector element type");
2188 }
2189 } else {
2190 switch (cast<BuiltinType>(EltType)->getKind()) {
2191 case BuiltinType::SChar: EltName = "int8_t"; break;
2192 case BuiltinType::UChar: EltName = "uint8_t"; break;
2193 case BuiltinType::Short: EltName = "int16_t"; break;
2194 case BuiltinType::UShort: EltName = "uint16_t"; break;
2195 case BuiltinType::Int: EltName = "int32_t"; break;
2196 case BuiltinType::UInt: EltName = "uint32_t"; break;
2197 case BuiltinType::LongLong: EltName = "int64_t"; break;
2198 case BuiltinType::ULongLong: EltName = "uint64_t"; break;
2199 case BuiltinType::Float: EltName = "float32_t"; break;
Tim Northover2fe823a2013-08-01 09:23:19 +00002200 case BuiltinType::Half: EltName = "float16_t";break;
2201 default:
2202 llvm_unreachable("unexpected Neon vector element type");
Guy Benyei11169dd2012-12-18 14:30:41 +00002203 }
2204 }
2205 const char *BaseName = 0;
2206 unsigned BitSize = (T->getNumElements() *
2207 getASTContext().getTypeSize(EltType));
2208 if (BitSize == 64)
2209 BaseName = "__simd64_";
2210 else {
2211 assert(BitSize == 128 && "Neon vector type not 64 or 128 bits");
2212 BaseName = "__simd128_";
2213 }
2214 Out << strlen(BaseName) + strlen(EltName);
2215 Out << BaseName << EltName;
2216}
2217
Tim Northover2fe823a2013-08-01 09:23:19 +00002218static StringRef mangleAArch64VectorBase(const BuiltinType *EltType) {
2219 switch (EltType->getKind()) {
2220 case BuiltinType::SChar:
2221 return "Int8";
2222 case BuiltinType::Short:
2223 return "Int16";
2224 case BuiltinType::Int:
2225 return "Int32";
2226 case BuiltinType::LongLong:
2227 return "Int64";
2228 case BuiltinType::UChar:
2229 return "Uint8";
2230 case BuiltinType::UShort:
2231 return "Uint16";
2232 case BuiltinType::UInt:
2233 return "Uint32";
2234 case BuiltinType::ULongLong:
2235 return "Uint64";
2236 case BuiltinType::Half:
2237 return "Float16";
2238 case BuiltinType::Float:
2239 return "Float32";
2240 case BuiltinType::Double:
2241 return "Float64";
2242 default:
2243 llvm_unreachable("Unexpected vector element base type");
2244 }
2245}
2246
2247// AArch64's ABI for Neon vector types specifies that they should be mangled as
2248// the equivalent internal name. The vector type must be one of the special
2249// types predefined by ARM.
2250void CXXNameMangler::mangleAArch64NeonVectorType(const VectorType *T) {
2251 QualType EltType = T->getElementType();
2252 assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
2253 unsigned BitSize =
2254 (T->getNumElements() * getASTContext().getTypeSize(EltType));
Daniel Jasper8698af42013-08-01 10:30:11 +00002255 (void)BitSize; // Silence warning.
Tim Northover2fe823a2013-08-01 09:23:19 +00002256
2257 assert((BitSize == 64 || BitSize == 128) &&
2258 "Neon vector type not 64 or 128 bits");
2259
2260 assert(getASTContext().getTypeSize(EltType) != BitSize &&
2261 "Vector of 1 element not permitted");
2262
2263 StringRef EltName;
2264 if (T->getVectorKind() == VectorType::NeonPolyVector) {
2265 switch (cast<BuiltinType>(EltType)->getKind()) {
2266 case BuiltinType::UChar:
2267 EltName = "Poly8";
2268 break;
2269 case BuiltinType::UShort:
2270 EltName = "Poly16";
2271 break;
2272 default:
2273 llvm_unreachable("unexpected Neon polynomial vector element type");
2274 }
2275 } else
2276 EltName = mangleAArch64VectorBase(cast<BuiltinType>(EltType));
2277
2278 std::string TypeName =
2279 ("__" + EltName + "x" + llvm::utostr(T->getNumElements()) + "_t").str();
2280 Out << TypeName.length() << TypeName;
2281}
2282
Guy Benyei11169dd2012-12-18 14:30:41 +00002283// GNU extension: vector types
2284// <type> ::= <vector-type>
2285// <vector-type> ::= Dv <positive dimension number> _
2286// <extended element type>
2287// ::= Dv [<dimension expression>] _ <element type>
2288// <extended element type> ::= <element type>
2289// ::= p # AltiVec vector pixel
2290// ::= b # Altivec vector bool
2291void CXXNameMangler::mangleType(const VectorType *T) {
2292 if ((T->getVectorKind() == VectorType::NeonVector ||
2293 T->getVectorKind() == VectorType::NeonPolyVector)) {
Tim Northover2fe823a2013-08-01 09:23:19 +00002294 if (getASTContext().getTargetInfo().getTriple().getArch() ==
2295 llvm::Triple::aarch64)
2296 mangleAArch64NeonVectorType(T);
2297 else
2298 mangleNeonVectorType(T);
Guy Benyei11169dd2012-12-18 14:30:41 +00002299 return;
2300 }
2301 Out << "Dv" << T->getNumElements() << '_';
2302 if (T->getVectorKind() == VectorType::AltiVecPixel)
2303 Out << 'p';
2304 else if (T->getVectorKind() == VectorType::AltiVecBool)
2305 Out << 'b';
2306 else
2307 mangleType(T->getElementType());
2308}
2309void CXXNameMangler::mangleType(const ExtVectorType *T) {
2310 mangleType(static_cast<const VectorType*>(T));
2311}
2312void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) {
2313 Out << "Dv";
2314 mangleExpression(T->getSizeExpr());
2315 Out << '_';
2316 mangleType(T->getElementType());
2317}
2318
2319void CXXNameMangler::mangleType(const PackExpansionType *T) {
2320 // <type> ::= Dp <type> # pack expansion (C++0x)
2321 Out << "Dp";
2322 mangleType(T->getPattern());
2323}
2324
2325void CXXNameMangler::mangleType(const ObjCInterfaceType *T) {
2326 mangleSourceName(T->getDecl()->getIdentifier());
2327}
2328
2329void CXXNameMangler::mangleType(const ObjCObjectType *T) {
Eli Friedman5f508952013-06-18 22:41:37 +00002330 if (!T->qual_empty()) {
2331 // Mangle protocol qualifiers.
2332 SmallString<64> QualStr;
2333 llvm::raw_svector_ostream QualOS(QualStr);
2334 QualOS << "objcproto";
2335 ObjCObjectType::qual_iterator i = T->qual_begin(), e = T->qual_end();
2336 for ( ; i != e; ++i) {
2337 StringRef name = (*i)->getName();
2338 QualOS << name.size() << name;
2339 }
2340 QualOS.flush();
2341 Out << 'U' << QualStr.size() << QualStr;
2342 }
Guy Benyei11169dd2012-12-18 14:30:41 +00002343 mangleType(T->getBaseType());
2344}
2345
2346void CXXNameMangler::mangleType(const BlockPointerType *T) {
2347 Out << "U13block_pointer";
2348 mangleType(T->getPointeeType());
2349}
2350
2351void CXXNameMangler::mangleType(const InjectedClassNameType *T) {
2352 // Mangle injected class name types as if the user had written the
2353 // specialization out fully. It may not actually be possible to see
2354 // this mangling, though.
2355 mangleType(T->getInjectedSpecializationType());
2356}
2357
2358void CXXNameMangler::mangleType(const TemplateSpecializationType *T) {
2359 if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) {
2360 mangleName(TD, T->getArgs(), T->getNumArgs());
2361 } else {
2362 if (mangleSubstitution(QualType(T, 0)))
2363 return;
2364
2365 mangleTemplatePrefix(T->getTemplateName());
2366
2367 // FIXME: GCC does not appear to mangle the template arguments when
2368 // the template in question is a dependent template name. Should we
2369 // emulate that badness?
2370 mangleTemplateArgs(T->getArgs(), T->getNumArgs());
2371 addSubstitution(QualType(T, 0));
2372 }
2373}
2374
2375void CXXNameMangler::mangleType(const DependentNameType *T) {
2376 // Typename types are always nested
2377 Out << 'N';
2378 manglePrefix(T->getQualifier());
2379 mangleSourceName(T->getIdentifier());
2380 Out << 'E';
2381}
2382
2383void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) {
2384 // Dependently-scoped template types are nested if they have a prefix.
2385 Out << 'N';
2386
2387 // TODO: avoid making this TemplateName.
2388 TemplateName Prefix =
2389 getASTContext().getDependentTemplateName(T->getQualifier(),
2390 T->getIdentifier());
2391 mangleTemplatePrefix(Prefix);
2392
2393 // FIXME: GCC does not appear to mangle the template arguments when
2394 // the template in question is a dependent template name. Should we
2395 // emulate that badness?
2396 mangleTemplateArgs(T->getArgs(), T->getNumArgs());
2397 Out << 'E';
2398}
2399
2400void CXXNameMangler::mangleType(const TypeOfType *T) {
2401 // FIXME: this is pretty unsatisfactory, but there isn't an obvious
2402 // "extension with parameters" mangling.
2403 Out << "u6typeof";
2404}
2405
2406void CXXNameMangler::mangleType(const TypeOfExprType *T) {
2407 // FIXME: this is pretty unsatisfactory, but there isn't an obvious
2408 // "extension with parameters" mangling.
2409 Out << "u6typeof";
2410}
2411
2412void CXXNameMangler::mangleType(const DecltypeType *T) {
2413 Expr *E = T->getUnderlyingExpr();
2414
2415 // type ::= Dt <expression> E # decltype of an id-expression
2416 // # or class member access
2417 // ::= DT <expression> E # decltype of an expression
2418
2419 // This purports to be an exhaustive list of id-expressions and
2420 // class member accesses. Note that we do not ignore parentheses;
2421 // parentheses change the semantics of decltype for these
2422 // expressions (and cause the mangler to use the other form).
2423 if (isa<DeclRefExpr>(E) ||
2424 isa<MemberExpr>(E) ||
2425 isa<UnresolvedLookupExpr>(E) ||
2426 isa<DependentScopeDeclRefExpr>(E) ||
2427 isa<CXXDependentScopeMemberExpr>(E) ||
2428 isa<UnresolvedMemberExpr>(E))
2429 Out << "Dt";
2430 else
2431 Out << "DT";
2432 mangleExpression(E);
2433 Out << 'E';
2434}
2435
2436void CXXNameMangler::mangleType(const UnaryTransformType *T) {
2437 // If this is dependent, we need to record that. If not, we simply
2438 // mangle it as the underlying type since they are equivalent.
2439 if (T->isDependentType()) {
2440 Out << 'U';
2441
2442 switch (T->getUTTKind()) {
2443 case UnaryTransformType::EnumUnderlyingType:
2444 Out << "3eut";
2445 break;
2446 }
2447 }
2448
2449 mangleType(T->getUnderlyingType());
2450}
2451
2452void CXXNameMangler::mangleType(const AutoType *T) {
2453 QualType D = T->getDeducedType();
2454 // <builtin-type> ::= Da # dependent auto
2455 if (D.isNull())
Richard Smith74aeef52013-04-26 16:15:35 +00002456 Out << (T->isDecltypeAuto() ? "Dc" : "Da");
Guy Benyei11169dd2012-12-18 14:30:41 +00002457 else
2458 mangleType(D);
2459}
2460
2461void CXXNameMangler::mangleType(const AtomicType *T) {
2462 // <type> ::= U <source-name> <type> # vendor extended type qualifier
2463 // (Until there's a standardized mangling...)
2464 Out << "U7_Atomic";
2465 mangleType(T->getValueType());
2466}
2467
2468void CXXNameMangler::mangleIntegerLiteral(QualType T,
2469 const llvm::APSInt &Value) {
2470 // <expr-primary> ::= L <type> <value number> E # integer literal
2471 Out << 'L';
2472
2473 mangleType(T);
2474 if (T->isBooleanType()) {
2475 // Boolean values are encoded as 0/1.
2476 Out << (Value.getBoolValue() ? '1' : '0');
2477 } else {
2478 mangleNumber(Value);
2479 }
2480 Out << 'E';
2481
2482}
2483
2484/// Mangles a member expression.
2485void CXXNameMangler::mangleMemberExpr(const Expr *base,
2486 bool isArrow,
2487 NestedNameSpecifier *qualifier,
2488 NamedDecl *firstQualifierLookup,
2489 DeclarationName member,
2490 unsigned arity) {
2491 // <expression> ::= dt <expression> <unresolved-name>
2492 // ::= pt <expression> <unresolved-name>
2493 if (base) {
2494 if (base->isImplicitCXXThis()) {
2495 // Note: GCC mangles member expressions to the implicit 'this' as
2496 // *this., whereas we represent them as this->. The Itanium C++ ABI
2497 // does not specify anything here, so we follow GCC.
2498 Out << "dtdefpT";
2499 } else {
2500 Out << (isArrow ? "pt" : "dt");
2501 mangleExpression(base);
2502 }
2503 }
2504 mangleUnresolvedName(qualifier, firstQualifierLookup, member, arity);
2505}
2506
2507/// Look at the callee of the given call expression and determine if
2508/// it's a parenthesized id-expression which would have triggered ADL
2509/// otherwise.
2510static bool isParenthesizedADLCallee(const CallExpr *call) {
2511 const Expr *callee = call->getCallee();
2512 const Expr *fn = callee->IgnoreParens();
2513
2514 // Must be parenthesized. IgnoreParens() skips __extension__ nodes,
2515 // too, but for those to appear in the callee, it would have to be
2516 // parenthesized.
2517 if (callee == fn) return false;
2518
2519 // Must be an unresolved lookup.
2520 const UnresolvedLookupExpr *lookup = dyn_cast<UnresolvedLookupExpr>(fn);
2521 if (!lookup) return false;
2522
2523 assert(!lookup->requiresADL());
2524
2525 // Must be an unqualified lookup.
2526 if (lookup->getQualifier()) return false;
2527
2528 // Must not have found a class member. Note that if one is a class
2529 // member, they're all class members.
2530 if (lookup->getNumDecls() > 0 &&
2531 (*lookup->decls_begin())->isCXXClassMember())
2532 return false;
2533
2534 // Otherwise, ADL would have been triggered.
2535 return true;
2536}
2537
2538void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity) {
2539 // <expression> ::= <unary operator-name> <expression>
2540 // ::= <binary operator-name> <expression> <expression>
2541 // ::= <trinary operator-name> <expression> <expression> <expression>
2542 // ::= cv <type> expression # conversion with one argument
2543 // ::= cv <type> _ <expression>* E # conversion with a different number of arguments
2544 // ::= st <type> # sizeof (a type)
2545 // ::= at <type> # alignof (a type)
2546 // ::= <template-param>
2547 // ::= <function-param>
2548 // ::= sr <type> <unqualified-name> # dependent name
2549 // ::= sr <type> <unqualified-name> <template-args> # dependent template-id
2550 // ::= ds <expression> <expression> # expr.*expr
2551 // ::= sZ <template-param> # size of a parameter pack
2552 // ::= sZ <function-param> # size of a function parameter pack
2553 // ::= <expr-primary>
2554 // <expr-primary> ::= L <type> <value number> E # integer literal
2555 // ::= L <type <value float> E # floating literal
2556 // ::= L <mangled-name> E # external name
2557 // ::= fpT # 'this' expression
2558 QualType ImplicitlyConvertedToType;
2559
2560recurse:
2561 switch (E->getStmtClass()) {
2562 case Expr::NoStmtClass:
2563#define ABSTRACT_STMT(Type)
2564#define EXPR(Type, Base)
2565#define STMT(Type, Base) \
2566 case Expr::Type##Class:
2567#include "clang/AST/StmtNodes.inc"
2568 // fallthrough
2569
2570 // These all can only appear in local or variable-initialization
2571 // contexts and so should never appear in a mangling.
2572 case Expr::AddrLabelExprClass:
2573 case Expr::DesignatedInitExprClass:
2574 case Expr::ImplicitValueInitExprClass:
2575 case Expr::ParenListExprClass:
2576 case Expr::LambdaExprClass:
John McCall5e77d762013-04-16 07:28:30 +00002577 case Expr::MSPropertyRefExprClass:
Guy Benyei11169dd2012-12-18 14:30:41 +00002578 llvm_unreachable("unexpected statement kind");
2579
2580 // FIXME: invent manglings for all these.
2581 case Expr::BlockExprClass:
2582 case Expr::CXXPseudoDestructorExprClass:
2583 case Expr::ChooseExprClass:
2584 case Expr::CompoundLiteralExprClass:
2585 case Expr::ExtVectorElementExprClass:
2586 case Expr::GenericSelectionExprClass:
2587 case Expr::ObjCEncodeExprClass:
2588 case Expr::ObjCIsaExprClass:
2589 case Expr::ObjCIvarRefExprClass:
2590 case Expr::ObjCMessageExprClass:
2591 case Expr::ObjCPropertyRefExprClass:
2592 case Expr::ObjCProtocolExprClass:
2593 case Expr::ObjCSelectorExprClass:
2594 case Expr::ObjCStringLiteralClass:
2595 case Expr::ObjCBoxedExprClass:
2596 case Expr::ObjCArrayLiteralClass:
2597 case Expr::ObjCDictionaryLiteralClass:
2598 case Expr::ObjCSubscriptRefExprClass:
2599 case Expr::ObjCIndirectCopyRestoreExprClass:
2600 case Expr::OffsetOfExprClass:
2601 case Expr::PredefinedExprClass:
2602 case Expr::ShuffleVectorExprClass:
Hal Finkelc4d7c822013-09-18 03:29:45 +00002603 case Expr::ConvertVectorExprClass:
Guy Benyei11169dd2012-12-18 14:30:41 +00002604 case Expr::StmtExprClass:
2605 case Expr::UnaryTypeTraitExprClass:
2606 case Expr::BinaryTypeTraitExprClass:
2607 case Expr::TypeTraitExprClass:
2608 case Expr::ArrayTypeTraitExprClass:
2609 case Expr::ExpressionTraitExprClass:
2610 case Expr::VAArgExprClass:
2611 case Expr::CXXUuidofExprClass:
2612 case Expr::CUDAKernelCallExprClass:
2613 case Expr::AsTypeExprClass:
2614 case Expr::PseudoObjectExprClass:
2615 case Expr::AtomicExprClass:
2616 {
2617 // As bad as this diagnostic is, it's better than crashing.
2618 DiagnosticsEngine &Diags = Context.getDiags();
2619 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2620 "cannot yet mangle expression type %0");
2621 Diags.Report(E->getExprLoc(), DiagID)
2622 << E->getStmtClassName() << E->getSourceRange();
2623 break;
2624 }
2625
2626 // Even gcc-4.5 doesn't mangle this.
2627 case Expr::BinaryConditionalOperatorClass: {
2628 DiagnosticsEngine &Diags = Context.getDiags();
2629 unsigned DiagID =
2630 Diags.getCustomDiagID(DiagnosticsEngine::Error,
2631 "?: operator with omitted middle operand cannot be mangled");
2632 Diags.Report(E->getExprLoc(), DiagID)
2633 << E->getStmtClassName() << E->getSourceRange();
2634 break;
2635 }
2636
2637 // These are used for internal purposes and cannot be meaningfully mangled.
2638 case Expr::OpaqueValueExprClass:
2639 llvm_unreachable("cannot mangle opaque value; mangling wrong thing?");
2640
2641 case Expr::InitListExprClass: {
2642 // Proposal by Jason Merrill, 2012-01-03
2643 Out << "il";
2644 const InitListExpr *InitList = cast<InitListExpr>(E);
2645 for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
2646 mangleExpression(InitList->getInit(i));
2647 Out << "E";
2648 break;
2649 }
2650
2651 case Expr::CXXDefaultArgExprClass:
2652 mangleExpression(cast<CXXDefaultArgExpr>(E)->getExpr(), Arity);
2653 break;
2654
Richard Smith852c9db2013-04-20 22:23:05 +00002655 case Expr::CXXDefaultInitExprClass:
2656 mangleExpression(cast<CXXDefaultInitExpr>(E)->getExpr(), Arity);
2657 break;
2658
Richard Smithcc1b96d2013-06-12 22:31:48 +00002659 case Expr::CXXStdInitializerListExprClass:
2660 mangleExpression(cast<CXXStdInitializerListExpr>(E)->getSubExpr(), Arity);
2661 break;
2662
Guy Benyei11169dd2012-12-18 14:30:41 +00002663 case Expr::SubstNonTypeTemplateParmExprClass:
2664 mangleExpression(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(),
2665 Arity);
2666 break;
2667
2668 case Expr::UserDefinedLiteralClass:
2669 // We follow g++'s approach of mangling a UDL as a call to the literal
2670 // operator.
2671 case Expr::CXXMemberCallExprClass: // fallthrough
2672 case Expr::CallExprClass: {
2673 const CallExpr *CE = cast<CallExpr>(E);
2674
2675 // <expression> ::= cp <simple-id> <expression>* E
2676 // We use this mangling only when the call would use ADL except
2677 // for being parenthesized. Per discussion with David
2678 // Vandervoorde, 2011.04.25.
2679 if (isParenthesizedADLCallee(CE)) {
2680 Out << "cp";
2681 // The callee here is a parenthesized UnresolvedLookupExpr with
2682 // no qualifier and should always get mangled as a <simple-id>
2683 // anyway.
2684
2685 // <expression> ::= cl <expression>* E
2686 } else {
2687 Out << "cl";
2688 }
2689
2690 mangleExpression(CE->getCallee(), CE->getNumArgs());
2691 for (unsigned I = 0, N = CE->getNumArgs(); I != N; ++I)
2692 mangleExpression(CE->getArg(I));
2693 Out << 'E';
2694 break;
2695 }
2696
2697 case Expr::CXXNewExprClass: {
2698 const CXXNewExpr *New = cast<CXXNewExpr>(E);
2699 if (New->isGlobalNew()) Out << "gs";
2700 Out << (New->isArray() ? "na" : "nw");
2701 for (CXXNewExpr::const_arg_iterator I = New->placement_arg_begin(),
2702 E = New->placement_arg_end(); I != E; ++I)
2703 mangleExpression(*I);
2704 Out << '_';
2705 mangleType(New->getAllocatedType());
2706 if (New->hasInitializer()) {
2707 // Proposal by Jason Merrill, 2012-01-03
2708 if (New->getInitializationStyle() == CXXNewExpr::ListInit)
2709 Out << "il";
2710 else
2711 Out << "pi";
2712 const Expr *Init = New->getInitializer();
2713 if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
2714 // Directly inline the initializers.
2715 for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(),
2716 E = CCE->arg_end();
2717 I != E; ++I)
2718 mangleExpression(*I);
2719 } else if (const ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) {
2720 for (unsigned i = 0, e = PLE->getNumExprs(); i != e; ++i)
2721 mangleExpression(PLE->getExpr(i));
2722 } else if (New->getInitializationStyle() == CXXNewExpr::ListInit &&
2723 isa<InitListExpr>(Init)) {
2724 // Only take InitListExprs apart for list-initialization.
2725 const InitListExpr *InitList = cast<InitListExpr>(Init);
2726 for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
2727 mangleExpression(InitList->getInit(i));
2728 } else
2729 mangleExpression(Init);
2730 }
2731 Out << 'E';
2732 break;
2733 }
2734
2735 case Expr::MemberExprClass: {
2736 const MemberExpr *ME = cast<MemberExpr>(E);
2737 mangleMemberExpr(ME->getBase(), ME->isArrow(),
2738 ME->getQualifier(), 0, ME->getMemberDecl()->getDeclName(),
2739 Arity);
2740 break;
2741 }
2742
2743 case Expr::UnresolvedMemberExprClass: {
2744 const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E);
2745 mangleMemberExpr(ME->getBase(), ME->isArrow(),
2746 ME->getQualifier(), 0, ME->getMemberName(),
2747 Arity);
2748 if (ME->hasExplicitTemplateArgs())
2749 mangleTemplateArgs(ME->getExplicitTemplateArgs());
2750 break;
2751 }
2752
2753 case Expr::CXXDependentScopeMemberExprClass: {
2754 const CXXDependentScopeMemberExpr *ME
2755 = cast<CXXDependentScopeMemberExpr>(E);
2756 mangleMemberExpr(ME->getBase(), ME->isArrow(),
2757 ME->getQualifier(), ME->getFirstQualifierFoundInScope(),
2758 ME->getMember(), Arity);
2759 if (ME->hasExplicitTemplateArgs())
2760 mangleTemplateArgs(ME->getExplicitTemplateArgs());
2761 break;
2762 }
2763
2764 case Expr::UnresolvedLookupExprClass: {
2765 const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E);
2766 mangleUnresolvedName(ULE->getQualifier(), 0, ULE->getName(), Arity);
2767
2768 // All the <unresolved-name> productions end in a
2769 // base-unresolved-name, where <template-args> are just tacked
2770 // onto the end.
2771 if (ULE->hasExplicitTemplateArgs())
2772 mangleTemplateArgs(ULE->getExplicitTemplateArgs());
2773 break;
2774 }
2775
2776 case Expr::CXXUnresolvedConstructExprClass: {
2777 const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E);
2778 unsigned N = CE->arg_size();
2779
2780 Out << "cv";
2781 mangleType(CE->getType());
2782 if (N != 1) Out << '_';
2783 for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
2784 if (N != 1) Out << 'E';
2785 break;
2786 }
2787
2788 case Expr::CXXTemporaryObjectExprClass:
2789 case Expr::CXXConstructExprClass: {
2790 const CXXConstructExpr *CE = cast<CXXConstructExpr>(E);
2791 unsigned N = CE->getNumArgs();
2792
2793 // Proposal by Jason Merrill, 2012-01-03
2794 if (CE->isListInitialization())
2795 Out << "tl";
2796 else
2797 Out << "cv";
2798 mangleType(CE->getType());
2799 if (N != 1) Out << '_';
2800 for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
2801 if (N != 1) Out << 'E';
2802 break;
2803 }
2804
2805 case Expr::CXXScalarValueInitExprClass:
2806 Out <<"cv";
2807 mangleType(E->getType());
2808 Out <<"_E";
2809 break;
2810
2811 case Expr::CXXNoexceptExprClass:
2812 Out << "nx";
2813 mangleExpression(cast<CXXNoexceptExpr>(E)->getOperand());
2814 break;
2815
2816 case Expr::UnaryExprOrTypeTraitExprClass: {
2817 const UnaryExprOrTypeTraitExpr *SAE = cast<UnaryExprOrTypeTraitExpr>(E);
2818
2819 if (!SAE->isInstantiationDependent()) {
2820 // Itanium C++ ABI:
2821 // If the operand of a sizeof or alignof operator is not
2822 // instantiation-dependent it is encoded as an integer literal
2823 // reflecting the result of the operator.
2824 //
2825 // If the result of the operator is implicitly converted to a known
2826 // integer type, that type is used for the literal; otherwise, the type
2827 // of std::size_t or std::ptrdiff_t is used.
2828 QualType T = (ImplicitlyConvertedToType.isNull() ||
2829 !ImplicitlyConvertedToType->isIntegerType())? SAE->getType()
2830 : ImplicitlyConvertedToType;
2831 llvm::APSInt V = SAE->EvaluateKnownConstInt(Context.getASTContext());
2832 mangleIntegerLiteral(T, V);
2833 break;
2834 }
2835
2836 switch(SAE->getKind()) {
2837 case UETT_SizeOf:
2838 Out << 's';
2839 break;
2840 case UETT_AlignOf:
2841 Out << 'a';
2842 break;
2843 case UETT_VecStep:
2844 DiagnosticsEngine &Diags = Context.getDiags();
2845 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2846 "cannot yet mangle vec_step expression");
2847 Diags.Report(DiagID);
2848 return;
2849 }
2850 if (SAE->isArgumentType()) {
2851 Out << 't';
2852 mangleType(SAE->getArgumentType());
2853 } else {
2854 Out << 'z';
2855 mangleExpression(SAE->getArgumentExpr());
2856 }
2857 break;
2858 }
2859
2860 case Expr::CXXThrowExprClass: {
2861 const CXXThrowExpr *TE = cast<CXXThrowExpr>(E);
Richard Smitheb0133c2013-08-27 01:03:46 +00002862 // <expression> ::= tw <expression> # throw expression
2863 // ::= tr # rethrow
Guy Benyei11169dd2012-12-18 14:30:41 +00002864 if (TE->getSubExpr()) {
2865 Out << "tw";
2866 mangleExpression(TE->getSubExpr());
2867 } else {
2868 Out << "tr";
2869 }
2870 break;
2871 }
2872
2873 case Expr::CXXTypeidExprClass: {
2874 const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(E);
Richard Smitheb0133c2013-08-27 01:03:46 +00002875 // <expression> ::= ti <type> # typeid (type)
2876 // ::= te <expression> # typeid (expression)
Guy Benyei11169dd2012-12-18 14:30:41 +00002877 if (TIE->isTypeOperand()) {
2878 Out << "ti";
David Majnemer143c55e2013-09-27 07:04:31 +00002879 mangleType(TIE->getTypeOperand(Context.getASTContext()));
Guy Benyei11169dd2012-12-18 14:30:41 +00002880 } else {
2881 Out << "te";
2882 mangleExpression(TIE->getExprOperand());
2883 }
2884 break;
2885 }
2886
2887 case Expr::CXXDeleteExprClass: {
2888 const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(E);
Richard Smitheb0133c2013-08-27 01:03:46 +00002889 // <expression> ::= [gs] dl <expression> # [::] delete expr
2890 // ::= [gs] da <expression> # [::] delete [] expr
Guy Benyei11169dd2012-12-18 14:30:41 +00002891 if (DE->isGlobalDelete()) Out << "gs";
2892 Out << (DE->isArrayForm() ? "da" : "dl");
2893 mangleExpression(DE->getArgument());
2894 break;
2895 }
2896
2897 case Expr::UnaryOperatorClass: {
2898 const UnaryOperator *UO = cast<UnaryOperator>(E);
2899 mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()),
2900 /*Arity=*/1);
2901 mangleExpression(UO->getSubExpr());
2902 break;
2903 }
2904
2905 case Expr::ArraySubscriptExprClass: {
2906 const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(E);
2907
2908 // Array subscript is treated as a syntactically weird form of
2909 // binary operator.
2910 Out << "ix";
2911 mangleExpression(AE->getLHS());
2912 mangleExpression(AE->getRHS());
2913 break;
2914 }
2915
2916 case Expr::CompoundAssignOperatorClass: // fallthrough
2917 case Expr::BinaryOperatorClass: {
2918 const BinaryOperator *BO = cast<BinaryOperator>(E);
2919 if (BO->getOpcode() == BO_PtrMemD)
2920 Out << "ds";
2921 else
2922 mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()),
2923 /*Arity=*/2);
2924 mangleExpression(BO->getLHS());
2925 mangleExpression(BO->getRHS());
2926 break;
2927 }
2928
2929 case Expr::ConditionalOperatorClass: {
2930 const ConditionalOperator *CO = cast<ConditionalOperator>(E);
2931 mangleOperatorName(OO_Conditional, /*Arity=*/3);
2932 mangleExpression(CO->getCond());
2933 mangleExpression(CO->getLHS(), Arity);
2934 mangleExpression(CO->getRHS(), Arity);
2935 break;
2936 }
2937
2938 case Expr::ImplicitCastExprClass: {
2939 ImplicitlyConvertedToType = E->getType();
2940 E = cast<ImplicitCastExpr>(E)->getSubExpr();
2941 goto recurse;
2942 }
2943
2944 case Expr::ObjCBridgedCastExprClass: {
2945 // Mangle ownership casts as a vendor extended operator __bridge,
2946 // __bridge_transfer, or __bridge_retain.
2947 StringRef Kind = cast<ObjCBridgedCastExpr>(E)->getBridgeKindName();
2948 Out << "v1U" << Kind.size() << Kind;
2949 }
2950 // Fall through to mangle the cast itself.
2951
2952 case Expr::CStyleCastExprClass:
2953 case Expr::CXXStaticCastExprClass:
2954 case Expr::CXXDynamicCastExprClass:
2955 case Expr::CXXReinterpretCastExprClass:
2956 case Expr::CXXConstCastExprClass:
2957 case Expr::CXXFunctionalCastExprClass: {
2958 const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(E);
2959 Out << "cv";
2960 mangleType(ECE->getType());
2961 mangleExpression(ECE->getSubExpr());
2962 break;
2963 }
2964
2965 case Expr::CXXOperatorCallExprClass: {
2966 const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E);
2967 unsigned NumArgs = CE->getNumArgs();
2968 mangleOperatorName(CE->getOperator(), /*Arity=*/NumArgs);
2969 // Mangle the arguments.
2970 for (unsigned i = 0; i != NumArgs; ++i)
2971 mangleExpression(CE->getArg(i));
2972 break;
2973 }
2974
2975 case Expr::ParenExprClass:
2976 mangleExpression(cast<ParenExpr>(E)->getSubExpr(), Arity);
2977 break;
2978
2979 case Expr::DeclRefExprClass: {
2980 const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl();
2981
2982 switch (D->getKind()) {
2983 default:
2984 // <expr-primary> ::= L <mangled-name> E # external name
2985 Out << 'L';
2986 mangle(D, "_Z");
2987 Out << 'E';
2988 break;
2989
2990 case Decl::ParmVar:
2991 mangleFunctionParam(cast<ParmVarDecl>(D));
2992 break;
2993
2994 case Decl::EnumConstant: {
2995 const EnumConstantDecl *ED = cast<EnumConstantDecl>(D);
2996 mangleIntegerLiteral(ED->getType(), ED->getInitVal());
2997 break;
2998 }
2999
3000 case Decl::NonTypeTemplateParm: {
3001 const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D);
3002 mangleTemplateParameter(PD->getIndex());
3003 break;
3004 }
3005
3006 }
3007
3008 break;
3009 }
3010
3011 case Expr::SubstNonTypeTemplateParmPackExprClass:
3012 // FIXME: not clear how to mangle this!
3013 // template <unsigned N...> class A {
3014 // template <class U...> void foo(U (&x)[N]...);
3015 // };
3016 Out << "_SUBSTPACK_";
3017 break;
3018
3019 case Expr::FunctionParmPackExprClass: {
3020 // FIXME: not clear how to mangle this!
3021 const FunctionParmPackExpr *FPPE = cast<FunctionParmPackExpr>(E);
3022 Out << "v110_SUBSTPACK";
3023 mangleFunctionParam(FPPE->getParameterPack());
3024 break;
3025 }
3026
3027 case Expr::DependentScopeDeclRefExprClass: {
3028 const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E);
3029 mangleUnresolvedName(DRE->getQualifier(), 0, DRE->getDeclName(), Arity);
3030
3031 // All the <unresolved-name> productions end in a
3032 // base-unresolved-name, where <template-args> are just tacked
3033 // onto the end.
3034 if (DRE->hasExplicitTemplateArgs())
3035 mangleTemplateArgs(DRE->getExplicitTemplateArgs());
3036 break;
3037 }
3038
3039 case Expr::CXXBindTemporaryExprClass:
3040 mangleExpression(cast<CXXBindTemporaryExpr>(E)->getSubExpr());
3041 break;
3042
3043 case Expr::ExprWithCleanupsClass:
3044 mangleExpression(cast<ExprWithCleanups>(E)->getSubExpr(), Arity);
3045 break;
3046
3047 case Expr::FloatingLiteralClass: {
3048 const FloatingLiteral *FL = cast<FloatingLiteral>(E);
3049 Out << 'L';
3050 mangleType(FL->getType());
3051 mangleFloat(FL->getValue());
3052 Out << 'E';
3053 break;
3054 }
3055
3056 case Expr::CharacterLiteralClass:
3057 Out << 'L';
3058 mangleType(E->getType());
3059 Out << cast<CharacterLiteral>(E)->getValue();
3060 Out << 'E';
3061 break;
3062
3063 // FIXME. __objc_yes/__objc_no are mangled same as true/false
3064 case Expr::ObjCBoolLiteralExprClass:
3065 Out << "Lb";
3066 Out << (cast<ObjCBoolLiteralExpr>(E)->getValue() ? '1' : '0');
3067 Out << 'E';
3068 break;
3069
3070 case Expr::CXXBoolLiteralExprClass:
3071 Out << "Lb";
3072 Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0');
3073 Out << 'E';
3074 break;
3075
3076 case Expr::IntegerLiteralClass: {
3077 llvm::APSInt Value(cast<IntegerLiteral>(E)->getValue());
3078 if (E->getType()->isSignedIntegerType())
3079 Value.setIsSigned(true);
3080 mangleIntegerLiteral(E->getType(), Value);
3081 break;
3082 }
3083
3084 case Expr::ImaginaryLiteralClass: {
3085 const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(E);
3086 // Mangle as if a complex literal.
3087 // Proposal from David Vandevoorde, 2010.06.30.
3088 Out << 'L';
3089 mangleType(E->getType());
3090 if (const FloatingLiteral *Imag =
3091 dyn_cast<FloatingLiteral>(IE->getSubExpr())) {
3092 // Mangle a floating-point zero of the appropriate type.
3093 mangleFloat(llvm::APFloat(Imag->getValue().getSemantics()));
3094 Out << '_';
3095 mangleFloat(Imag->getValue());
3096 } else {
3097 Out << "0_";
3098 llvm::APSInt Value(cast<IntegerLiteral>(IE->getSubExpr())->getValue());
3099 if (IE->getSubExpr()->getType()->isSignedIntegerType())
3100 Value.setIsSigned(true);
3101 mangleNumber(Value);
3102 }
3103 Out << 'E';
3104 break;
3105 }
3106
3107 case Expr::StringLiteralClass: {
3108 // Revised proposal from David Vandervoorde, 2010.07.15.
3109 Out << 'L';
3110 assert(isa<ConstantArrayType>(E->getType()));
3111 mangleType(E->getType());
3112 Out << 'E';
3113 break;
3114 }
3115
3116 case Expr::GNUNullExprClass:
3117 // FIXME: should this really be mangled the same as nullptr?
3118 // fallthrough
3119
3120 case Expr::CXXNullPtrLiteralExprClass: {
Guy Benyei11169dd2012-12-18 14:30:41 +00003121 Out << "LDnE";
3122 break;
3123 }
3124
3125 case Expr::PackExpansionExprClass:
3126 Out << "sp";
3127 mangleExpression(cast<PackExpansionExpr>(E)->getPattern());
3128 break;
3129
3130 case Expr::SizeOfPackExprClass: {
3131 Out << "sZ";
3132 const NamedDecl *Pack = cast<SizeOfPackExpr>(E)->getPack();
3133 if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Pack))
3134 mangleTemplateParameter(TTP->getIndex());
3135 else if (const NonTypeTemplateParmDecl *NTTP
3136 = dyn_cast<NonTypeTemplateParmDecl>(Pack))
3137 mangleTemplateParameter(NTTP->getIndex());
3138 else if (const TemplateTemplateParmDecl *TempTP
3139 = dyn_cast<TemplateTemplateParmDecl>(Pack))
3140 mangleTemplateParameter(TempTP->getIndex());
3141 else
3142 mangleFunctionParam(cast<ParmVarDecl>(Pack));
3143 break;
3144 }
3145
3146 case Expr::MaterializeTemporaryExprClass: {
3147 mangleExpression(cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr());
3148 break;
3149 }
3150
3151 case Expr::CXXThisExprClass:
3152 Out << "fpT";
3153 break;
3154 }
3155}
3156
3157/// Mangle an expression which refers to a parameter variable.
3158///
3159/// <expression> ::= <function-param>
3160/// <function-param> ::= fp <top-level CV-qualifiers> _ # L == 0, I == 0
3161/// <function-param> ::= fp <top-level CV-qualifiers>
3162/// <parameter-2 non-negative number> _ # L == 0, I > 0
3163/// <function-param> ::= fL <L-1 non-negative number>
3164/// p <top-level CV-qualifiers> _ # L > 0, I == 0
3165/// <function-param> ::= fL <L-1 non-negative number>
3166/// p <top-level CV-qualifiers>
3167/// <I-1 non-negative number> _ # L > 0, I > 0
3168///
3169/// L is the nesting depth of the parameter, defined as 1 if the
3170/// parameter comes from the innermost function prototype scope
3171/// enclosing the current context, 2 if from the next enclosing
3172/// function prototype scope, and so on, with one special case: if
3173/// we've processed the full parameter clause for the innermost
3174/// function type, then L is one less. This definition conveniently
3175/// makes it irrelevant whether a function's result type was written
3176/// trailing or leading, but is otherwise overly complicated; the
3177/// numbering was first designed without considering references to
3178/// parameter in locations other than return types, and then the
3179/// mangling had to be generalized without changing the existing
3180/// manglings.
3181///
3182/// I is the zero-based index of the parameter within its parameter
3183/// declaration clause. Note that the original ABI document describes
3184/// this using 1-based ordinals.
3185void CXXNameMangler::mangleFunctionParam(const ParmVarDecl *parm) {
3186 unsigned parmDepth = parm->getFunctionScopeDepth();
3187 unsigned parmIndex = parm->getFunctionScopeIndex();
3188
3189 // Compute 'L'.
3190 // parmDepth does not include the declaring function prototype.
3191 // FunctionTypeDepth does account for that.
3192 assert(parmDepth < FunctionTypeDepth.getDepth());
3193 unsigned nestingDepth = FunctionTypeDepth.getDepth() - parmDepth;
3194 if (FunctionTypeDepth.isInResultType())
3195 nestingDepth--;
3196
3197 if (nestingDepth == 0) {
3198 Out << "fp";
3199 } else {
3200 Out << "fL" << (nestingDepth - 1) << 'p';
3201 }
3202
3203 // Top-level qualifiers. We don't have to worry about arrays here,
3204 // because parameters declared as arrays should already have been
3205 // transformed to have pointer type. FIXME: apparently these don't
3206 // get mangled if used as an rvalue of a known non-class type?
3207 assert(!parm->getType()->isArrayType()
3208 && "parameter's type is still an array type?");
3209 mangleQualifiers(parm->getType().getQualifiers());
3210
3211 // Parameter index.
3212 if (parmIndex != 0) {
3213 Out << (parmIndex - 1);
3214 }
3215 Out << '_';
3216}
3217
3218void CXXNameMangler::mangleCXXCtorType(CXXCtorType T) {
3219 // <ctor-dtor-name> ::= C1 # complete object constructor
3220 // ::= C2 # base object constructor
3221 // ::= C3 # complete object allocating constructor
3222 //
3223 switch (T) {
3224 case Ctor_Complete:
3225 Out << "C1";
3226 break;
3227 case Ctor_Base:
3228 Out << "C2";
3229 break;
3230 case Ctor_CompleteAllocating:
3231 Out << "C3";
3232 break;
3233 }
3234}
3235
3236void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
3237 // <ctor-dtor-name> ::= D0 # deleting destructor
3238 // ::= D1 # complete object destructor
3239 // ::= D2 # base object destructor
3240 //
3241 switch (T) {
3242 case Dtor_Deleting:
3243 Out << "D0";
3244 break;
3245 case Dtor_Complete:
3246 Out << "D1";
3247 break;
3248 case Dtor_Base:
3249 Out << "D2";
3250 break;
3251 }
3252}
3253
3254void CXXNameMangler::mangleTemplateArgs(
3255 const ASTTemplateArgumentListInfo &TemplateArgs) {
3256 // <template-args> ::= I <template-arg>+ E
3257 Out << 'I';
3258 for (unsigned i = 0, e = TemplateArgs.NumTemplateArgs; i != e; ++i)
3259 mangleTemplateArg(TemplateArgs.getTemplateArgs()[i].getArgument());
3260 Out << 'E';
3261}
3262
3263void CXXNameMangler::mangleTemplateArgs(const TemplateArgumentList &AL) {
3264 // <template-args> ::= I <template-arg>+ E
3265 Out << 'I';
3266 for (unsigned i = 0, e = AL.size(); i != e; ++i)
3267 mangleTemplateArg(AL[i]);
3268 Out << 'E';
3269}
3270
3271void CXXNameMangler::mangleTemplateArgs(const TemplateArgument *TemplateArgs,
3272 unsigned NumTemplateArgs) {
3273 // <template-args> ::= I <template-arg>+ E
3274 Out << 'I';
3275 for (unsigned i = 0; i != NumTemplateArgs; ++i)
3276 mangleTemplateArg(TemplateArgs[i]);
3277 Out << 'E';
3278}
3279
3280void CXXNameMangler::mangleTemplateArg(TemplateArgument A) {
3281 // <template-arg> ::= <type> # type or template
3282 // ::= X <expression> E # expression
3283 // ::= <expr-primary> # simple expressions
3284 // ::= J <template-arg>* E # argument pack
Guy Benyei11169dd2012-12-18 14:30:41 +00003285 if (!A.isInstantiationDependent() || A.isDependent())
3286 A = Context.getASTContext().getCanonicalTemplateArgument(A);
3287
3288 switch (A.getKind()) {
3289 case TemplateArgument::Null:
3290 llvm_unreachable("Cannot mangle NULL template argument");
3291
3292 case TemplateArgument::Type:
3293 mangleType(A.getAsType());
3294 break;
3295 case TemplateArgument::Template:
3296 // This is mangled as <type>.
3297 mangleType(A.getAsTemplate());
3298 break;
3299 case TemplateArgument::TemplateExpansion:
3300 // <type> ::= Dp <type> # pack expansion (C++0x)
3301 Out << "Dp";
3302 mangleType(A.getAsTemplateOrTemplatePattern());
3303 break;
3304 case TemplateArgument::Expression: {
3305 // It's possible to end up with a DeclRefExpr here in certain
3306 // dependent cases, in which case we should mangle as a
3307 // declaration.
3308 const Expr *E = A.getAsExpr()->IgnoreParens();
3309 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
3310 const ValueDecl *D = DRE->getDecl();
3311 if (isa<VarDecl>(D) || isa<FunctionDecl>(D)) {
3312 Out << "L";
3313 mangle(D, "_Z");
3314 Out << 'E';
3315 break;
3316 }
3317 }
3318
3319 Out << 'X';
3320 mangleExpression(E);
3321 Out << 'E';
3322 break;
3323 }
3324 case TemplateArgument::Integral:
3325 mangleIntegerLiteral(A.getIntegralType(), A.getAsIntegral());
3326 break;
3327 case TemplateArgument::Declaration: {
3328 // <expr-primary> ::= L <mangled-name> E # external name
3329 // Clang produces AST's where pointer-to-member-function expressions
3330 // and pointer-to-function expressions are represented as a declaration not
3331 // an expression. We compensate for it here to produce the correct mangling.
3332 ValueDecl *D = A.getAsDecl();
3333 bool compensateMangling = !A.isDeclForReferenceParam();
3334 if (compensateMangling) {
3335 Out << 'X';
3336 mangleOperatorName(OO_Amp, 1);
3337 }
3338
3339 Out << 'L';
3340 // References to external entities use the mangled name; if the name would
3341 // not normally be manged then mangle it as unqualified.
3342 //
3343 // FIXME: The ABI specifies that external names here should have _Z, but
3344 // gcc leaves this off.
3345 if (compensateMangling)
3346 mangle(D, "_Z");
3347 else
3348 mangle(D, "Z");
3349 Out << 'E';
3350
3351 if (compensateMangling)
3352 Out << 'E';
3353
3354 break;
3355 }
3356 case TemplateArgument::NullPtr: {
3357 // <expr-primary> ::= L <type> 0 E
3358 Out << 'L';
3359 mangleType(A.getNullPtrType());
3360 Out << "0E";
3361 break;
3362 }
3363 case TemplateArgument::Pack: {
Richard Smitheb0133c2013-08-27 01:03:46 +00003364 // <template-arg> ::= J <template-arg>* E
Guy Benyei11169dd2012-12-18 14:30:41 +00003365 Out << 'J';
Richard Smitheb0133c2013-08-27 01:03:46 +00003366 for (TemplateArgument::pack_iterator PA = A.pack_begin(),
Guy Benyei11169dd2012-12-18 14:30:41 +00003367 PAEnd = A.pack_end();
3368 PA != PAEnd; ++PA)
3369 mangleTemplateArg(*PA);
3370 Out << 'E';
3371 }
3372 }
3373}
3374
3375void CXXNameMangler::mangleTemplateParameter(unsigned Index) {
3376 // <template-param> ::= T_ # first template parameter
3377 // ::= T <parameter-2 non-negative number> _
3378 if (Index == 0)
3379 Out << "T_";
3380 else
3381 Out << 'T' << (Index - 1) << '_';
3382}
3383
3384void CXXNameMangler::mangleExistingSubstitution(QualType type) {
3385 bool result = mangleSubstitution(type);
3386 assert(result && "no existing substitution for type");
3387 (void) result;
3388}
3389
3390void CXXNameMangler::mangleExistingSubstitution(TemplateName tname) {
3391 bool result = mangleSubstitution(tname);
3392 assert(result && "no existing substitution for template name");
3393 (void) result;
3394}
3395
3396// <substitution> ::= S <seq-id> _
3397// ::= S_
3398bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) {
3399 // Try one of the standard substitutions first.
3400 if (mangleStandardSubstitution(ND))
3401 return true;
3402
3403 ND = cast<NamedDecl>(ND->getCanonicalDecl());
3404 return mangleSubstitution(reinterpret_cast<uintptr_t>(ND));
3405}
3406
3407/// \brief Determine whether the given type has any qualifiers that are
3408/// relevant for substitutions.
3409static bool hasMangledSubstitutionQualifiers(QualType T) {
3410 Qualifiers Qs = T.getQualifiers();
3411 return Qs.getCVRQualifiers() || Qs.hasAddressSpace();
3412}
3413
3414bool CXXNameMangler::mangleSubstitution(QualType T) {
3415 if (!hasMangledSubstitutionQualifiers(T)) {
3416 if (const RecordType *RT = T->getAs<RecordType>())
3417 return mangleSubstitution(RT->getDecl());
3418 }
3419
3420 uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
3421
3422 return mangleSubstitution(TypePtr);
3423}
3424
3425bool CXXNameMangler::mangleSubstitution(TemplateName Template) {
3426 if (TemplateDecl *TD = Template.getAsTemplateDecl())
3427 return mangleSubstitution(TD);
3428
3429 Template = Context.getASTContext().getCanonicalTemplateName(Template);
3430 return mangleSubstitution(
3431 reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
3432}
3433
3434bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) {
3435 llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Ptr);
3436 if (I == Substitutions.end())
3437 return false;
3438
3439 unsigned SeqID = I->second;
3440 if (SeqID == 0)
3441 Out << "S_";
3442 else {
3443 SeqID--;
3444
3445 // <seq-id> is encoded in base-36, using digits and upper case letters.
3446 char Buffer[10];
3447 char *BufferPtr = llvm::array_endof(Buffer);
3448
3449 if (SeqID == 0) *--BufferPtr = '0';
3450
3451 while (SeqID) {
3452 assert(BufferPtr > Buffer && "Buffer overflow!");
3453
3454 char c = static_cast<char>(SeqID % 36);
3455
3456 *--BufferPtr = (c < 10 ? '0' + c : 'A' + c - 10);
3457 SeqID /= 36;
3458 }
3459
3460 Out << 'S'
3461 << StringRef(BufferPtr, llvm::array_endof(Buffer)-BufferPtr)
3462 << '_';
3463 }
3464
3465 return true;
3466}
3467
3468static bool isCharType(QualType T) {
3469 if (T.isNull())
3470 return false;
3471
3472 return T->isSpecificBuiltinType(BuiltinType::Char_S) ||
3473 T->isSpecificBuiltinType(BuiltinType::Char_U);
3474}
3475
3476/// isCharSpecialization - Returns whether a given type is a template
3477/// specialization of a given name with a single argument of type char.
3478static bool isCharSpecialization(QualType T, const char *Name) {
3479 if (T.isNull())
3480 return false;
3481
3482 const RecordType *RT = T->getAs<RecordType>();
3483 if (!RT)
3484 return false;
3485
3486 const ClassTemplateSpecializationDecl *SD =
3487 dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
3488 if (!SD)
3489 return false;
3490
3491 if (!isStdNamespace(getEffectiveDeclContext(SD)))
3492 return false;
3493
3494 const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3495 if (TemplateArgs.size() != 1)
3496 return false;
3497
3498 if (!isCharType(TemplateArgs[0].getAsType()))
3499 return false;
3500
3501 return SD->getIdentifier()->getName() == Name;
3502}
3503
3504template <std::size_t StrLen>
3505static bool isStreamCharSpecialization(const ClassTemplateSpecializationDecl*SD,
3506 const char (&Str)[StrLen]) {
3507 if (!SD->getIdentifier()->isStr(Str))
3508 return false;
3509
3510 const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3511 if (TemplateArgs.size() != 2)
3512 return false;
3513
3514 if (!isCharType(TemplateArgs[0].getAsType()))
3515 return false;
3516
3517 if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
3518 return false;
3519
3520 return true;
3521}
3522
3523bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) {
3524 // <substitution> ::= St # ::std::
3525 if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
3526 if (isStd(NS)) {
3527 Out << "St";
3528 return true;
3529 }
3530 }
3531
3532 if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) {
3533 if (!isStdNamespace(getEffectiveDeclContext(TD)))
3534 return false;
3535
3536 // <substitution> ::= Sa # ::std::allocator
3537 if (TD->getIdentifier()->isStr("allocator")) {
3538 Out << "Sa";
3539 return true;
3540 }
3541
3542 // <<substitution> ::= Sb # ::std::basic_string
3543 if (TD->getIdentifier()->isStr("basic_string")) {
3544 Out << "Sb";
3545 return true;
3546 }
3547 }
3548
3549 if (const ClassTemplateSpecializationDecl *SD =
3550 dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
3551 if (!isStdNamespace(getEffectiveDeclContext(SD)))
3552 return false;
3553
3554 // <substitution> ::= Ss # ::std::basic_string<char,
3555 // ::std::char_traits<char>,
3556 // ::std::allocator<char> >
3557 if (SD->getIdentifier()->isStr("basic_string")) {
3558 const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3559
3560 if (TemplateArgs.size() != 3)
3561 return false;
3562
3563 if (!isCharType(TemplateArgs[0].getAsType()))
3564 return false;
3565
3566 if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
3567 return false;
3568
3569 if (!isCharSpecialization(TemplateArgs[2].getAsType(), "allocator"))
3570 return false;
3571
3572 Out << "Ss";
3573 return true;
3574 }
3575
3576 // <substitution> ::= Si # ::std::basic_istream<char,
3577 // ::std::char_traits<char> >
3578 if (isStreamCharSpecialization(SD, "basic_istream")) {
3579 Out << "Si";
3580 return true;
3581 }
3582
3583 // <substitution> ::= So # ::std::basic_ostream<char,
3584 // ::std::char_traits<char> >
3585 if (isStreamCharSpecialization(SD, "basic_ostream")) {
3586 Out << "So";
3587 return true;
3588 }
3589
3590 // <substitution> ::= Sd # ::std::basic_iostream<char,
3591 // ::std::char_traits<char> >
3592 if (isStreamCharSpecialization(SD, "basic_iostream")) {
3593 Out << "Sd";
3594 return true;
3595 }
3596 }
3597 return false;
3598}
3599
3600void CXXNameMangler::addSubstitution(QualType T) {
3601 if (!hasMangledSubstitutionQualifiers(T)) {
3602 if (const RecordType *RT = T->getAs<RecordType>()) {
3603 addSubstitution(RT->getDecl());
3604 return;
3605 }
3606 }
3607
3608 uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
3609 addSubstitution(TypePtr);
3610}
3611
3612void CXXNameMangler::addSubstitution(TemplateName Template) {
3613 if (TemplateDecl *TD = Template.getAsTemplateDecl())
3614 return addSubstitution(TD);
3615
3616 Template = Context.getASTContext().getCanonicalTemplateName(Template);
3617 addSubstitution(reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
3618}
3619
3620void CXXNameMangler::addSubstitution(uintptr_t Ptr) {
3621 assert(!Substitutions.count(Ptr) && "Substitution already exists!");
3622 Substitutions[Ptr] = SeqID++;
3623}
3624
3625//
3626
3627/// \brief Mangles the name of the declaration D and emits that name to the
3628/// given output stream.
3629///
3630/// If the declaration D requires a mangled name, this routine will emit that
3631/// mangled name to \p os and return true. Otherwise, \p os will be unchanged
3632/// and this routine will return false. In this case, the caller should just
3633/// emit the identifier of the declaration (\c D->getIdentifier()) as its
3634/// name.
Timur Iskhodzhanov67455222013-10-03 06:26:13 +00003635void ItaniumMangleContextImpl::mangleName(const NamedDecl *D,
3636 raw_ostream &Out) {
Guy Benyei11169dd2012-12-18 14:30:41 +00003637 assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
3638 "Invalid mangleName() call, argument is not a variable or function!");
3639 assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) &&
3640 "Invalid mangleName() call on 'structor decl!");
3641
3642 PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
3643 getASTContext().getSourceManager(),
3644 "Mangling declaration");
3645
3646 CXXNameMangler Mangler(*this, Out, D);
3647 return Mangler.mangle(D);
3648}
3649
Timur Iskhodzhanov67455222013-10-03 06:26:13 +00003650void ItaniumMangleContextImpl::mangleCXXCtor(const CXXConstructorDecl *D,
3651 CXXCtorType Type,
3652 raw_ostream &Out) {
Guy Benyei11169dd2012-12-18 14:30:41 +00003653 CXXNameMangler Mangler(*this, Out, D, Type);
3654 Mangler.mangle(D);
3655}
3656
Timur Iskhodzhanov67455222013-10-03 06:26:13 +00003657void ItaniumMangleContextImpl::mangleCXXDtor(const CXXDestructorDecl *D,
3658 CXXDtorType Type,
3659 raw_ostream &Out) {
Guy Benyei11169dd2012-12-18 14:30:41 +00003660 CXXNameMangler Mangler(*this, Out, D, Type);
3661 Mangler.mangle(D);
3662}
3663
Timur Iskhodzhanov67455222013-10-03 06:26:13 +00003664void ItaniumMangleContextImpl::mangleThunk(const CXXMethodDecl *MD,
3665 const ThunkInfo &Thunk,
3666 raw_ostream &Out) {
Guy Benyei11169dd2012-12-18 14:30:41 +00003667 // <special-name> ::= T <call-offset> <base encoding>
3668 // # base is the nominal target function of thunk
3669 // <special-name> ::= Tc <call-offset> <call-offset> <base encoding>
3670 // # base is the nominal target function of thunk
3671 // # first call-offset is 'this' adjustment
3672 // # second call-offset is result adjustment
3673
3674 assert(!isa<CXXDestructorDecl>(MD) &&
3675 "Use mangleCXXDtor for destructor decls!");
3676 CXXNameMangler Mangler(*this, Out);
3677 Mangler.getStream() << "_ZT";
3678 if (!Thunk.Return.isEmpty())
3679 Mangler.getStream() << 'c';
3680
3681 // Mangle the 'this' pointer adjustment.
3682 Mangler.mangleCallOffset(Thunk.This.NonVirtual, Thunk.This.VCallOffsetOffset);
3683
3684 // Mangle the return pointer adjustment if there is one.
3685 if (!Thunk.Return.isEmpty())
3686 Mangler.mangleCallOffset(Thunk.Return.NonVirtual,
3687 Thunk.Return.VBaseOffsetOffset);
3688
3689 Mangler.mangleFunctionEncoding(MD);
3690}
3691
Timur Iskhodzhanov67455222013-10-03 06:26:13 +00003692void ItaniumMangleContextImpl::mangleCXXDtorThunk(
3693 const CXXDestructorDecl *DD, CXXDtorType Type,
3694 const ThisAdjustment &ThisAdjustment, raw_ostream &Out) {
Guy Benyei11169dd2012-12-18 14:30:41 +00003695 // <special-name> ::= T <call-offset> <base encoding>
3696 // # base is the nominal target function of thunk
3697 CXXNameMangler Mangler(*this, Out, DD, Type);
3698 Mangler.getStream() << "_ZT";
3699
3700 // Mangle the 'this' pointer adjustment.
3701 Mangler.mangleCallOffset(ThisAdjustment.NonVirtual,
3702 ThisAdjustment.VCallOffsetOffset);
3703
3704 Mangler.mangleFunctionEncoding(DD);
3705}
3706
3707/// mangleGuardVariable - Returns the mangled name for a guard variable
3708/// for the passed in VarDecl.
Timur Iskhodzhanov67455222013-10-03 06:26:13 +00003709void ItaniumMangleContextImpl::mangleStaticGuardVariable(const VarDecl *D,
3710 raw_ostream &Out) {
Guy Benyei11169dd2012-12-18 14:30:41 +00003711 // <special-name> ::= GV <object name> # Guard variable for one-time
3712 // # initialization
3713 CXXNameMangler Mangler(*this, Out);
3714 Mangler.getStream() << "_ZGV";
3715 Mangler.mangleName(D);
3716}
3717
Timur Iskhodzhanov67455222013-10-03 06:26:13 +00003718void ItaniumMangleContextImpl::mangleDynamicInitializer(const VarDecl *MD,
3719 raw_ostream &Out) {
Reid Kleckner1ece9fc2013-09-10 20:43:12 +00003720 // These symbols are internal in the Itanium ABI, so the names don't matter.
3721 // Clang has traditionally used this symbol and allowed LLVM to adjust it to
3722 // avoid duplicate symbols.
3723 Out << "__cxx_global_var_init";
3724}
3725
Timur Iskhodzhanov67455222013-10-03 06:26:13 +00003726void ItaniumMangleContextImpl::mangleDynamicAtExitDestructor(const VarDecl *D,
3727 raw_ostream &Out) {
Reid Klecknerd8110b62013-09-10 20:14:30 +00003728 // Prefix the mangling of D with __dtor_.
3729 CXXNameMangler Mangler(*this, Out);
3730 Mangler.getStream() << "__dtor_";
3731 if (shouldMangleDeclName(D))
3732 Mangler.mangle(D);
3733 else
3734 Mangler.getStream() << D->getName();
3735}
3736
Timur Iskhodzhanov67455222013-10-03 06:26:13 +00003737void ItaniumMangleContextImpl::mangleItaniumThreadLocalInit(const VarDecl *D,
3738 raw_ostream &Out) {
Richard Smith2fd1d7a2013-04-19 16:42:07 +00003739 // <special-name> ::= TH <object name>
3740 CXXNameMangler Mangler(*this, Out);
3741 Mangler.getStream() << "_ZTH";
3742 Mangler.mangleName(D);
3743}
3744
Timur Iskhodzhanov67455222013-10-03 06:26:13 +00003745void
3746ItaniumMangleContextImpl::mangleItaniumThreadLocalWrapper(const VarDecl *D,
3747 raw_ostream &Out) {
Richard Smith2fd1d7a2013-04-19 16:42:07 +00003748 // <special-name> ::= TW <object name>
3749 CXXNameMangler Mangler(*this, Out);
3750 Mangler.getStream() << "_ZTW";
3751 Mangler.mangleName(D);
3752}
3753
Timur Iskhodzhanov67455222013-10-03 06:26:13 +00003754void ItaniumMangleContextImpl::mangleReferenceTemporary(const VarDecl *D,
3755 raw_ostream &Out) {
Guy Benyei11169dd2012-12-18 14:30:41 +00003756 // We match the GCC mangling here.
3757 // <special-name> ::= GR <object name>
3758 CXXNameMangler Mangler(*this, Out);
3759 Mangler.getStream() << "_ZGR";
3760 Mangler.mangleName(D);
3761}
3762
Timur Iskhodzhanov67455222013-10-03 06:26:13 +00003763void ItaniumMangleContextImpl::mangleCXXVTable(const CXXRecordDecl *RD,
3764 raw_ostream &Out) {
Guy Benyei11169dd2012-12-18 14:30:41 +00003765 // <special-name> ::= TV <type> # virtual table
3766 CXXNameMangler Mangler(*this, Out);
3767 Mangler.getStream() << "_ZTV";
3768 Mangler.mangleNameOrStandardSubstitution(RD);
3769}
3770
Timur Iskhodzhanov67455222013-10-03 06:26:13 +00003771void ItaniumMangleContextImpl::mangleCXXVTT(const CXXRecordDecl *RD,
3772 raw_ostream &Out) {
Guy Benyei11169dd2012-12-18 14:30:41 +00003773 // <special-name> ::= TT <type> # VTT structure
3774 CXXNameMangler Mangler(*this, Out);
3775 Mangler.getStream() << "_ZTT";
3776 Mangler.mangleNameOrStandardSubstitution(RD);
3777}
3778
Timur Iskhodzhanov67455222013-10-03 06:26:13 +00003779void ItaniumMangleContextImpl::mangleCXXCtorVTable(const CXXRecordDecl *RD,
3780 int64_t Offset,
3781 const CXXRecordDecl *Type,
3782 raw_ostream &Out) {
Guy Benyei11169dd2012-12-18 14:30:41 +00003783 // <special-name> ::= TC <type> <offset number> _ <base type>
3784 CXXNameMangler Mangler(*this, Out);
3785 Mangler.getStream() << "_ZTC";
3786 Mangler.mangleNameOrStandardSubstitution(RD);
3787 Mangler.getStream() << Offset;
3788 Mangler.getStream() << '_';
3789 Mangler.mangleNameOrStandardSubstitution(Type);
3790}
3791
Timur Iskhodzhanov67455222013-10-03 06:26:13 +00003792void ItaniumMangleContextImpl::mangleCXXRTTI(QualType Ty, raw_ostream &Out) {
Guy Benyei11169dd2012-12-18 14:30:41 +00003793 // <special-name> ::= TI <type> # typeinfo structure
3794 assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers");
3795 CXXNameMangler Mangler(*this, Out);
3796 Mangler.getStream() << "_ZTI";
3797 Mangler.mangleType(Ty);
3798}
3799
Timur Iskhodzhanov67455222013-10-03 06:26:13 +00003800void ItaniumMangleContextImpl::mangleCXXRTTIName(QualType Ty,
3801 raw_ostream &Out) {
Guy Benyei11169dd2012-12-18 14:30:41 +00003802 // <special-name> ::= TS <type> # typeinfo name (null terminated byte string)
3803 CXXNameMangler Mangler(*this, Out);
3804 Mangler.getStream() << "_ZTS";
3805 Mangler.mangleType(Ty);
3806}
3807
Timur Iskhodzhanov67455222013-10-03 06:26:13 +00003808ItaniumMangleContext *
3809ItaniumMangleContext::create(ASTContext &Context, DiagnosticsEngine &Diags) {
3810 return new ItaniumMangleContextImpl(Context, Diags);
Guy Benyei11169dd2012-12-18 14:30:41 +00003811}