blob: 5cfd3cd76510c1c46d552b1b56e13e9a501f76b1 [file] [log] [blame]
Eugene Zelenkoa369a452017-05-16 23:10:25 +00001//===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===//
Chandler Carruth1353f9a2017-04-27 18:45:20 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
Chandler Carruth6bda14b2017-06-06 11:49:48 +000010#include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
Eugene Zelenkoa369a452017-05-16 23:10:25 +000011#include "llvm/ADT/DenseMap.h"
Chandler Carruth6bda14b2017-06-06 11:49:48 +000012#include "llvm/ADT/STLExtras.h"
Eugene Zelenkoa369a452017-05-16 23:10:25 +000013#include "llvm/ADT/Sequence.h"
14#include "llvm/ADT/SetVector.h"
Chandler Carruth1353f9a2017-04-27 18:45:20 +000015#include "llvm/ADT/SmallPtrSet.h"
Eugene Zelenkoa369a452017-05-16 23:10:25 +000016#include "llvm/ADT/SmallVector.h"
Chandler Carruth1353f9a2017-04-27 18:45:20 +000017#include "llvm/ADT/Statistic.h"
Eugene Zelenkoa369a452017-05-16 23:10:25 +000018#include "llvm/ADT/Twine.h"
Chandler Carruth1353f9a2017-04-27 18:45:20 +000019#include "llvm/Analysis/AssumptionCache.h"
Chandler Carruth693eedb2017-11-17 19:58:36 +000020#include "llvm/Analysis/CodeMetrics.h"
Eugene Zelenkoa369a452017-05-16 23:10:25 +000021#include "llvm/Analysis/LoopAnalysisManager.h"
Chandler Carruth1353f9a2017-04-27 18:45:20 +000022#include "llvm/Analysis/LoopInfo.h"
23#include "llvm/Analysis/LoopPass.h"
Eugene Zelenkoa369a452017-05-16 23:10:25 +000024#include "llvm/IR/BasicBlock.h"
25#include "llvm/IR/Constant.h"
Chandler Carruth1353f9a2017-04-27 18:45:20 +000026#include "llvm/IR/Constants.h"
27#include "llvm/IR/Dominators.h"
28#include "llvm/IR/Function.h"
Eugene Zelenkoa369a452017-05-16 23:10:25 +000029#include "llvm/IR/InstrTypes.h"
30#include "llvm/IR/Instruction.h"
Chandler Carruth1353f9a2017-04-27 18:45:20 +000031#include "llvm/IR/Instructions.h"
Chandler Carruth693eedb2017-11-17 19:58:36 +000032#include "llvm/IR/IntrinsicInst.h"
Eugene Zelenkoa369a452017-05-16 23:10:25 +000033#include "llvm/IR/Use.h"
34#include "llvm/IR/Value.h"
35#include "llvm/Pass.h"
36#include "llvm/Support/Casting.h"
Chandler Carruth1353f9a2017-04-27 18:45:20 +000037#include "llvm/Support/Debug.h"
Eugene Zelenkoa369a452017-05-16 23:10:25 +000038#include "llvm/Support/ErrorHandling.h"
39#include "llvm/Support/GenericDomTree.h"
Chandler Carruth1353f9a2017-04-27 18:45:20 +000040#include "llvm/Support/raw_ostream.h"
Chandler Carruth693eedb2017-11-17 19:58:36 +000041#include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
Chandler Carruth1353f9a2017-04-27 18:45:20 +000042#include "llvm/Transforms/Utils/BasicBlockUtils.h"
Chandler Carruth693eedb2017-11-17 19:58:36 +000043#include "llvm/Transforms/Utils/Cloning.h"
Chandler Carruth1353f9a2017-04-27 18:45:20 +000044#include "llvm/Transforms/Utils/LoopUtils.h"
Chandler Carruth693eedb2017-11-17 19:58:36 +000045#include "llvm/Transforms/Utils/ValueMapper.h"
Eugene Zelenkoa369a452017-05-16 23:10:25 +000046#include <algorithm>
47#include <cassert>
48#include <iterator>
Chandler Carruth693eedb2017-11-17 19:58:36 +000049#include <numeric>
Eugene Zelenkoa369a452017-05-16 23:10:25 +000050#include <utility>
Chandler Carruth1353f9a2017-04-27 18:45:20 +000051
52#define DEBUG_TYPE "simple-loop-unswitch"
53
54using namespace llvm;
55
56STATISTIC(NumBranches, "Number of branches unswitched");
57STATISTIC(NumSwitches, "Number of switches unswitched");
58STATISTIC(NumTrivial, "Number of unswitches that are trivial");
59
Chandler Carruth693eedb2017-11-17 19:58:36 +000060static cl::opt<bool> EnableNonTrivialUnswitch(
61 "enable-nontrivial-unswitch", cl::init(false), cl::Hidden,
62 cl::desc("Forcibly enables non-trivial loop unswitching rather than "
63 "following the configuration passed into the pass."));
64
65static cl::opt<int>
66 UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden,
67 cl::desc("The cost threshold for unswitching a loop."));
68
Chandler Carruth1353f9a2017-04-27 18:45:20 +000069static void replaceLoopUsesWithConstant(Loop &L, Value &LIC,
70 Constant &Replacement) {
71 assert(!isa<Constant>(LIC) && "Why are we unswitching on a constant?");
72
73 // Replace uses of LIC in the loop with the given constant.
74 for (auto UI = LIC.use_begin(), UE = LIC.use_end(); UI != UE;) {
75 // Grab the use and walk past it so we can clobber it in the use list.
76 Use *U = &*UI++;
77 Instruction *UserI = dyn_cast<Instruction>(U->getUser());
78 if (!UserI || !L.contains(UserI))
79 continue;
80
81 // Replace this use within the loop body.
82 *U = &Replacement;
83 }
84}
85
Chandler Carruth693eedb2017-11-17 19:58:36 +000086/// Update the IDom for a basic block whose predecessor set has changed.
87///
88/// This routine is designed to work when the domtree update is relatively
89/// localized by leveraging a known common dominator, often a loop header.
90///
91/// FIXME: Should consider hand-rolling a slightly more efficient non-DFS
92/// approach here as we can do that easily by persisting the candidate IDom's
93/// dominating set between each predecessor.
94///
95/// FIXME: Longer term, many uses of this can be replaced by an incremental
96/// domtree update strategy that starts from a known dominating block and
97/// rebuilds that subtree.
98static bool updateIDomWithKnownCommonDominator(BasicBlock *BB,
99 BasicBlock *KnownDominatingBB,
100 DominatorTree &DT) {
101 assert(pred_begin(BB) != pred_end(BB) &&
102 "This routine does not handle unreachable blocks!");
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000103
Chandler Carruth693eedb2017-11-17 19:58:36 +0000104 BasicBlock *OrigIDom = DT[BB]->getIDom()->getBlock();
105
106 BasicBlock *IDom = *pred_begin(BB);
107 assert(DT.dominates(KnownDominatingBB, IDom) &&
108 "Bad known dominating block!");
109
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000110 // Walk all of the other predecessors finding the nearest common dominator
111 // until all predecessors are covered or we reach the loop header. The loop
112 // header necessarily dominates all loop exit blocks in loop simplified form
113 // so we can early-exit the moment we hit that block.
Chandler Carruth693eedb2017-11-17 19:58:36 +0000114 for (auto PI = std::next(pred_begin(BB)), PE = pred_end(BB);
115 PI != PE && IDom != KnownDominatingBB; ++PI) {
116 assert(DT.dominates(KnownDominatingBB, *PI) &&
117 "Bad known dominating block!");
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000118 IDom = DT.findNearestCommonDominator(IDom, *PI);
Chandler Carruth693eedb2017-11-17 19:58:36 +0000119 }
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000120
Chandler Carruth693eedb2017-11-17 19:58:36 +0000121 if (IDom == OrigIDom)
122 return false;
123
124 DT.changeImmediateDominator(BB, IDom);
125 return true;
126}
127
128// Note that we don't currently use the IDFCalculator here for two reasons:
129// 1) It computes dominator tree levels for the entire function on each run
130// of 'compute'. While this isn't terrible, given that we expect to update
131// relatively small subtrees of the domtree, it isn't necessarily the right
132// tradeoff.
133// 2) The interface doesn't fit this usage well. It doesn't operate in
134// append-only, and builds several sets that we don't need.
135//
136// FIXME: Neither of these issues are a big deal and could be addressed with
137// some amount of refactoring of IDFCalculator. That would allow us to share
138// the core logic here (which is solving the same core problem).
139void appendDomFrontier(DomTreeNode *Node,
140 SmallSetVector<BasicBlock *, 4> &Worklist,
141 SmallVectorImpl<DomTreeNode *> &DomNodes,
142 SmallPtrSetImpl<BasicBlock *> &DomSet) {
143 assert(DomNodes.empty() && "Must start with no dominator nodes.");
144 assert(DomSet.empty() && "Must start with an empty dominator set.");
145
146 // First flatten this subtree into sequence of nodes by doing a pre-order
147 // walk.
148 DomNodes.push_back(Node);
149 // We intentionally re-evaluate the size as each node can add new children.
150 // Because this is a tree walk, this cannot add any duplicates.
151 for (int i = 0; i < (int)DomNodes.size(); ++i)
152 DomNodes.insert(DomNodes.end(), DomNodes[i]->begin(), DomNodes[i]->end());
153
154 // Now create a set of the basic blocks so we can quickly test for
155 // dominated successors. We could in theory use the DFS numbers of the
156 // dominator tree for this, but we want this to remain predictably fast
157 // even while we mutate the dominator tree in ways that would invalidate
158 // the DFS numbering.
159 for (DomTreeNode *InnerN : DomNodes)
160 DomSet.insert(InnerN->getBlock());
161
162 // Now re-walk the nodes, appending every successor of every node that isn't
163 // in the set. Note that we don't append the node itself, even though if it
164 // is a successor it does not strictly dominate itself and thus it would be
165 // part of the dominance frontier. The reason we don't append it is that
166 // the node passed in came *from* the worklist and so it has already been
167 // processed.
168 for (DomTreeNode *InnerN : DomNodes)
169 for (BasicBlock *SuccBB : successors(InnerN->getBlock()))
170 if (!DomSet.count(SuccBB))
171 Worklist.insert(SuccBB);
172
173 DomNodes.clear();
174 DomSet.clear();
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000175}
176
177/// Update the dominator tree after unswitching a particular former exit block.
178///
179/// This handles the full update of the dominator tree after hoisting a block
180/// that previously was an exit block (or split off of an exit block) up to be
181/// reached from the new immediate dominator of the preheader.
182///
183/// The common case is simple -- we just move the unswitched block to have an
184/// immediate dominator of the old preheader. But in complex cases, there may
185/// be other blocks reachable from the unswitched block that are immediately
186/// dominated by some node between the unswitched one and the old preheader.
187/// All of these also need to be hoisted in the dominator tree. We also want to
188/// minimize queries to the dominator tree because each step of this
189/// invalidates any DFS numbers that would make queries fast.
190static void updateDTAfterUnswitch(BasicBlock *UnswitchedBB, BasicBlock *OldPH,
191 DominatorTree &DT) {
192 DomTreeNode *OldPHNode = DT[OldPH];
193 DomTreeNode *UnswitchedNode = DT[UnswitchedBB];
194 // If the dominator tree has already been updated for this unswitched node,
195 // we're done. This makes it easier to use this routine if there are multiple
196 // paths to the same unswitched destination.
197 if (UnswitchedNode->getIDom() == OldPHNode)
198 return;
199
200 // First collect the domtree nodes that we are hoisting over. These are the
201 // set of nodes which may have children that need to be hoisted as well.
202 SmallPtrSet<DomTreeNode *, 4> DomChain;
203 for (auto *IDom = UnswitchedNode->getIDom(); IDom != OldPHNode;
204 IDom = IDom->getIDom())
205 DomChain.insert(IDom);
206
207 // The unswitched block ends up immediately dominated by the old preheader --
208 // regardless of whether it is the loop exit block or split off of the loop
209 // exit block.
210 DT.changeImmediateDominator(UnswitchedNode, OldPHNode);
211
Chandler Carruthdd2e2752017-05-25 06:33:36 +0000212 // For everything that moves up the dominator tree, we need to examine the
213 // dominator frontier to see if it additionally should move up the dominator
214 // tree. This lambda appends the dominator frontier for a node on the
215 // worklist.
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000216 SmallSetVector<BasicBlock *, 4> Worklist;
Chandler Carruth693eedb2017-11-17 19:58:36 +0000217
218 // Scratch data structures reused by domfrontier finding.
Chandler Carruthdd2e2752017-05-25 06:33:36 +0000219 SmallVector<DomTreeNode *, 4> DomNodes;
220 SmallPtrSet<BasicBlock *, 4> DomSet;
Chandler Carruthdd2e2752017-05-25 06:33:36 +0000221
222 // Append the initial dom frontier nodes.
Chandler Carruth693eedb2017-11-17 19:58:36 +0000223 appendDomFrontier(UnswitchedNode, Worklist, DomNodes, DomSet);
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000224
225 // Walk the worklist. We grow the list in the loop and so must recompute size.
226 for (int i = 0; i < (int)Worklist.size(); ++i) {
227 auto *BB = Worklist[i];
228
229 DomTreeNode *Node = DT[BB];
230 assert(!DomChain.count(Node) &&
231 "Cannot be dominated by a block you can reach!");
Chandler Carruthdd2e2752017-05-25 06:33:36 +0000232
233 // If this block had an immediate dominator somewhere in the chain
234 // we hoisted over, then its position in the domtree needs to move as it is
235 // reachable from a node hoisted over this chain.
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000236 if (!DomChain.count(Node->getIDom()))
237 continue;
238
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000239 DT.changeImmediateDominator(Node, OldPHNode);
Chandler Carruthdd2e2752017-05-25 06:33:36 +0000240
241 // Now add this node's dominator frontier to the worklist as well.
Chandler Carruth693eedb2017-11-17 19:58:36 +0000242 appendDomFrontier(Node, Worklist, DomNodes, DomSet);
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000243 }
244}
245
Chandler Carruthd869b182017-05-12 02:19:59 +0000246/// Check that all the LCSSA PHI nodes in the loop exit block have trivial
247/// incoming values along this edge.
248static bool areLoopExitPHIsLoopInvariant(Loop &L, BasicBlock &ExitingBB,
249 BasicBlock &ExitBB) {
250 for (Instruction &I : ExitBB) {
251 auto *PN = dyn_cast<PHINode>(&I);
252 if (!PN)
253 // No more PHIs to check.
254 return true;
255
256 // If the incoming value for this edge isn't loop invariant the unswitch
257 // won't be trivial.
258 if (!L.isLoopInvariant(PN->getIncomingValueForBlock(&ExitingBB)))
259 return false;
260 }
261 llvm_unreachable("Basic blocks should never be empty!");
262}
263
264/// Rewrite the PHI nodes in an unswitched loop exit basic block.
265///
266/// Requires that the loop exit and unswitched basic block are the same, and
267/// that the exiting block was a unique predecessor of that block. Rewrites the
268/// PHI nodes in that block such that what were LCSSA PHI nodes become trivial
269/// PHI nodes from the old preheader that now contains the unswitched
270/// terminator.
271static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB,
272 BasicBlock &OldExitingBB,
273 BasicBlock &OldPH) {
274 for (Instruction &I : UnswitchedBB) {
275 auto *PN = dyn_cast<PHINode>(&I);
276 if (!PN)
277 // No more PHIs to check.
278 break;
279
280 // When the loop exit is directly unswitched we just need to update the
281 // incoming basic block. We loop to handle weird cases with repeated
282 // incoming blocks, but expect to typically only have one operand here.
Eugene Zelenkoa369a452017-05-16 23:10:25 +0000283 for (auto i : seq<int>(0, PN->getNumOperands())) {
Chandler Carruthd869b182017-05-12 02:19:59 +0000284 assert(PN->getIncomingBlock(i) == &OldExitingBB &&
285 "Found incoming block different from unique predecessor!");
286 PN->setIncomingBlock(i, &OldPH);
287 }
288 }
289}
290
291/// Rewrite the PHI nodes in the loop exit basic block and the split off
292/// unswitched block.
293///
294/// Because the exit block remains an exit from the loop, this rewrites the
295/// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI
296/// nodes into the unswitched basic block to select between the value in the
297/// old preheader and the loop exit.
298static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB,
299 BasicBlock &UnswitchedBB,
300 BasicBlock &OldExitingBB,
301 BasicBlock &OldPH) {
302 assert(&ExitBB != &UnswitchedBB &&
303 "Must have different loop exit and unswitched blocks!");
304 Instruction *InsertPt = &*UnswitchedBB.begin();
305 for (Instruction &I : ExitBB) {
306 auto *PN = dyn_cast<PHINode>(&I);
307 if (!PN)
308 // No more PHIs to check.
309 break;
310
311 auto *NewPN = PHINode::Create(PN->getType(), /*NumReservedValues*/ 2,
312 PN->getName() + ".split", InsertPt);
313
314 // Walk backwards over the old PHI node's inputs to minimize the cost of
315 // removing each one. We have to do this weird loop manually so that we
316 // create the same number of new incoming edges in the new PHI as we expect
317 // each case-based edge to be included in the unswitched switch in some
318 // cases.
319 // FIXME: This is really, really gross. It would be much cleaner if LLVM
320 // allowed us to create a single entry for a predecessor block without
321 // having separate entries for each "edge" even though these edges are
322 // required to produce identical results.
323 for (int i = PN->getNumIncomingValues() - 1; i >= 0; --i) {
324 if (PN->getIncomingBlock(i) != &OldExitingBB)
325 continue;
326
327 Value *Incoming = PN->removeIncomingValue(i);
328 NewPN->addIncoming(Incoming, &OldPH);
329 }
330
331 // Now replace the old PHI with the new one and wire the old one in as an
332 // input to the new one.
333 PN->replaceAllUsesWith(NewPN);
334 NewPN->addIncoming(PN, &ExitBB);
335 }
336}
337
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000338/// Unswitch a trivial branch if the condition is loop invariant.
339///
340/// This routine should only be called when loop code leading to the branch has
341/// been validated as trivial (no side effects). This routine checks if the
342/// condition is invariant and one of the successors is a loop exit. This
343/// allows us to unswitch without duplicating the loop, making it trivial.
344///
345/// If this routine fails to unswitch the branch it returns false.
346///
347/// If the branch can be unswitched, this routine splits the preheader and
348/// hoists the branch above that split. Preserves loop simplified form
349/// (splitting the exit block as necessary). It simplifies the branch within
350/// the loop to an unconditional branch but doesn't remove it entirely. Further
351/// cleanup can be done with some simplify-cfg like pass.
352static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT,
353 LoopInfo &LI) {
354 assert(BI.isConditional() && "Can only unswitch a conditional branch!");
355 DEBUG(dbgs() << " Trying to unswitch branch: " << BI << "\n");
356
357 Value *LoopCond = BI.getCondition();
358
359 // Need a trivial loop condition to unswitch.
360 if (!L.isLoopInvariant(LoopCond))
361 return false;
362
363 // FIXME: We should compute this once at the start and update it!
364 SmallVector<BasicBlock *, 16> ExitBlocks;
365 L.getExitBlocks(ExitBlocks);
366 SmallPtrSet<BasicBlock *, 16> ExitBlockSet(ExitBlocks.begin(),
367 ExitBlocks.end());
368
369 // Check to see if a successor of the branch is guaranteed to
370 // exit through a unique exit block without having any
371 // side-effects. If so, determine the value of Cond that causes
372 // it to do this.
373 ConstantInt *CondVal = ConstantInt::getTrue(BI.getContext());
374 ConstantInt *Replacement = ConstantInt::getFalse(BI.getContext());
375 int LoopExitSuccIdx = 0;
376 auto *LoopExitBB = BI.getSuccessor(0);
377 if (!ExitBlockSet.count(LoopExitBB)) {
378 std::swap(CondVal, Replacement);
379 LoopExitSuccIdx = 1;
380 LoopExitBB = BI.getSuccessor(1);
381 if (!ExitBlockSet.count(LoopExitBB))
382 return false;
383 }
384 auto *ContinueBB = BI.getSuccessor(1 - LoopExitSuccIdx);
385 assert(L.contains(ContinueBB) &&
386 "Cannot have both successors exit and still be in the loop!");
387
Chandler Carruthd869b182017-05-12 02:19:59 +0000388 auto *ParentBB = BI.getParent();
389 if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, *LoopExitBB))
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000390 return false;
391
392 DEBUG(dbgs() << " unswitching trivial branch when: " << CondVal
393 << " == " << LoopCond << "\n");
394
395 // Split the preheader, so that we know that there is a safe place to insert
396 // the conditional branch. We will change the preheader to have a conditional
397 // branch on LoopCond.
398 BasicBlock *OldPH = L.getLoopPreheader();
399 BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI);
400
401 // Now that we have a place to insert the conditional branch, create a place
402 // to branch to: this is the exit block out of the loop that we are
403 // unswitching. We need to split this if there are other loop predecessors.
404 // Because the loop is in simplified form, *any* other predecessor is enough.
405 BasicBlock *UnswitchedBB;
406 if (BasicBlock *PredBB = LoopExitBB->getUniquePredecessor()) {
407 (void)PredBB;
Chandler Carruthd869b182017-05-12 02:19:59 +0000408 assert(PredBB == BI.getParent() &&
409 "A branch's parent isn't a predecessor!");
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000410 UnswitchedBB = LoopExitBB;
411 } else {
412 UnswitchedBB = SplitBlock(LoopExitBB, &LoopExitBB->front(), &DT, &LI);
413 }
414
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000415 // Now splice the branch to gate reaching the new preheader and re-point its
416 // successors.
417 OldPH->getInstList().splice(std::prev(OldPH->end()),
418 BI.getParent()->getInstList(), BI);
419 OldPH->getTerminator()->eraseFromParent();
420 BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB);
421 BI.setSuccessor(1 - LoopExitSuccIdx, NewPH);
422
423 // Create a new unconditional branch that will continue the loop as a new
424 // terminator.
425 BranchInst::Create(ContinueBB, ParentBB);
426
Chandler Carruthd869b182017-05-12 02:19:59 +0000427 // Rewrite the relevant PHI nodes.
428 if (UnswitchedBB == LoopExitBB)
429 rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB, *ParentBB, *OldPH);
430 else
431 rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB, *UnswitchedBB,
432 *ParentBB, *OldPH);
433
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000434 // Now we need to update the dominator tree.
435 updateDTAfterUnswitch(UnswitchedBB, OldPH, DT);
436 // But if we split something off of the loop exit block then we also removed
437 // one of the predecessors for the loop exit block and may need to update its
438 // idom.
439 if (UnswitchedBB != LoopExitBB)
Chandler Carruth693eedb2017-11-17 19:58:36 +0000440 updateIDomWithKnownCommonDominator(LoopExitBB, L.getHeader(), DT);
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000441
442 // Since this is an i1 condition we can also trivially replace uses of it
443 // within the loop with a constant.
444 replaceLoopUsesWithConstant(L, *LoopCond, *Replacement);
445
446 ++NumTrivial;
447 ++NumBranches;
448 return true;
449}
450
451/// Unswitch a trivial switch if the condition is loop invariant.
452///
453/// This routine should only be called when loop code leading to the switch has
454/// been validated as trivial (no side effects). This routine checks if the
455/// condition is invariant and that at least one of the successors is a loop
456/// exit. This allows us to unswitch without duplicating the loop, making it
457/// trivial.
458///
459/// If this routine fails to unswitch the switch it returns false.
460///
461/// If the switch can be unswitched, this routine splits the preheader and
462/// copies the switch above that split. If the default case is one of the
463/// exiting cases, it copies the non-exiting cases and points them at the new
464/// preheader. If the default case is not exiting, it copies the exiting cases
465/// and points the default at the preheader. It preserves loop simplified form
466/// (splitting the exit blocks as necessary). It simplifies the switch within
467/// the loop by removing now-dead cases. If the default case is one of those
468/// unswitched, it replaces its destination with a new basic block containing
469/// only unreachable. Such basic blocks, while technically loop exits, are not
470/// considered for unswitching so this is a stable transform and the same
471/// switch will not be revisited. If after unswitching there is only a single
472/// in-loop successor, the switch is further simplified to an unconditional
473/// branch. Still more cleanup can be done with some simplify-cfg like pass.
474static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT,
475 LoopInfo &LI) {
476 DEBUG(dbgs() << " Trying to unswitch switch: " << SI << "\n");
477 Value *LoopCond = SI.getCondition();
478
479 // If this isn't switching on an invariant condition, we can't unswitch it.
480 if (!L.isLoopInvariant(LoopCond))
481 return false;
482
Chandler Carruthd869b182017-05-12 02:19:59 +0000483 auto *ParentBB = SI.getParent();
484
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000485 // FIXME: We should compute this once at the start and update it!
486 SmallVector<BasicBlock *, 16> ExitBlocks;
487 L.getExitBlocks(ExitBlocks);
488 SmallPtrSet<BasicBlock *, 16> ExitBlockSet(ExitBlocks.begin(),
489 ExitBlocks.end());
490
491 SmallVector<int, 4> ExitCaseIndices;
492 for (auto Case : SI.cases()) {
493 auto *SuccBB = Case.getCaseSuccessor();
Chandler Carruthd869b182017-05-12 02:19:59 +0000494 if (ExitBlockSet.count(SuccBB) &&
495 areLoopExitPHIsLoopInvariant(L, *ParentBB, *SuccBB))
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000496 ExitCaseIndices.push_back(Case.getCaseIndex());
497 }
498 BasicBlock *DefaultExitBB = nullptr;
499 if (ExitBlockSet.count(SI.getDefaultDest()) &&
Chandler Carruthd869b182017-05-12 02:19:59 +0000500 areLoopExitPHIsLoopInvariant(L, *ParentBB, *SI.getDefaultDest()) &&
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000501 !isa<UnreachableInst>(SI.getDefaultDest()->getTerminator()))
502 DefaultExitBB = SI.getDefaultDest();
503 else if (ExitCaseIndices.empty())
504 return false;
505
506 DEBUG(dbgs() << " unswitching trivial cases...\n");
507
508 SmallVector<std::pair<ConstantInt *, BasicBlock *>, 4> ExitCases;
509 ExitCases.reserve(ExitCaseIndices.size());
510 // We walk the case indices backwards so that we remove the last case first
511 // and don't disrupt the earlier indices.
512 for (unsigned Index : reverse(ExitCaseIndices)) {
513 auto CaseI = SI.case_begin() + Index;
514 // Save the value of this case.
515 ExitCases.push_back({CaseI->getCaseValue(), CaseI->getCaseSuccessor()});
516 // Delete the unswitched cases.
517 SI.removeCase(CaseI);
518 }
519
520 // Check if after this all of the remaining cases point at the same
521 // successor.
522 BasicBlock *CommonSuccBB = nullptr;
523 if (SI.getNumCases() > 0 &&
524 std::all_of(std::next(SI.case_begin()), SI.case_end(),
525 [&SI](const SwitchInst::CaseHandle &Case) {
526 return Case.getCaseSuccessor() ==
527 SI.case_begin()->getCaseSuccessor();
528 }))
529 CommonSuccBB = SI.case_begin()->getCaseSuccessor();
530
531 if (DefaultExitBB) {
532 // We can't remove the default edge so replace it with an edge to either
533 // the single common remaining successor (if we have one) or an unreachable
534 // block.
535 if (CommonSuccBB) {
536 SI.setDefaultDest(CommonSuccBB);
537 } else {
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000538 BasicBlock *UnreachableBB = BasicBlock::Create(
539 ParentBB->getContext(),
540 Twine(ParentBB->getName()) + ".unreachable_default",
541 ParentBB->getParent());
542 new UnreachableInst(ParentBB->getContext(), UnreachableBB);
543 SI.setDefaultDest(UnreachableBB);
544 DT.addNewBlock(UnreachableBB, ParentBB);
545 }
546 } else {
547 // If we're not unswitching the default, we need it to match any cases to
548 // have a common successor or if we have no cases it is the common
549 // successor.
550 if (SI.getNumCases() == 0)
551 CommonSuccBB = SI.getDefaultDest();
552 else if (SI.getDefaultDest() != CommonSuccBB)
553 CommonSuccBB = nullptr;
554 }
555
556 // Split the preheader, so that we know that there is a safe place to insert
557 // the switch.
558 BasicBlock *OldPH = L.getLoopPreheader();
559 BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI);
560 OldPH->getTerminator()->eraseFromParent();
561
562 // Now add the unswitched switch.
563 auto *NewSI = SwitchInst::Create(LoopCond, NewPH, ExitCases.size(), OldPH);
564
Chandler Carruthd869b182017-05-12 02:19:59 +0000565 // Rewrite the IR for the unswitched basic blocks. This requires two steps.
566 // First, we split any exit blocks with remaining in-loop predecessors. Then
567 // we update the PHIs in one of two ways depending on if there was a split.
568 // We walk in reverse so that we split in the same order as the cases
569 // appeared. This is purely for convenience of reading the resulting IR, but
570 // it doesn't cost anything really.
571 SmallPtrSet<BasicBlock *, 2> UnswitchedExitBBs;
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000572 SmallDenseMap<BasicBlock *, BasicBlock *, 2> SplitExitBBMap;
573 // Handle the default exit if necessary.
574 // FIXME: It'd be great if we could merge this with the loop below but LLVM's
575 // ranges aren't quite powerful enough yet.
Chandler Carruthd869b182017-05-12 02:19:59 +0000576 if (DefaultExitBB) {
577 if (pred_empty(DefaultExitBB)) {
578 UnswitchedExitBBs.insert(DefaultExitBB);
579 rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB, *ParentBB, *OldPH);
580 } else {
581 auto *SplitBB =
582 SplitBlock(DefaultExitBB, &DefaultExitBB->front(), &DT, &LI);
583 rewritePHINodesForExitAndUnswitchedBlocks(*DefaultExitBB, *SplitBB,
584 *ParentBB, *OldPH);
Chandler Carruth693eedb2017-11-17 19:58:36 +0000585 updateIDomWithKnownCommonDominator(DefaultExitBB, L.getHeader(), DT);
Chandler Carruthd869b182017-05-12 02:19:59 +0000586 DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB;
587 }
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000588 }
589 // Note that we must use a reference in the for loop so that we update the
590 // container.
591 for (auto &CasePair : reverse(ExitCases)) {
592 // Grab a reference to the exit block in the pair so that we can update it.
Chandler Carruthd869b182017-05-12 02:19:59 +0000593 BasicBlock *ExitBB = CasePair.second;
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000594
595 // If this case is the last edge into the exit block, we can simply reuse it
596 // as it will no longer be a loop exit. No mapping necessary.
Chandler Carruthd869b182017-05-12 02:19:59 +0000597 if (pred_empty(ExitBB)) {
598 // Only rewrite once.
599 if (UnswitchedExitBBs.insert(ExitBB).second)
600 rewritePHINodesForUnswitchedExitBlock(*ExitBB, *ParentBB, *OldPH);
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000601 continue;
Chandler Carruthd869b182017-05-12 02:19:59 +0000602 }
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000603
604 // Otherwise we need to split the exit block so that we retain an exit
605 // block from the loop and a target for the unswitched condition.
606 BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB];
607 if (!SplitExitBB) {
608 // If this is the first time we see this, do the split and remember it.
609 SplitExitBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI);
Chandler Carruthd869b182017-05-12 02:19:59 +0000610 rewritePHINodesForExitAndUnswitchedBlocks(*ExitBB, *SplitExitBB,
611 *ParentBB, *OldPH);
Chandler Carruth693eedb2017-11-17 19:58:36 +0000612 updateIDomWithKnownCommonDominator(ExitBB, L.getHeader(), DT);
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000613 }
Chandler Carruthd869b182017-05-12 02:19:59 +0000614 // Update the case pair to point to the split block.
615 CasePair.second = SplitExitBB;
Chandler Carruth1353f9a2017-04-27 18:45:20 +0000616 }
617
618 // Now add the unswitched cases. We do this in reverse order as we built them
619 // in reverse order.
620 for (auto CasePair : reverse(ExitCases)) {
621 ConstantInt *CaseVal = CasePair.first;
622 BasicBlock *UnswitchedBB = CasePair.second;
623
624 NewSI->addCase(CaseVal, UnswitchedBB);
625 updateDTAfterUnswitch(UnswitchedBB, OldPH, DT);
626 }
627
628 // If the default was unswitched, re-point it and add explicit cases for
629 // entering the loop.
630 if (DefaultExitBB) {
631 NewSI->setDefaultDest(DefaultExitBB);
632 updateDTAfterUnswitch(DefaultExitBB, OldPH, DT);
633
634 // We removed all the exit cases, so we just copy the cases to the
635 // unswitched switch.
636 for (auto Case : SI.cases())
637 NewSI->addCase(Case.getCaseValue(), NewPH);
638 }
639
640 // If we ended up with a common successor for every path through the switch
641 // after unswitching, rewrite it to an unconditional branch to make it easy
642 // to recognize. Otherwise we potentially have to recognize the default case
643 // pointing at unreachable and other complexity.
644 if (CommonSuccBB) {
645 BasicBlock *BB = SI.getParent();
646 SI.eraseFromParent();
647 BranchInst::Create(CommonSuccBB, BB);
648 }
649
650 DT.verifyDomTree();
651 ++NumTrivial;
652 ++NumSwitches;
653 return true;
654}
655
656/// This routine scans the loop to find a branch or switch which occurs before
657/// any side effects occur. These can potentially be unswitched without
658/// duplicating the loop. If a branch or switch is successfully unswitched the
659/// scanning continues to see if subsequent branches or switches have become
660/// trivial. Once all trivial candidates have been unswitched, this routine
661/// returns.
662///
663/// The return value indicates whether anything was unswitched (and therefore
664/// changed).
665static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT,
666 LoopInfo &LI) {
667 bool Changed = false;
668
669 // If loop header has only one reachable successor we should keep looking for
670 // trivial condition candidates in the successor as well. An alternative is
671 // to constant fold conditions and merge successors into loop header (then we
672 // only need to check header's terminator). The reason for not doing this in
673 // LoopUnswitch pass is that it could potentially break LoopPassManager's
674 // invariants. Folding dead branches could either eliminate the current loop
675 // or make other loops unreachable. LCSSA form might also not be preserved
676 // after deleting branches. The following code keeps traversing loop header's
677 // successors until it finds the trivial condition candidate (condition that
678 // is not a constant). Since unswitching generates branches with constant
679 // conditions, this scenario could be very common in practice.
680 BasicBlock *CurrentBB = L.getHeader();
681 SmallPtrSet<BasicBlock *, 8> Visited;
682 Visited.insert(CurrentBB);
683 do {
684 // Check if there are any side-effecting instructions (e.g. stores, calls,
685 // volatile loads) in the part of the loop that the code *would* execute
686 // without unswitching.
687 if (llvm::any_of(*CurrentBB,
688 [](Instruction &I) { return I.mayHaveSideEffects(); }))
689 return Changed;
690
691 TerminatorInst *CurrentTerm = CurrentBB->getTerminator();
692
693 if (auto *SI = dyn_cast<SwitchInst>(CurrentTerm)) {
694 // Don't bother trying to unswitch past a switch with a constant
695 // condition. This should be removed prior to running this pass by
696 // simplify-cfg.
697 if (isa<Constant>(SI->getCondition()))
698 return Changed;
699
700 if (!unswitchTrivialSwitch(L, *SI, DT, LI))
701 // Coludn't unswitch this one so we're done.
702 return Changed;
703
704 // Mark that we managed to unswitch something.
705 Changed = true;
706
707 // If unswitching turned the terminator into an unconditional branch then
708 // we can continue. The unswitching logic specifically works to fold any
709 // cases it can into an unconditional branch to make it easier to
710 // recognize here.
711 auto *BI = dyn_cast<BranchInst>(CurrentBB->getTerminator());
712 if (!BI || BI->isConditional())
713 return Changed;
714
715 CurrentBB = BI->getSuccessor(0);
716 continue;
717 }
718
719 auto *BI = dyn_cast<BranchInst>(CurrentTerm);
720 if (!BI)
721 // We do not understand other terminator instructions.
722 return Changed;
723
724 // Don't bother trying to unswitch past an unconditional branch or a branch
725 // with a constant value. These should be removed by simplify-cfg prior to
726 // running this pass.
727 if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
728 return Changed;
729
730 // Found a trivial condition candidate: non-foldable conditional branch. If
731 // we fail to unswitch this, we can't do anything else that is trivial.
732 if (!unswitchTrivialBranch(L, *BI, DT, LI))
733 return Changed;
734
735 // Mark that we managed to unswitch something.
736 Changed = true;
737
738 // We unswitched the branch. This should always leave us with an
739 // unconditional branch that we can follow now.
740 BI = cast<BranchInst>(CurrentBB->getTerminator());
741 assert(!BI->isConditional() &&
742 "Cannot form a conditional branch by unswitching1");
743 CurrentBB = BI->getSuccessor(0);
744
745 // When continuing, if we exit the loop or reach a previous visited block,
746 // then we can not reach any trivial condition candidates (unfoldable
747 // branch instructions or switch instructions) and no unswitch can happen.
748 } while (L.contains(CurrentBB) && Visited.insert(CurrentBB).second);
749
750 return Changed;
751}
752
Chandler Carruth693eedb2017-11-17 19:58:36 +0000753/// Build the cloned blocks for an unswitched copy of the given loop.
754///
755/// The cloned blocks are inserted before the loop preheader (`LoopPH`) and
756/// after the split block (`SplitBB`) that will be used to select between the
757/// cloned and original loop.
758///
759/// This routine handles cloning all of the necessary loop blocks and exit
760/// blocks including rewriting their instructions and the relevant PHI nodes.
761/// It skips loop and exit blocks that are not necessary based on the provided
762/// set. It also correctly creates the unconditional branch in the cloned
763/// unswitched parent block to only point at the unswitched successor.
764///
765/// This does not handle most of the necessary updates to `LoopInfo`. Only exit
766/// block splitting is correctly reflected in `LoopInfo`, essentially all of
767/// the cloned blocks (and their loops) are left without full `LoopInfo`
768/// updates. This also doesn't fully update `DominatorTree`. It adds the cloned
769/// blocks to them but doesn't create the cloned `DominatorTree` structure and
770/// instead the caller must recompute an accurate DT. It *does* correctly
771/// update the `AssumptionCache` provided in `AC`.
772static BasicBlock *buildClonedLoopBlocks(
773 Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB,
774 ArrayRef<BasicBlock *> ExitBlocks, BasicBlock *ParentBB,
775 BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB,
776 const SmallPtrSetImpl<BasicBlock *> &SkippedLoopAndExitBlocks,
777 ValueToValueMapTy &VMap, AssumptionCache &AC, DominatorTree &DT,
778 LoopInfo &LI) {
779 SmallVector<BasicBlock *, 4> NewBlocks;
780 NewBlocks.reserve(L.getNumBlocks() + ExitBlocks.size());
781
782 // We will need to clone a bunch of blocks, wrap up the clone operation in
783 // a helper.
784 auto CloneBlock = [&](BasicBlock *OldBB) {
785 // Clone the basic block and insert it before the new preheader.
786 BasicBlock *NewBB = CloneBasicBlock(OldBB, VMap, ".us", OldBB->getParent());
787 NewBB->moveBefore(LoopPH);
788
789 // Record this block and the mapping.
790 NewBlocks.push_back(NewBB);
791 VMap[OldBB] = NewBB;
792
793 // Add the block to the domtree. We'll move it to the correct position
794 // below.
795 DT.addNewBlock(NewBB, SplitBB);
796
797 return NewBB;
798 };
799
800 // First, clone the preheader.
801 auto *ClonedPH = CloneBlock(LoopPH);
802
803 // Then clone all the loop blocks, skipping the ones that aren't necessary.
804 for (auto *LoopBB : L.blocks())
805 if (!SkippedLoopAndExitBlocks.count(LoopBB))
806 CloneBlock(LoopBB);
807
808 // Split all the loop exit edges so that when we clone the exit blocks, if
809 // any of the exit blocks are *also* a preheader for some other loop, we
810 // don't create multiple predecessors entering the loop header.
811 for (auto *ExitBB : ExitBlocks) {
812 if (SkippedLoopAndExitBlocks.count(ExitBB))
813 continue;
814
815 // When we are going to clone an exit, we don't need to clone all the
816 // instructions in the exit block and we want to ensure we have an easy
817 // place to merge the CFG, so split the exit first. This is always safe to
818 // do because there cannot be any non-loop predecessors of a loop exit in
819 // loop simplified form.
820 auto *MergeBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI);
821
822 // Rearrange the names to make it easier to write test cases by having the
823 // exit block carry the suffix rather than the merge block carrying the
824 // suffix.
825 MergeBB->takeName(ExitBB);
826 ExitBB->setName(Twine(MergeBB->getName()) + ".split");
827
828 // Now clone the original exit block.
829 auto *ClonedExitBB = CloneBlock(ExitBB);
830 assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 &&
831 "Exit block should have been split to have one successor!");
832 assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB &&
833 "Cloned exit block has the wrong successor!");
834
835 // Move the merge block's idom to be the split point as one exit is
836 // dominated by one header, and the other by another, so we know the split
837 // point dominates both. While the dominator tree isn't fully accurate, we
838 // want sub-trees within the original loop to be correctly reflect
839 // dominance within that original loop (at least) and that requires moving
840 // the merge block out of that subtree.
841 // FIXME: This is very brittle as we essentially have a partial contract on
842 // the dominator tree. We really need to instead update it and keep it
843 // valid or stop relying on it.
844 DT.changeImmediateDominator(MergeBB, SplitBB);
845
846 // Remap any cloned instructions and create a merge phi node for them.
847 for (auto ZippedInsts : llvm::zip_first(
848 llvm::make_range(ExitBB->begin(), std::prev(ExitBB->end())),
849 llvm::make_range(ClonedExitBB->begin(),
850 std::prev(ClonedExitBB->end())))) {
851 Instruction &I = std::get<0>(ZippedInsts);
852 Instruction &ClonedI = std::get<1>(ZippedInsts);
853
854 // The only instructions in the exit block should be PHI nodes and
855 // potentially a landing pad.
856 assert(
857 (isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) &&
858 "Bad instruction in exit block!");
859 // We should have a value map between the instruction and its clone.
860 assert(VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!");
861
862 auto *MergePN =
863 PHINode::Create(I.getType(), /*NumReservedValues*/ 2, ".us-phi",
864 &*MergeBB->getFirstInsertionPt());
865 I.replaceAllUsesWith(MergePN);
866 MergePN->addIncoming(&I, ExitBB);
867 MergePN->addIncoming(&ClonedI, ClonedExitBB);
868 }
869 }
870
871 // Rewrite the instructions in the cloned blocks to refer to the instructions
872 // in the cloned blocks. We have to do this as a second pass so that we have
873 // everything available. Also, we have inserted new instructions which may
874 // include assume intrinsics, so we update the assumption cache while
875 // processing this.
876 for (auto *ClonedBB : NewBlocks)
877 for (Instruction &I : *ClonedBB) {
878 RemapInstruction(&I, VMap,
879 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
880 if (auto *II = dyn_cast<IntrinsicInst>(&I))
881 if (II->getIntrinsicID() == Intrinsic::assume)
882 AC.registerAssumption(II);
883 }
884
885 // Remove the cloned parent as a predecessor of the cloned continue successor
886 // if we did in fact clone it.
887 auto *ClonedParentBB = cast<BasicBlock>(VMap.lookup(ParentBB));
888 if (auto *ClonedContinueSuccBB =
889 cast_or_null<BasicBlock>(VMap.lookup(ContinueSuccBB)))
890 ClonedContinueSuccBB->removePredecessor(ClonedParentBB,
891 /*DontDeleteUselessPHIs*/ true);
892 // Replace the cloned branch with an unconditional branch to the cloneed
893 // unswitched successor.
894 auto *ClonedSuccBB = cast<BasicBlock>(VMap.lookup(UnswitchedSuccBB));
895 ClonedParentBB->getTerminator()->eraseFromParent();
896 BranchInst::Create(ClonedSuccBB, ClonedParentBB);
897
898 // Update any PHI nodes in the cloned successors of the skipped blocks to not
899 // have spurious incoming values.
900 for (auto *LoopBB : L.blocks())
901 if (SkippedLoopAndExitBlocks.count(LoopBB))
902 for (auto *SuccBB : successors(LoopBB))
903 if (auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB)))
904 for (PHINode &PN : ClonedSuccBB->phis())
905 PN.removeIncomingValue(LoopBB, /*DeletePHIIfEmpty*/ false);
906
907 return ClonedPH;
908}
909
910/// Recursively clone the specified loop and all of its children.
911///
912/// The target parent loop for the clone should be provided, or can be null if
913/// the clone is a top-level loop. While cloning, all the blocks are mapped
914/// with the provided value map. The entire original loop must be present in
915/// the value map. The cloned loop is returned.
916static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL,
917 const ValueToValueMapTy &VMap, LoopInfo &LI) {
918 auto AddClonedBlocksToLoop = [&](Loop &OrigL, Loop &ClonedL) {
919 assert(ClonedL.getBlocks().empty() && "Must start with an empty loop!");
920 ClonedL.reserveBlocks(OrigL.getNumBlocks());
921 for (auto *BB : OrigL.blocks()) {
922 auto *ClonedBB = cast<BasicBlock>(VMap.lookup(BB));
923 ClonedL.addBlockEntry(ClonedBB);
924 if (LI.getLoopFor(BB) == &OrigL) {
925 assert(!LI.getLoopFor(ClonedBB) &&
926 "Should not have an existing loop for this block!");
927 LI.changeLoopFor(ClonedBB, &ClonedL);
928 }
929 }
930 };
931
932 // We specially handle the first loop because it may get cloned into
933 // a different parent and because we most commonly are cloning leaf loops.
934 Loop *ClonedRootL = LI.AllocateLoop();
935 if (RootParentL)
936 RootParentL->addChildLoop(ClonedRootL);
937 else
938 LI.addTopLevelLoop(ClonedRootL);
939 AddClonedBlocksToLoop(OrigRootL, *ClonedRootL);
940
941 if (OrigRootL.empty())
942 return ClonedRootL;
943
944 // If we have a nest, we can quickly clone the entire loop nest using an
945 // iterative approach because it is a tree. We keep the cloned parent in the
946 // data structure to avoid repeatedly querying through a map to find it.
947 SmallVector<std::pair<Loop *, Loop *>, 16> LoopsToClone;
948 // Build up the loops to clone in reverse order as we'll clone them from the
949 // back.
950 for (Loop *ChildL : llvm::reverse(OrigRootL))
951 LoopsToClone.push_back({ClonedRootL, ChildL});
952 do {
953 Loop *ClonedParentL, *L;
954 std::tie(ClonedParentL, L) = LoopsToClone.pop_back_val();
955 Loop *ClonedL = LI.AllocateLoop();
956 ClonedParentL->addChildLoop(ClonedL);
957 AddClonedBlocksToLoop(*L, *ClonedL);
958 for (Loop *ChildL : llvm::reverse(*L))
959 LoopsToClone.push_back({ClonedL, ChildL});
960 } while (!LoopsToClone.empty());
961
962 return ClonedRootL;
963}
964
965/// Build the cloned loops of an original loop from unswitching.
966///
967/// Because unswitching simplifies the CFG of the loop, this isn't a trivial
968/// operation. We need to re-verify that there even is a loop (as the backedge
969/// may not have been cloned), and even if there are remaining backedges the
970/// backedge set may be different. However, we know that each child loop is
971/// undisturbed, we only need to find where to place each child loop within
972/// either any parent loop or within a cloned version of the original loop.
973///
974/// Because child loops may end up cloned outside of any cloned version of the
975/// original loop, multiple cloned sibling loops may be created. All of them
976/// are returned so that the newly introduced loop nest roots can be
977/// identified.
978static Loop *buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks,
979 const ValueToValueMapTy &VMap, LoopInfo &LI,
980 SmallVectorImpl<Loop *> &NonChildClonedLoops) {
981 Loop *ClonedL = nullptr;
982
983 auto *OrigPH = OrigL.getLoopPreheader();
984 auto *OrigHeader = OrigL.getHeader();
985
986 auto *ClonedPH = cast<BasicBlock>(VMap.lookup(OrigPH));
987 auto *ClonedHeader = cast<BasicBlock>(VMap.lookup(OrigHeader));
988
989 // We need to know the loops of the cloned exit blocks to even compute the
990 // accurate parent loop. If we only clone exits to some parent of the
991 // original parent, we want to clone into that outer loop. We also keep track
992 // of the loops that our cloned exit blocks participate in.
993 Loop *ParentL = nullptr;
994 SmallVector<BasicBlock *, 4> ClonedExitsInLoops;
995 SmallDenseMap<BasicBlock *, Loop *, 16> ExitLoopMap;
996 ClonedExitsInLoops.reserve(ExitBlocks.size());
997 for (auto *ExitBB : ExitBlocks)
998 if (auto *ClonedExitBB = cast_or_null<BasicBlock>(VMap.lookup(ExitBB)))
999 if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
1000 ExitLoopMap[ClonedExitBB] = ExitL;
1001 ClonedExitsInLoops.push_back(ClonedExitBB);
1002 if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
1003 ParentL = ExitL;
1004 }
1005 assert((!ParentL || ParentL == OrigL.getParentLoop() ||
1006 ParentL->contains(OrigL.getParentLoop())) &&
1007 "The computed parent loop should always contain (or be) the parent of "
1008 "the original loop.");
1009
1010 // We build the set of blocks dominated by the cloned header from the set of
1011 // cloned blocks out of the original loop. While not all of these will
1012 // necessarily be in the cloned loop, it is enough to establish that they
1013 // aren't in unreachable cycles, etc.
1014 SmallSetVector<BasicBlock *, 16> ClonedLoopBlocks;
1015 for (auto *BB : OrigL.blocks())
1016 if (auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB)))
1017 ClonedLoopBlocks.insert(ClonedBB);
1018
1019 // Rebuild the set of blocks that will end up in the cloned loop. We may have
1020 // skipped cloning some region of this loop which can in turn skip some of
1021 // the backedges so we have to rebuild the blocks in the loop based on the
1022 // backedges that remain after cloning.
1023 SmallVector<BasicBlock *, 16> Worklist;
1024 SmallPtrSet<BasicBlock *, 16> BlocksInClonedLoop;
1025 for (auto *Pred : predecessors(ClonedHeader)) {
1026 // The only possible non-loop header predecessor is the preheader because
1027 // we know we cloned the loop in simplified form.
1028 if (Pred == ClonedPH)
1029 continue;
1030
1031 // Because the loop was in simplified form, the only non-loop predecessor
1032 // should be the preheader.
1033 assert(ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop "
1034 "header other than the preheader "
1035 "that is not part of the loop!");
1036
1037 // Insert this block into the loop set and on the first visit (and if it
1038 // isn't the header we're currently walking) put it into the worklist to
1039 // recurse through.
1040 if (BlocksInClonedLoop.insert(Pred).second && Pred != ClonedHeader)
1041 Worklist.push_back(Pred);
1042 }
1043
1044 // If we had any backedges then there *is* a cloned loop. Put the header into
1045 // the loop set and then walk the worklist backwards to find all the blocks
1046 // that remain within the loop after cloning.
1047 if (!BlocksInClonedLoop.empty()) {
1048 BlocksInClonedLoop.insert(ClonedHeader);
1049
1050 while (!Worklist.empty()) {
1051 BasicBlock *BB = Worklist.pop_back_val();
1052 assert(BlocksInClonedLoop.count(BB) &&
1053 "Didn't put block into the loop set!");
1054
1055 // Insert any predecessors that are in the possible set into the cloned
1056 // set, and if the insert is successful, add them to the worklist. Note
1057 // that we filter on the blocks that are definitely reachable via the
1058 // backedge to the loop header so we may prune out dead code within the
1059 // cloned loop.
1060 for (auto *Pred : predecessors(BB))
1061 if (ClonedLoopBlocks.count(Pred) &&
1062 BlocksInClonedLoop.insert(Pred).second)
1063 Worklist.push_back(Pred);
1064 }
1065
1066 ClonedL = LI.AllocateLoop();
1067 if (ParentL) {
1068 ParentL->addBasicBlockToLoop(ClonedPH, LI);
1069 ParentL->addChildLoop(ClonedL);
1070 } else {
1071 LI.addTopLevelLoop(ClonedL);
1072 }
1073
1074 ClonedL->reserveBlocks(BlocksInClonedLoop.size());
1075 // We don't want to just add the cloned loop blocks based on how we
1076 // discovered them. The original order of blocks was carefully built in
1077 // a way that doesn't rely on predecessor ordering. Rather than re-invent
1078 // that logic, we just re-walk the original blocks (and those of the child
1079 // loops) and filter them as we add them into the cloned loop.
1080 for (auto *BB : OrigL.blocks()) {
1081 auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB));
1082 if (!ClonedBB || !BlocksInClonedLoop.count(ClonedBB))
1083 continue;
1084
1085 // Directly add the blocks that are only in this loop.
1086 if (LI.getLoopFor(BB) == &OrigL) {
1087 ClonedL->addBasicBlockToLoop(ClonedBB, LI);
1088 continue;
1089 }
1090
1091 // We want to manually add it to this loop and parents.
1092 // Registering it with LoopInfo will happen when we clone the top
1093 // loop for this block.
1094 for (Loop *PL = ClonedL; PL; PL = PL->getParentLoop())
1095 PL->addBlockEntry(ClonedBB);
1096 }
1097
1098 // Now add each child loop whose header remains within the cloned loop. All
1099 // of the blocks within the loop must satisfy the same constraints as the
1100 // header so once we pass the header checks we can just clone the entire
1101 // child loop nest.
1102 for (Loop *ChildL : OrigL) {
1103 auto *ClonedChildHeader =
1104 cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
1105 if (!ClonedChildHeader || !BlocksInClonedLoop.count(ClonedChildHeader))
1106 continue;
1107
1108#ifndef NDEBUG
1109 // We should never have a cloned child loop header but fail to have
1110 // all of the blocks for that child loop.
1111 for (auto *ChildLoopBB : ChildL->blocks())
1112 assert(BlocksInClonedLoop.count(
1113 cast<BasicBlock>(VMap.lookup(ChildLoopBB))) &&
1114 "Child cloned loop has a header within the cloned outer "
1115 "loop but not all of its blocks!");
1116#endif
1117
1118 cloneLoopNest(*ChildL, ClonedL, VMap, LI);
1119 }
1120 }
1121
1122 // Now that we've handled all the components of the original loop that were
1123 // cloned into a new loop, we still need to handle anything from the original
1124 // loop that wasn't in a cloned loop.
1125
1126 // Figure out what blocks are left to place within any loop nest containing
1127 // the unswitched loop. If we never formed a loop, the cloned PH is one of
1128 // them.
1129 SmallPtrSet<BasicBlock *, 16> UnloopedBlockSet;
1130 if (BlocksInClonedLoop.empty())
1131 UnloopedBlockSet.insert(ClonedPH);
1132 for (auto *ClonedBB : ClonedLoopBlocks)
1133 if (!BlocksInClonedLoop.count(ClonedBB))
1134 UnloopedBlockSet.insert(ClonedBB);
1135
1136 // Copy the cloned exits and sort them in ascending loop depth, we'll work
1137 // backwards across these to process them inside out. The order shouldn't
1138 // matter as we're just trying to build up the map from inside-out; we use
1139 // the map in a more stably ordered way below.
1140 auto OrderedClonedExitsInLoops = ClonedExitsInLoops;
1141 std::sort(OrderedClonedExitsInLoops.begin(), OrderedClonedExitsInLoops.end(),
1142 [&](BasicBlock *LHS, BasicBlock *RHS) {
1143 return ExitLoopMap.lookup(LHS)->getLoopDepth() <
1144 ExitLoopMap.lookup(RHS)->getLoopDepth();
1145 });
1146
1147 // Populate the existing ExitLoopMap with everything reachable from each
1148 // exit, starting from the inner most exit.
1149 while (!UnloopedBlockSet.empty() && !OrderedClonedExitsInLoops.empty()) {
1150 assert(Worklist.empty() && "Didn't clear worklist!");
1151
1152 BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val();
1153 Loop *ExitL = ExitLoopMap.lookup(ExitBB);
1154
1155 // Walk the CFG back until we hit the cloned PH adding everything reachable
1156 // and in the unlooped set to this exit block's loop.
1157 Worklist.push_back(ExitBB);
1158 do {
1159 BasicBlock *BB = Worklist.pop_back_val();
1160 // We can stop recursing at the cloned preheader (if we get there).
1161 if (BB == ClonedPH)
1162 continue;
1163
1164 for (BasicBlock *PredBB : predecessors(BB)) {
1165 // If this pred has already been moved to our set or is part of some
1166 // (inner) loop, no update needed.
1167 if (!UnloopedBlockSet.erase(PredBB)) {
1168 assert(
1169 (BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) &&
1170 "Predecessor not mapped to a loop!");
1171 continue;
1172 }
1173
1174 // We just insert into the loop set here. We'll add these blocks to the
1175 // exit loop after we build up the set in an order that doesn't rely on
1176 // predecessor order (which in turn relies on use list order).
1177 bool Inserted = ExitLoopMap.insert({PredBB, ExitL}).second;
1178 (void)Inserted;
1179 assert(Inserted && "Should only visit an unlooped block once!");
1180
1181 // And recurse through to its predecessors.
1182 Worklist.push_back(PredBB);
1183 }
1184 } while (!Worklist.empty());
1185 }
1186
1187 // Now that the ExitLoopMap gives as mapping for all the non-looping cloned
1188 // blocks to their outer loops, walk the cloned blocks and the cloned exits
1189 // in their original order adding them to the correct loop.
1190
1191 // We need a stable insertion order. We use the order of the original loop
1192 // order and map into the correct parent loop.
1193 for (auto *BB : llvm::concat<BasicBlock *const>(
1194 makeArrayRef(ClonedPH), ClonedLoopBlocks, ClonedExitsInLoops))
1195 if (Loop *OuterL = ExitLoopMap.lookup(BB))
1196 OuterL->addBasicBlockToLoop(BB, LI);
1197
1198#ifndef NDEBUG
1199 for (auto &BBAndL : ExitLoopMap) {
1200 auto *BB = BBAndL.first;
1201 auto *OuterL = BBAndL.second;
1202 assert(LI.getLoopFor(BB) == OuterL &&
1203 "Failed to put all blocks into outer loops!");
1204 }
1205#endif
1206
1207 // Now that all the blocks are placed into the correct containing loop in the
1208 // absence of child loops, find all the potentially cloned child loops and
1209 // clone them into whatever outer loop we placed their header into.
1210 for (Loop *ChildL : OrigL) {
1211 auto *ClonedChildHeader =
1212 cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
1213 if (!ClonedChildHeader || BlocksInClonedLoop.count(ClonedChildHeader))
1214 continue;
1215
1216#ifndef NDEBUG
1217 for (auto *ChildLoopBB : ChildL->blocks())
1218 assert(VMap.count(ChildLoopBB) &&
1219 "Cloned a child loop header but not all of that loops blocks!");
1220#endif
1221
1222 NonChildClonedLoops.push_back(cloneLoopNest(
1223 *ChildL, ExitLoopMap.lookup(ClonedChildHeader), VMap, LI));
1224 }
1225
1226 // Return the main cloned loop if any.
1227 return ClonedL;
1228}
1229
1230static void deleteDeadBlocksFromLoop(Loop &L, BasicBlock *DeadSubtreeRoot,
1231 SmallVectorImpl<BasicBlock *> &ExitBlocks,
1232 DominatorTree &DT, LoopInfo &LI) {
1233 // Walk the dominator tree to build up the set of blocks we will delete here.
1234 // The order is designed to allow us to always delete bottom-up and avoid any
1235 // dangling uses.
1236 SmallSetVector<BasicBlock *, 16> DeadBlocks;
1237 DeadBlocks.insert(DeadSubtreeRoot);
1238 for (int i = 0; i < (int)DeadBlocks.size(); ++i)
1239 for (DomTreeNode *ChildN : *DT[DeadBlocks[i]]) {
1240 // FIXME: This assert should pass and that means we don't change nearly
1241 // as much below! Consider rewriting all of this to avoid deleting
1242 // blocks. They are always cloned before being deleted, and so instead
1243 // could just be moved.
1244 // FIXME: This in turn means that we might actually be more able to
1245 // update the domtree.
1246 assert((L.contains(ChildN->getBlock()) ||
1247 llvm::find(ExitBlocks, ChildN->getBlock()) != ExitBlocks.end()) &&
1248 "Should never reach beyond the loop and exits when deleting!");
1249 DeadBlocks.insert(ChildN->getBlock());
1250 }
1251
1252 // Filter out the dead blocks from the exit blocks list so that it can be
1253 // used in the caller.
1254 llvm::erase_if(ExitBlocks,
1255 [&](BasicBlock *BB) { return DeadBlocks.count(BB); });
1256
1257 // Remove these blocks from their successors.
1258 for (auto *BB : DeadBlocks)
1259 for (BasicBlock *SuccBB : successors(BB))
1260 SuccBB->removePredecessor(BB, /*DontDeleteUselessPHIs*/ true);
1261
1262 // Walk from this loop up through its parents removing all of the dead blocks.
1263 for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) {
1264 for (auto *BB : DeadBlocks)
1265 ParentL->getBlocksSet().erase(BB);
1266 llvm::erase_if(ParentL->getBlocksVector(),
1267 [&](BasicBlock *BB) { return DeadBlocks.count(BB); });
1268 }
1269
1270 // Now delete the dead child loops. This raw delete will clear them
1271 // recursively.
1272 llvm::erase_if(L.getSubLoopsVector(), [&](Loop *ChildL) {
1273 if (!DeadBlocks.count(ChildL->getHeader()))
1274 return false;
1275
1276 assert(llvm::all_of(ChildL->blocks(),
1277 [&](BasicBlock *ChildBB) {
1278 return DeadBlocks.count(ChildBB);
1279 }) &&
1280 "If the child loop header is dead all blocks in the child loop must "
1281 "be dead as well!");
1282 LI.destroy(ChildL);
1283 return true;
1284 });
1285
1286 // Remove the mappings for the dead blocks.
1287 for (auto *BB : DeadBlocks)
1288 LI.changeLoopFor(BB, nullptr);
1289
1290 // Drop all the references from these blocks to others to handle cyclic
1291 // references as we start deleting the blocks themselves.
1292 for (auto *BB : DeadBlocks)
1293 BB->dropAllReferences();
1294
1295 for (auto *BB : llvm::reverse(DeadBlocks)) {
1296 DT.eraseNode(BB);
1297 BB->eraseFromParent();
1298 }
1299}
1300
1301/// Recompute the set of blocks in a loop after unswitching.
1302///
1303/// This walks from the original headers predecessors to rebuild the loop. We
1304/// take advantage of the fact that new blocks can't have been added, and so we
1305/// filter by the original loop's blocks. This also handles potentially
1306/// unreachable code that we don't want to explore but might be found examining
1307/// the predecessors of the header.
1308///
1309/// If the original loop is no longer a loop, this will return an empty set. If
1310/// it remains a loop, all the blocks within it will be added to the set
1311/// (including those blocks in inner loops).
1312static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L,
1313 LoopInfo &LI) {
1314 SmallPtrSet<const BasicBlock *, 16> LoopBlockSet;
1315
1316 auto *PH = L.getLoopPreheader();
1317 auto *Header = L.getHeader();
1318
1319 // A worklist to use while walking backwards from the header.
1320 SmallVector<BasicBlock *, 16> Worklist;
1321
1322 // First walk the predecessors of the header to find the backedges. This will
1323 // form the basis of our walk.
1324 for (auto *Pred : predecessors(Header)) {
1325 // Skip the preheader.
1326 if (Pred == PH)
1327 continue;
1328
1329 // Because the loop was in simplified form, the only non-loop predecessor
1330 // is the preheader.
1331 assert(L.contains(Pred) && "Found a predecessor of the loop header other "
1332 "than the preheader that is not part of the "
1333 "loop!");
1334
1335 // Insert this block into the loop set and on the first visit and, if it
1336 // isn't the header we're currently walking, put it into the worklist to
1337 // recurse through.
1338 if (LoopBlockSet.insert(Pred).second && Pred != Header)
1339 Worklist.push_back(Pred);
1340 }
1341
1342 // If no backedges were found, we're done.
1343 if (LoopBlockSet.empty())
1344 return LoopBlockSet;
1345
1346 // Add the loop header to the set.
1347 LoopBlockSet.insert(Header);
1348
1349 // We found backedges, recurse through them to identify the loop blocks.
1350 while (!Worklist.empty()) {
1351 BasicBlock *BB = Worklist.pop_back_val();
1352 assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!");
1353
1354 // Because we know the inner loop structure remains valid we can use the
1355 // loop structure to jump immediately across the entire nested loop.
1356 // Further, because it is in loop simplified form, we can directly jump
1357 // to its preheader afterward.
1358 if (Loop *InnerL = LI.getLoopFor(BB))
1359 if (InnerL != &L) {
1360 assert(L.contains(InnerL) &&
1361 "Should not reach a loop *outside* this loop!");
1362 // The preheader is the only possible predecessor of the loop so
1363 // insert it into the set and check whether it was already handled.
1364 auto *InnerPH = InnerL->getLoopPreheader();
1365 assert(L.contains(InnerPH) && "Cannot contain an inner loop block "
1366 "but not contain the inner loop "
1367 "preheader!");
1368 if (!LoopBlockSet.insert(InnerPH).second)
1369 // The only way to reach the preheader is through the loop body
1370 // itself so if it has been visited the loop is already handled.
1371 continue;
1372
1373 // Insert all of the blocks (other than those already present) into
1374 // the loop set. The only block we expect to already be in the set is
1375 // the one we used to find this loop as we immediately handle the
1376 // others the first time we encounter the loop.
1377 for (auto *InnerBB : InnerL->blocks()) {
1378 if (InnerBB == BB) {
1379 assert(LoopBlockSet.count(InnerBB) &&
1380 "Block should already be in the set!");
1381 continue;
1382 }
1383
1384 bool Inserted = LoopBlockSet.insert(InnerBB).second;
1385 (void)Inserted;
1386 assert(Inserted && "Should only insert an inner loop once!");
1387 }
1388
1389 // Add the preheader to the worklist so we will continue past the
1390 // loop body.
1391 Worklist.push_back(InnerPH);
1392 continue;
1393 }
1394
1395 // Insert any predecessors that were in the original loop into the new
1396 // set, and if the insert is successful, add them to the worklist.
1397 for (auto *Pred : predecessors(BB))
1398 if (L.contains(Pred) && LoopBlockSet.insert(Pred).second)
1399 Worklist.push_back(Pred);
1400 }
1401
1402 // We've found all the blocks participating in the loop, return our completed
1403 // set.
1404 return LoopBlockSet;
1405}
1406
1407/// Rebuild a loop after unswitching removes some subset of blocks and edges.
1408///
1409/// The removal may have removed some child loops entirely but cannot have
1410/// disturbed any remaining child loops. However, they may need to be hoisted
1411/// to the parent loop (or to be top-level loops). The original loop may be
1412/// completely removed.
1413///
1414/// The sibling loops resulting from this update are returned. If the original
1415/// loop remains a valid loop, it will be the first entry in this list with all
1416/// of the newly sibling loops following it.
1417///
1418/// Returns true if the loop remains a loop after unswitching, and false if it
1419/// is no longer a loop after unswitching (and should not continue to be
1420/// referenced).
1421static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
1422 LoopInfo &LI,
1423 SmallVectorImpl<Loop *> &HoistedLoops) {
1424 auto *PH = L.getLoopPreheader();
1425
1426 // Compute the actual parent loop from the exit blocks. Because we may have
1427 // pruned some exits the loop may be different from the original parent.
1428 Loop *ParentL = nullptr;
1429 SmallVector<Loop *, 4> ExitLoops;
1430 SmallVector<BasicBlock *, 4> ExitsInLoops;
1431 ExitsInLoops.reserve(ExitBlocks.size());
1432 for (auto *ExitBB : ExitBlocks)
1433 if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
1434 ExitLoops.push_back(ExitL);
1435 ExitsInLoops.push_back(ExitBB);
1436 if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
1437 ParentL = ExitL;
1438 }
1439
1440 // Recompute the blocks participating in this loop. This may be empty if it
1441 // is no longer a loop.
1442 auto LoopBlockSet = recomputeLoopBlockSet(L, LI);
1443
1444 // If we still have a loop, we need to re-set the loop's parent as the exit
1445 // block set changing may have moved it within the loop nest. Note that this
1446 // can only happen when this loop has a parent as it can only hoist the loop
1447 // *up* the nest.
1448 if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) {
1449 // Remove this loop's (original) blocks from all of the intervening loops.
1450 for (Loop *IL = L.getParentLoop(); IL != ParentL;
1451 IL = IL->getParentLoop()) {
1452 IL->getBlocksSet().erase(PH);
1453 for (auto *BB : L.blocks())
1454 IL->getBlocksSet().erase(BB);
1455 llvm::erase_if(IL->getBlocksVector(), [&](BasicBlock *BB) {
1456 return BB == PH || L.contains(BB);
1457 });
1458 }
1459
1460 LI.changeLoopFor(PH, ParentL);
1461 L.getParentLoop()->removeChildLoop(&L);
1462 if (ParentL)
1463 ParentL->addChildLoop(&L);
1464 else
1465 LI.addTopLevelLoop(&L);
1466 }
1467
1468 // Now we update all the blocks which are no longer within the loop.
1469 auto &Blocks = L.getBlocksVector();
1470 auto BlocksSplitI =
1471 LoopBlockSet.empty()
1472 ? Blocks.begin()
1473 : std::stable_partition(
1474 Blocks.begin(), Blocks.end(),
1475 [&](BasicBlock *BB) { return LoopBlockSet.count(BB); });
1476
1477 // Before we erase the list of unlooped blocks, build a set of them.
1478 SmallPtrSet<BasicBlock *, 16> UnloopedBlocks(BlocksSplitI, Blocks.end());
1479 if (LoopBlockSet.empty())
1480 UnloopedBlocks.insert(PH);
1481
1482 // Now erase these blocks from the loop.
1483 for (auto *BB : make_range(BlocksSplitI, Blocks.end()))
1484 L.getBlocksSet().erase(BB);
1485 Blocks.erase(BlocksSplitI, Blocks.end());
1486
1487 // Sort the exits in ascending loop depth, we'll work backwards across these
1488 // to process them inside out.
1489 std::stable_sort(ExitsInLoops.begin(), ExitsInLoops.end(),
1490 [&](BasicBlock *LHS, BasicBlock *RHS) {
1491 return LI.getLoopDepth(LHS) < LI.getLoopDepth(RHS);
1492 });
1493
1494 // We'll build up a set for each exit loop.
1495 SmallPtrSet<BasicBlock *, 16> NewExitLoopBlocks;
1496 Loop *PrevExitL = L.getParentLoop(); // The deepest possible exit loop.
1497
1498 auto RemoveUnloopedBlocksFromLoop =
1499 [](Loop &L, SmallPtrSetImpl<BasicBlock *> &UnloopedBlocks) {
1500 for (auto *BB : UnloopedBlocks)
1501 L.getBlocksSet().erase(BB);
1502 llvm::erase_if(L.getBlocksVector(), [&](BasicBlock *BB) {
1503 return UnloopedBlocks.count(BB);
1504 });
1505 };
1506
1507 SmallVector<BasicBlock *, 16> Worklist;
1508 while (!UnloopedBlocks.empty() && !ExitsInLoops.empty()) {
1509 assert(Worklist.empty() && "Didn't clear worklist!");
1510 assert(NewExitLoopBlocks.empty() && "Didn't clear loop set!");
1511
1512 // Grab the next exit block, in decreasing loop depth order.
1513 BasicBlock *ExitBB = ExitsInLoops.pop_back_val();
1514 Loop &ExitL = *LI.getLoopFor(ExitBB);
1515 assert(ExitL.contains(&L) && "Exit loop must contain the inner loop!");
1516
1517 // Erase all of the unlooped blocks from the loops between the previous
1518 // exit loop and this exit loop. This works because the ExitInLoops list is
1519 // sorted in increasing order of loop depth and thus we visit loops in
1520 // decreasing order of loop depth.
1521 for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->getParentLoop())
1522 RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
1523
1524 // Walk the CFG back until we hit the cloned PH adding everything reachable
1525 // and in the unlooped set to this exit block's loop.
1526 Worklist.push_back(ExitBB);
1527 do {
1528 BasicBlock *BB = Worklist.pop_back_val();
1529 // We can stop recursing at the cloned preheader (if we get there).
1530 if (BB == PH)
1531 continue;
1532
1533 for (BasicBlock *PredBB : predecessors(BB)) {
1534 // If this pred has already been moved to our set or is part of some
1535 // (inner) loop, no update needed.
1536 if (!UnloopedBlocks.erase(PredBB)) {
1537 assert((NewExitLoopBlocks.count(PredBB) ||
1538 ExitL.contains(LI.getLoopFor(PredBB))) &&
1539 "Predecessor not in a nested loop (or already visited)!");
1540 continue;
1541 }
1542
1543 // We just insert into the loop set here. We'll add these blocks to the
1544 // exit loop after we build up the set in a deterministic order rather
1545 // than the predecessor-influenced visit order.
1546 bool Inserted = NewExitLoopBlocks.insert(PredBB).second;
1547 (void)Inserted;
1548 assert(Inserted && "Should only visit an unlooped block once!");
1549
1550 // And recurse through to its predecessors.
1551 Worklist.push_back(PredBB);
1552 }
1553 } while (!Worklist.empty());
1554
1555 // If blocks in this exit loop were directly part of the original loop (as
1556 // opposed to a child loop) update the map to point to this exit loop. This
1557 // just updates a map and so the fact that the order is unstable is fine.
1558 for (auto *BB : NewExitLoopBlocks)
1559 if (Loop *BBL = LI.getLoopFor(BB))
1560 if (BBL == &L || !L.contains(BBL))
1561 LI.changeLoopFor(BB, &ExitL);
1562
1563 // We will remove the remaining unlooped blocks from this loop in the next
1564 // iteration or below.
1565 NewExitLoopBlocks.clear();
1566 }
1567
1568 // Any remaining unlooped blocks are no longer part of any loop unless they
1569 // are part of some child loop.
1570 for (; PrevExitL; PrevExitL = PrevExitL->getParentLoop())
1571 RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
1572 for (auto *BB : UnloopedBlocks)
1573 if (Loop *BBL = LI.getLoopFor(BB))
1574 if (BBL == &L || !L.contains(BBL))
1575 LI.changeLoopFor(BB, nullptr);
1576
1577 // Sink all the child loops whose headers are no longer in the loop set to
1578 // the parent (or to be top level loops). We reach into the loop and directly
1579 // update its subloop vector to make this batch update efficient.
1580 auto &SubLoops = L.getSubLoopsVector();
1581 auto SubLoopsSplitI =
1582 LoopBlockSet.empty()
1583 ? SubLoops.begin()
1584 : std::stable_partition(
1585 SubLoops.begin(), SubLoops.end(), [&](Loop *SubL) {
1586 return LoopBlockSet.count(SubL->getHeader());
1587 });
1588 for (auto *HoistedL : make_range(SubLoopsSplitI, SubLoops.end())) {
1589 HoistedLoops.push_back(HoistedL);
1590 HoistedL->setParentLoop(nullptr);
1591
1592 // To compute the new parent of this hoisted loop we look at where we
1593 // placed the preheader above. We can't lookup the header itself because we
1594 // retained the mapping from the header to the hoisted loop. But the
1595 // preheader and header should have the exact same new parent computed
1596 // based on the set of exit blocks from the original loop as the preheader
1597 // is a predecessor of the header and so reached in the reverse walk. And
1598 // because the loops were all in simplified form the preheader of the
1599 // hoisted loop can't be part of some *other* loop.
1600 if (auto *NewParentL = LI.getLoopFor(HoistedL->getLoopPreheader()))
1601 NewParentL->addChildLoop(HoistedL);
1602 else
1603 LI.addTopLevelLoop(HoistedL);
1604 }
1605 SubLoops.erase(SubLoopsSplitI, SubLoops.end());
1606
1607 // Actually delete the loop if nothing remained within it.
1608 if (Blocks.empty()) {
1609 assert(SubLoops.empty() &&
1610 "Failed to remove all subloops from the original loop!");
1611 if (Loop *ParentL = L.getParentLoop())
1612 ParentL->removeChildLoop(llvm::find(*ParentL, &L));
1613 else
1614 LI.removeLoop(llvm::find(LI, &L));
1615 LI.destroy(&L);
1616 return false;
1617 }
1618
1619 return true;
1620}
1621
1622/// Helper to visit a dominator subtree, invoking a callable on each node.
1623///
1624/// Returning false at any point will stop walking past that node of the tree.
1625template <typename CallableT>
1626void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) {
1627 SmallVector<DomTreeNode *, 4> DomWorklist;
1628 DomWorklist.push_back(DT[BB]);
1629#ifndef NDEBUG
1630 SmallPtrSet<DomTreeNode *, 4> Visited;
1631 Visited.insert(DT[BB]);
1632#endif
1633 do {
1634 DomTreeNode *N = DomWorklist.pop_back_val();
1635
1636 // Visit this node.
1637 if (!Callable(N->getBlock()))
1638 continue;
1639
1640 // Accumulate the child nodes.
1641 for (DomTreeNode *ChildN : *N) {
1642 assert(Visited.insert(ChildN).second &&
1643 "Cannot visit a node twice when walking a tree!");
1644 DomWorklist.push_back(ChildN);
1645 }
1646 } while (!DomWorklist.empty());
1647}
1648
1649/// Take an invariant branch that has been determined to be safe and worthwhile
1650/// to unswitch despite being non-trivial to do so and perform the unswitch.
1651///
1652/// This directly updates the CFG to hoist the predicate out of the loop, and
1653/// clone the necessary parts of the loop to maintain behavior.
1654///
1655/// It also updates both dominator tree and loopinfo based on the unswitching.
1656///
1657/// Once unswitching has been performed it runs the provided callback to report
1658/// the new loops and no-longer valid loops to the caller.
1659static bool unswitchInvariantBranch(
1660 Loop &L, BranchInst &BI, DominatorTree &DT, LoopInfo &LI,
1661 AssumptionCache &AC,
1662 function_ref<void(bool, ArrayRef<Loop *>)> NonTrivialUnswitchCB) {
1663 assert(BI.isConditional() && "Can only unswitch a conditional branch!");
1664 assert(L.isLoopInvariant(BI.getCondition()) &&
1665 "Can only unswitch an invariant branch condition!");
1666
1667 // Constant and BBs tracking the cloned and continuing successor.
1668 const int ClonedSucc = 0;
1669 auto *ParentBB = BI.getParent();
1670 auto *UnswitchedSuccBB = BI.getSuccessor(ClonedSucc);
1671 auto *ContinueSuccBB = BI.getSuccessor(1 - ClonedSucc);
1672
1673 assert(UnswitchedSuccBB != ContinueSuccBB &&
1674 "Should not unswitch a branch that always goes to the same place!");
1675
1676 // The branch should be in this exact loop. Any inner loop's invariant branch
1677 // should be handled by unswitching that inner loop. The caller of this
1678 // routine should filter out any candidates that remain (but were skipped for
1679 // whatever reason).
1680 assert(LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!");
1681
1682 SmallVector<BasicBlock *, 4> ExitBlocks;
1683 L.getUniqueExitBlocks(ExitBlocks);
1684
1685 // We cannot unswitch if exit blocks contain a cleanuppad instruction as we
1686 // don't know how to split those exit blocks.
1687 // FIXME: We should teach SplitBlock to handle this and remove this
1688 // restriction.
1689 for (auto *ExitBB : ExitBlocks)
1690 if (isa<CleanupPadInst>(ExitBB->getFirstNonPHI()))
1691 return false;
1692
1693 SmallPtrSet<BasicBlock *, 4> ExitBlockSet(ExitBlocks.begin(),
1694 ExitBlocks.end());
1695
1696 // Compute the parent loop now before we start hacking on things.
1697 Loop *ParentL = L.getParentLoop();
1698
1699 // Compute the outer-most loop containing one of our exit blocks. This is the
1700 // furthest up our loopnest which can be mutated, which we will use below to
1701 // update things.
1702 Loop *OuterExitL = &L;
1703 for (auto *ExitBB : ExitBlocks) {
1704 Loop *NewOuterExitL = LI.getLoopFor(ExitBB);
1705 if (!NewOuterExitL) {
1706 // We exited the entire nest with this block, so we're done.
1707 OuterExitL = nullptr;
1708 break;
1709 }
1710 if (NewOuterExitL != OuterExitL && NewOuterExitL->contains(OuterExitL))
1711 OuterExitL = NewOuterExitL;
1712 }
1713
1714 // If the edge we *aren't* cloning in the unswitch (the continuing edge)
1715 // dominates its target, we can skip cloning the dominated region of the loop
1716 // and its exits. We compute this as a set of nodes to be skipped.
1717 SmallPtrSet<BasicBlock *, 4> SkippedLoopAndExitBlocks;
1718 if (ContinueSuccBB->getUniquePredecessor() ||
1719 llvm::all_of(predecessors(ContinueSuccBB), [&](BasicBlock *PredBB) {
1720 return PredBB == ParentBB || DT.dominates(ContinueSuccBB, PredBB);
1721 })) {
1722 visitDomSubTree(DT, ContinueSuccBB, [&](BasicBlock *BB) {
1723 SkippedLoopAndExitBlocks.insert(BB);
1724 return true;
1725 });
1726 }
1727 // Similarly, if the edge we *are* cloning in the unswitch (the unswitched
1728 // edge) dominates its target, we will end up with dead nodes in the original
1729 // loop and its exits that will need to be deleted. Here, we just retain that
1730 // the property holds and will compute the deleted set later.
1731 bool DeleteUnswitchedSucc =
1732 UnswitchedSuccBB->getUniquePredecessor() ||
1733 llvm::all_of(predecessors(UnswitchedSuccBB), [&](BasicBlock *PredBB) {
1734 return PredBB == ParentBB || DT.dominates(UnswitchedSuccBB, PredBB);
1735 });
1736
1737 // Split the preheader, so that we know that there is a safe place to insert
1738 // the conditional branch. We will change the preheader to have a conditional
1739 // branch on LoopCond. The original preheader will become the split point
1740 // between the unswitched versions, and we will have a new preheader for the
1741 // original loop.
1742 BasicBlock *SplitBB = L.getLoopPreheader();
1743 BasicBlock *LoopPH = SplitEdge(SplitBB, L.getHeader(), &DT, &LI);
1744
1745 // Keep a mapping for the cloned values.
1746 ValueToValueMapTy VMap;
1747
1748 // Build the cloned blocks from the loop.
1749 auto *ClonedPH = buildClonedLoopBlocks(
1750 L, LoopPH, SplitBB, ExitBlocks, ParentBB, UnswitchedSuccBB,
1751 ContinueSuccBB, SkippedLoopAndExitBlocks, VMap, AC, DT, LI);
1752
1753 // Build the cloned loop structure itself. This may be substantially
1754 // different from the original structure due to the simplified CFG. This also
1755 // handles inserting all the cloned blocks into the correct loops.
1756 SmallVector<Loop *, 4> NonChildClonedLoops;
1757 Loop *ClonedL =
1758 buildClonedLoops(L, ExitBlocks, VMap, LI, NonChildClonedLoops);
1759
1760 // Remove the parent as a predecessor of the unswitched successor.
1761 UnswitchedSuccBB->removePredecessor(ParentBB, /*DontDeleteUselessPHIs*/ true);
1762
1763 // Now splice the branch from the original loop and use it to select between
1764 // the two loops.
1765 SplitBB->getTerminator()->eraseFromParent();
1766 SplitBB->getInstList().splice(SplitBB->end(), ParentBB->getInstList(), BI);
1767 BI.setSuccessor(ClonedSucc, ClonedPH);
1768 BI.setSuccessor(1 - ClonedSucc, LoopPH);
1769
1770 // Create a new unconditional branch to the continuing block (as opposed to
1771 // the one cloned).
1772 BranchInst::Create(ContinueSuccBB, ParentBB);
1773
1774 // Delete anything that was made dead in the original loop due to
1775 // unswitching.
1776 if (DeleteUnswitchedSucc)
1777 deleteDeadBlocksFromLoop(L, UnswitchedSuccBB, ExitBlocks, DT, LI);
1778
1779 SmallVector<Loop *, 4> HoistedLoops;
1780 bool IsStillLoop = rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops);
1781
1782 // This will have completely invalidated the dominator tree. We can't easily
1783 // bound how much is invalid because in some cases we will refine the
1784 // predecessor set of exit blocks of the loop which can move large unrelated
1785 // regions of code into a new subtree.
1786 //
1787 // FIXME: Eventually, we should use an incremental update utility that
1788 // leverages the existing information in the dominator tree (and potentially
1789 // the nature of the change) to more efficiently update things.
1790 DT.recalculate(*SplitBB->getParent());
1791
1792 // We can change which blocks are exit blocks of all the cloned sibling
1793 // loops, the current loop, and any parent loops which shared exit blocks
1794 // with the current loop. As a consequence, we need to re-form LCSSA for
1795 // them. But we shouldn't need to re-form LCSSA for any child loops.
1796 // FIXME: This could be made more efficient by tracking which exit blocks are
1797 // new, and focusing on them, but that isn't likely to be necessary.
1798 //
1799 // In order to reasonably rebuild LCSSA we need to walk inside-out across the
1800 // loop nest and update every loop that could have had its exits changed. We
1801 // also need to cover any intervening loops. We add all of these loops to
1802 // a list and sort them by loop depth to achieve this without updating
1803 // unnecessary loops.
1804 auto UpdateLCSSA = [&](Loop &UpdateL) {
1805#ifndef NDEBUG
1806 for (Loop *ChildL : UpdateL)
1807 assert(ChildL->isRecursivelyLCSSAForm(DT, LI) &&
1808 "Perturbed a child loop's LCSSA form!");
1809#endif
1810 formLCSSA(UpdateL, DT, &LI, nullptr);
1811 };
1812
1813 // For non-child cloned loops and hoisted loops, we just need to update LCSSA
1814 // and we can do it in any order as they don't nest relative to each other.
1815 for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops))
1816 UpdateLCSSA(*UpdatedL);
1817
1818 // If the original loop had exit blocks, walk up through the outer most loop
1819 // of those exit blocks to update LCSSA and form updated dedicated exits.
1820 if (OuterExitL != &L) {
1821 SmallVector<Loop *, 4> OuterLoops;
1822 // We start with the cloned loop and the current loop if they are loops and
1823 // move toward OuterExitL. Also, if either the cloned loop or the current
1824 // loop have become top level loops we need to walk all the way out.
1825 if (ClonedL) {
1826 OuterLoops.push_back(ClonedL);
1827 if (!ClonedL->getParentLoop())
1828 OuterExitL = nullptr;
1829 }
1830 if (IsStillLoop) {
1831 OuterLoops.push_back(&L);
1832 if (!L.getParentLoop())
1833 OuterExitL = nullptr;
1834 }
1835 // Grab all of the enclosing loops now.
1836 for (Loop *OuterL = ParentL; OuterL != OuterExitL;
1837 OuterL = OuterL->getParentLoop())
1838 OuterLoops.push_back(OuterL);
1839
1840 // Finally, update our list of outer loops. This is nicely ordered to work
1841 // inside-out.
1842 for (Loop *OuterL : OuterLoops) {
1843 // First build LCSSA for this loop so that we can preserve it when
1844 // forming dedicated exits. We don't want to perturb some other loop's
1845 // LCSSA while doing that CFG edit.
1846 UpdateLCSSA(*OuterL);
1847
1848 // For loops reached by this loop's original exit blocks we may
1849 // introduced new, non-dedicated exits. At least try to re-form dedicated
1850 // exits for these loops. This may fail if they couldn't have dedicated
1851 // exits to start with.
1852 formDedicatedExitBlocks(OuterL, &DT, &LI, /*PreserveLCSSA*/ true);
1853 }
1854 }
1855
1856#ifndef NDEBUG
1857 // Verify the entire loop structure to catch any incorrect updates before we
1858 // progress in the pass pipeline.
1859 LI.verify(DT);
1860#endif
1861
1862 // Now that we've unswitched something, make callbacks to report the changes.
1863 // For that we need to merge together the updated loops and the cloned loops
1864 // and check whether the original loop survived.
1865 SmallVector<Loop *, 4> SibLoops;
1866 for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops))
1867 if (UpdatedL->getParentLoop() == ParentL)
1868 SibLoops.push_back(UpdatedL);
1869 NonTrivialUnswitchCB(IsStillLoop, SibLoops);
1870
1871 ++NumBranches;
1872 return true;
1873}
1874
1875/// Recursively compute the cost of a dominator subtree based on the per-block
1876/// cost map provided.
1877///
1878/// The recursive computation is memozied into the provided DT-indexed cost map
1879/// to allow querying it for most nodes in the domtree without it becoming
1880/// quadratic.
1881static int
1882computeDomSubtreeCost(DomTreeNode &N,
1883 const SmallDenseMap<BasicBlock *, int, 4> &BBCostMap,
1884 SmallDenseMap<DomTreeNode *, int, 4> &DTCostMap) {
1885 // Don't accumulate cost (or recurse through) blocks not in our block cost
1886 // map and thus not part of the duplication cost being considered.
1887 auto BBCostIt = BBCostMap.find(N.getBlock());
1888 if (BBCostIt == BBCostMap.end())
1889 return 0;
1890
1891 // Lookup this node to see if we already computed its cost.
1892 auto DTCostIt = DTCostMap.find(&N);
1893 if (DTCostIt != DTCostMap.end())
1894 return DTCostIt->second;
1895
1896 // If not, we have to compute it. We can't use insert above and update
1897 // because computing the cost may insert more things into the map.
1898 int Cost = std::accumulate(
1899 N.begin(), N.end(), BBCostIt->second, [&](int Sum, DomTreeNode *ChildN) {
1900 return Sum + computeDomSubtreeCost(*ChildN, BBCostMap, DTCostMap);
1901 });
1902 bool Inserted = DTCostMap.insert({&N, Cost}).second;
1903 (void)Inserted;
1904 assert(Inserted && "Should not insert a node while visiting children!");
1905 return Cost;
1906}
1907
Chandler Carruth1353f9a2017-04-27 18:45:20 +00001908/// Unswitch control flow predicated on loop invariant conditions.
1909///
1910/// This first hoists all branches or switches which are trivial (IE, do not
1911/// require duplicating any part of the loop) out of the loop body. It then
1912/// looks at other loop invariant control flows and tries to unswitch those as
1913/// well by cloning the loop if the result is small enough.
Chandler Carruth693eedb2017-11-17 19:58:36 +00001914static bool
1915unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI, AssumptionCache &AC,
1916 TargetTransformInfo &TTI, bool NonTrivial,
1917 function_ref<void(bool, ArrayRef<Loop *>)> NonTrivialUnswitchCB) {
1918 assert(L.isRecursivelyLCSSAForm(DT, LI) &&
Chandler Carruth1353f9a2017-04-27 18:45:20 +00001919 "Loops must be in LCSSA form before unswitching.");
1920 bool Changed = false;
1921
1922 // Must be in loop simplified form: we need a preheader and dedicated exits.
1923 if (!L.isLoopSimplifyForm())
1924 return false;
1925
1926 // Try trivial unswitch first before loop over other basic blocks in the loop.
1927 Changed |= unswitchAllTrivialConditions(L, DT, LI);
1928
Chandler Carruth693eedb2017-11-17 19:58:36 +00001929 // If we're not doing non-trivial unswitching, we're done. We both accept
1930 // a parameter but also check a local flag that can be used for testing
1931 // a debugging.
1932 if (!NonTrivial && !EnableNonTrivialUnswitch)
1933 return Changed;
1934
1935 // Collect all remaining invariant branch conditions within this loop (as
1936 // opposed to an inner loop which would be handled when visiting that inner
1937 // loop).
1938 SmallVector<TerminatorInst *, 4> UnswitchCandidates;
1939 for (auto *BB : L.blocks())
1940 if (LI.getLoopFor(BB) == &L)
1941 if (auto *BI = dyn_cast<BranchInst>(BB->getTerminator()))
1942 if (BI->isConditional() && L.isLoopInvariant(BI->getCondition()) &&
1943 BI->getSuccessor(0) != BI->getSuccessor(1))
1944 UnswitchCandidates.push_back(BI);
1945
1946 // If we didn't find any candidates, we're done.
1947 if (UnswitchCandidates.empty())
1948 return Changed;
1949
1950 DEBUG(dbgs() << "Considering " << UnswitchCandidates.size()
1951 << " non-trivial loop invariant conditions for unswitching.\n");
1952
1953 // Given that unswitching these terminators will require duplicating parts of
1954 // the loop, so we need to be able to model that cost. Compute the ephemeral
1955 // values and set up a data structure to hold per-BB costs. We cache each
1956 // block's cost so that we don't recompute this when considering different
1957 // subsets of the loop for duplication during unswitching.
1958 SmallPtrSet<const Value *, 4> EphValues;
1959 CodeMetrics::collectEphemeralValues(&L, &AC, EphValues);
1960 SmallDenseMap<BasicBlock *, int, 4> BBCostMap;
1961
1962 // Compute the cost of each block, as well as the total loop cost. Also, bail
1963 // out if we see instructions which are incompatible with loop unswitching
1964 // (convergent, noduplicate, or cross-basic-block tokens).
1965 // FIXME: We might be able to safely handle some of these in non-duplicated
1966 // regions.
1967 int LoopCost = 0;
1968 for (auto *BB : L.blocks()) {
1969 int Cost = 0;
1970 for (auto &I : *BB) {
1971 if (EphValues.count(&I))
1972 continue;
1973
1974 if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB))
1975 return Changed;
1976 if (auto CS = CallSite(&I))
1977 if (CS.isConvergent() || CS.cannotDuplicate())
1978 return Changed;
1979
1980 Cost += TTI.getUserCost(&I);
1981 }
1982 assert(Cost >= 0 && "Must not have negative costs!");
1983 LoopCost += Cost;
1984 assert(LoopCost >= 0 && "Must not have negative loop costs!");
1985 BBCostMap[BB] = Cost;
1986 }
1987 DEBUG(dbgs() << " Total loop cost: " << LoopCost << "\n");
1988
1989 // Now we find the best candidate by searching for the one with the following
1990 // properties in order:
1991 //
1992 // 1) An unswitching cost below the threshold
1993 // 2) The smallest number of duplicated unswitch candidates (to avoid
1994 // creating redundant subsequent unswitching)
1995 // 3) The smallest cost after unswitching.
1996 //
1997 // We prioritize reducing fanout of unswitch candidates provided the cost
1998 // remains below the threshold because this has a multiplicative effect.
1999 //
2000 // This requires memoizing each dominator subtree to avoid redundant work.
2001 //
2002 // FIXME: Need to actually do the number of candidates part above.
2003 SmallDenseMap<DomTreeNode *, int, 4> DTCostMap;
2004 // Given a terminator which might be unswitched, computes the non-duplicated
2005 // cost for that terminator.
2006 auto ComputeUnswitchedCost = [&](TerminatorInst *TI) {
2007 BasicBlock &BB = *TI->getParent();
2008 SmallPtrSet<BasicBlock *, 4> Visited;
2009
2010 int Cost = LoopCost;
2011 for (BasicBlock *SuccBB : successors(&BB)) {
2012 // Don't count successors more than once.
2013 if (!Visited.insert(SuccBB).second)
2014 continue;
2015
2016 // This successor's domtree will not need to be duplicated after
2017 // unswitching if the edge to the successor dominates it (and thus the
2018 // entire tree). This essentially means there is no other path into this
2019 // subtree and so it will end up live in only one clone of the loop.
2020 if (SuccBB->getUniquePredecessor() ||
2021 llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
2022 return PredBB == &BB || DT.dominates(SuccBB, PredBB);
2023 })) {
2024 Cost -= computeDomSubtreeCost(*DT[SuccBB], BBCostMap, DTCostMap);
2025 assert(Cost >= 0 &&
2026 "Non-duplicated cost should never exceed total loop cost!");
2027 }
2028 }
2029
2030 // Now scale the cost by the number of unique successors minus one. We
2031 // subtract one because there is already at least one copy of the entire
2032 // loop. This is computing the new cost of unswitching a condition.
2033 assert(Visited.size() > 1 &&
2034 "Cannot unswitch a condition without multiple distinct successors!");
2035 return Cost * (Visited.size() - 1);
2036 };
2037 TerminatorInst *BestUnswitchTI = nullptr;
2038 int BestUnswitchCost;
2039 for (TerminatorInst *CandidateTI : UnswitchCandidates) {
2040 int CandidateCost = ComputeUnswitchedCost(CandidateTI);
2041 DEBUG(dbgs() << " Computed cost of " << CandidateCost
2042 << " for unswitch candidate: " << *CandidateTI << "\n");
2043 if (!BestUnswitchTI || CandidateCost < BestUnswitchCost) {
2044 BestUnswitchTI = CandidateTI;
2045 BestUnswitchCost = CandidateCost;
2046 }
2047 }
2048
2049 if (BestUnswitchCost < UnswitchThreshold) {
2050 DEBUG(dbgs() << " Trying to unswitch non-trivial (cost = "
2051 << BestUnswitchCost << ") branch: " << *BestUnswitchTI
2052 << "\n");
2053 Changed |= unswitchInvariantBranch(L, cast<BranchInst>(*BestUnswitchTI), DT,
2054 LI, AC, NonTrivialUnswitchCB);
2055 } else {
2056 DEBUG(dbgs() << "Cannot unswitch, lowest cost found: " << BestUnswitchCost
2057 << "\n");
2058 }
Chandler Carruth1353f9a2017-04-27 18:45:20 +00002059
2060 return Changed;
2061}
2062
2063PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM,
2064 LoopStandardAnalysisResults &AR,
2065 LPMUpdater &U) {
2066 Function &F = *L.getHeader()->getParent();
2067 (void)F;
2068
2069 DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L << "\n");
2070
Chandler Carruth693eedb2017-11-17 19:58:36 +00002071 // Save the current loop name in a variable so that we can report it even
2072 // after it has been deleted.
2073 std::string LoopName = L.getName();
2074
2075 auto NonTrivialUnswitchCB = [&L, &U, &LoopName](bool CurrentLoopValid,
2076 ArrayRef<Loop *> NewLoops) {
2077 // If we did a non-trivial unswitch, we have added new (cloned) loops.
2078 U.addSiblingLoops(NewLoops);
2079
2080 // If the current loop remains valid, we should revisit it to catch any
2081 // other unswitch opportunities. Otherwise, we need to mark it as deleted.
2082 if (CurrentLoopValid)
2083 U.revisitCurrentLoop();
2084 else
2085 U.markLoopAsDeleted(L, LoopName);
2086 };
2087
2088 if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC, AR.TTI, NonTrivial,
2089 NonTrivialUnswitchCB))
Chandler Carruth1353f9a2017-04-27 18:45:20 +00002090 return PreservedAnalyses::all();
2091
2092#ifndef NDEBUG
2093 // Historically this pass has had issues with the dominator tree so verify it
2094 // in asserts builds.
2095 AR.DT.verifyDomTree();
2096#endif
2097 return getLoopPassPreservedAnalyses();
2098}
2099
2100namespace {
Eugene Zelenkoa369a452017-05-16 23:10:25 +00002101
Chandler Carruth1353f9a2017-04-27 18:45:20 +00002102class SimpleLoopUnswitchLegacyPass : public LoopPass {
Chandler Carruth693eedb2017-11-17 19:58:36 +00002103 bool NonTrivial;
2104
Chandler Carruth1353f9a2017-04-27 18:45:20 +00002105public:
2106 static char ID; // Pass ID, replacement for typeid
Eugene Zelenkoa369a452017-05-16 23:10:25 +00002107
Chandler Carruth693eedb2017-11-17 19:58:36 +00002108 explicit SimpleLoopUnswitchLegacyPass(bool NonTrivial = false)
2109 : LoopPass(ID), NonTrivial(NonTrivial) {
Chandler Carruth1353f9a2017-04-27 18:45:20 +00002110 initializeSimpleLoopUnswitchLegacyPassPass(
2111 *PassRegistry::getPassRegistry());
2112 }
2113
2114 bool runOnLoop(Loop *L, LPPassManager &LPM) override;
2115
2116 void getAnalysisUsage(AnalysisUsage &AU) const override {
2117 AU.addRequired<AssumptionCacheTracker>();
Chandler Carruth693eedb2017-11-17 19:58:36 +00002118 AU.addRequired<TargetTransformInfoWrapperPass>();
Chandler Carruth1353f9a2017-04-27 18:45:20 +00002119 getLoopAnalysisUsage(AU);
2120 }
2121};
Eugene Zelenkoa369a452017-05-16 23:10:25 +00002122
2123} // end anonymous namespace
Chandler Carruth1353f9a2017-04-27 18:45:20 +00002124
2125bool SimpleLoopUnswitchLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) {
2126 if (skipLoop(L))
2127 return false;
2128
2129 Function &F = *L->getHeader()->getParent();
2130
2131 DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << *L << "\n");
2132
2133 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2134 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2135 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
Chandler Carruth693eedb2017-11-17 19:58:36 +00002136 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
Chandler Carruth1353f9a2017-04-27 18:45:20 +00002137
Chandler Carruth693eedb2017-11-17 19:58:36 +00002138 auto NonTrivialUnswitchCB = [&L, &LPM](bool CurrentLoopValid,
2139 ArrayRef<Loop *> NewLoops) {
2140 // If we did a non-trivial unswitch, we have added new (cloned) loops.
2141 for (auto *NewL : NewLoops)
2142 LPM.addLoop(*NewL);
2143
2144 // If the current loop remains valid, re-add it to the queue. This is
2145 // a little wasteful as we'll finish processing the current loop as well,
2146 // but it is the best we can do in the old PM.
2147 if (CurrentLoopValid)
2148 LPM.addLoop(*L);
2149 else
2150 LPM.markLoopAsDeleted(*L);
2151 };
2152
2153 bool Changed =
2154 unswitchLoop(*L, DT, LI, AC, TTI, NonTrivial, NonTrivialUnswitchCB);
2155
2156 // If anything was unswitched, also clear any cached information about this
2157 // loop.
2158 LPM.deleteSimpleAnalysisLoop(L);
Chandler Carruth1353f9a2017-04-27 18:45:20 +00002159
2160#ifndef NDEBUG
2161 // Historically this pass has had issues with the dominator tree so verify it
2162 // in asserts builds.
2163 DT.verifyDomTree();
2164#endif
2165 return Changed;
2166}
2167
2168char SimpleLoopUnswitchLegacyPass::ID = 0;
2169INITIALIZE_PASS_BEGIN(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",
2170 "Simple unswitch loops", false, false)
2171INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
Chandler Carruth693eedb2017-11-17 19:58:36 +00002172INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
2173INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
Chandler Carruth1353f9a2017-04-27 18:45:20 +00002174INITIALIZE_PASS_DEPENDENCY(LoopPass)
2175INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
2176INITIALIZE_PASS_END(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",
2177 "Simple unswitch loops", false, false)
2178
Chandler Carruth693eedb2017-11-17 19:58:36 +00002179Pass *llvm::createSimpleLoopUnswitchLegacyPass(bool NonTrivial) {
2180 return new SimpleLoopUnswitchLegacyPass(NonTrivial);
Chandler Carruth1353f9a2017-04-27 18:45:20 +00002181}