blob: 0e2b1d31f04cad402da25021b940e49cf1643522 [file] [log] [blame]
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001//===-- X86FastISel.cpp - X86 FastISel implementation ---------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the X86-specific support for the FastISel class. Much
11// of the target-specific code is generated by tablegen in the file
12// X86GenFastISel.inc, which is #included here.
13//
14//===----------------------------------------------------------------------===//
15
16#include "X86.h"
17#include "X86CallingConv.h"
18#include "X86InstrBuilder.h"
19#include "X86InstrInfo.h"
20#include "X86MachineFunctionInfo.h"
21#include "X86RegisterInfo.h"
22#include "X86Subtarget.h"
23#include "X86TargetMachine.h"
24#include "llvm/Analysis/BranchProbabilityInfo.h"
25#include "llvm/CodeGen/Analysis.h"
26#include "llvm/CodeGen/FastISel.h"
27#include "llvm/CodeGen/FunctionLoweringInfo.h"
28#include "llvm/CodeGen/MachineConstantPool.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineRegisterInfo.h"
31#include "llvm/IR/CallSite.h"
32#include "llvm/IR/CallingConv.h"
33#include "llvm/IR/DerivedTypes.h"
34#include "llvm/IR/GetElementPtrTypeIterator.h"
35#include "llvm/IR/GlobalAlias.h"
36#include "llvm/IR/GlobalVariable.h"
37#include "llvm/IR/Instructions.h"
38#include "llvm/IR/IntrinsicInst.h"
39#include "llvm/IR/Operator.h"
David Majnemerca194852015-02-10 22:00:34 +000040#include "llvm/MC/MCAsmInfo.h"
Rafael Espindolace4c2bc2015-06-23 12:21:54 +000041#include "llvm/MC/MCSymbol.h"
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000042#include "llvm/Support/ErrorHandling.h"
43#include "llvm/Target/TargetOptions.h"
44using namespace llvm;
45
46namespace {
47
48class X86FastISel final : public FastISel {
49 /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
50 /// make the right decision when generating code for different targets.
51 const X86Subtarget *Subtarget;
52
53 /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87
54 /// floating point ops.
55 /// When SSE is available, use it for f32 operations.
56 /// When SSE2 is available, use it for f64 operations.
57 bool X86ScalarSSEf64;
58 bool X86ScalarSSEf32;
59
60public:
61 explicit X86FastISel(FunctionLoweringInfo &funcInfo,
62 const TargetLibraryInfo *libInfo)
Eric Christophera1c535b2015-02-02 23:03:45 +000063 : FastISel(funcInfo, libInfo) {
64 Subtarget = &funcInfo.MF->getSubtarget<X86Subtarget>();
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000065 X86ScalarSSEf64 = Subtarget->hasSSE2();
66 X86ScalarSSEf32 = Subtarget->hasSSE1();
67 }
68
69 bool fastSelectInstruction(const Instruction *I) override;
70
71 /// \brief The specified machine instr operand is a vreg, and that
72 /// vreg is being provided by the specified load instruction. If possible,
73 /// try to fold the load as an operand to the instruction, returning true if
74 /// possible.
75 bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
76 const LoadInst *LI) override;
77
78 bool fastLowerArguments() override;
79 bool fastLowerCall(CallLoweringInfo &CLI) override;
80 bool fastLowerIntrinsicCall(const IntrinsicInst *II) override;
81
82#include "X86GenFastISel.inc"
83
84private:
85 bool X86FastEmitCompare(const Value *LHS, const Value *RHS, EVT VT, DebugLoc DL);
86
Pete Cooperd0dae3e2015-05-05 23:41:53 +000087 bool X86FastEmitLoad(EVT VT, X86AddressMode &AM, MachineMemOperand *MMO,
Andrea Di Biagio8f7feec2015-03-26 11:29:02 +000088 unsigned &ResultReg, unsigned Alignment = 1);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000089
Pete Cooperd0dae3e2015-05-05 23:41:53 +000090 bool X86FastEmitStore(EVT VT, const Value *Val, X86AddressMode &AM,
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000091 MachineMemOperand *MMO = nullptr, bool Aligned = false);
92 bool X86FastEmitStore(EVT VT, unsigned ValReg, bool ValIsKill,
Pete Cooperd0dae3e2015-05-05 23:41:53 +000093 X86AddressMode &AM,
Michael Kupersteine86aa9a2015-02-01 16:15:07 +000094 MachineMemOperand *MMO = nullptr, bool Aligned = false);
95
96 bool X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT,
97 unsigned &ResultReg);
98
99 bool X86SelectAddress(const Value *V, X86AddressMode &AM);
100 bool X86SelectCallAddress(const Value *V, X86AddressMode &AM);
101
102 bool X86SelectLoad(const Instruction *I);
103
104 bool X86SelectStore(const Instruction *I);
105
106 bool X86SelectRet(const Instruction *I);
107
108 bool X86SelectCmp(const Instruction *I);
109
110 bool X86SelectZExt(const Instruction *I);
111
112 bool X86SelectBranch(const Instruction *I);
113
114 bool X86SelectShift(const Instruction *I);
115
116 bool X86SelectDivRem(const Instruction *I);
117
118 bool X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I);
119
120 bool X86FastEmitSSESelect(MVT RetVT, const Instruction *I);
121
122 bool X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I);
123
124 bool X86SelectSelect(const Instruction *I);
125
126 bool X86SelectTrunc(const Instruction *I);
127
Andrea Di Biagio62622d22015-02-10 12:04:41 +0000128 bool X86SelectFPExtOrFPTrunc(const Instruction *I, unsigned Opc,
129 const TargetRegisterClass *RC);
130
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000131 bool X86SelectFPExt(const Instruction *I);
132 bool X86SelectFPTrunc(const Instruction *I);
Andrea Di Biagioe7b58ee2015-02-17 23:40:58 +0000133 bool X86SelectSIToFP(const Instruction *I);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000134
135 const X86InstrInfo *getInstrInfo() const {
Eric Christophera1c535b2015-02-02 23:03:45 +0000136 return Subtarget->getInstrInfo();
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000137 }
138 const X86TargetMachine *getTargetMachine() const {
139 return static_cast<const X86TargetMachine *>(&TM);
140 }
141
142 bool handleConstantAddresses(const Value *V, X86AddressMode &AM);
143
144 unsigned X86MaterializeInt(const ConstantInt *CI, MVT VT);
145 unsigned X86MaterializeFP(const ConstantFP *CFP, MVT VT);
146 unsigned X86MaterializeGV(const GlobalValue *GV, MVT VT);
147 unsigned fastMaterializeConstant(const Constant *C) override;
148
149 unsigned fastMaterializeAlloca(const AllocaInst *C) override;
150
151 unsigned fastMaterializeFloatZero(const ConstantFP *CF) override;
152
153 /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
154 /// computed in an SSE register, not on the X87 floating point stack.
155 bool isScalarFPTypeInSSEReg(EVT VT) const {
156 return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
157 (VT == MVT::f32 && X86ScalarSSEf32); // f32 is when SSE1
158 }
159
160 bool isTypeLegal(Type *Ty, MVT &VT, bool AllowI1 = false);
161
162 bool IsMemcpySmall(uint64_t Len);
163
164 bool TryEmitSmallMemcpy(X86AddressMode DestAM,
165 X86AddressMode SrcAM, uint64_t Len);
166
167 bool foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I,
168 const Value *Cond);
Pete Cooperd0dae3e2015-05-05 23:41:53 +0000169
170 const MachineInstrBuilder &addFullAddress(const MachineInstrBuilder &MIB,
171 X86AddressMode &AM);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000172};
173
174} // end anonymous namespace.
175
176static std::pair<X86::CondCode, bool>
177getX86ConditionCode(CmpInst::Predicate Predicate) {
178 X86::CondCode CC = X86::COND_INVALID;
179 bool NeedSwap = false;
180 switch (Predicate) {
181 default: break;
182 // Floating-point Predicates
183 case CmpInst::FCMP_UEQ: CC = X86::COND_E; break;
184 case CmpInst::FCMP_OLT: NeedSwap = true; // fall-through
185 case CmpInst::FCMP_OGT: CC = X86::COND_A; break;
186 case CmpInst::FCMP_OLE: NeedSwap = true; // fall-through
187 case CmpInst::FCMP_OGE: CC = X86::COND_AE; break;
188 case CmpInst::FCMP_UGT: NeedSwap = true; // fall-through
189 case CmpInst::FCMP_ULT: CC = X86::COND_B; break;
190 case CmpInst::FCMP_UGE: NeedSwap = true; // fall-through
191 case CmpInst::FCMP_ULE: CC = X86::COND_BE; break;
192 case CmpInst::FCMP_ONE: CC = X86::COND_NE; break;
193 case CmpInst::FCMP_UNO: CC = X86::COND_P; break;
194 case CmpInst::FCMP_ORD: CC = X86::COND_NP; break;
195 case CmpInst::FCMP_OEQ: // fall-through
196 case CmpInst::FCMP_UNE: CC = X86::COND_INVALID; break;
197
198 // Integer Predicates
199 case CmpInst::ICMP_EQ: CC = X86::COND_E; break;
200 case CmpInst::ICMP_NE: CC = X86::COND_NE; break;
201 case CmpInst::ICMP_UGT: CC = X86::COND_A; break;
202 case CmpInst::ICMP_UGE: CC = X86::COND_AE; break;
203 case CmpInst::ICMP_ULT: CC = X86::COND_B; break;
204 case CmpInst::ICMP_ULE: CC = X86::COND_BE; break;
205 case CmpInst::ICMP_SGT: CC = X86::COND_G; break;
206 case CmpInst::ICMP_SGE: CC = X86::COND_GE; break;
207 case CmpInst::ICMP_SLT: CC = X86::COND_L; break;
208 case CmpInst::ICMP_SLE: CC = X86::COND_LE; break;
209 }
210
211 return std::make_pair(CC, NeedSwap);
212}
213
214static std::pair<unsigned, bool>
215getX86SSEConditionCode(CmpInst::Predicate Predicate) {
216 unsigned CC;
217 bool NeedSwap = false;
218
219 // SSE Condition code mapping:
220 // 0 - EQ
221 // 1 - LT
222 // 2 - LE
223 // 3 - UNORD
224 // 4 - NEQ
225 // 5 - NLT
226 // 6 - NLE
227 // 7 - ORD
228 switch (Predicate) {
229 default: llvm_unreachable("Unexpected predicate");
230 case CmpInst::FCMP_OEQ: CC = 0; break;
231 case CmpInst::FCMP_OGT: NeedSwap = true; // fall-through
232 case CmpInst::FCMP_OLT: CC = 1; break;
233 case CmpInst::FCMP_OGE: NeedSwap = true; // fall-through
234 case CmpInst::FCMP_OLE: CC = 2; break;
235 case CmpInst::FCMP_UNO: CC = 3; break;
236 case CmpInst::FCMP_UNE: CC = 4; break;
237 case CmpInst::FCMP_ULE: NeedSwap = true; // fall-through
238 case CmpInst::FCMP_UGE: CC = 5; break;
239 case CmpInst::FCMP_ULT: NeedSwap = true; // fall-through
240 case CmpInst::FCMP_UGT: CC = 6; break;
241 case CmpInst::FCMP_ORD: CC = 7; break;
242 case CmpInst::FCMP_UEQ:
243 case CmpInst::FCMP_ONE: CC = 8; break;
244 }
245
246 return std::make_pair(CC, NeedSwap);
247}
248
Pete Cooperd0dae3e2015-05-05 23:41:53 +0000249/// \brief Adds a complex addressing mode to the given machine instr builder.
250/// Note, this will constrain the index register. If its not possible to
251/// constrain the given index register, then a new one will be created. The
252/// IndexReg field of the addressing mode will be updated to match in this case.
253const MachineInstrBuilder &
254X86FastISel::addFullAddress(const MachineInstrBuilder &MIB,
255 X86AddressMode &AM) {
256 // First constrain the index register. It needs to be a GR64_NOSP.
257 AM.IndexReg = constrainOperandRegClass(MIB->getDesc(), AM.IndexReg,
258 MIB->getNumOperands() +
259 X86::AddrIndexReg);
260 return ::addFullAddress(MIB, AM);
261}
262
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000263/// \brief Check if it is possible to fold the condition from the XALU intrinsic
264/// into the user. The condition code will only be updated on success.
265bool X86FastISel::foldX86XALUIntrinsic(X86::CondCode &CC, const Instruction *I,
266 const Value *Cond) {
267 if (!isa<ExtractValueInst>(Cond))
268 return false;
269
270 const auto *EV = cast<ExtractValueInst>(Cond);
271 if (!isa<IntrinsicInst>(EV->getAggregateOperand()))
272 return false;
273
274 const auto *II = cast<IntrinsicInst>(EV->getAggregateOperand());
275 MVT RetVT;
276 const Function *Callee = II->getCalledFunction();
277 Type *RetTy =
278 cast<StructType>(Callee->getReturnType())->getTypeAtIndex(0U);
279 if (!isTypeLegal(RetTy, RetVT))
280 return false;
281
282 if (RetVT != MVT::i32 && RetVT != MVT::i64)
283 return false;
284
285 X86::CondCode TmpCC;
286 switch (II->getIntrinsicID()) {
287 default: return false;
288 case Intrinsic::sadd_with_overflow:
289 case Intrinsic::ssub_with_overflow:
290 case Intrinsic::smul_with_overflow:
291 case Intrinsic::umul_with_overflow: TmpCC = X86::COND_O; break;
292 case Intrinsic::uadd_with_overflow:
293 case Intrinsic::usub_with_overflow: TmpCC = X86::COND_B; break;
294 }
295
296 // Check if both instructions are in the same basic block.
297 if (II->getParent() != I->getParent())
298 return false;
299
300 // Make sure nothing is in the way
301 BasicBlock::const_iterator Start = I;
302 BasicBlock::const_iterator End = II;
303 for (auto Itr = std::prev(Start); Itr != End; --Itr) {
304 // We only expect extractvalue instructions between the intrinsic and the
305 // instruction to be selected.
306 if (!isa<ExtractValueInst>(Itr))
307 return false;
308
309 // Check that the extractvalue operand comes from the intrinsic.
310 const auto *EVI = cast<ExtractValueInst>(Itr);
311 if (EVI->getAggregateOperand() != II)
312 return false;
313 }
314
315 CC = TmpCC;
316 return true;
317}
318
319bool X86FastISel::isTypeLegal(Type *Ty, MVT &VT, bool AllowI1) {
320 EVT evt = TLI.getValueType(Ty, /*HandleUnknown=*/true);
321 if (evt == MVT::Other || !evt.isSimple())
322 // Unhandled type. Halt "fast" selection and bail.
323 return false;
324
325 VT = evt.getSimpleVT();
326 // For now, require SSE/SSE2 for performing floating-point operations,
327 // since x87 requires additional work.
328 if (VT == MVT::f64 && !X86ScalarSSEf64)
329 return false;
330 if (VT == MVT::f32 && !X86ScalarSSEf32)
331 return false;
332 // Similarly, no f80 support yet.
333 if (VT == MVT::f80)
334 return false;
335 // We only handle legal types. For example, on x86-32 the instruction
336 // selector contains all of the 64-bit instructions from x86-64,
337 // under the assumption that i64 won't be used if the target doesn't
338 // support it.
339 return (AllowI1 && VT == MVT::i1) || TLI.isTypeLegal(VT);
340}
341
342#include "X86GenCallingConv.inc"
343
344/// X86FastEmitLoad - Emit a machine instruction to load a value of type VT.
345/// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV.
346/// Return true and the result register by reference if it is possible.
Pete Cooperd0dae3e2015-05-05 23:41:53 +0000347bool X86FastISel::X86FastEmitLoad(EVT VT, X86AddressMode &AM,
Andrea Di Biagio8f7feec2015-03-26 11:29:02 +0000348 MachineMemOperand *MMO, unsigned &ResultReg,
349 unsigned Alignment) {
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000350 // Get opcode and regclass of the output for the given load instruction.
351 unsigned Opc = 0;
352 const TargetRegisterClass *RC = nullptr;
353 switch (VT.getSimpleVT().SimpleTy) {
354 default: return false;
355 case MVT::i1:
356 case MVT::i8:
357 Opc = X86::MOV8rm;
358 RC = &X86::GR8RegClass;
359 break;
360 case MVT::i16:
361 Opc = X86::MOV16rm;
362 RC = &X86::GR16RegClass;
363 break;
364 case MVT::i32:
365 Opc = X86::MOV32rm;
366 RC = &X86::GR32RegClass;
367 break;
368 case MVT::i64:
369 // Must be in x86-64 mode.
370 Opc = X86::MOV64rm;
371 RC = &X86::GR64RegClass;
372 break;
373 case MVT::f32:
374 if (X86ScalarSSEf32) {
375 Opc = Subtarget->hasAVX() ? X86::VMOVSSrm : X86::MOVSSrm;
376 RC = &X86::FR32RegClass;
377 } else {
378 Opc = X86::LD_Fp32m;
379 RC = &X86::RFP32RegClass;
380 }
381 break;
382 case MVT::f64:
383 if (X86ScalarSSEf64) {
384 Opc = Subtarget->hasAVX() ? X86::VMOVSDrm : X86::MOVSDrm;
385 RC = &X86::FR64RegClass;
386 } else {
387 Opc = X86::LD_Fp64m;
388 RC = &X86::RFP64RegClass;
389 }
390 break;
391 case MVT::f80:
392 // No f80 support yet.
393 return false;
Andrea Di Biagio8f7feec2015-03-26 11:29:02 +0000394 case MVT::v4f32:
395 if (Alignment >= 16)
396 Opc = Subtarget->hasAVX() ? X86::VMOVAPSrm : X86::MOVAPSrm;
397 else
398 Opc = Subtarget->hasAVX() ? X86::VMOVUPSrm : X86::MOVUPSrm;
399 RC = &X86::VR128RegClass;
400 break;
401 case MVT::v2f64:
402 if (Alignment >= 16)
403 Opc = Subtarget->hasAVX() ? X86::VMOVAPDrm : X86::MOVAPDrm;
404 else
405 Opc = Subtarget->hasAVX() ? X86::VMOVUPDrm : X86::MOVUPDrm;
406 RC = &X86::VR128RegClass;
407 break;
408 case MVT::v4i32:
409 case MVT::v2i64:
410 case MVT::v8i16:
411 case MVT::v16i8:
412 if (Alignment >= 16)
413 Opc = Subtarget->hasAVX() ? X86::VMOVDQArm : X86::MOVDQArm;
414 else
415 Opc = Subtarget->hasAVX() ? X86::VMOVDQUrm : X86::MOVDQUrm;
416 RC = &X86::VR128RegClass;
417 break;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000418 }
419
420 ResultReg = createResultReg(RC);
421 MachineInstrBuilder MIB =
422 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg);
423 addFullAddress(MIB, AM);
424 if (MMO)
425 MIB->addMemOperand(*FuncInfo.MF, MMO);
426 return true;
427}
428
429/// X86FastEmitStore - Emit a machine instruction to store a value Val of
430/// type VT. The address is either pre-computed, consisted of a base ptr, Ptr
431/// and a displacement offset, or a GlobalAddress,
432/// i.e. V. Return true if it is possible.
433bool X86FastISel::X86FastEmitStore(EVT VT, unsigned ValReg, bool ValIsKill,
Pete Cooperd0dae3e2015-05-05 23:41:53 +0000434 X86AddressMode &AM,
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000435 MachineMemOperand *MMO, bool Aligned) {
436 // Get opcode and regclass of the output for the given store instruction.
437 unsigned Opc = 0;
438 switch (VT.getSimpleVT().SimpleTy) {
439 case MVT::f80: // No f80 support yet.
440 default: return false;
441 case MVT::i1: {
442 // Mask out all but lowest bit.
443 unsigned AndResult = createResultReg(&X86::GR8RegClass);
444 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
445 TII.get(X86::AND8ri), AndResult)
446 .addReg(ValReg, getKillRegState(ValIsKill)).addImm(1);
447 ValReg = AndResult;
448 }
449 // FALLTHROUGH, handling i1 as i8.
450 case MVT::i8: Opc = X86::MOV8mr; break;
451 case MVT::i16: Opc = X86::MOV16mr; break;
452 case MVT::i32: Opc = X86::MOV32mr; break;
453 case MVT::i64: Opc = X86::MOV64mr; break; // Must be in x86-64 mode.
454 case MVT::f32:
455 Opc = X86ScalarSSEf32 ?
456 (Subtarget->hasAVX() ? X86::VMOVSSmr : X86::MOVSSmr) : X86::ST_Fp32m;
457 break;
458 case MVT::f64:
459 Opc = X86ScalarSSEf64 ?
460 (Subtarget->hasAVX() ? X86::VMOVSDmr : X86::MOVSDmr) : X86::ST_Fp64m;
461 break;
462 case MVT::v4f32:
463 if (Aligned)
464 Opc = Subtarget->hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr;
465 else
466 Opc = Subtarget->hasAVX() ? X86::VMOVUPSmr : X86::MOVUPSmr;
467 break;
468 case MVT::v2f64:
469 if (Aligned)
470 Opc = Subtarget->hasAVX() ? X86::VMOVAPDmr : X86::MOVAPDmr;
471 else
472 Opc = Subtarget->hasAVX() ? X86::VMOVUPDmr : X86::MOVUPDmr;
473 break;
474 case MVT::v4i32:
475 case MVT::v2i64:
476 case MVT::v8i16:
477 case MVT::v16i8:
478 if (Aligned)
479 Opc = Subtarget->hasAVX() ? X86::VMOVDQAmr : X86::MOVDQAmr;
480 else
481 Opc = Subtarget->hasAVX() ? X86::VMOVDQUmr : X86::MOVDQUmr;
482 break;
483 }
484
485 MachineInstrBuilder MIB =
486 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc));
487 addFullAddress(MIB, AM).addReg(ValReg, getKillRegState(ValIsKill));
488 if (MMO)
489 MIB->addMemOperand(*FuncInfo.MF, MMO);
490
491 return true;
492}
493
494bool X86FastISel::X86FastEmitStore(EVT VT, const Value *Val,
Pete Cooperd0dae3e2015-05-05 23:41:53 +0000495 X86AddressMode &AM,
Michael Kupersteine86aa9a2015-02-01 16:15:07 +0000496 MachineMemOperand *MMO, bool Aligned) {
497 // Handle 'null' like i32/i64 0.
498 if (isa<ConstantPointerNull>(Val))
499 Val = Constant::getNullValue(DL.getIntPtrType(Val->getContext()));
500
501 // If this is a store of a simple constant, fold the constant into the store.
502 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
503 unsigned Opc = 0;
504 bool Signed = true;
505 switch (VT.getSimpleVT().SimpleTy) {
506 default: break;
507 case MVT::i1: Signed = false; // FALLTHROUGH to handle as i8.
508 case MVT::i8: Opc = X86::MOV8mi; break;
509 case MVT::i16: Opc = X86::MOV16mi; break;
510 case MVT::i32: Opc = X86::MOV32mi; break;
511 case MVT::i64:
512 // Must be a 32-bit sign extended value.
513 if (isInt<32>(CI->getSExtValue()))
514 Opc = X86::MOV64mi32;
515 break;
516 }
517
518 if (Opc) {
519 MachineInstrBuilder MIB =
520 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc));
521 addFullAddress(MIB, AM).addImm(Signed ? (uint64_t) CI->getSExtValue()
522 : CI->getZExtValue());
523 if (MMO)
524 MIB->addMemOperand(*FuncInfo.MF, MMO);
525 return true;
526 }
527 }
528
529 unsigned ValReg = getRegForValue(Val);
530 if (ValReg == 0)
531 return false;
532
533 bool ValKill = hasTrivialKill(Val);
534 return X86FastEmitStore(VT, ValReg, ValKill, AM, MMO, Aligned);
535}
536
537/// X86FastEmitExtend - Emit a machine instruction to extend a value Src of
538/// type SrcVT to type DstVT using the specified extension opcode Opc (e.g.
539/// ISD::SIGN_EXTEND).
540bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT,
541 unsigned Src, EVT SrcVT,
542 unsigned &ResultReg) {
543 unsigned RR = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc,
544 Src, /*TODO: Kill=*/false);
545 if (RR == 0)
546 return false;
547
548 ResultReg = RR;
549 return true;
550}
551
552bool X86FastISel::handleConstantAddresses(const Value *V, X86AddressMode &AM) {
553 // Handle constant address.
554 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
555 // Can't handle alternate code models yet.
556 if (TM.getCodeModel() != CodeModel::Small)
557 return false;
558
559 // Can't handle TLS yet.
560 if (GV->isThreadLocal())
561 return false;
562
563 // RIP-relative addresses can't have additional register operands, so if
564 // we've already folded stuff into the addressing mode, just force the
565 // global value into its own register, which we can use as the basereg.
566 if (!Subtarget->isPICStyleRIPRel() ||
567 (AM.Base.Reg == 0 && AM.IndexReg == 0)) {
568 // Okay, we've committed to selecting this global. Set up the address.
569 AM.GV = GV;
570
571 // Allow the subtarget to classify the global.
572 unsigned char GVFlags = Subtarget->ClassifyGlobalReference(GV, TM);
573
574 // If this reference is relative to the pic base, set it now.
575 if (isGlobalRelativeToPICBase(GVFlags)) {
576 // FIXME: How do we know Base.Reg is free??
577 AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
578 }
579
580 // Unless the ABI requires an extra load, return a direct reference to
581 // the global.
582 if (!isGlobalStubReference(GVFlags)) {
583 if (Subtarget->isPICStyleRIPRel()) {
584 // Use rip-relative addressing if we can. Above we verified that the
585 // base and index registers are unused.
586 assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
587 AM.Base.Reg = X86::RIP;
588 }
589 AM.GVOpFlags = GVFlags;
590 return true;
591 }
592
593 // Ok, we need to do a load from a stub. If we've already loaded from
594 // this stub, reuse the loaded pointer, otherwise emit the load now.
595 DenseMap<const Value *, unsigned>::iterator I = LocalValueMap.find(V);
596 unsigned LoadReg;
597 if (I != LocalValueMap.end() && I->second != 0) {
598 LoadReg = I->second;
599 } else {
600 // Issue load from stub.
601 unsigned Opc = 0;
602 const TargetRegisterClass *RC = nullptr;
603 X86AddressMode StubAM;
604 StubAM.Base.Reg = AM.Base.Reg;
605 StubAM.GV = GV;
606 StubAM.GVOpFlags = GVFlags;
607
608 // Prepare for inserting code in the local-value area.
609 SavePoint SaveInsertPt = enterLocalValueArea();
610
611 if (TLI.getPointerTy() == MVT::i64) {
612 Opc = X86::MOV64rm;
613 RC = &X86::GR64RegClass;
614
615 if (Subtarget->isPICStyleRIPRel())
616 StubAM.Base.Reg = X86::RIP;
617 } else {
618 Opc = X86::MOV32rm;
619 RC = &X86::GR32RegClass;
620 }
621
622 LoadReg = createResultReg(RC);
623 MachineInstrBuilder LoadMI =
624 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), LoadReg);
625 addFullAddress(LoadMI, StubAM);
626
627 // Ok, back to normal mode.
628 leaveLocalValueArea(SaveInsertPt);
629
630 // Prevent loading GV stub multiple times in same MBB.
631 LocalValueMap[V] = LoadReg;
632 }
633
634 // Now construct the final address. Note that the Disp, Scale,
635 // and Index values may already be set here.
636 AM.Base.Reg = LoadReg;
637 AM.GV = nullptr;
638 return true;
639 }
640 }
641
642 // If all else fails, try to materialize the value in a register.
643 if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
644 if (AM.Base.Reg == 0) {
645 AM.Base.Reg = getRegForValue(V);
646 return AM.Base.Reg != 0;
647 }
648 if (AM.IndexReg == 0) {
649 assert(AM.Scale == 1 && "Scale with no index!");
650 AM.IndexReg = getRegForValue(V);
651 return AM.IndexReg != 0;
652 }
653 }
654
655 return false;
656}
657
658/// X86SelectAddress - Attempt to fill in an address from the given value.
659///
660bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) {
661 SmallVector<const Value *, 32> GEPs;
662redo_gep:
663 const User *U = nullptr;
664 unsigned Opcode = Instruction::UserOp1;
665 if (const Instruction *I = dyn_cast<Instruction>(V)) {
666 // Don't walk into other basic blocks; it's possible we haven't
667 // visited them yet, so the instructions may not yet be assigned
668 // virtual registers.
669 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(V)) ||
670 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
671 Opcode = I->getOpcode();
672 U = I;
673 }
674 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
675 Opcode = C->getOpcode();
676 U = C;
677 }
678
679 if (PointerType *Ty = dyn_cast<PointerType>(V->getType()))
680 if (Ty->getAddressSpace() > 255)
681 // Fast instruction selection doesn't support the special
682 // address spaces.
683 return false;
684
685 switch (Opcode) {
686 default: break;
687 case Instruction::BitCast:
688 // Look past bitcasts.
689 return X86SelectAddress(U->getOperand(0), AM);
690
691 case Instruction::IntToPtr:
692 // Look past no-op inttoptrs.
693 if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
694 return X86SelectAddress(U->getOperand(0), AM);
695 break;
696
697 case Instruction::PtrToInt:
698 // Look past no-op ptrtoints.
699 if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
700 return X86SelectAddress(U->getOperand(0), AM);
701 break;
702
703 case Instruction::Alloca: {
704 // Do static allocas.
705 const AllocaInst *A = cast<AllocaInst>(V);
706 DenseMap<const AllocaInst *, int>::iterator SI =
707 FuncInfo.StaticAllocaMap.find(A);
708 if (SI != FuncInfo.StaticAllocaMap.end()) {
709 AM.BaseType = X86AddressMode::FrameIndexBase;
710 AM.Base.FrameIndex = SI->second;
711 return true;
712 }
713 break;
714 }
715
716 case Instruction::Add: {
717 // Adds of constants are common and easy enough.
718 if (const ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
719 uint64_t Disp = (int32_t)AM.Disp + (uint64_t)CI->getSExtValue();
720 // They have to fit in the 32-bit signed displacement field though.
721 if (isInt<32>(Disp)) {
722 AM.Disp = (uint32_t)Disp;
723 return X86SelectAddress(U->getOperand(0), AM);
724 }
725 }
726 break;
727 }
728
729 case Instruction::GetElementPtr: {
730 X86AddressMode SavedAM = AM;
731
732 // Pattern-match simple GEPs.
733 uint64_t Disp = (int32_t)AM.Disp;
734 unsigned IndexReg = AM.IndexReg;
735 unsigned Scale = AM.Scale;
736 gep_type_iterator GTI = gep_type_begin(U);
737 // Iterate through the indices, folding what we can. Constants can be
738 // folded, and one dynamic index can be handled, if the scale is supported.
739 for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
740 i != e; ++i, ++GTI) {
741 const Value *Op = *i;
742 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
743 const StructLayout *SL = DL.getStructLayout(STy);
744 Disp += SL->getElementOffset(cast<ConstantInt>(Op)->getZExtValue());
745 continue;
746 }
747
748 // A array/variable index is always of the form i*S where S is the
749 // constant scale size. See if we can push the scale into immediates.
750 uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
751 for (;;) {
752 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
753 // Constant-offset addressing.
754 Disp += CI->getSExtValue() * S;
755 break;
756 }
757 if (canFoldAddIntoGEP(U, Op)) {
758 // A compatible add with a constant operand. Fold the constant.
759 ConstantInt *CI =
760 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
761 Disp += CI->getSExtValue() * S;
762 // Iterate on the other operand.
763 Op = cast<AddOperator>(Op)->getOperand(0);
764 continue;
765 }
766 if (IndexReg == 0 &&
767 (!AM.GV || !Subtarget->isPICStyleRIPRel()) &&
768 (S == 1 || S == 2 || S == 4 || S == 8)) {
769 // Scaled-index addressing.
770 Scale = S;
771 IndexReg = getRegForGEPIndex(Op).first;
772 if (IndexReg == 0)
773 return false;
774 break;
775 }
776 // Unsupported.
777 goto unsupported_gep;
778 }
779 }
780
781 // Check for displacement overflow.
782 if (!isInt<32>(Disp))
783 break;
784
785 AM.IndexReg = IndexReg;
786 AM.Scale = Scale;
787 AM.Disp = (uint32_t)Disp;
788 GEPs.push_back(V);
789
790 if (const GetElementPtrInst *GEP =
791 dyn_cast<GetElementPtrInst>(U->getOperand(0))) {
792 // Ok, the GEP indices were covered by constant-offset and scaled-index
793 // addressing. Update the address state and move on to examining the base.
794 V = GEP;
795 goto redo_gep;
796 } else if (X86SelectAddress(U->getOperand(0), AM)) {
797 return true;
798 }
799
800 // If we couldn't merge the gep value into this addr mode, revert back to
801 // our address and just match the value instead of completely failing.
802 AM = SavedAM;
803
804 for (SmallVectorImpl<const Value *>::reverse_iterator
805 I = GEPs.rbegin(), E = GEPs.rend(); I != E; ++I)
806 if (handleConstantAddresses(*I, AM))
807 return true;
808
809 return false;
810 unsupported_gep:
811 // Ok, the GEP indices weren't all covered.
812 break;
813 }
814 }
815
816 return handleConstantAddresses(V, AM);
817}
818
819/// X86SelectCallAddress - Attempt to fill in an address from the given value.
820///
821bool X86FastISel::X86SelectCallAddress(const Value *V, X86AddressMode &AM) {
822 const User *U = nullptr;
823 unsigned Opcode = Instruction::UserOp1;
824 const Instruction *I = dyn_cast<Instruction>(V);
825 // Record if the value is defined in the same basic block.
826 //
827 // This information is crucial to know whether or not folding an
828 // operand is valid.
829 // Indeed, FastISel generates or reuses a virtual register for all
830 // operands of all instructions it selects. Obviously, the definition and
831 // its uses must use the same virtual register otherwise the produced
832 // code is incorrect.
833 // Before instruction selection, FunctionLoweringInfo::set sets the virtual
834 // registers for values that are alive across basic blocks. This ensures
835 // that the values are consistently set between across basic block, even
836 // if different instruction selection mechanisms are used (e.g., a mix of
837 // SDISel and FastISel).
838 // For values local to a basic block, the instruction selection process
839 // generates these virtual registers with whatever method is appropriate
840 // for its needs. In particular, FastISel and SDISel do not share the way
841 // local virtual registers are set.
842 // Therefore, this is impossible (or at least unsafe) to share values
843 // between basic blocks unless they use the same instruction selection
844 // method, which is not guarantee for X86.
845 // Moreover, things like hasOneUse could not be used accurately, if we
846 // allow to reference values across basic blocks whereas they are not
847 // alive across basic blocks initially.
848 bool InMBB = true;
849 if (I) {
850 Opcode = I->getOpcode();
851 U = I;
852 InMBB = I->getParent() == FuncInfo.MBB->getBasicBlock();
853 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
854 Opcode = C->getOpcode();
855 U = C;
856 }
857
858 switch (Opcode) {
859 default: break;
860 case Instruction::BitCast:
861 // Look past bitcasts if its operand is in the same BB.
862 if (InMBB)
863 return X86SelectCallAddress(U->getOperand(0), AM);
864 break;
865
866 case Instruction::IntToPtr:
867 // Look past no-op inttoptrs if its operand is in the same BB.
868 if (InMBB &&
869 TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
870 return X86SelectCallAddress(U->getOperand(0), AM);
871 break;
872
873 case Instruction::PtrToInt:
874 // Look past no-op ptrtoints if its operand is in the same BB.
875 if (InMBB &&
876 TLI.getValueType(U->getType()) == TLI.getPointerTy())
877 return X86SelectCallAddress(U->getOperand(0), AM);
878 break;
879 }
880
881 // Handle constant address.
882 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
883 // Can't handle alternate code models yet.
884 if (TM.getCodeModel() != CodeModel::Small)
885 return false;
886
887 // RIP-relative addresses can't have additional register operands.
888 if (Subtarget->isPICStyleRIPRel() &&
889 (AM.Base.Reg != 0 || AM.IndexReg != 0))
890 return false;
891
892 // Can't handle DLL Import.
893 if (GV->hasDLLImportStorageClass())
894 return false;
895
896 // Can't handle TLS.
897 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
898 if (GVar->isThreadLocal())
899 return false;
900
901 // Okay, we've committed to selecting this global. Set up the basic address.
902 AM.GV = GV;
903
904 // No ABI requires an extra load for anything other than DLLImport, which
905 // we rejected above. Return a direct reference to the global.
906 if (Subtarget->isPICStyleRIPRel()) {
907 // Use rip-relative addressing if we can. Above we verified that the
908 // base and index registers are unused.
909 assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
910 AM.Base.Reg = X86::RIP;
911 } else if (Subtarget->isPICStyleStubPIC()) {
912 AM.GVOpFlags = X86II::MO_PIC_BASE_OFFSET;
913 } else if (Subtarget->isPICStyleGOT()) {
914 AM.GVOpFlags = X86II::MO_GOTOFF;
915 }
916
917 return true;
918 }
919
920 // If all else fails, try to materialize the value in a register.
921 if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
922 if (AM.Base.Reg == 0) {
923 AM.Base.Reg = getRegForValue(V);
924 return AM.Base.Reg != 0;
925 }
926 if (AM.IndexReg == 0) {
927 assert(AM.Scale == 1 && "Scale with no index!");
928 AM.IndexReg = getRegForValue(V);
929 return AM.IndexReg != 0;
930 }
931 }
932
933 return false;
934}
935
936
937/// X86SelectStore - Select and emit code to implement store instructions.
938bool X86FastISel::X86SelectStore(const Instruction *I) {
939 // Atomic stores need special handling.
940 const StoreInst *S = cast<StoreInst>(I);
941
942 if (S->isAtomic())
943 return false;
944
945 const Value *Val = S->getValueOperand();
946 const Value *Ptr = S->getPointerOperand();
947
948 MVT VT;
949 if (!isTypeLegal(Val->getType(), VT, /*AllowI1=*/true))
950 return false;
951
952 unsigned Alignment = S->getAlignment();
953 unsigned ABIAlignment = DL.getABITypeAlignment(Val->getType());
954 if (Alignment == 0) // Ensure that codegen never sees alignment 0
955 Alignment = ABIAlignment;
956 bool Aligned = Alignment >= ABIAlignment;
957
958 X86AddressMode AM;
959 if (!X86SelectAddress(Ptr, AM))
960 return false;
961
962 return X86FastEmitStore(VT, Val, AM, createMachineMemOperandFor(I), Aligned);
963}
964
965/// X86SelectRet - Select and emit code to implement ret instructions.
966bool X86FastISel::X86SelectRet(const Instruction *I) {
967 const ReturnInst *Ret = cast<ReturnInst>(I);
968 const Function &F = *I->getParent()->getParent();
969 const X86MachineFunctionInfo *X86MFInfo =
970 FuncInfo.MF->getInfo<X86MachineFunctionInfo>();
971
972 if (!FuncInfo.CanLowerReturn)
973 return false;
974
975 CallingConv::ID CC = F.getCallingConv();
976 if (CC != CallingConv::C &&
977 CC != CallingConv::Fast &&
978 CC != CallingConv::X86_FastCall &&
979 CC != CallingConv::X86_64_SysV)
980 return false;
981
982 if (Subtarget->isCallingConvWin64(CC))
983 return false;
984
985 // Don't handle popping bytes on return for now.
986 if (X86MFInfo->getBytesToPopOnReturn() != 0)
987 return false;
988
989 // fastcc with -tailcallopt is intended to provide a guaranteed
990 // tail call optimization. Fastisel doesn't know how to do that.
991 if (CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt)
992 return false;
993
994 // Let SDISel handle vararg functions.
995 if (F.isVarArg())
996 return false;
997
998 // Build a list of return value registers.
999 SmallVector<unsigned, 4> RetRegs;
1000
1001 if (Ret->getNumOperands() > 0) {
1002 SmallVector<ISD::OutputArg, 4> Outs;
1003 GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI);
1004
1005 // Analyze operands of the call, assigning locations to each operand.
1006 SmallVector<CCValAssign, 16> ValLocs;
1007 CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext());
1008 CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1009
1010 const Value *RV = Ret->getOperand(0);
1011 unsigned Reg = getRegForValue(RV);
1012 if (Reg == 0)
1013 return false;
1014
1015 // Only handle a single return value for now.
1016 if (ValLocs.size() != 1)
1017 return false;
1018
1019 CCValAssign &VA = ValLocs[0];
1020
1021 // Don't bother handling odd stuff for now.
1022 if (VA.getLocInfo() != CCValAssign::Full)
1023 return false;
1024 // Only handle register returns for now.
1025 if (!VA.isRegLoc())
1026 return false;
1027
1028 // The calling-convention tables for x87 returns don't tell
1029 // the whole story.
1030 if (VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1)
1031 return false;
1032
1033 unsigned SrcReg = Reg + VA.getValNo();
1034 EVT SrcVT = TLI.getValueType(RV->getType());
1035 EVT DstVT = VA.getValVT();
1036 // Special handling for extended integers.
1037 if (SrcVT != DstVT) {
1038 if (SrcVT != MVT::i1 && SrcVT != MVT::i8 && SrcVT != MVT::i16)
1039 return false;
1040
1041 if (!Outs[0].Flags.isZExt() && !Outs[0].Flags.isSExt())
1042 return false;
1043
1044 assert(DstVT == MVT::i32 && "X86 should always ext to i32");
1045
1046 if (SrcVT == MVT::i1) {
1047 if (Outs[0].Flags.isSExt())
1048 return false;
1049 SrcReg = fastEmitZExtFromI1(MVT::i8, SrcReg, /*TODO: Kill=*/false);
1050 SrcVT = MVT::i8;
1051 }
1052 unsigned Op = Outs[0].Flags.isZExt() ? ISD::ZERO_EXTEND :
1053 ISD::SIGN_EXTEND;
1054 SrcReg = fastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Op,
1055 SrcReg, /*TODO: Kill=*/false);
1056 }
1057
1058 // Make the copy.
1059 unsigned DstReg = VA.getLocReg();
1060 const TargetRegisterClass *SrcRC = MRI.getRegClass(SrcReg);
1061 // Avoid a cross-class copy. This is very unlikely.
1062 if (!SrcRC->contains(DstReg))
1063 return false;
1064 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1065 TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg);
1066
1067 // Add register to return instruction.
1068 RetRegs.push_back(VA.getLocReg());
1069 }
1070
1071 // The x86-64 ABI for returning structs by value requires that we copy
1072 // the sret argument into %rax for the return. We saved the argument into
1073 // a virtual register in the entry block, so now we copy the value out
1074 // and into %rax. We also do the same with %eax for Win32.
1075 if (F.hasStructRetAttr() &&
1076 (Subtarget->is64Bit() || Subtarget->isTargetKnownWindowsMSVC())) {
1077 unsigned Reg = X86MFInfo->getSRetReturnReg();
1078 assert(Reg &&
1079 "SRetReturnReg should have been set in LowerFormalArguments()!");
1080 unsigned RetReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
1081 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1082 TII.get(TargetOpcode::COPY), RetReg).addReg(Reg);
1083 RetRegs.push_back(RetReg);
1084 }
1085
1086 // Now emit the RET.
1087 MachineInstrBuilder MIB =
1088 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1089 TII.get(Subtarget->is64Bit() ? X86::RETQ : X86::RETL));
1090 for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
1091 MIB.addReg(RetRegs[i], RegState::Implicit);
1092 return true;
1093}
1094
1095/// X86SelectLoad - Select and emit code to implement load instructions.
1096///
1097bool X86FastISel::X86SelectLoad(const Instruction *I) {
1098 const LoadInst *LI = cast<LoadInst>(I);
1099
1100 // Atomic loads need special handling.
1101 if (LI->isAtomic())
1102 return false;
1103
1104 MVT VT;
1105 if (!isTypeLegal(LI->getType(), VT, /*AllowI1=*/true))
1106 return false;
1107
1108 const Value *Ptr = LI->getPointerOperand();
1109
1110 X86AddressMode AM;
1111 if (!X86SelectAddress(Ptr, AM))
1112 return false;
1113
Andrea Di Biagio8f7feec2015-03-26 11:29:02 +00001114 unsigned Alignment = LI->getAlignment();
1115 unsigned ABIAlignment = DL.getABITypeAlignment(LI->getType());
1116 if (Alignment == 0) // Ensure that codegen never sees alignment 0
1117 Alignment = ABIAlignment;
1118
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001119 unsigned ResultReg = 0;
Andrea Di Biagio8f7feec2015-03-26 11:29:02 +00001120 if (!X86FastEmitLoad(VT, AM, createMachineMemOperandFor(LI), ResultReg,
1121 Alignment))
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001122 return false;
1123
1124 updateValueMap(I, ResultReg);
1125 return true;
1126}
1127
1128static unsigned X86ChooseCmpOpcode(EVT VT, const X86Subtarget *Subtarget) {
1129 bool HasAVX = Subtarget->hasAVX();
1130 bool X86ScalarSSEf32 = Subtarget->hasSSE1();
1131 bool X86ScalarSSEf64 = Subtarget->hasSSE2();
1132
1133 switch (VT.getSimpleVT().SimpleTy) {
1134 default: return 0;
1135 case MVT::i8: return X86::CMP8rr;
1136 case MVT::i16: return X86::CMP16rr;
1137 case MVT::i32: return X86::CMP32rr;
1138 case MVT::i64: return X86::CMP64rr;
1139 case MVT::f32:
1140 return X86ScalarSSEf32 ? (HasAVX ? X86::VUCOMISSrr : X86::UCOMISSrr) : 0;
1141 case MVT::f64:
1142 return X86ScalarSSEf64 ? (HasAVX ? X86::VUCOMISDrr : X86::UCOMISDrr) : 0;
1143 }
1144}
1145
Rafael Espindola19141f22015-03-16 14:05:49 +00001146/// If we have a comparison with RHS as the RHS of the comparison, return an
1147/// opcode that works for the compare (e.g. CMP32ri) otherwise return 0.
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001148static unsigned X86ChooseCmpImmediateOpcode(EVT VT, const ConstantInt *RHSC) {
Rafael Espindola933f51a2015-03-16 14:25:08 +00001149 int64_t Val = RHSC->getSExtValue();
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001150 switch (VT.getSimpleVT().SimpleTy) {
1151 // Otherwise, we can't fold the immediate into this comparison.
Rafael Espindola19141f22015-03-16 14:05:49 +00001152 default:
1153 return 0;
1154 case MVT::i8:
1155 return X86::CMP8ri;
1156 case MVT::i16:
Rafael Espindola933f51a2015-03-16 14:25:08 +00001157 if (isInt<8>(Val))
1158 return X86::CMP16ri8;
Rafael Espindola19141f22015-03-16 14:05:49 +00001159 return X86::CMP16ri;
1160 case MVT::i32:
Rafael Espindola933f51a2015-03-16 14:25:08 +00001161 if (isInt<8>(Val))
1162 return X86::CMP32ri8;
Rafael Espindola19141f22015-03-16 14:05:49 +00001163 return X86::CMP32ri;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001164 case MVT::i64:
Rafael Espindola933f51a2015-03-16 14:25:08 +00001165 if (isInt<8>(Val))
1166 return X86::CMP64ri8;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001167 // 64-bit comparisons are only valid if the immediate fits in a 32-bit sext
1168 // field.
Rafael Espindola933f51a2015-03-16 14:25:08 +00001169 if (isInt<32>(Val))
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001170 return X86::CMP64ri32;
1171 return 0;
1172 }
1173}
1174
1175bool X86FastISel::X86FastEmitCompare(const Value *Op0, const Value *Op1,
1176 EVT VT, DebugLoc CurDbgLoc) {
1177 unsigned Op0Reg = getRegForValue(Op0);
1178 if (Op0Reg == 0) return false;
1179
1180 // Handle 'null' like i32/i64 0.
1181 if (isa<ConstantPointerNull>(Op1))
1182 Op1 = Constant::getNullValue(DL.getIntPtrType(Op0->getContext()));
1183
1184 // We have two options: compare with register or immediate. If the RHS of
1185 // the compare is an immediate that we can fold into this compare, use
1186 // CMPri, otherwise use CMPrr.
1187 if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
1188 if (unsigned CompareImmOpc = X86ChooseCmpImmediateOpcode(VT, Op1C)) {
1189 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurDbgLoc, TII.get(CompareImmOpc))
1190 .addReg(Op0Reg)
1191 .addImm(Op1C->getSExtValue());
1192 return true;
1193 }
1194 }
1195
1196 unsigned CompareOpc = X86ChooseCmpOpcode(VT, Subtarget);
1197 if (CompareOpc == 0) return false;
1198
1199 unsigned Op1Reg = getRegForValue(Op1);
1200 if (Op1Reg == 0) return false;
1201 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, CurDbgLoc, TII.get(CompareOpc))
1202 .addReg(Op0Reg)
1203 .addReg(Op1Reg);
1204
1205 return true;
1206}
1207
1208bool X86FastISel::X86SelectCmp(const Instruction *I) {
1209 const CmpInst *CI = cast<CmpInst>(I);
1210
1211 MVT VT;
1212 if (!isTypeLegal(I->getOperand(0)->getType(), VT))
1213 return false;
1214
1215 // Try to optimize or fold the cmp.
1216 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
1217 unsigned ResultReg = 0;
1218 switch (Predicate) {
1219 default: break;
1220 case CmpInst::FCMP_FALSE: {
1221 ResultReg = createResultReg(&X86::GR32RegClass);
1222 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV32r0),
1223 ResultReg);
1224 ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultReg, /*Kill=*/true,
1225 X86::sub_8bit);
1226 if (!ResultReg)
1227 return false;
1228 break;
1229 }
1230 case CmpInst::FCMP_TRUE: {
1231 ResultReg = createResultReg(&X86::GR8RegClass);
1232 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV8ri),
1233 ResultReg).addImm(1);
1234 break;
1235 }
1236 }
1237
1238 if (ResultReg) {
1239 updateValueMap(I, ResultReg);
1240 return true;
1241 }
1242
1243 const Value *LHS = CI->getOperand(0);
1244 const Value *RHS = CI->getOperand(1);
1245
1246 // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0.
1247 // We don't have to materialize a zero constant for this case and can just use
1248 // %x again on the RHS.
1249 if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
1250 const auto *RHSC = dyn_cast<ConstantFP>(RHS);
1251 if (RHSC && RHSC->isNullValue())
1252 RHS = LHS;
1253 }
1254
1255 // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction.
1256 static unsigned SETFOpcTable[2][3] = {
1257 { X86::SETEr, X86::SETNPr, X86::AND8rr },
1258 { X86::SETNEr, X86::SETPr, X86::OR8rr }
1259 };
1260 unsigned *SETFOpc = nullptr;
1261 switch (Predicate) {
1262 default: break;
1263 case CmpInst::FCMP_OEQ: SETFOpc = &SETFOpcTable[0][0]; break;
1264 case CmpInst::FCMP_UNE: SETFOpc = &SETFOpcTable[1][0]; break;
1265 }
1266
1267 ResultReg = createResultReg(&X86::GR8RegClass);
1268 if (SETFOpc) {
1269 if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc()))
1270 return false;
1271
1272 unsigned FlagReg1 = createResultReg(&X86::GR8RegClass);
1273 unsigned FlagReg2 = createResultReg(&X86::GR8RegClass);
1274 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[0]),
1275 FlagReg1);
1276 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[1]),
1277 FlagReg2);
1278 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[2]),
1279 ResultReg).addReg(FlagReg1).addReg(FlagReg2);
1280 updateValueMap(I, ResultReg);
1281 return true;
1282 }
1283
1284 X86::CondCode CC;
1285 bool SwapArgs;
1286 std::tie(CC, SwapArgs) = getX86ConditionCode(Predicate);
1287 assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
1288 unsigned Opc = X86::getSETFromCond(CC);
1289
1290 if (SwapArgs)
1291 std::swap(LHS, RHS);
1292
1293 // Emit a compare of LHS/RHS.
1294 if (!X86FastEmitCompare(LHS, RHS, VT, I->getDebugLoc()))
1295 return false;
1296
1297 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg);
1298 updateValueMap(I, ResultReg);
1299 return true;
1300}
1301
1302bool X86FastISel::X86SelectZExt(const Instruction *I) {
1303 EVT DstVT = TLI.getValueType(I->getType());
1304 if (!TLI.isTypeLegal(DstVT))
1305 return false;
1306
1307 unsigned ResultReg = getRegForValue(I->getOperand(0));
1308 if (ResultReg == 0)
1309 return false;
1310
1311 // Handle zero-extension from i1 to i8, which is common.
1312 MVT SrcVT = TLI.getSimpleValueType(I->getOperand(0)->getType());
1313 if (SrcVT.SimpleTy == MVT::i1) {
1314 // Set the high bits to zero.
1315 ResultReg = fastEmitZExtFromI1(MVT::i8, ResultReg, /*TODO: Kill=*/false);
1316 SrcVT = MVT::i8;
1317
1318 if (ResultReg == 0)
1319 return false;
1320 }
1321
1322 if (DstVT == MVT::i64) {
1323 // Handle extension to 64-bits via sub-register shenanigans.
1324 unsigned MovInst;
1325
1326 switch (SrcVT.SimpleTy) {
1327 case MVT::i8: MovInst = X86::MOVZX32rr8; break;
1328 case MVT::i16: MovInst = X86::MOVZX32rr16; break;
1329 case MVT::i32: MovInst = X86::MOV32rr; break;
1330 default: llvm_unreachable("Unexpected zext to i64 source type");
1331 }
1332
1333 unsigned Result32 = createResultReg(&X86::GR32RegClass);
1334 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovInst), Result32)
1335 .addReg(ResultReg);
1336
1337 ResultReg = createResultReg(&X86::GR64RegClass);
1338 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::SUBREG_TO_REG),
1339 ResultReg)
1340 .addImm(0).addReg(Result32).addImm(X86::sub_32bit);
1341 } else if (DstVT != MVT::i8) {
1342 ResultReg = fastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::ZERO_EXTEND,
1343 ResultReg, /*Kill=*/true);
1344 if (ResultReg == 0)
1345 return false;
1346 }
1347
1348 updateValueMap(I, ResultReg);
1349 return true;
1350}
1351
1352bool X86FastISel::X86SelectBranch(const Instruction *I) {
1353 // Unconditional branches are selected by tablegen-generated code.
1354 // Handle a conditional branch.
1355 const BranchInst *BI = cast<BranchInst>(I);
1356 MachineBasicBlock *TrueMBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
1357 MachineBasicBlock *FalseMBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
1358
1359 // Fold the common case of a conditional branch with a comparison
1360 // in the same block (values defined on other blocks may not have
1361 // initialized registers).
1362 X86::CondCode CC;
1363 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
1364 if (CI->hasOneUse() && CI->getParent() == I->getParent()) {
1365 EVT VT = TLI.getValueType(CI->getOperand(0)->getType());
1366
1367 // Try to optimize or fold the cmp.
1368 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
1369 switch (Predicate) {
1370 default: break;
1371 case CmpInst::FCMP_FALSE: fastEmitBranch(FalseMBB, DbgLoc); return true;
1372 case CmpInst::FCMP_TRUE: fastEmitBranch(TrueMBB, DbgLoc); return true;
1373 }
1374
1375 const Value *CmpLHS = CI->getOperand(0);
1376 const Value *CmpRHS = CI->getOperand(1);
1377
1378 // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x,
1379 // 0.0.
1380 // We don't have to materialize a zero constant for this case and can just
1381 // use %x again on the RHS.
1382 if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
1383 const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS);
1384 if (CmpRHSC && CmpRHSC->isNullValue())
1385 CmpRHS = CmpLHS;
1386 }
1387
1388 // Try to take advantage of fallthrough opportunities.
1389 if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {
1390 std::swap(TrueMBB, FalseMBB);
1391 Predicate = CmpInst::getInversePredicate(Predicate);
1392 }
1393
1394 // FCMP_OEQ and FCMP_UNE cannot be expressed with a single flag/condition
1395 // code check. Instead two branch instructions are required to check all
1396 // the flags. First we change the predicate to a supported condition code,
1397 // which will be the first branch. Later one we will emit the second
1398 // branch.
1399 bool NeedExtraBranch = false;
1400 switch (Predicate) {
1401 default: break;
1402 case CmpInst::FCMP_OEQ:
1403 std::swap(TrueMBB, FalseMBB); // fall-through
1404 case CmpInst::FCMP_UNE:
1405 NeedExtraBranch = true;
1406 Predicate = CmpInst::FCMP_ONE;
1407 break;
1408 }
1409
1410 bool SwapArgs;
1411 unsigned BranchOpc;
1412 std::tie(CC, SwapArgs) = getX86ConditionCode(Predicate);
1413 assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
1414
1415 BranchOpc = X86::GetCondBranchFromCond(CC);
1416 if (SwapArgs)
1417 std::swap(CmpLHS, CmpRHS);
1418
1419 // Emit a compare of the LHS and RHS, setting the flags.
1420 if (!X86FastEmitCompare(CmpLHS, CmpRHS, VT, CI->getDebugLoc()))
1421 return false;
1422
1423 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BranchOpc))
1424 .addMBB(TrueMBB);
1425
1426 // X86 requires a second branch to handle UNE (and OEQ, which is mapped
1427 // to UNE above).
1428 if (NeedExtraBranch) {
1429 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JP_1))
1430 .addMBB(TrueMBB);
1431 }
1432
1433 // Obtain the branch weight and add the TrueBB to the successor list.
1434 uint32_t BranchWeight = 0;
1435 if (FuncInfo.BPI)
1436 BranchWeight = FuncInfo.BPI->getEdgeWeight(BI->getParent(),
1437 TrueMBB->getBasicBlock());
1438 FuncInfo.MBB->addSuccessor(TrueMBB, BranchWeight);
1439
1440 // Emits an unconditional branch to the FalseBB, obtains the branch
1441 // weight, and adds it to the successor list.
1442 fastEmitBranch(FalseMBB, DbgLoc);
1443
1444 return true;
1445 }
1446 } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
1447 // Handle things like "%cond = trunc i32 %X to i1 / br i1 %cond", which
1448 // typically happen for _Bool and C++ bools.
1449 MVT SourceVT;
1450 if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
1451 isTypeLegal(TI->getOperand(0)->getType(), SourceVT)) {
1452 unsigned TestOpc = 0;
1453 switch (SourceVT.SimpleTy) {
1454 default: break;
1455 case MVT::i8: TestOpc = X86::TEST8ri; break;
1456 case MVT::i16: TestOpc = X86::TEST16ri; break;
1457 case MVT::i32: TestOpc = X86::TEST32ri; break;
1458 case MVT::i64: TestOpc = X86::TEST64ri32; break;
1459 }
1460 if (TestOpc) {
1461 unsigned OpReg = getRegForValue(TI->getOperand(0));
1462 if (OpReg == 0) return false;
1463 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TestOpc))
1464 .addReg(OpReg).addImm(1);
1465
1466 unsigned JmpOpc = X86::JNE_1;
1467 if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {
1468 std::swap(TrueMBB, FalseMBB);
1469 JmpOpc = X86::JE_1;
1470 }
1471
1472 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(JmpOpc))
1473 .addMBB(TrueMBB);
1474 fastEmitBranch(FalseMBB, DbgLoc);
1475 uint32_t BranchWeight = 0;
1476 if (FuncInfo.BPI)
1477 BranchWeight = FuncInfo.BPI->getEdgeWeight(BI->getParent(),
1478 TrueMBB->getBasicBlock());
1479 FuncInfo.MBB->addSuccessor(TrueMBB, BranchWeight);
1480 return true;
1481 }
1482 }
1483 } else if (foldX86XALUIntrinsic(CC, BI, BI->getCondition())) {
1484 // Fake request the condition, otherwise the intrinsic might be completely
1485 // optimized away.
1486 unsigned TmpReg = getRegForValue(BI->getCondition());
1487 if (TmpReg == 0)
1488 return false;
1489
1490 unsigned BranchOpc = X86::GetCondBranchFromCond(CC);
1491
1492 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BranchOpc))
1493 .addMBB(TrueMBB);
1494 fastEmitBranch(FalseMBB, DbgLoc);
1495 uint32_t BranchWeight = 0;
1496 if (FuncInfo.BPI)
1497 BranchWeight = FuncInfo.BPI->getEdgeWeight(BI->getParent(),
1498 TrueMBB->getBasicBlock());
1499 FuncInfo.MBB->addSuccessor(TrueMBB, BranchWeight);
1500 return true;
1501 }
1502
1503 // Otherwise do a clumsy setcc and re-test it.
1504 // Note that i1 essentially gets ANY_EXTEND'ed to i8 where it isn't used
1505 // in an explicit cast, so make sure to handle that correctly.
1506 unsigned OpReg = getRegForValue(BI->getCondition());
1507 if (OpReg == 0) return false;
1508
1509 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri))
1510 .addReg(OpReg).addImm(1);
1511 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::JNE_1))
1512 .addMBB(TrueMBB);
1513 fastEmitBranch(FalseMBB, DbgLoc);
1514 uint32_t BranchWeight = 0;
1515 if (FuncInfo.BPI)
1516 BranchWeight = FuncInfo.BPI->getEdgeWeight(BI->getParent(),
1517 TrueMBB->getBasicBlock());
1518 FuncInfo.MBB->addSuccessor(TrueMBB, BranchWeight);
1519 return true;
1520}
1521
1522bool X86FastISel::X86SelectShift(const Instruction *I) {
1523 unsigned CReg = 0, OpReg = 0;
1524 const TargetRegisterClass *RC = nullptr;
1525 if (I->getType()->isIntegerTy(8)) {
1526 CReg = X86::CL;
1527 RC = &X86::GR8RegClass;
1528 switch (I->getOpcode()) {
1529 case Instruction::LShr: OpReg = X86::SHR8rCL; break;
1530 case Instruction::AShr: OpReg = X86::SAR8rCL; break;
1531 case Instruction::Shl: OpReg = X86::SHL8rCL; break;
1532 default: return false;
1533 }
1534 } else if (I->getType()->isIntegerTy(16)) {
1535 CReg = X86::CX;
1536 RC = &X86::GR16RegClass;
1537 switch (I->getOpcode()) {
1538 case Instruction::LShr: OpReg = X86::SHR16rCL; break;
1539 case Instruction::AShr: OpReg = X86::SAR16rCL; break;
1540 case Instruction::Shl: OpReg = X86::SHL16rCL; break;
1541 default: return false;
1542 }
1543 } else if (I->getType()->isIntegerTy(32)) {
1544 CReg = X86::ECX;
1545 RC = &X86::GR32RegClass;
1546 switch (I->getOpcode()) {
1547 case Instruction::LShr: OpReg = X86::SHR32rCL; break;
1548 case Instruction::AShr: OpReg = X86::SAR32rCL; break;
1549 case Instruction::Shl: OpReg = X86::SHL32rCL; break;
1550 default: return false;
1551 }
1552 } else if (I->getType()->isIntegerTy(64)) {
1553 CReg = X86::RCX;
1554 RC = &X86::GR64RegClass;
1555 switch (I->getOpcode()) {
1556 case Instruction::LShr: OpReg = X86::SHR64rCL; break;
1557 case Instruction::AShr: OpReg = X86::SAR64rCL; break;
1558 case Instruction::Shl: OpReg = X86::SHL64rCL; break;
1559 default: return false;
1560 }
1561 } else {
1562 return false;
1563 }
1564
1565 MVT VT;
1566 if (!isTypeLegal(I->getType(), VT))
1567 return false;
1568
1569 unsigned Op0Reg = getRegForValue(I->getOperand(0));
1570 if (Op0Reg == 0) return false;
1571
1572 unsigned Op1Reg = getRegForValue(I->getOperand(1));
1573 if (Op1Reg == 0) return false;
1574 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpcode::COPY),
1575 CReg).addReg(Op1Reg);
1576
1577 // The shift instruction uses X86::CL. If we defined a super-register
1578 // of X86::CL, emit a subreg KILL to precisely describe what we're doing here.
1579 if (CReg != X86::CL)
1580 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1581 TII.get(TargetOpcode::KILL), X86::CL)
1582 .addReg(CReg, RegState::Kill);
1583
1584 unsigned ResultReg = createResultReg(RC);
1585 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(OpReg), ResultReg)
1586 .addReg(Op0Reg);
1587 updateValueMap(I, ResultReg);
1588 return true;
1589}
1590
1591bool X86FastISel::X86SelectDivRem(const Instruction *I) {
1592 const static unsigned NumTypes = 4; // i8, i16, i32, i64
1593 const static unsigned NumOps = 4; // SDiv, SRem, UDiv, URem
1594 const static bool S = true; // IsSigned
1595 const static bool U = false; // !IsSigned
1596 const static unsigned Copy = TargetOpcode::COPY;
1597 // For the X86 DIV/IDIV instruction, in most cases the dividend
1598 // (numerator) must be in a specific register pair highreg:lowreg,
1599 // producing the quotient in lowreg and the remainder in highreg.
1600 // For most data types, to set up the instruction, the dividend is
1601 // copied into lowreg, and lowreg is sign-extended or zero-extended
1602 // into highreg. The exception is i8, where the dividend is defined
1603 // as a single register rather than a register pair, and we
1604 // therefore directly sign-extend or zero-extend the dividend into
1605 // lowreg, instead of copying, and ignore the highreg.
1606 const static struct DivRemEntry {
1607 // The following portion depends only on the data type.
1608 const TargetRegisterClass *RC;
1609 unsigned LowInReg; // low part of the register pair
1610 unsigned HighInReg; // high part of the register pair
1611 // The following portion depends on both the data type and the operation.
1612 struct DivRemResult {
1613 unsigned OpDivRem; // The specific DIV/IDIV opcode to use.
1614 unsigned OpSignExtend; // Opcode for sign-extending lowreg into
1615 // highreg, or copying a zero into highreg.
1616 unsigned OpCopy; // Opcode for copying dividend into lowreg, or
1617 // zero/sign-extending into lowreg for i8.
1618 unsigned DivRemResultReg; // Register containing the desired result.
1619 bool IsOpSigned; // Whether to use signed or unsigned form.
1620 } ResultTable[NumOps];
1621 } OpTable[NumTypes] = {
1622 { &X86::GR8RegClass, X86::AX, 0, {
1623 { X86::IDIV8r, 0, X86::MOVSX16rr8, X86::AL, S }, // SDiv
1624 { X86::IDIV8r, 0, X86::MOVSX16rr8, X86::AH, S }, // SRem
1625 { X86::DIV8r, 0, X86::MOVZX16rr8, X86::AL, U }, // UDiv
1626 { X86::DIV8r, 0, X86::MOVZX16rr8, X86::AH, U }, // URem
1627 }
1628 }, // i8
1629 { &X86::GR16RegClass, X86::AX, X86::DX, {
1630 { X86::IDIV16r, X86::CWD, Copy, X86::AX, S }, // SDiv
1631 { X86::IDIV16r, X86::CWD, Copy, X86::DX, S }, // SRem
1632 { X86::DIV16r, X86::MOV32r0, Copy, X86::AX, U }, // UDiv
1633 { X86::DIV16r, X86::MOV32r0, Copy, X86::DX, U }, // URem
1634 }
1635 }, // i16
1636 { &X86::GR32RegClass, X86::EAX, X86::EDX, {
1637 { X86::IDIV32r, X86::CDQ, Copy, X86::EAX, S }, // SDiv
1638 { X86::IDIV32r, X86::CDQ, Copy, X86::EDX, S }, // SRem
1639 { X86::DIV32r, X86::MOV32r0, Copy, X86::EAX, U }, // UDiv
1640 { X86::DIV32r, X86::MOV32r0, Copy, X86::EDX, U }, // URem
1641 }
1642 }, // i32
1643 { &X86::GR64RegClass, X86::RAX, X86::RDX, {
1644 { X86::IDIV64r, X86::CQO, Copy, X86::RAX, S }, // SDiv
1645 { X86::IDIV64r, X86::CQO, Copy, X86::RDX, S }, // SRem
1646 { X86::DIV64r, X86::MOV32r0, Copy, X86::RAX, U }, // UDiv
1647 { X86::DIV64r, X86::MOV32r0, Copy, X86::RDX, U }, // URem
1648 }
1649 }, // i64
1650 };
1651
1652 MVT VT;
1653 if (!isTypeLegal(I->getType(), VT))
1654 return false;
1655
1656 unsigned TypeIndex, OpIndex;
1657 switch (VT.SimpleTy) {
1658 default: return false;
1659 case MVT::i8: TypeIndex = 0; break;
1660 case MVT::i16: TypeIndex = 1; break;
1661 case MVT::i32: TypeIndex = 2; break;
1662 case MVT::i64: TypeIndex = 3;
1663 if (!Subtarget->is64Bit())
1664 return false;
1665 break;
1666 }
1667
1668 switch (I->getOpcode()) {
1669 default: llvm_unreachable("Unexpected div/rem opcode");
1670 case Instruction::SDiv: OpIndex = 0; break;
1671 case Instruction::SRem: OpIndex = 1; break;
1672 case Instruction::UDiv: OpIndex = 2; break;
1673 case Instruction::URem: OpIndex = 3; break;
1674 }
1675
1676 const DivRemEntry &TypeEntry = OpTable[TypeIndex];
1677 const DivRemEntry::DivRemResult &OpEntry = TypeEntry.ResultTable[OpIndex];
1678 unsigned Op0Reg = getRegForValue(I->getOperand(0));
1679 if (Op0Reg == 0)
1680 return false;
1681 unsigned Op1Reg = getRegForValue(I->getOperand(1));
1682 if (Op1Reg == 0)
1683 return false;
1684
1685 // Move op0 into low-order input register.
1686 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1687 TII.get(OpEntry.OpCopy), TypeEntry.LowInReg).addReg(Op0Reg);
1688 // Zero-extend or sign-extend into high-order input register.
1689 if (OpEntry.OpSignExtend) {
1690 if (OpEntry.IsOpSigned)
1691 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1692 TII.get(OpEntry.OpSignExtend));
1693 else {
1694 unsigned Zero32 = createResultReg(&X86::GR32RegClass);
1695 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1696 TII.get(X86::MOV32r0), Zero32);
1697
1698 // Copy the zero into the appropriate sub/super/identical physical
1699 // register. Unfortunately the operations needed are not uniform enough
1700 // to fit neatly into the table above.
1701 if (VT.SimpleTy == MVT::i16) {
1702 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1703 TII.get(Copy), TypeEntry.HighInReg)
1704 .addReg(Zero32, 0, X86::sub_16bit);
1705 } else if (VT.SimpleTy == MVT::i32) {
1706 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1707 TII.get(Copy), TypeEntry.HighInReg)
1708 .addReg(Zero32);
1709 } else if (VT.SimpleTy == MVT::i64) {
1710 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1711 TII.get(TargetOpcode::SUBREG_TO_REG), TypeEntry.HighInReg)
1712 .addImm(0).addReg(Zero32).addImm(X86::sub_32bit);
1713 }
1714 }
1715 }
1716 // Generate the DIV/IDIV instruction.
1717 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1718 TII.get(OpEntry.OpDivRem)).addReg(Op1Reg);
1719 // For i8 remainder, we can't reference AH directly, as we'll end
1720 // up with bogus copies like %R9B = COPY %AH. Reference AX
1721 // instead to prevent AH references in a REX instruction.
1722 //
1723 // The current assumption of the fast register allocator is that isel
1724 // won't generate explicit references to the GPR8_NOREX registers. If
1725 // the allocator and/or the backend get enhanced to be more robust in
1726 // that regard, this can be, and should be, removed.
1727 unsigned ResultReg = 0;
1728 if ((I->getOpcode() == Instruction::SRem ||
1729 I->getOpcode() == Instruction::URem) &&
1730 OpEntry.DivRemResultReg == X86::AH && Subtarget->is64Bit()) {
1731 unsigned SourceSuperReg = createResultReg(&X86::GR16RegClass);
1732 unsigned ResultSuperReg = createResultReg(&X86::GR16RegClass);
1733 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1734 TII.get(Copy), SourceSuperReg).addReg(X86::AX);
1735
1736 // Shift AX right by 8 bits instead of using AH.
1737 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::SHR16ri),
1738 ResultSuperReg).addReg(SourceSuperReg).addImm(8);
1739
1740 // Now reference the 8-bit subreg of the result.
1741 ResultReg = fastEmitInst_extractsubreg(MVT::i8, ResultSuperReg,
1742 /*Kill=*/true, X86::sub_8bit);
1743 }
1744 // Copy the result out of the physreg if we haven't already.
1745 if (!ResultReg) {
1746 ResultReg = createResultReg(TypeEntry.RC);
1747 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Copy), ResultReg)
1748 .addReg(OpEntry.DivRemResultReg);
1749 }
1750 updateValueMap(I, ResultReg);
1751
1752 return true;
1753}
1754
1755/// \brief Emit a conditional move instruction (if the are supported) to lower
1756/// the select.
1757bool X86FastISel::X86FastEmitCMoveSelect(MVT RetVT, const Instruction *I) {
1758 // Check if the subtarget supports these instructions.
1759 if (!Subtarget->hasCMov())
1760 return false;
1761
1762 // FIXME: Add support for i8.
1763 if (RetVT < MVT::i16 || RetVT > MVT::i64)
1764 return false;
1765
1766 const Value *Cond = I->getOperand(0);
1767 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
1768 bool NeedTest = true;
1769 X86::CondCode CC = X86::COND_NE;
1770
1771 // Optimize conditions coming from a compare if both instructions are in the
1772 // same basic block (values defined in other basic blocks may not have
1773 // initialized registers).
1774 const auto *CI = dyn_cast<CmpInst>(Cond);
1775 if (CI && (CI->getParent() == I->getParent())) {
1776 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
1777
1778 // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction.
1779 static unsigned SETFOpcTable[2][3] = {
1780 { X86::SETNPr, X86::SETEr , X86::TEST8rr },
1781 { X86::SETPr, X86::SETNEr, X86::OR8rr }
1782 };
1783 unsigned *SETFOpc = nullptr;
1784 switch (Predicate) {
1785 default: break;
1786 case CmpInst::FCMP_OEQ:
1787 SETFOpc = &SETFOpcTable[0][0];
1788 Predicate = CmpInst::ICMP_NE;
1789 break;
1790 case CmpInst::FCMP_UNE:
1791 SETFOpc = &SETFOpcTable[1][0];
1792 Predicate = CmpInst::ICMP_NE;
1793 break;
1794 }
1795
1796 bool NeedSwap;
1797 std::tie(CC, NeedSwap) = getX86ConditionCode(Predicate);
1798 assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
1799
1800 const Value *CmpLHS = CI->getOperand(0);
1801 const Value *CmpRHS = CI->getOperand(1);
1802 if (NeedSwap)
1803 std::swap(CmpLHS, CmpRHS);
1804
1805 EVT CmpVT = TLI.getValueType(CmpLHS->getType());
1806 // Emit a compare of the LHS and RHS, setting the flags.
1807 if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc()))
1808 return false;
1809
1810 if (SETFOpc) {
1811 unsigned FlagReg1 = createResultReg(&X86::GR8RegClass);
1812 unsigned FlagReg2 = createResultReg(&X86::GR8RegClass);
1813 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[0]),
1814 FlagReg1);
1815 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(SETFOpc[1]),
1816 FlagReg2);
1817 auto const &II = TII.get(SETFOpc[2]);
1818 if (II.getNumDefs()) {
1819 unsigned TmpReg = createResultReg(&X86::GR8RegClass);
1820 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, TmpReg)
1821 .addReg(FlagReg2).addReg(FlagReg1);
1822 } else {
1823 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1824 .addReg(FlagReg2).addReg(FlagReg1);
1825 }
1826 }
1827 NeedTest = false;
1828 } else if (foldX86XALUIntrinsic(CC, I, Cond)) {
1829 // Fake request the condition, otherwise the intrinsic might be completely
1830 // optimized away.
1831 unsigned TmpReg = getRegForValue(Cond);
1832 if (TmpReg == 0)
1833 return false;
1834
1835 NeedTest = false;
1836 }
1837
1838 if (NeedTest) {
1839 // Selects operate on i1, however, CondReg is 8 bits width and may contain
1840 // garbage. Indeed, only the less significant bit is supposed to be
1841 // accurate. If we read more than the lsb, we may see non-zero values
1842 // whereas lsb is zero. Therefore, we have to truncate Op0Reg to i1 for
1843 // the select. This is achieved by performing TEST against 1.
1844 unsigned CondReg = getRegForValue(Cond);
1845 if (CondReg == 0)
1846 return false;
1847 bool CondIsKill = hasTrivialKill(Cond);
1848
1849 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri))
1850 .addReg(CondReg, getKillRegState(CondIsKill)).addImm(1);
1851 }
1852
1853 const Value *LHS = I->getOperand(1);
1854 const Value *RHS = I->getOperand(2);
1855
1856 unsigned RHSReg = getRegForValue(RHS);
1857 bool RHSIsKill = hasTrivialKill(RHS);
1858
1859 unsigned LHSReg = getRegForValue(LHS);
1860 bool LHSIsKill = hasTrivialKill(LHS);
1861
1862 if (!LHSReg || !RHSReg)
1863 return false;
1864
1865 unsigned Opc = X86::getCMovFromCond(CC, RC->getSize());
1866 unsigned ResultReg = fastEmitInst_rr(Opc, RC, RHSReg, RHSIsKill,
1867 LHSReg, LHSIsKill);
1868 updateValueMap(I, ResultReg);
1869 return true;
1870}
1871
Sanjay Patel302404b2015-03-05 21:46:54 +00001872/// \brief Emit SSE or AVX instructions to lower the select.
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001873///
1874/// Try to use SSE1/SSE2 instructions to simulate a select without branches.
1875/// This lowers fp selects into a CMP/AND/ANDN/OR sequence when the necessary
Sanjay Patel302404b2015-03-05 21:46:54 +00001876/// SSE instructions are available. If AVX is available, try to use a VBLENDV.
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001877bool X86FastISel::X86FastEmitSSESelect(MVT RetVT, const Instruction *I) {
1878 // Optimize conditions coming from a compare if both instructions are in the
1879 // same basic block (values defined in other basic blocks may not have
1880 // initialized registers).
1881 const auto *CI = dyn_cast<FCmpInst>(I->getOperand(0));
1882 if (!CI || (CI->getParent() != I->getParent()))
1883 return false;
1884
1885 if (I->getType() != CI->getOperand(0)->getType() ||
1886 !((Subtarget->hasSSE1() && RetVT == MVT::f32) ||
1887 (Subtarget->hasSSE2() && RetVT == MVT::f64)))
1888 return false;
1889
1890 const Value *CmpLHS = CI->getOperand(0);
1891 const Value *CmpRHS = CI->getOperand(1);
1892 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
1893
1894 // The optimizer might have replaced fcmp oeq %x, %x with fcmp ord %x, 0.0.
1895 // We don't have to materialize a zero constant for this case and can just use
1896 // %x again on the RHS.
1897 if (Predicate == CmpInst::FCMP_ORD || Predicate == CmpInst::FCMP_UNO) {
1898 const auto *CmpRHSC = dyn_cast<ConstantFP>(CmpRHS);
1899 if (CmpRHSC && CmpRHSC->isNullValue())
1900 CmpRHS = CmpLHS;
1901 }
1902
1903 unsigned CC;
1904 bool NeedSwap;
1905 std::tie(CC, NeedSwap) = getX86SSEConditionCode(Predicate);
1906 if (CC > 7)
1907 return false;
1908
1909 if (NeedSwap)
1910 std::swap(CmpLHS, CmpRHS);
1911
Sanjay Patel302404b2015-03-05 21:46:54 +00001912 // Choose the SSE instruction sequence based on data type (float or double).
1913 static unsigned OpcTable[2][4] = {
1914 { X86::CMPSSrr, X86::FsANDPSrr, X86::FsANDNPSrr, X86::FsORPSrr },
1915 { X86::CMPSDrr, X86::FsANDPDrr, X86::FsANDNPDrr, X86::FsORPDrr }
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001916 };
1917
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001918 unsigned *Opc = nullptr;
1919 switch (RetVT.SimpleTy) {
1920 default: return false;
Sanjay Patel302404b2015-03-05 21:46:54 +00001921 case MVT::f32: Opc = &OpcTable[0][0]; break;
1922 case MVT::f64: Opc = &OpcTable[1][0]; break;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001923 }
1924
1925 const Value *LHS = I->getOperand(1);
1926 const Value *RHS = I->getOperand(2);
1927
1928 unsigned LHSReg = getRegForValue(LHS);
1929 bool LHSIsKill = hasTrivialKill(LHS);
1930
1931 unsigned RHSReg = getRegForValue(RHS);
1932 bool RHSIsKill = hasTrivialKill(RHS);
1933
1934 unsigned CmpLHSReg = getRegForValue(CmpLHS);
1935 bool CmpLHSIsKill = hasTrivialKill(CmpLHS);
1936
1937 unsigned CmpRHSReg = getRegForValue(CmpRHS);
1938 bool CmpRHSIsKill = hasTrivialKill(CmpRHS);
1939
1940 if (!LHSReg || !RHSReg || !CmpLHS || !CmpRHS)
1941 return false;
1942
1943 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
Sanjay Patel302404b2015-03-05 21:46:54 +00001944 unsigned ResultReg;
1945
1946 if (Subtarget->hasAVX()) {
1947 // If we have AVX, create 1 blendv instead of 3 logic instructions.
1948 // Blendv was introduced with SSE 4.1, but the 2 register form implicitly
1949 // uses XMM0 as the selection register. That may need just as many
1950 // instructions as the AND/ANDN/OR sequence due to register moves, so
1951 // don't bother.
1952 unsigned CmpOpcode =
1953 (RetVT.SimpleTy == MVT::f32) ? X86::VCMPSSrr : X86::VCMPSDrr;
1954 unsigned BlendOpcode =
1955 (RetVT.SimpleTy == MVT::f32) ? X86::VBLENDVPSrr : X86::VBLENDVPDrr;
1956
1957 unsigned CmpReg = fastEmitInst_rri(CmpOpcode, RC, CmpLHSReg, CmpLHSIsKill,
1958 CmpRHSReg, CmpRHSIsKill, CC);
1959 ResultReg = fastEmitInst_rrr(BlendOpcode, RC, RHSReg, RHSIsKill,
1960 LHSReg, LHSIsKill, CmpReg, true);
1961 } else {
1962 unsigned CmpReg = fastEmitInst_rri(Opc[0], RC, CmpLHSReg, CmpLHSIsKill,
1963 CmpRHSReg, CmpRHSIsKill, CC);
1964 unsigned AndReg = fastEmitInst_rr(Opc[1], RC, CmpReg, /*IsKill=*/false,
1965 LHSReg, LHSIsKill);
1966 unsigned AndNReg = fastEmitInst_rr(Opc[2], RC, CmpReg, /*IsKill=*/true,
1967 RHSReg, RHSIsKill);
1968 ResultReg = fastEmitInst_rr(Opc[3], RC, AndNReg, /*IsKill=*/true,
1969 AndReg, /*IsKill=*/true);
1970 }
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00001971 updateValueMap(I, ResultReg);
1972 return true;
1973}
1974
1975bool X86FastISel::X86FastEmitPseudoSelect(MVT RetVT, const Instruction *I) {
1976 // These are pseudo CMOV instructions and will be later expanded into control-
1977 // flow.
1978 unsigned Opc;
1979 switch (RetVT.SimpleTy) {
1980 default: return false;
1981 case MVT::i8: Opc = X86::CMOV_GR8; break;
1982 case MVT::i16: Opc = X86::CMOV_GR16; break;
1983 case MVT::i32: Opc = X86::CMOV_GR32; break;
1984 case MVT::f32: Opc = X86::CMOV_FR32; break;
1985 case MVT::f64: Opc = X86::CMOV_FR64; break;
1986 }
1987
1988 const Value *Cond = I->getOperand(0);
1989 X86::CondCode CC = X86::COND_NE;
1990
1991 // Optimize conditions coming from a compare if both instructions are in the
1992 // same basic block (values defined in other basic blocks may not have
1993 // initialized registers).
1994 const auto *CI = dyn_cast<CmpInst>(Cond);
1995 if (CI && (CI->getParent() == I->getParent())) {
1996 bool NeedSwap;
1997 std::tie(CC, NeedSwap) = getX86ConditionCode(CI->getPredicate());
1998 if (CC > X86::LAST_VALID_COND)
1999 return false;
2000
2001 const Value *CmpLHS = CI->getOperand(0);
2002 const Value *CmpRHS = CI->getOperand(1);
2003
2004 if (NeedSwap)
2005 std::swap(CmpLHS, CmpRHS);
2006
2007 EVT CmpVT = TLI.getValueType(CmpLHS->getType());
2008 if (!X86FastEmitCompare(CmpLHS, CmpRHS, CmpVT, CI->getDebugLoc()))
2009 return false;
2010 } else {
2011 unsigned CondReg = getRegForValue(Cond);
2012 if (CondReg == 0)
2013 return false;
2014 bool CondIsKill = hasTrivialKill(Cond);
2015 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TEST8ri))
2016 .addReg(CondReg, getKillRegState(CondIsKill)).addImm(1);
2017 }
2018
2019 const Value *LHS = I->getOperand(1);
2020 const Value *RHS = I->getOperand(2);
2021
2022 unsigned LHSReg = getRegForValue(LHS);
2023 bool LHSIsKill = hasTrivialKill(LHS);
2024
2025 unsigned RHSReg = getRegForValue(RHS);
2026 bool RHSIsKill = hasTrivialKill(RHS);
2027
2028 if (!LHSReg || !RHSReg)
2029 return false;
2030
2031 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
2032
2033 unsigned ResultReg =
2034 fastEmitInst_rri(Opc, RC, RHSReg, RHSIsKill, LHSReg, LHSIsKill, CC);
2035 updateValueMap(I, ResultReg);
2036 return true;
2037}
2038
2039bool X86FastISel::X86SelectSelect(const Instruction *I) {
2040 MVT RetVT;
2041 if (!isTypeLegal(I->getType(), RetVT))
2042 return false;
2043
2044 // Check if we can fold the select.
2045 if (const auto *CI = dyn_cast<CmpInst>(I->getOperand(0))) {
2046 CmpInst::Predicate Predicate = optimizeCmpPredicate(CI);
2047 const Value *Opnd = nullptr;
2048 switch (Predicate) {
2049 default: break;
2050 case CmpInst::FCMP_FALSE: Opnd = I->getOperand(2); break;
2051 case CmpInst::FCMP_TRUE: Opnd = I->getOperand(1); break;
2052 }
2053 // No need for a select anymore - this is an unconditional move.
2054 if (Opnd) {
2055 unsigned OpReg = getRegForValue(Opnd);
2056 if (OpReg == 0)
2057 return false;
2058 bool OpIsKill = hasTrivialKill(Opnd);
2059 const TargetRegisterClass *RC = TLI.getRegClassFor(RetVT);
2060 unsigned ResultReg = createResultReg(RC);
2061 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2062 TII.get(TargetOpcode::COPY), ResultReg)
2063 .addReg(OpReg, getKillRegState(OpIsKill));
2064 updateValueMap(I, ResultReg);
2065 return true;
2066 }
2067 }
2068
2069 // First try to use real conditional move instructions.
2070 if (X86FastEmitCMoveSelect(RetVT, I))
2071 return true;
2072
2073 // Try to use a sequence of SSE instructions to simulate a conditional move.
2074 if (X86FastEmitSSESelect(RetVT, I))
2075 return true;
2076
2077 // Fall-back to pseudo conditional move instructions, which will be later
2078 // converted to control-flow.
2079 if (X86FastEmitPseudoSelect(RetVT, I))
2080 return true;
2081
2082 return false;
2083}
2084
Andrea Di Biagioe7b58ee2015-02-17 23:40:58 +00002085bool X86FastISel::X86SelectSIToFP(const Instruction *I) {
Andrea Di Biagio98c36702015-04-20 11:56:59 +00002086 // The target-independent selection algorithm in FastISel already knows how
2087 // to select a SINT_TO_FP if the target is SSE but not AVX.
2088 // Early exit if the subtarget doesn't have AVX.
2089 if (!Subtarget->hasAVX())
2090 return false;
2091
Andrea Di Biagioe7b58ee2015-02-17 23:40:58 +00002092 if (!I->getOperand(0)->getType()->isIntegerTy(32))
2093 return false;
2094
2095 // Select integer to float/double conversion.
2096 unsigned OpReg = getRegForValue(I->getOperand(0));
2097 if (OpReg == 0)
2098 return false;
2099
Andrea Di Biagioe7b58ee2015-02-17 23:40:58 +00002100 const TargetRegisterClass *RC = nullptr;
2101 unsigned Opcode;
2102
Andrea Di Biagiodf93ccf2015-03-04 14:23:25 +00002103 if (I->getType()->isDoubleTy()) {
Andrea Di Biagioe7b58ee2015-02-17 23:40:58 +00002104 // sitofp int -> double
Andrea Di Biagiodf93ccf2015-03-04 14:23:25 +00002105 Opcode = X86::VCVTSI2SDrr;
Andrea Di Biagioe7b58ee2015-02-17 23:40:58 +00002106 RC = &X86::FR64RegClass;
Andrea Di Biagiodf93ccf2015-03-04 14:23:25 +00002107 } else if (I->getType()->isFloatTy()) {
Andrea Di Biagioe7b58ee2015-02-17 23:40:58 +00002108 // sitofp int -> float
Andrea Di Biagiodf93ccf2015-03-04 14:23:25 +00002109 Opcode = X86::VCVTSI2SSrr;
Andrea Di Biagioe7b58ee2015-02-17 23:40:58 +00002110 RC = &X86::FR32RegClass;
2111 } else
2112 return false;
2113
Andrea Di Biagiodf93ccf2015-03-04 14:23:25 +00002114 unsigned ImplicitDefReg = createResultReg(RC);
2115 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2116 TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
2117 unsigned ResultReg =
2118 fastEmitInst_rr(Opcode, RC, ImplicitDefReg, true, OpReg, false);
Andrea Di Biagioe7b58ee2015-02-17 23:40:58 +00002119 updateValueMap(I, ResultReg);
2120 return true;
2121}
2122
Andrea Di Biagio62622d22015-02-10 12:04:41 +00002123// Helper method used by X86SelectFPExt and X86SelectFPTrunc.
2124bool X86FastISel::X86SelectFPExtOrFPTrunc(const Instruction *I,
2125 unsigned TargetOpc,
2126 const TargetRegisterClass *RC) {
2127 assert((I->getOpcode() == Instruction::FPExt ||
2128 I->getOpcode() == Instruction::FPTrunc) &&
2129 "Instruction must be an FPExt or FPTrunc!");
2130
2131 unsigned OpReg = getRegForValue(I->getOperand(0));
2132 if (OpReg == 0)
2133 return false;
2134
2135 unsigned ResultReg = createResultReg(RC);
2136 MachineInstrBuilder MIB;
2137 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TargetOpc),
2138 ResultReg);
2139 if (Subtarget->hasAVX())
2140 MIB.addReg(OpReg);
2141 MIB.addReg(OpReg);
2142 updateValueMap(I, ResultReg);
2143 return true;
2144}
2145
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002146bool X86FastISel::X86SelectFPExt(const Instruction *I) {
Andrea Di Biagio62622d22015-02-10 12:04:41 +00002147 if (X86ScalarSSEf64 && I->getType()->isDoubleTy() &&
2148 I->getOperand(0)->getType()->isFloatTy()) {
2149 // fpext from float to double.
2150 unsigned Opc = Subtarget->hasAVX() ? X86::VCVTSS2SDrr : X86::CVTSS2SDrr;
2151 return X86SelectFPExtOrFPTrunc(I, Opc, &X86::FR64RegClass);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002152 }
2153
2154 return false;
2155}
2156
2157bool X86FastISel::X86SelectFPTrunc(const Instruction *I) {
Andrea Di Biagio62622d22015-02-10 12:04:41 +00002158 if (X86ScalarSSEf64 && I->getType()->isFloatTy() &&
2159 I->getOperand(0)->getType()->isDoubleTy()) {
2160 // fptrunc from double to float.
2161 unsigned Opc = Subtarget->hasAVX() ? X86::VCVTSD2SSrr : X86::CVTSD2SSrr;
2162 return X86SelectFPExtOrFPTrunc(I, Opc, &X86::FR32RegClass);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002163 }
2164
2165 return false;
2166}
2167
2168bool X86FastISel::X86SelectTrunc(const Instruction *I) {
2169 EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
2170 EVT DstVT = TLI.getValueType(I->getType());
2171
2172 // This code only handles truncation to byte.
2173 if (DstVT != MVT::i8 && DstVT != MVT::i1)
2174 return false;
2175 if (!TLI.isTypeLegal(SrcVT))
2176 return false;
2177
2178 unsigned InputReg = getRegForValue(I->getOperand(0));
2179 if (!InputReg)
2180 // Unhandled operand. Halt "fast" selection and bail.
2181 return false;
2182
2183 if (SrcVT == MVT::i8) {
2184 // Truncate from i8 to i1; no code needed.
2185 updateValueMap(I, InputReg);
2186 return true;
2187 }
2188
Pete Cooper7f7c9f12015-05-08 18:29:42 +00002189 bool KillInputReg = false;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002190 if (!Subtarget->is64Bit()) {
2191 // If we're on x86-32; we can't extract an i8 from a general register.
2192 // First issue a copy to GR16_ABCD or GR32_ABCD.
2193 const TargetRegisterClass *CopyRC =
2194 (SrcVT == MVT::i16) ? &X86::GR16_ABCDRegClass : &X86::GR32_ABCDRegClass;
2195 unsigned CopyReg = createResultReg(CopyRC);
2196 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2197 TII.get(TargetOpcode::COPY), CopyReg).addReg(InputReg);
2198 InputReg = CopyReg;
Pete Cooper7f7c9f12015-05-08 18:29:42 +00002199 KillInputReg = true;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002200 }
2201
2202 // Issue an extract_subreg.
2203 unsigned ResultReg = fastEmitInst_extractsubreg(MVT::i8,
Pete Cooper7f7c9f12015-05-08 18:29:42 +00002204 InputReg, KillInputReg,
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002205 X86::sub_8bit);
2206 if (!ResultReg)
2207 return false;
2208
2209 updateValueMap(I, ResultReg);
2210 return true;
2211}
2212
2213bool X86FastISel::IsMemcpySmall(uint64_t Len) {
2214 return Len <= (Subtarget->is64Bit() ? 32 : 16);
2215}
2216
2217bool X86FastISel::TryEmitSmallMemcpy(X86AddressMode DestAM,
2218 X86AddressMode SrcAM, uint64_t Len) {
2219
2220 // Make sure we don't bloat code by inlining very large memcpy's.
2221 if (!IsMemcpySmall(Len))
2222 return false;
2223
2224 bool i64Legal = Subtarget->is64Bit();
2225
2226 // We don't care about alignment here since we just emit integer accesses.
2227 while (Len) {
2228 MVT VT;
2229 if (Len >= 8 && i64Legal)
2230 VT = MVT::i64;
2231 else if (Len >= 4)
2232 VT = MVT::i32;
2233 else if (Len >= 2)
2234 VT = MVT::i16;
2235 else
2236 VT = MVT::i8;
2237
2238 unsigned Reg;
2239 bool RV = X86FastEmitLoad(VT, SrcAM, nullptr, Reg);
2240 RV &= X86FastEmitStore(VT, Reg, /*Kill=*/true, DestAM);
2241 assert(RV && "Failed to emit load or store??");
2242
2243 unsigned Size = VT.getSizeInBits()/8;
2244 Len -= Size;
2245 DestAM.Disp += Size;
2246 SrcAM.Disp += Size;
2247 }
2248
2249 return true;
2250}
2251
2252bool X86FastISel::fastLowerIntrinsicCall(const IntrinsicInst *II) {
2253 // FIXME: Handle more intrinsics.
2254 switch (II->getIntrinsicID()) {
2255 default: return false;
Andrea Di Biagio70351782015-02-20 19:37:14 +00002256 case Intrinsic::convert_from_fp16:
2257 case Intrinsic::convert_to_fp16: {
Eric Christopher824f42f2015-05-12 01:26:05 +00002258 if (Subtarget->useSoftFloat() || !Subtarget->hasF16C())
Andrea Di Biagio70351782015-02-20 19:37:14 +00002259 return false;
2260
2261 const Value *Op = II->getArgOperand(0);
2262 unsigned InputReg = getRegForValue(Op);
2263 if (InputReg == 0)
2264 return false;
2265
2266 // F16C only allows converting from float to half and from half to float.
2267 bool IsFloatToHalf = II->getIntrinsicID() == Intrinsic::convert_to_fp16;
2268 if (IsFloatToHalf) {
2269 if (!Op->getType()->isFloatTy())
2270 return false;
2271 } else {
2272 if (!II->getType()->isFloatTy())
2273 return false;
2274 }
2275
2276 unsigned ResultReg = 0;
2277 const TargetRegisterClass *RC = TLI.getRegClassFor(MVT::v8i16);
2278 if (IsFloatToHalf) {
2279 // 'InputReg' is implicitly promoted from register class FR32 to
2280 // register class VR128 by method 'constrainOperandRegClass' which is
2281 // directly called by 'fastEmitInst_ri'.
2282 // Instruction VCVTPS2PHrr takes an extra immediate operand which is
2283 // used to provide rounding control.
2284 InputReg = fastEmitInst_ri(X86::VCVTPS2PHrr, RC, InputReg, false, 0);
2285
2286 // Move the lower 32-bits of ResultReg to another register of class GR32.
2287 ResultReg = createResultReg(&X86::GR32RegClass);
2288 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2289 TII.get(X86::VMOVPDI2DIrr), ResultReg)
2290 .addReg(InputReg, RegState::Kill);
2291
2292 // The result value is in the lower 16-bits of ResultReg.
2293 unsigned RegIdx = X86::sub_16bit;
2294 ResultReg = fastEmitInst_extractsubreg(MVT::i16, ResultReg, true, RegIdx);
2295 } else {
2296 assert(Op->getType()->isIntegerTy(16) && "Expected a 16-bit integer!");
2297 // Explicitly sign-extend the input to 32-bit.
2298 InputReg = fastEmit_r(MVT::i16, MVT::i32, ISD::SIGN_EXTEND, InputReg,
2299 /*Kill=*/false);
2300
2301 // The following SCALAR_TO_VECTOR will be expanded into a VMOVDI2PDIrr.
2302 InputReg = fastEmit_r(MVT::i32, MVT::v4i32, ISD::SCALAR_TO_VECTOR,
2303 InputReg, /*Kill=*/true);
2304
2305 InputReg = fastEmitInst_r(X86::VCVTPH2PSrr, RC, InputReg, /*Kill=*/true);
2306
2307 // The result value is in the lower 32-bits of ResultReg.
2308 // Emit an explicit copy from register class VR128 to register class FR32.
2309 ResultReg = createResultReg(&X86::FR32RegClass);
2310 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2311 TII.get(TargetOpcode::COPY), ResultReg)
2312 .addReg(InputReg, RegState::Kill);
2313 }
2314
2315 updateValueMap(II, ResultReg);
2316 return true;
2317 }
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002318 case Intrinsic::frameaddress: {
David Majnemerca194852015-02-10 22:00:34 +00002319 MachineFunction *MF = FuncInfo.MF;
2320 if (MF->getTarget().getMCAsmInfo()->usesWindowsCFI())
2321 return false;
2322
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002323 Type *RetTy = II->getCalledFunction()->getReturnType();
2324
2325 MVT VT;
2326 if (!isTypeLegal(RetTy, VT))
2327 return false;
2328
2329 unsigned Opc;
2330 const TargetRegisterClass *RC = nullptr;
2331
2332 switch (VT.SimpleTy) {
2333 default: llvm_unreachable("Invalid result type for frameaddress.");
2334 case MVT::i32: Opc = X86::MOV32rm; RC = &X86::GR32RegClass; break;
2335 case MVT::i64: Opc = X86::MOV64rm; RC = &X86::GR64RegClass; break;
2336 }
2337
2338 // This needs to be set before we call getPtrSizedFrameRegister, otherwise
2339 // we get the wrong frame register.
David Majnemerca194852015-02-10 22:00:34 +00002340 MachineFrameInfo *MFI = MF->getFrameInfo();
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002341 MFI->setFrameAddressIsTaken(true);
2342
Eric Christophera1c535b2015-02-02 23:03:45 +00002343 const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
David Majnemerca194852015-02-10 22:00:34 +00002344 unsigned FrameReg = RegInfo->getPtrSizedFrameRegister(*MF);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002345 assert(((FrameReg == X86::RBP && VT == MVT::i64) ||
2346 (FrameReg == X86::EBP && VT == MVT::i32)) &&
2347 "Invalid Frame Register!");
2348
2349 // Always make a copy of the frame register to to a vreg first, so that we
2350 // never directly reference the frame register (the TwoAddressInstruction-
2351 // Pass doesn't like that).
2352 unsigned SrcReg = createResultReg(RC);
2353 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2354 TII.get(TargetOpcode::COPY), SrcReg).addReg(FrameReg);
2355
2356 // Now recursively load from the frame address.
2357 // movq (%rbp), %rax
2358 // movq (%rax), %rax
2359 // movq (%rax), %rax
2360 // ...
2361 unsigned DestReg;
2362 unsigned Depth = cast<ConstantInt>(II->getOperand(0))->getZExtValue();
2363 while (Depth--) {
2364 DestReg = createResultReg(RC);
2365 addDirectMem(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2366 TII.get(Opc), DestReg), SrcReg);
2367 SrcReg = DestReg;
2368 }
2369
2370 updateValueMap(II, SrcReg);
2371 return true;
2372 }
2373 case Intrinsic::memcpy: {
2374 const MemCpyInst *MCI = cast<MemCpyInst>(II);
2375 // Don't handle volatile or variable length memcpys.
2376 if (MCI->isVolatile())
2377 return false;
2378
2379 if (isa<ConstantInt>(MCI->getLength())) {
2380 // Small memcpy's are common enough that we want to do them
2381 // without a call if possible.
2382 uint64_t Len = cast<ConstantInt>(MCI->getLength())->getZExtValue();
2383 if (IsMemcpySmall(Len)) {
2384 X86AddressMode DestAM, SrcAM;
2385 if (!X86SelectAddress(MCI->getRawDest(), DestAM) ||
2386 !X86SelectAddress(MCI->getRawSource(), SrcAM))
2387 return false;
2388 TryEmitSmallMemcpy(DestAM, SrcAM, Len);
2389 return true;
2390 }
2391 }
2392
2393 unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32;
2394 if (!MCI->getLength()->getType()->isIntegerTy(SizeWidth))
2395 return false;
2396
2397 if (MCI->getSourceAddressSpace() > 255 || MCI->getDestAddressSpace() > 255)
2398 return false;
2399
2400 return lowerCallTo(II, "memcpy", II->getNumArgOperands() - 2);
2401 }
2402 case Intrinsic::memset: {
2403 const MemSetInst *MSI = cast<MemSetInst>(II);
2404
2405 if (MSI->isVolatile())
2406 return false;
2407
2408 unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32;
2409 if (!MSI->getLength()->getType()->isIntegerTy(SizeWidth))
2410 return false;
2411
2412 if (MSI->getDestAddressSpace() > 255)
2413 return false;
2414
2415 return lowerCallTo(II, "memset", II->getNumArgOperands() - 2);
2416 }
2417 case Intrinsic::stackprotector: {
2418 // Emit code to store the stack guard onto the stack.
2419 EVT PtrTy = TLI.getPointerTy();
2420
2421 const Value *Op1 = II->getArgOperand(0); // The guard's value.
2422 const AllocaInst *Slot = cast<AllocaInst>(II->getArgOperand(1));
2423
2424 MFI.setStackProtectorIndex(FuncInfo.StaticAllocaMap[Slot]);
2425
2426 // Grab the frame index.
2427 X86AddressMode AM;
2428 if (!X86SelectAddress(Slot, AM)) return false;
2429 if (!X86FastEmitStore(PtrTy, Op1, AM)) return false;
2430 return true;
2431 }
2432 case Intrinsic::dbg_declare: {
2433 const DbgDeclareInst *DI = cast<DbgDeclareInst>(II);
2434 X86AddressMode AM;
2435 assert(DI->getAddress() && "Null address should be checked earlier!");
2436 if (!X86SelectAddress(DI->getAddress(), AM))
2437 return false;
2438 const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
2439 // FIXME may need to add RegState::Debug to any registers produced,
2440 // although ESP/EBP should be the only ones at the moment.
Duncan P. N. Exon Smith3bef6a32015-04-03 19:20:26 +00002441 assert(DI->getVariable()->isValidLocationForIntrinsic(DbgLoc) &&
2442 "Expected inlined-at fields to agree");
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002443 addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II), AM)
2444 .addImm(0)
2445 .addMetadata(DI->getVariable())
2446 .addMetadata(DI->getExpression());
2447 return true;
2448 }
2449 case Intrinsic::trap: {
2450 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::TRAP));
2451 return true;
2452 }
2453 case Intrinsic::sqrt: {
2454 if (!Subtarget->hasSSE1())
2455 return false;
2456
2457 Type *RetTy = II->getCalledFunction()->getReturnType();
2458
2459 MVT VT;
2460 if (!isTypeLegal(RetTy, VT))
2461 return false;
2462
2463 // Unfortunately we can't use fastEmit_r, because the AVX version of FSQRT
2464 // is not generated by FastISel yet.
2465 // FIXME: Update this code once tablegen can handle it.
2466 static const unsigned SqrtOpc[2][2] = {
2467 {X86::SQRTSSr, X86::VSQRTSSr},
2468 {X86::SQRTSDr, X86::VSQRTSDr}
2469 };
2470 bool HasAVX = Subtarget->hasAVX();
2471 unsigned Opc;
2472 const TargetRegisterClass *RC;
2473 switch (VT.SimpleTy) {
2474 default: return false;
2475 case MVT::f32: Opc = SqrtOpc[0][HasAVX]; RC = &X86::FR32RegClass; break;
2476 case MVT::f64: Opc = SqrtOpc[1][HasAVX]; RC = &X86::FR64RegClass; break;
2477 }
2478
2479 const Value *SrcVal = II->getArgOperand(0);
2480 unsigned SrcReg = getRegForValue(SrcVal);
2481
2482 if (SrcReg == 0)
2483 return false;
2484
2485 unsigned ImplicitDefReg = 0;
2486 if (HasAVX) {
2487 ImplicitDefReg = createResultReg(RC);
2488 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2489 TII.get(TargetOpcode::IMPLICIT_DEF), ImplicitDefReg);
2490 }
2491
2492 unsigned ResultReg = createResultReg(RC);
2493 MachineInstrBuilder MIB;
2494 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
2495 ResultReg);
2496
2497 if (ImplicitDefReg)
2498 MIB.addReg(ImplicitDefReg);
2499
2500 MIB.addReg(SrcReg);
2501
2502 updateValueMap(II, ResultReg);
2503 return true;
2504 }
2505 case Intrinsic::sadd_with_overflow:
2506 case Intrinsic::uadd_with_overflow:
2507 case Intrinsic::ssub_with_overflow:
2508 case Intrinsic::usub_with_overflow:
2509 case Intrinsic::smul_with_overflow:
2510 case Intrinsic::umul_with_overflow: {
2511 // This implements the basic lowering of the xalu with overflow intrinsics
2512 // into add/sub/mul followed by either seto or setb.
2513 const Function *Callee = II->getCalledFunction();
2514 auto *Ty = cast<StructType>(Callee->getReturnType());
2515 Type *RetTy = Ty->getTypeAtIndex(0U);
2516 Type *CondTy = Ty->getTypeAtIndex(1);
2517
2518 MVT VT;
2519 if (!isTypeLegal(RetTy, VT))
2520 return false;
2521
2522 if (VT < MVT::i8 || VT > MVT::i64)
2523 return false;
2524
2525 const Value *LHS = II->getArgOperand(0);
2526 const Value *RHS = II->getArgOperand(1);
2527
2528 // Canonicalize immediate to the RHS.
2529 if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS) &&
2530 isCommutativeIntrinsic(II))
2531 std::swap(LHS, RHS);
2532
2533 bool UseIncDec = false;
2534 if (isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isOne())
2535 UseIncDec = true;
2536
2537 unsigned BaseOpc, CondOpc;
2538 switch (II->getIntrinsicID()) {
2539 default: llvm_unreachable("Unexpected intrinsic!");
2540 case Intrinsic::sadd_with_overflow:
2541 BaseOpc = UseIncDec ? unsigned(X86ISD::INC) : unsigned(ISD::ADD);
2542 CondOpc = X86::SETOr;
2543 break;
2544 case Intrinsic::uadd_with_overflow:
2545 BaseOpc = ISD::ADD; CondOpc = X86::SETBr; break;
2546 case Intrinsic::ssub_with_overflow:
2547 BaseOpc = UseIncDec ? unsigned(X86ISD::DEC) : unsigned(ISD::SUB);
2548 CondOpc = X86::SETOr;
2549 break;
2550 case Intrinsic::usub_with_overflow:
2551 BaseOpc = ISD::SUB; CondOpc = X86::SETBr; break;
2552 case Intrinsic::smul_with_overflow:
2553 BaseOpc = X86ISD::SMUL; CondOpc = X86::SETOr; break;
2554 case Intrinsic::umul_with_overflow:
2555 BaseOpc = X86ISD::UMUL; CondOpc = X86::SETOr; break;
2556 }
2557
2558 unsigned LHSReg = getRegForValue(LHS);
2559 if (LHSReg == 0)
2560 return false;
2561 bool LHSIsKill = hasTrivialKill(LHS);
2562
2563 unsigned ResultReg = 0;
2564 // Check if we have an immediate version.
2565 if (const auto *CI = dyn_cast<ConstantInt>(RHS)) {
2566 static const unsigned Opc[2][4] = {
2567 { X86::INC8r, X86::INC16r, X86::INC32r, X86::INC64r },
2568 { X86::DEC8r, X86::DEC16r, X86::DEC32r, X86::DEC64r }
2569 };
2570
2571 if (BaseOpc == X86ISD::INC || BaseOpc == X86ISD::DEC) {
2572 ResultReg = createResultReg(TLI.getRegClassFor(VT));
2573 bool IsDec = BaseOpc == X86ISD::DEC;
2574 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2575 TII.get(Opc[IsDec][VT.SimpleTy-MVT::i8]), ResultReg)
2576 .addReg(LHSReg, getKillRegState(LHSIsKill));
2577 } else
2578 ResultReg = fastEmit_ri(VT, VT, BaseOpc, LHSReg, LHSIsKill,
2579 CI->getZExtValue());
2580 }
2581
2582 unsigned RHSReg;
2583 bool RHSIsKill;
2584 if (!ResultReg) {
2585 RHSReg = getRegForValue(RHS);
2586 if (RHSReg == 0)
2587 return false;
2588 RHSIsKill = hasTrivialKill(RHS);
2589 ResultReg = fastEmit_rr(VT, VT, BaseOpc, LHSReg, LHSIsKill, RHSReg,
2590 RHSIsKill);
2591 }
2592
2593 // FastISel doesn't have a pattern for all X86::MUL*r and X86::IMUL*r. Emit
2594 // it manually.
2595 if (BaseOpc == X86ISD::UMUL && !ResultReg) {
2596 static const unsigned MULOpc[] =
2597 { X86::MUL8r, X86::MUL16r, X86::MUL32r, X86::MUL64r };
2598 static const unsigned Reg[] = { X86::AL, X86::AX, X86::EAX, X86::RAX };
2599 // First copy the first operand into RAX, which is an implicit input to
2600 // the X86::MUL*r instruction.
2601 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2602 TII.get(TargetOpcode::COPY), Reg[VT.SimpleTy-MVT::i8])
2603 .addReg(LHSReg, getKillRegState(LHSIsKill));
2604 ResultReg = fastEmitInst_r(MULOpc[VT.SimpleTy-MVT::i8],
2605 TLI.getRegClassFor(VT), RHSReg, RHSIsKill);
2606 } else if (BaseOpc == X86ISD::SMUL && !ResultReg) {
2607 static const unsigned MULOpc[] =
2608 { X86::IMUL8r, X86::IMUL16rr, X86::IMUL32rr, X86::IMUL64rr };
2609 if (VT == MVT::i8) {
2610 // Copy the first operand into AL, which is an implicit input to the
2611 // X86::IMUL8r instruction.
2612 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2613 TII.get(TargetOpcode::COPY), X86::AL)
2614 .addReg(LHSReg, getKillRegState(LHSIsKill));
2615 ResultReg = fastEmitInst_r(MULOpc[0], TLI.getRegClassFor(VT), RHSReg,
2616 RHSIsKill);
2617 } else
2618 ResultReg = fastEmitInst_rr(MULOpc[VT.SimpleTy-MVT::i8],
2619 TLI.getRegClassFor(VT), LHSReg, LHSIsKill,
2620 RHSReg, RHSIsKill);
2621 }
2622
2623 if (!ResultReg)
2624 return false;
2625
2626 unsigned ResultReg2 = FuncInfo.CreateRegs(CondTy);
2627 assert((ResultReg+1) == ResultReg2 && "Nonconsecutive result registers.");
2628 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CondOpc),
2629 ResultReg2);
2630
2631 updateValueMap(II, ResultReg, 2);
2632 return true;
2633 }
2634 case Intrinsic::x86_sse_cvttss2si:
2635 case Intrinsic::x86_sse_cvttss2si64:
2636 case Intrinsic::x86_sse2_cvttsd2si:
2637 case Intrinsic::x86_sse2_cvttsd2si64: {
2638 bool IsInputDouble;
2639 switch (II->getIntrinsicID()) {
2640 default: llvm_unreachable("Unexpected intrinsic.");
2641 case Intrinsic::x86_sse_cvttss2si:
2642 case Intrinsic::x86_sse_cvttss2si64:
2643 if (!Subtarget->hasSSE1())
2644 return false;
2645 IsInputDouble = false;
2646 break;
2647 case Intrinsic::x86_sse2_cvttsd2si:
2648 case Intrinsic::x86_sse2_cvttsd2si64:
2649 if (!Subtarget->hasSSE2())
2650 return false;
2651 IsInputDouble = true;
2652 break;
2653 }
2654
2655 Type *RetTy = II->getCalledFunction()->getReturnType();
2656 MVT VT;
2657 if (!isTypeLegal(RetTy, VT))
2658 return false;
2659
2660 static const unsigned CvtOpc[2][2][2] = {
2661 { { X86::CVTTSS2SIrr, X86::VCVTTSS2SIrr },
2662 { X86::CVTTSS2SI64rr, X86::VCVTTSS2SI64rr } },
2663 { { X86::CVTTSD2SIrr, X86::VCVTTSD2SIrr },
2664 { X86::CVTTSD2SI64rr, X86::VCVTTSD2SI64rr } }
2665 };
2666 bool HasAVX = Subtarget->hasAVX();
2667 unsigned Opc;
2668 switch (VT.SimpleTy) {
2669 default: llvm_unreachable("Unexpected result type.");
2670 case MVT::i32: Opc = CvtOpc[IsInputDouble][0][HasAVX]; break;
2671 case MVT::i64: Opc = CvtOpc[IsInputDouble][1][HasAVX]; break;
2672 }
2673
2674 // Check if we can fold insertelement instructions into the convert.
2675 const Value *Op = II->getArgOperand(0);
2676 while (auto *IE = dyn_cast<InsertElementInst>(Op)) {
2677 const Value *Index = IE->getOperand(2);
2678 if (!isa<ConstantInt>(Index))
2679 break;
2680 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
2681
2682 if (Idx == 0) {
2683 Op = IE->getOperand(1);
2684 break;
2685 }
2686 Op = IE->getOperand(0);
2687 }
2688
2689 unsigned Reg = getRegForValue(Op);
2690 if (Reg == 0)
2691 return false;
2692
2693 unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
2694 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
2695 .addReg(Reg);
2696
2697 updateValueMap(II, ResultReg);
2698 return true;
2699 }
2700 }
2701}
2702
2703bool X86FastISel::fastLowerArguments() {
2704 if (!FuncInfo.CanLowerReturn)
2705 return false;
2706
2707 const Function *F = FuncInfo.Fn;
2708 if (F->isVarArg())
2709 return false;
2710
2711 CallingConv::ID CC = F->getCallingConv();
2712 if (CC != CallingConv::C)
2713 return false;
2714
2715 if (Subtarget->isCallingConvWin64(CC))
2716 return false;
2717
2718 if (!Subtarget->is64Bit())
2719 return false;
2720
2721 // Only handle simple cases. i.e. Up to 6 i32/i64 scalar arguments.
2722 unsigned GPRCnt = 0;
2723 unsigned FPRCnt = 0;
2724 unsigned Idx = 0;
2725 for (auto const &Arg : F->args()) {
2726 // The first argument is at index 1.
2727 ++Idx;
2728 if (F->getAttributes().hasAttribute(Idx, Attribute::ByVal) ||
2729 F->getAttributes().hasAttribute(Idx, Attribute::InReg) ||
2730 F->getAttributes().hasAttribute(Idx, Attribute::StructRet) ||
2731 F->getAttributes().hasAttribute(Idx, Attribute::Nest))
2732 return false;
2733
2734 Type *ArgTy = Arg.getType();
2735 if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy())
2736 return false;
2737
2738 EVT ArgVT = TLI.getValueType(ArgTy);
2739 if (!ArgVT.isSimple()) return false;
2740 switch (ArgVT.getSimpleVT().SimpleTy) {
2741 default: return false;
2742 case MVT::i32:
2743 case MVT::i64:
2744 ++GPRCnt;
2745 break;
2746 case MVT::f32:
2747 case MVT::f64:
2748 if (!Subtarget->hasSSE1())
2749 return false;
2750 ++FPRCnt;
2751 break;
2752 }
2753
2754 if (GPRCnt > 6)
2755 return false;
2756
2757 if (FPRCnt > 8)
2758 return false;
2759 }
2760
2761 static const MCPhysReg GPR32ArgRegs[] = {
2762 X86::EDI, X86::ESI, X86::EDX, X86::ECX, X86::R8D, X86::R9D
2763 };
2764 static const MCPhysReg GPR64ArgRegs[] = {
2765 X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8 , X86::R9
2766 };
2767 static const MCPhysReg XMMArgRegs[] = {
2768 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2769 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2770 };
2771
2772 unsigned GPRIdx = 0;
2773 unsigned FPRIdx = 0;
2774 for (auto const &Arg : F->args()) {
2775 MVT VT = TLI.getSimpleValueType(Arg.getType());
2776 const TargetRegisterClass *RC = TLI.getRegClassFor(VT);
2777 unsigned SrcReg;
2778 switch (VT.SimpleTy) {
2779 default: llvm_unreachable("Unexpected value type.");
2780 case MVT::i32: SrcReg = GPR32ArgRegs[GPRIdx++]; break;
2781 case MVT::i64: SrcReg = GPR64ArgRegs[GPRIdx++]; break;
2782 case MVT::f32: // fall-through
2783 case MVT::f64: SrcReg = XMMArgRegs[FPRIdx++]; break;
2784 }
2785 unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC);
2786 // FIXME: Unfortunately it's necessary to emit a copy from the livein copy.
2787 // Without this, EmitLiveInCopies may eliminate the livein if its only
2788 // use is a bitcast (which isn't turned into an instruction).
2789 unsigned ResultReg = createResultReg(RC);
2790 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2791 TII.get(TargetOpcode::COPY), ResultReg)
2792 .addReg(DstReg, getKillRegState(true));
2793 updateValueMap(&Arg, ResultReg);
2794 }
2795 return true;
2796}
2797
2798static unsigned computeBytesPoppedByCallee(const X86Subtarget *Subtarget,
2799 CallingConv::ID CC,
2800 ImmutableCallSite *CS) {
2801 if (Subtarget->is64Bit())
2802 return 0;
2803 if (Subtarget->getTargetTriple().isOSMSVCRT())
2804 return 0;
2805 if (CC == CallingConv::Fast || CC == CallingConv::GHC ||
2806 CC == CallingConv::HiPE)
2807 return 0;
2808 if (CS && !CS->paramHasAttr(1, Attribute::StructRet))
2809 return 0;
2810 if (CS && CS->paramHasAttr(1, Attribute::InReg))
2811 return 0;
2812 return 4;
2813}
2814
2815bool X86FastISel::fastLowerCall(CallLoweringInfo &CLI) {
2816 auto &OutVals = CLI.OutVals;
2817 auto &OutFlags = CLI.OutFlags;
2818 auto &OutRegs = CLI.OutRegs;
2819 auto &Ins = CLI.Ins;
2820 auto &InRegs = CLI.InRegs;
2821 CallingConv::ID CC = CLI.CallConv;
2822 bool &IsTailCall = CLI.IsTailCall;
2823 bool IsVarArg = CLI.IsVarArg;
2824 const Value *Callee = CLI.Callee;
Rafael Espindolace4c2bc2015-06-23 12:21:54 +00002825 MCSymbol *Symbol = CLI.Symbol;
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002826
2827 bool Is64Bit = Subtarget->is64Bit();
2828 bool IsWin64 = Subtarget->isCallingConvWin64(CC);
2829
2830 // Handle only C, fastcc, and webkit_js calling conventions for now.
2831 switch (CC) {
2832 default: return false;
2833 case CallingConv::C:
2834 case CallingConv::Fast:
2835 case CallingConv::WebKit_JS:
2836 case CallingConv::X86_FastCall:
2837 case CallingConv::X86_64_Win64:
2838 case CallingConv::X86_64_SysV:
2839 break;
2840 }
2841
2842 // Allow SelectionDAG isel to handle tail calls.
2843 if (IsTailCall)
2844 return false;
2845
2846 // fastcc with -tailcallopt is intended to provide a guaranteed
2847 // tail call optimization. Fastisel doesn't know how to do that.
2848 if (CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt)
2849 return false;
2850
2851 // Don't know how to handle Win64 varargs yet. Nothing special needed for
2852 // x86-32. Special handling for x86-64 is implemented.
2853 if (IsVarArg && IsWin64)
2854 return false;
2855
2856 // Don't know about inalloca yet.
2857 if (CLI.CS && CLI.CS->hasInAllocaArgument())
2858 return false;
2859
2860 // Fast-isel doesn't know about callee-pop yet.
2861 if (X86::isCalleePop(CC, Subtarget->is64Bit(), IsVarArg,
2862 TM.Options.GuaranteedTailCallOpt))
2863 return false;
2864
2865 SmallVector<MVT, 16> OutVTs;
2866 SmallVector<unsigned, 16> ArgRegs;
2867
2868 // If this is a constant i1/i8/i16 argument, promote to i32 to avoid an extra
2869 // instruction. This is safe because it is common to all FastISel supported
2870 // calling conventions on x86.
2871 for (int i = 0, e = OutVals.size(); i != e; ++i) {
2872 Value *&Val = OutVals[i];
2873 ISD::ArgFlagsTy Flags = OutFlags[i];
2874 if (auto *CI = dyn_cast<ConstantInt>(Val)) {
2875 if (CI->getBitWidth() < 32) {
2876 if (Flags.isSExt())
2877 Val = ConstantExpr::getSExt(CI, Type::getInt32Ty(CI->getContext()));
2878 else
2879 Val = ConstantExpr::getZExt(CI, Type::getInt32Ty(CI->getContext()));
2880 }
2881 }
2882
2883 // Passing bools around ends up doing a trunc to i1 and passing it.
2884 // Codegen this as an argument + "and 1".
2885 MVT VT;
2886 auto *TI = dyn_cast<TruncInst>(Val);
2887 unsigned ResultReg;
2888 if (TI && TI->getType()->isIntegerTy(1) && CLI.CS &&
2889 (TI->getParent() == CLI.CS->getInstruction()->getParent()) &&
2890 TI->hasOneUse()) {
2891 Value *PrevVal = TI->getOperand(0);
2892 ResultReg = getRegForValue(PrevVal);
2893
2894 if (!ResultReg)
2895 return false;
2896
2897 if (!isTypeLegal(PrevVal->getType(), VT))
2898 return false;
2899
2900 ResultReg =
2901 fastEmit_ri(VT, VT, ISD::AND, ResultReg, hasTrivialKill(PrevVal), 1);
2902 } else {
2903 if (!isTypeLegal(Val->getType(), VT))
2904 return false;
2905 ResultReg = getRegForValue(Val);
2906 }
2907
2908 if (!ResultReg)
2909 return false;
2910
2911 ArgRegs.push_back(ResultReg);
2912 OutVTs.push_back(VT);
2913 }
2914
2915 // Analyze operands of the call, assigning locations to each operand.
2916 SmallVector<CCValAssign, 16> ArgLocs;
2917 CCState CCInfo(CC, IsVarArg, *FuncInfo.MF, ArgLocs, CLI.RetTy->getContext());
2918
2919 // Allocate shadow area for Win64
2920 if (IsWin64)
2921 CCInfo.AllocateStack(32, 8);
2922
2923 CCInfo.AnalyzeCallOperands(OutVTs, OutFlags, CC_X86);
2924
2925 // Get a count of how many bytes are to be pushed on the stack.
2926 unsigned NumBytes = CCInfo.getNextStackOffset();
2927
2928 // Issue CALLSEQ_START
2929 unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
2930 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown))
Michael Kuperstein13fbd452015-02-01 16:56:04 +00002931 .addImm(NumBytes).addImm(0);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002932
2933 // Walk the register/memloc assignments, inserting copies/loads.
Eric Christophera1c535b2015-02-02 23:03:45 +00002934 const X86RegisterInfo *RegInfo = Subtarget->getRegisterInfo();
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00002935 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2936 CCValAssign const &VA = ArgLocs[i];
2937 const Value *ArgVal = OutVals[VA.getValNo()];
2938 MVT ArgVT = OutVTs[VA.getValNo()];
2939
2940 if (ArgVT == MVT::x86mmx)
2941 return false;
2942
2943 unsigned ArgReg = ArgRegs[VA.getValNo()];
2944
2945 // Promote the value if needed.
2946 switch (VA.getLocInfo()) {
2947 case CCValAssign::Full: break;
2948 case CCValAssign::SExt: {
2949 assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
2950 "Unexpected extend");
2951 bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg,
2952 ArgVT, ArgReg);
2953 assert(Emitted && "Failed to emit a sext!"); (void)Emitted;
2954 ArgVT = VA.getLocVT();
2955 break;
2956 }
2957 case CCValAssign::ZExt: {
2958 assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
2959 "Unexpected extend");
2960 bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg,
2961 ArgVT, ArgReg);
2962 assert(Emitted && "Failed to emit a zext!"); (void)Emitted;
2963 ArgVT = VA.getLocVT();
2964 break;
2965 }
2966 case CCValAssign::AExt: {
2967 assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
2968 "Unexpected extend");
2969 bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(), ArgReg,
2970 ArgVT, ArgReg);
2971 if (!Emitted)
2972 Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), ArgReg,
2973 ArgVT, ArgReg);
2974 if (!Emitted)
2975 Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), ArgReg,
2976 ArgVT, ArgReg);
2977
2978 assert(Emitted && "Failed to emit a aext!"); (void)Emitted;
2979 ArgVT = VA.getLocVT();
2980 break;
2981 }
2982 case CCValAssign::BCvt: {
2983 ArgReg = fastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, ArgReg,
2984 /*TODO: Kill=*/false);
2985 assert(ArgReg && "Failed to emit a bitcast!");
2986 ArgVT = VA.getLocVT();
2987 break;
2988 }
2989 case CCValAssign::VExt:
2990 // VExt has not been implemented, so this should be impossible to reach
2991 // for now. However, fallback to Selection DAG isel once implemented.
2992 return false;
2993 case CCValAssign::AExtUpper:
2994 case CCValAssign::SExtUpper:
2995 case CCValAssign::ZExtUpper:
2996 case CCValAssign::FPExt:
2997 llvm_unreachable("Unexpected loc info!");
2998 case CCValAssign::Indirect:
2999 // FIXME: Indirect doesn't need extending, but fast-isel doesn't fully
3000 // support this.
3001 return false;
3002 }
3003
3004 if (VA.isRegLoc()) {
3005 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3006 TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(ArgReg);
3007 OutRegs.push_back(VA.getLocReg());
3008 } else {
3009 assert(VA.isMemLoc());
3010
3011 // Don't emit stores for undef values.
3012 if (isa<UndefValue>(ArgVal))
3013 continue;
3014
3015 unsigned LocMemOffset = VA.getLocMemOffset();
3016 X86AddressMode AM;
3017 AM.Base.Reg = RegInfo->getStackRegister();
3018 AM.Disp = LocMemOffset;
3019 ISD::ArgFlagsTy Flags = OutFlags[VA.getValNo()];
3020 unsigned Alignment = DL.getABITypeAlignment(ArgVal->getType());
3021 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
3022 MachinePointerInfo::getStack(LocMemOffset), MachineMemOperand::MOStore,
3023 ArgVT.getStoreSize(), Alignment);
3024 if (Flags.isByVal()) {
3025 X86AddressMode SrcAM;
3026 SrcAM.Base.Reg = ArgReg;
3027 if (!TryEmitSmallMemcpy(AM, SrcAM, Flags.getByValSize()))
3028 return false;
3029 } else if (isa<ConstantInt>(ArgVal) || isa<ConstantPointerNull>(ArgVal)) {
3030 // If this is a really simple value, emit this with the Value* version
3031 // of X86FastEmitStore. If it isn't simple, we don't want to do this,
3032 // as it can cause us to reevaluate the argument.
3033 if (!X86FastEmitStore(ArgVT, ArgVal, AM, MMO))
3034 return false;
3035 } else {
3036 bool ValIsKill = hasTrivialKill(ArgVal);
3037 if (!X86FastEmitStore(ArgVT, ArgReg, ValIsKill, AM, MMO))
3038 return false;
3039 }
3040 }
3041 }
3042
3043 // ELF / PIC requires GOT in the EBX register before function calls via PLT
3044 // GOT pointer.
3045 if (Subtarget->isPICStyleGOT()) {
3046 unsigned Base = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
3047 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3048 TII.get(TargetOpcode::COPY), X86::EBX).addReg(Base);
3049 }
3050
3051 if (Is64Bit && IsVarArg && !IsWin64) {
3052 // From AMD64 ABI document:
3053 // For calls that may call functions that use varargs or stdargs
3054 // (prototype-less calls or calls to functions containing ellipsis (...) in
3055 // the declaration) %al is used as hidden argument to specify the number
3056 // of SSE registers used. The contents of %al do not need to match exactly
3057 // the number of registers, but must be an ubound on the number of SSE
3058 // registers used and is in the range 0 - 8 inclusive.
3059
3060 // Count the number of XMM registers allocated.
3061 static const MCPhysReg XMMArgRegs[] = {
3062 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
3063 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
3064 };
Tim Northover3b6b7ca2015-02-21 02:11:17 +00003065 unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003066 assert((Subtarget->hasSSE1() || !NumXMMRegs)
3067 && "SSE registers cannot be used when SSE is disabled");
3068 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV8ri),
3069 X86::AL).addImm(NumXMMRegs);
3070 }
3071
3072 // Materialize callee address in a register. FIXME: GV address can be
3073 // handled with a CALLpcrel32 instead.
3074 X86AddressMode CalleeAM;
3075 if (!X86SelectCallAddress(Callee, CalleeAM))
3076 return false;
3077
3078 unsigned CalleeOp = 0;
3079 const GlobalValue *GV = nullptr;
3080 if (CalleeAM.GV != nullptr) {
3081 GV = CalleeAM.GV;
3082 } else if (CalleeAM.Base.Reg != 0) {
3083 CalleeOp = CalleeAM.Base.Reg;
3084 } else
3085 return false;
3086
3087 // Issue the call.
3088 MachineInstrBuilder MIB;
3089 if (CalleeOp) {
3090 // Register-indirect call.
3091 unsigned CallOpc = Is64Bit ? X86::CALL64r : X86::CALL32r;
3092 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc))
3093 .addReg(CalleeOp);
3094 } else {
3095 // Direct call.
3096 assert(GV && "Not a direct call");
3097 unsigned CallOpc = Is64Bit ? X86::CALL64pcrel32 : X86::CALLpcrel32;
3098
3099 // See if we need any target-specific flags on the GV operand.
3100 unsigned char OpFlags = 0;
3101
3102 // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
3103 // external symbols most go through the PLT in PIC mode. If the symbol
3104 // has hidden or protected visibility, or if it is static or local, then
3105 // we don't need to use the PLT - we can directly call it.
3106 if (Subtarget->isTargetELF() &&
3107 TM.getRelocationModel() == Reloc::PIC_ &&
3108 GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
3109 OpFlags = X86II::MO_PLT;
3110 } else if (Subtarget->isPICStyleStubAny() &&
Peter Collingbourne6a9d1772015-07-05 20:52:35 +00003111 !GV->isStrongDefinitionForLinker() &&
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003112 (!Subtarget->getTargetTriple().isMacOSX() ||
3113 Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
3114 // PC-relative references to external symbols should go through $stub,
3115 // unless we're building with the leopard linker or later, which
3116 // automatically synthesizes these stubs.
3117 OpFlags = X86II::MO_DARWIN_STUB;
3118 }
3119
3120 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc));
Rafael Espindolace4c2bc2015-06-23 12:21:54 +00003121 if (Symbol)
3122 MIB.addSym(Symbol, OpFlags);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003123 else
3124 MIB.addGlobalAddress(GV, 0, OpFlags);
3125 }
3126
3127 // Add a register mask operand representing the call-preserved registers.
3128 // Proper defs for return values will be added by setPhysRegsDeadExcept().
Eric Christopher9deb75d2015-03-11 22:42:13 +00003129 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003130
3131 // Add an implicit use GOT pointer in EBX.
3132 if (Subtarget->isPICStyleGOT())
3133 MIB.addReg(X86::EBX, RegState::Implicit);
3134
3135 if (Is64Bit && IsVarArg && !IsWin64)
3136 MIB.addReg(X86::AL, RegState::Implicit);
3137
3138 // Add implicit physical register uses to the call.
3139 for (auto Reg : OutRegs)
3140 MIB.addReg(Reg, RegState::Implicit);
3141
3142 // Issue CALLSEQ_END
3143 unsigned NumBytesForCalleeToPop =
3144 computeBytesPoppedByCallee(Subtarget, CC, CLI.CS);
3145 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
3146 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp))
3147 .addImm(NumBytes).addImm(NumBytesForCalleeToPop);
3148
3149 // Now handle call return values.
3150 SmallVector<CCValAssign, 16> RVLocs;
3151 CCState CCRetInfo(CC, IsVarArg, *FuncInfo.MF, RVLocs,
3152 CLI.RetTy->getContext());
3153 CCRetInfo.AnalyzeCallResult(Ins, RetCC_X86);
3154
3155 // Copy all of the result registers out of their specified physreg.
3156 unsigned ResultReg = FuncInfo.CreateRegs(CLI.RetTy);
3157 for (unsigned i = 0; i != RVLocs.size(); ++i) {
3158 CCValAssign &VA = RVLocs[i];
3159 EVT CopyVT = VA.getValVT();
3160 unsigned CopyReg = ResultReg + i;
3161
3162 // If this is x86-64, and we disabled SSE, we can't return FP values
3163 if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
3164 ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
3165 report_fatal_error("SSE register return with SSE disabled");
3166 }
3167
3168 // If we prefer to use the value in xmm registers, copy it out as f80 and
3169 // use a truncate to move it from fp stack reg to xmm reg.
3170 if ((VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1) &&
3171 isScalarFPTypeInSSEReg(VA.getValVT())) {
3172 CopyVT = MVT::f80;
3173 CopyReg = createResultReg(&X86::RFP80RegClass);
3174 }
3175
3176 // Copy out the result.
3177 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3178 TII.get(TargetOpcode::COPY), CopyReg).addReg(VA.getLocReg());
3179 InRegs.push_back(VA.getLocReg());
3180
3181 // Round the f80 to the right size, which also moves it to the appropriate
3182 // xmm register. This is accomplished by storing the f80 value in memory
3183 // and then loading it back.
3184 if (CopyVT != VA.getValVT()) {
3185 EVT ResVT = VA.getValVT();
3186 unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64;
3187 unsigned MemSize = ResVT.getSizeInBits()/8;
3188 int FI = MFI.CreateStackObject(MemSize, MemSize, false);
3189 addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3190 TII.get(Opc)), FI)
3191 .addReg(CopyReg);
3192 Opc = ResVT == MVT::f32 ? X86::MOVSSrm : X86::MOVSDrm;
3193 addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3194 TII.get(Opc), ResultReg + i), FI);
3195 }
3196 }
3197
3198 CLI.ResultReg = ResultReg;
3199 CLI.NumResultRegs = RVLocs.size();
3200 CLI.Call = MIB;
3201
3202 return true;
3203}
3204
3205bool
3206X86FastISel::fastSelectInstruction(const Instruction *I) {
3207 switch (I->getOpcode()) {
3208 default: break;
3209 case Instruction::Load:
3210 return X86SelectLoad(I);
3211 case Instruction::Store:
3212 return X86SelectStore(I);
3213 case Instruction::Ret:
3214 return X86SelectRet(I);
3215 case Instruction::ICmp:
3216 case Instruction::FCmp:
3217 return X86SelectCmp(I);
3218 case Instruction::ZExt:
3219 return X86SelectZExt(I);
3220 case Instruction::Br:
3221 return X86SelectBranch(I);
3222 case Instruction::LShr:
3223 case Instruction::AShr:
3224 case Instruction::Shl:
3225 return X86SelectShift(I);
3226 case Instruction::SDiv:
3227 case Instruction::UDiv:
3228 case Instruction::SRem:
3229 case Instruction::URem:
3230 return X86SelectDivRem(I);
3231 case Instruction::Select:
3232 return X86SelectSelect(I);
3233 case Instruction::Trunc:
3234 return X86SelectTrunc(I);
3235 case Instruction::FPExt:
3236 return X86SelectFPExt(I);
3237 case Instruction::FPTrunc:
3238 return X86SelectFPTrunc(I);
Andrea Di Biagioe7b58ee2015-02-17 23:40:58 +00003239 case Instruction::SIToFP:
3240 return X86SelectSIToFP(I);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003241 case Instruction::IntToPtr: // Deliberate fall-through.
3242 case Instruction::PtrToInt: {
3243 EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
3244 EVT DstVT = TLI.getValueType(I->getType());
3245 if (DstVT.bitsGT(SrcVT))
3246 return X86SelectZExt(I);
3247 if (DstVT.bitsLT(SrcVT))
3248 return X86SelectTrunc(I);
3249 unsigned Reg = getRegForValue(I->getOperand(0));
3250 if (Reg == 0) return false;
3251 updateValueMap(I, Reg);
3252 return true;
3253 }
3254 }
3255
3256 return false;
3257}
3258
3259unsigned X86FastISel::X86MaterializeInt(const ConstantInt *CI, MVT VT) {
3260 if (VT > MVT::i64)
3261 return 0;
3262
3263 uint64_t Imm = CI->getZExtValue();
3264 if (Imm == 0) {
3265 unsigned SrcReg = fastEmitInst_(X86::MOV32r0, &X86::GR32RegClass);
3266 switch (VT.SimpleTy) {
3267 default: llvm_unreachable("Unexpected value type");
3268 case MVT::i1:
3269 case MVT::i8:
3270 return fastEmitInst_extractsubreg(MVT::i8, SrcReg, /*Kill=*/true,
3271 X86::sub_8bit);
3272 case MVT::i16:
3273 return fastEmitInst_extractsubreg(MVT::i16, SrcReg, /*Kill=*/true,
3274 X86::sub_16bit);
3275 case MVT::i32:
3276 return SrcReg;
3277 case MVT::i64: {
3278 unsigned ResultReg = createResultReg(&X86::GR64RegClass);
3279 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3280 TII.get(TargetOpcode::SUBREG_TO_REG), ResultReg)
3281 .addImm(0).addReg(SrcReg).addImm(X86::sub_32bit);
3282 return ResultReg;
3283 }
3284 }
3285 }
3286
3287 unsigned Opc = 0;
3288 switch (VT.SimpleTy) {
3289 default: llvm_unreachable("Unexpected value type");
3290 case MVT::i1: VT = MVT::i8; // fall-through
3291 case MVT::i8: Opc = X86::MOV8ri; break;
3292 case MVT::i16: Opc = X86::MOV16ri; break;
3293 case MVT::i32: Opc = X86::MOV32ri; break;
3294 case MVT::i64: {
3295 if (isUInt<32>(Imm))
3296 Opc = X86::MOV32ri;
3297 else if (isInt<32>(Imm))
3298 Opc = X86::MOV64ri32;
3299 else
3300 Opc = X86::MOV64ri;
3301 break;
3302 }
3303 }
3304 if (VT == MVT::i64 && Opc == X86::MOV32ri) {
3305 unsigned SrcReg = fastEmitInst_i(Opc, &X86::GR32RegClass, Imm);
3306 unsigned ResultReg = createResultReg(&X86::GR64RegClass);
3307 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3308 TII.get(TargetOpcode::SUBREG_TO_REG), ResultReg)
3309 .addImm(0).addReg(SrcReg).addImm(X86::sub_32bit);
3310 return ResultReg;
3311 }
3312 return fastEmitInst_i(Opc, TLI.getRegClassFor(VT), Imm);
3313}
3314
3315unsigned X86FastISel::X86MaterializeFP(const ConstantFP *CFP, MVT VT) {
3316 if (CFP->isNullValue())
3317 return fastMaterializeFloatZero(CFP);
3318
3319 // Can't handle alternate code models yet.
3320 CodeModel::Model CM = TM.getCodeModel();
3321 if (CM != CodeModel::Small && CM != CodeModel::Large)
3322 return 0;
3323
3324 // Get opcode and regclass of the output for the given load instruction.
3325 unsigned Opc = 0;
3326 const TargetRegisterClass *RC = nullptr;
3327 switch (VT.SimpleTy) {
3328 default: return 0;
3329 case MVT::f32:
3330 if (X86ScalarSSEf32) {
3331 Opc = Subtarget->hasAVX() ? X86::VMOVSSrm : X86::MOVSSrm;
3332 RC = &X86::FR32RegClass;
3333 } else {
3334 Opc = X86::LD_Fp32m;
3335 RC = &X86::RFP32RegClass;
3336 }
3337 break;
3338 case MVT::f64:
3339 if (X86ScalarSSEf64) {
3340 Opc = Subtarget->hasAVX() ? X86::VMOVSDrm : X86::MOVSDrm;
3341 RC = &X86::FR64RegClass;
3342 } else {
3343 Opc = X86::LD_Fp64m;
3344 RC = &X86::RFP64RegClass;
3345 }
3346 break;
3347 case MVT::f80:
3348 // No f80 support yet.
3349 return 0;
3350 }
3351
3352 // MachineConstantPool wants an explicit alignment.
3353 unsigned Align = DL.getPrefTypeAlignment(CFP->getType());
3354 if (Align == 0) {
3355 // Alignment of vector types. FIXME!
3356 Align = DL.getTypeAllocSize(CFP->getType());
3357 }
3358
3359 // x86-32 PIC requires a PIC base register for constant pools.
3360 unsigned PICBase = 0;
3361 unsigned char OpFlag = 0;
3362 if (Subtarget->isPICStyleStubPIC()) { // Not dynamic-no-pic
3363 OpFlag = X86II::MO_PIC_BASE_OFFSET;
3364 PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
3365 } else if (Subtarget->isPICStyleGOT()) {
3366 OpFlag = X86II::MO_GOTOFF;
3367 PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
3368 } else if (Subtarget->isPICStyleRIPRel() &&
3369 TM.getCodeModel() == CodeModel::Small) {
3370 PICBase = X86::RIP;
3371 }
3372
3373 // Create the load from the constant pool.
3374 unsigned CPI = MCP.getConstantPoolIndex(CFP, Align);
3375 unsigned ResultReg = createResultReg(RC);
3376
3377 if (CM == CodeModel::Large) {
3378 unsigned AddrReg = createResultReg(&X86::GR64RegClass);
3379 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV64ri),
3380 AddrReg)
3381 .addConstantPoolIndex(CPI, 0, OpFlag);
3382 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3383 TII.get(Opc), ResultReg);
3384 addDirectMem(MIB, AddrReg);
3385 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
3386 MachinePointerInfo::getConstantPool(), MachineMemOperand::MOLoad,
3387 TM.getDataLayout()->getPointerSize(), Align);
3388 MIB->addMemOperand(*FuncInfo.MF, MMO);
3389 return ResultReg;
3390 }
3391
3392 addConstantPoolReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3393 TII.get(Opc), ResultReg),
3394 CPI, PICBase, OpFlag);
3395 return ResultReg;
3396}
3397
3398unsigned X86FastISel::X86MaterializeGV(const GlobalValue *GV, MVT VT) {
3399 // Can't handle alternate code models yet.
3400 if (TM.getCodeModel() != CodeModel::Small)
3401 return 0;
3402
3403 // Materialize addresses with LEA/MOV instructions.
3404 X86AddressMode AM;
3405 if (X86SelectAddress(GV, AM)) {
3406 // If the expression is just a basereg, then we're done, otherwise we need
3407 // to emit an LEA.
3408 if (AM.BaseType == X86AddressMode::RegBase &&
3409 AM.IndexReg == 0 && AM.Disp == 0 && AM.GV == nullptr)
3410 return AM.Base.Reg;
3411
3412 unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT));
3413 if (TM.getRelocationModel() == Reloc::Static &&
3414 TLI.getPointerTy() == MVT::i64) {
3415 // The displacement code could be more than 32 bits away so we need to use
3416 // an instruction with a 64 bit immediate
3417 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV64ri),
3418 ResultReg)
3419 .addGlobalAddress(GV);
3420 } else {
3421 unsigned Opc = TLI.getPointerTy() == MVT::i32
3422 ? (Subtarget->isTarget64BitILP32()
3423 ? X86::LEA64_32r : X86::LEA32r)
3424 : X86::LEA64r;
3425 addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3426 TII.get(Opc), ResultReg), AM);
3427 }
3428 return ResultReg;
3429 }
3430 return 0;
3431}
3432
3433unsigned X86FastISel::fastMaterializeConstant(const Constant *C) {
3434 EVT CEVT = TLI.getValueType(C->getType(), true);
3435
3436 // Only handle simple types.
3437 if (!CEVT.isSimple())
3438 return 0;
3439 MVT VT = CEVT.getSimpleVT();
3440
3441 if (const auto *CI = dyn_cast<ConstantInt>(C))
3442 return X86MaterializeInt(CI, VT);
3443 else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
3444 return X86MaterializeFP(CFP, VT);
3445 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
3446 return X86MaterializeGV(GV, VT);
3447
3448 return 0;
3449}
3450
3451unsigned X86FastISel::fastMaterializeAlloca(const AllocaInst *C) {
3452 // Fail on dynamic allocas. At this point, getRegForValue has already
3453 // checked its CSE maps, so if we're here trying to handle a dynamic
3454 // alloca, we're not going to succeed. X86SelectAddress has a
3455 // check for dynamic allocas, because it's called directly from
3456 // various places, but targetMaterializeAlloca also needs a check
3457 // in order to avoid recursion between getRegForValue,
3458 // X86SelectAddrss, and targetMaterializeAlloca.
3459 if (!FuncInfo.StaticAllocaMap.count(C))
3460 return 0;
3461 assert(C->isStaticAlloca() && "dynamic alloca in the static alloca map?");
3462
3463 X86AddressMode AM;
3464 if (!X86SelectAddress(C, AM))
3465 return 0;
3466 unsigned Opc = TLI.getPointerTy() == MVT::i32
3467 ? (Subtarget->isTarget64BitILP32()
3468 ? X86::LEA64_32r : X86::LEA32r)
3469 : X86::LEA64r;
3470 const TargetRegisterClass* RC = TLI.getRegClassFor(TLI.getPointerTy());
3471 unsigned ResultReg = createResultReg(RC);
3472 addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3473 TII.get(Opc), ResultReg), AM);
3474 return ResultReg;
3475}
3476
3477unsigned X86FastISel::fastMaterializeFloatZero(const ConstantFP *CF) {
3478 MVT VT;
3479 if (!isTypeLegal(CF->getType(), VT))
3480 return 0;
3481
3482 // Get opcode and regclass for the given zero.
3483 unsigned Opc = 0;
3484 const TargetRegisterClass *RC = nullptr;
3485 switch (VT.SimpleTy) {
3486 default: return 0;
3487 case MVT::f32:
3488 if (X86ScalarSSEf32) {
3489 Opc = X86::FsFLD0SS;
3490 RC = &X86::FR32RegClass;
3491 } else {
3492 Opc = X86::LD_Fp032;
3493 RC = &X86::RFP32RegClass;
3494 }
3495 break;
3496 case MVT::f64:
3497 if (X86ScalarSSEf64) {
3498 Opc = X86::FsFLD0SD;
3499 RC = &X86::FR64RegClass;
3500 } else {
3501 Opc = X86::LD_Fp064;
3502 RC = &X86::RFP64RegClass;
3503 }
3504 break;
3505 case MVT::f80:
3506 // No f80 support yet.
3507 return 0;
3508 }
3509
3510 unsigned ResultReg = createResultReg(RC);
3511 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg);
3512 return ResultReg;
3513}
3514
3515
3516bool X86FastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
3517 const LoadInst *LI) {
3518 const Value *Ptr = LI->getPointerOperand();
3519 X86AddressMode AM;
3520 if (!X86SelectAddress(Ptr, AM))
3521 return false;
3522
3523 const X86InstrInfo &XII = (const X86InstrInfo &)TII;
3524
3525 unsigned Size = DL.getTypeAllocSize(LI->getType());
3526 unsigned Alignment = LI->getAlignment();
3527
3528 if (Alignment == 0) // Ensure that codegen never sees alignment 0
3529 Alignment = DL.getABITypeAlignment(LI->getType());
3530
3531 SmallVector<MachineOperand, 8> AddrOps;
3532 AM.getFullAddress(AddrOps);
3533
Keno Fischere70b31f2015-06-08 20:09:58 +00003534 MachineInstr *Result = XII.foldMemoryOperandImpl(
3535 *FuncInfo.MF, MI, OpNo, AddrOps, FuncInfo.InsertPt, Size, Alignment,
3536 /*AllowCommute=*/true);
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003537 if (!Result)
3538 return false;
3539
Pete Cooperd31583d2015-05-06 21:37:19 +00003540 // The index register could be in the wrong register class. Unfortunately,
3541 // foldMemoryOperandImpl could have commuted the instruction so its not enough
3542 // to just look at OpNo + the offset to the index reg. We actually need to
3543 // scan the instruction to find the index reg and see if its the correct reg
3544 // class.
Matthias Braune41e1462015-05-29 02:56:46 +00003545 unsigned OperandNo = 0;
3546 for (MachineInstr::mop_iterator I = Result->operands_begin(),
3547 E = Result->operands_end(); I != E; ++I, ++OperandNo) {
3548 MachineOperand &MO = *I;
3549 if (!MO.isReg() || MO.isDef() || MO.getReg() != AM.IndexReg)
Pete Cooperd31583d2015-05-06 21:37:19 +00003550 continue;
3551 // Found the index reg, now try to rewrite it.
Pete Cooperd31583d2015-05-06 21:37:19 +00003552 unsigned IndexReg = constrainOperandRegClass(Result->getDesc(),
Matthias Braune41e1462015-05-29 02:56:46 +00003553 MO.getReg(), OperandNo);
3554 if (IndexReg == MO.getReg())
Pete Cooperd31583d2015-05-06 21:37:19 +00003555 continue;
Matthias Braune41e1462015-05-29 02:56:46 +00003556 MO.setReg(IndexReg);
Pete Cooperd31583d2015-05-06 21:37:19 +00003557 }
3558
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003559 Result->addMemOperand(*FuncInfo.MF, createMachineMemOperandFor(LI));
Michael Kupersteine86aa9a2015-02-01 16:15:07 +00003560 MI->eraseFromParent();
3561 return true;
3562}
3563
3564
3565namespace llvm {
3566 FastISel *X86::createFastISel(FunctionLoweringInfo &funcInfo,
3567 const TargetLibraryInfo *libInfo) {
3568 return new X86FastISel(funcInfo, libInfo);
3569 }
3570}