Karthik Bhat | 88db86d | 2015-03-06 10:11:25 +0000 | [diff] [blame] | 1 | //===- LoopInterchange.cpp - Loop interchange pass------------------------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This Pass handles loop interchange transform. |
| 11 | // This pass interchanges loops to provide a more cache-friendly memory access |
| 12 | // patterns. |
| 13 | // |
| 14 | //===----------------------------------------------------------------------===// |
| 15 | |
| 16 | #include "llvm/ADT/SmallVector.h" |
| 17 | #include "llvm/Analysis/AliasAnalysis.h" |
| 18 | #include "llvm/Analysis/AliasSetTracker.h" |
| 19 | #include "llvm/Analysis/AssumptionCache.h" |
| 20 | #include "llvm/Analysis/BlockFrequencyInfo.h" |
| 21 | #include "llvm/Analysis/CodeMetrics.h" |
| 22 | #include "llvm/Analysis/DependenceAnalysis.h" |
| 23 | #include "llvm/Analysis/LoopInfo.h" |
| 24 | #include "llvm/Analysis/LoopIterator.h" |
| 25 | #include "llvm/Analysis/LoopPass.h" |
| 26 | #include "llvm/Analysis/ScalarEvolution.h" |
| 27 | #include "llvm/Analysis/ScalarEvolutionExpander.h" |
| 28 | #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
| 29 | #include "llvm/Analysis/TargetTransformInfo.h" |
| 30 | #include "llvm/Analysis/ValueTracking.h" |
| 31 | #include "llvm/Transforms/Scalar.h" |
| 32 | #include "llvm/IR/Function.h" |
| 33 | #include "llvm/IR/IRBuilder.h" |
| 34 | #include "llvm/IR/IntrinsicInst.h" |
| 35 | #include "llvm/IR/InstIterator.h" |
| 36 | #include "llvm/IR/Dominators.h" |
| 37 | #include "llvm/Pass.h" |
| 38 | #include "llvm/Support/Debug.h" |
| 39 | #include "llvm/Transforms/Utils/SSAUpdater.h" |
| 40 | #include "llvm/Support/raw_ostream.h" |
| 41 | #include "llvm/Transforms/Utils/LoopUtils.h" |
| 42 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| 43 | using namespace llvm; |
| 44 | |
| 45 | #define DEBUG_TYPE "loop-interchange" |
| 46 | |
| 47 | namespace { |
| 48 | |
| 49 | typedef SmallVector<Loop *, 8> LoopVector; |
| 50 | |
| 51 | // TODO: Check if we can use a sparse matrix here. |
| 52 | typedef std::vector<std::vector<char>> CharMatrix; |
| 53 | |
| 54 | // Maximum number of dependencies that can be handled in the dependency matrix. |
| 55 | static const unsigned MaxMemInstrCount = 100; |
| 56 | |
| 57 | // Maximum loop depth supported. |
| 58 | static const unsigned MaxLoopNestDepth = 10; |
| 59 | |
| 60 | struct LoopInterchange; |
| 61 | |
| 62 | #ifdef DUMP_DEP_MATRICIES |
| 63 | void printDepMatrix(CharMatrix &DepMatrix) { |
| 64 | for (auto I = DepMatrix.begin(), E = DepMatrix.end(); I != E; ++I) { |
| 65 | std::vector<char> Vec = *I; |
| 66 | for (auto II = Vec.begin(), EE = Vec.end(); II != EE; ++II) |
| 67 | DEBUG(dbgs() << *II << " "); |
| 68 | DEBUG(dbgs() << "\n"); |
| 69 | } |
| 70 | } |
| 71 | #endif |
| 72 | |
| 73 | bool populateDependencyMatrix(CharMatrix &DepMatrix, unsigned Level, Loop *L, |
| 74 | DependenceAnalysis *DA) { |
| 75 | typedef SmallVector<Value *, 16> ValueVector; |
| 76 | ValueVector MemInstr; |
| 77 | |
| 78 | if (Level > MaxLoopNestDepth) { |
| 79 | DEBUG(dbgs() << "Cannot handle loops of depth greater than " |
| 80 | << MaxLoopNestDepth << "\n"); |
| 81 | return false; |
| 82 | } |
| 83 | |
| 84 | // For each block. |
| 85 | for (Loop::block_iterator BB = L->block_begin(), BE = L->block_end(); |
| 86 | BB != BE; ++BB) { |
| 87 | // Scan the BB and collect legal loads and stores. |
| 88 | for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; |
| 89 | ++I) { |
| 90 | Instruction *Ins = dyn_cast<Instruction>(I); |
| 91 | if (!Ins) |
| 92 | return false; |
| 93 | LoadInst *Ld = dyn_cast<LoadInst>(I); |
| 94 | StoreInst *St = dyn_cast<StoreInst>(I); |
| 95 | if (!St && !Ld) |
| 96 | continue; |
| 97 | if (Ld && !Ld->isSimple()) |
| 98 | return false; |
| 99 | if (St && !St->isSimple()) |
| 100 | return false; |
| 101 | MemInstr.push_back(I); |
| 102 | } |
| 103 | } |
| 104 | |
| 105 | DEBUG(dbgs() << "Found " << MemInstr.size() |
| 106 | << " Loads and Stores to analyze\n"); |
| 107 | |
| 108 | ValueVector::iterator I, IE, J, JE; |
| 109 | |
| 110 | for (I = MemInstr.begin(), IE = MemInstr.end(); I != IE; ++I) { |
| 111 | for (J = I, JE = MemInstr.end(); J != JE; ++J) { |
| 112 | std::vector<char> Dep; |
| 113 | Instruction *Src = dyn_cast<Instruction>(*I); |
| 114 | Instruction *Des = dyn_cast<Instruction>(*J); |
| 115 | if (Src == Des) |
| 116 | continue; |
| 117 | if (isa<LoadInst>(Src) && isa<LoadInst>(Des)) |
| 118 | continue; |
| 119 | if (auto D = DA->depends(Src, Des, true)) { |
| 120 | DEBUG(dbgs() << "Found Dependency between Src=" << Src << " Des=" << Des |
| 121 | << "\n"); |
| 122 | if (D->isFlow()) { |
| 123 | // TODO: Handle Flow dependence.Check if it is sufficient to populate |
| 124 | // the Dependence Matrix with the direction reversed. |
| 125 | DEBUG(dbgs() << "Flow dependence not handled"); |
| 126 | return false; |
| 127 | } |
| 128 | if (D->isAnti()) { |
| 129 | DEBUG(dbgs() << "Found Anti dependence \n"); |
| 130 | unsigned Levels = D->getLevels(); |
| 131 | char Direction; |
| 132 | for (unsigned II = 1; II <= Levels; ++II) { |
| 133 | const SCEV *Distance = D->getDistance(II); |
| 134 | const SCEVConstant *SCEVConst = |
| 135 | dyn_cast_or_null<SCEVConstant>(Distance); |
| 136 | if (SCEVConst) { |
| 137 | const ConstantInt *CI = SCEVConst->getValue(); |
| 138 | if (CI->isNegative()) |
| 139 | Direction = '<'; |
| 140 | else if (CI->isZero()) |
| 141 | Direction = '='; |
| 142 | else |
| 143 | Direction = '>'; |
| 144 | Dep.push_back(Direction); |
| 145 | } else if (D->isScalar(II)) { |
| 146 | Direction = 'S'; |
| 147 | Dep.push_back(Direction); |
| 148 | } else { |
| 149 | unsigned Dir = D->getDirection(II); |
| 150 | if (Dir == Dependence::DVEntry::LT || |
| 151 | Dir == Dependence::DVEntry::LE) |
| 152 | Direction = '<'; |
| 153 | else if (Dir == Dependence::DVEntry::GT || |
| 154 | Dir == Dependence::DVEntry::GE) |
| 155 | Direction = '>'; |
| 156 | else if (Dir == Dependence::DVEntry::EQ) |
| 157 | Direction = '='; |
| 158 | else |
| 159 | Direction = '*'; |
| 160 | Dep.push_back(Direction); |
| 161 | } |
| 162 | } |
| 163 | while (Dep.size() != Level) { |
| 164 | Dep.push_back('I'); |
| 165 | } |
| 166 | |
| 167 | DepMatrix.push_back(Dep); |
| 168 | if (DepMatrix.size() > MaxMemInstrCount) { |
| 169 | DEBUG(dbgs() << "Cannot handle more than " << MaxMemInstrCount |
| 170 | << " dependencies inside loop\n"); |
| 171 | return false; |
| 172 | } |
| 173 | } |
| 174 | } |
| 175 | } |
| 176 | } |
| 177 | |
| 178 | // We don't have a DepMatrix to check legality return false |
| 179 | if (DepMatrix.size() == 0) |
| 180 | return false; |
| 181 | return true; |
| 182 | } |
| 183 | |
| 184 | // A loop is moved from index 'from' to an index 'to'. Update the Dependence |
| 185 | // matrix by exchanging the two columns. |
| 186 | void interChangeDepedencies(CharMatrix &DepMatrix, unsigned FromIndx, |
| 187 | unsigned ToIndx) { |
| 188 | unsigned numRows = DepMatrix.size(); |
| 189 | for (unsigned i = 0; i < numRows; ++i) { |
| 190 | char TmpVal = DepMatrix[i][ToIndx]; |
| 191 | DepMatrix[i][ToIndx] = DepMatrix[i][FromIndx]; |
| 192 | DepMatrix[i][FromIndx] = TmpVal; |
| 193 | } |
| 194 | } |
| 195 | |
| 196 | // Checks if outermost non '=','S'or'I' dependence in the dependence matrix is |
| 197 | // '>' |
| 198 | bool isOuterMostDepPositive(CharMatrix &DepMatrix, unsigned Row, |
| 199 | unsigned Column) { |
| 200 | for (unsigned i = 0; i <= Column; ++i) { |
| 201 | if (DepMatrix[Row][i] == '<') |
| 202 | return false; |
| 203 | if (DepMatrix[Row][i] == '>') |
| 204 | return true; |
| 205 | } |
| 206 | // All dependencies were '=','S' or 'I' |
| 207 | return false; |
| 208 | } |
| 209 | |
| 210 | // Checks if no dependence exist in the dependency matrix in Row before Column. |
| 211 | bool containsNoDependence(CharMatrix &DepMatrix, unsigned Row, |
| 212 | unsigned Column) { |
| 213 | for (unsigned i = 0; i < Column; ++i) { |
| 214 | if (DepMatrix[Row][i] != '=' || DepMatrix[Row][i] != 'S' || |
| 215 | DepMatrix[Row][i] != 'I') |
| 216 | return false; |
| 217 | } |
| 218 | return true; |
| 219 | } |
| 220 | |
| 221 | bool validDepInterchange(CharMatrix &DepMatrix, unsigned Row, |
| 222 | unsigned OuterLoopId, char InnerDep, char OuterDep) { |
| 223 | |
| 224 | if (isOuterMostDepPositive(DepMatrix, Row, OuterLoopId)) |
| 225 | return false; |
| 226 | |
| 227 | if (InnerDep == OuterDep) |
| 228 | return true; |
| 229 | |
| 230 | // It is legal to interchange if and only if after interchange no row has a |
| 231 | // '>' direction as the leftmost non-'='. |
| 232 | |
| 233 | if (InnerDep == '=' || InnerDep == 'S' || InnerDep == 'I') |
| 234 | return true; |
| 235 | |
| 236 | if (InnerDep == '<') |
| 237 | return true; |
| 238 | |
| 239 | if (InnerDep == '>') { |
| 240 | // If OuterLoopId represents outermost loop then interchanging will make the |
| 241 | // 1st dependency as '>' |
| 242 | if (OuterLoopId == 0) |
| 243 | return false; |
| 244 | |
| 245 | // If all dependencies before OuterloopId are '=','S'or 'I'. Then |
| 246 | // interchanging will result in this row having an outermost non '=' |
| 247 | // dependency of '>' |
| 248 | if (!containsNoDependence(DepMatrix, Row, OuterLoopId)) |
| 249 | return true; |
| 250 | } |
| 251 | |
| 252 | return false; |
| 253 | } |
| 254 | |
| 255 | // Checks if it is legal to interchange 2 loops. |
| 256 | // [Theorm] A permutation of the loops in a perfect nest is legal if and only if |
| 257 | // the direction matrix, after the same permutation is applied to its columns, |
| 258 | // has no ">" direction as the leftmost non-"=" direction in any row. |
| 259 | bool isLegalToInterChangeLoops(CharMatrix &DepMatrix, unsigned InnerLoopId, |
| 260 | unsigned OuterLoopId) { |
| 261 | |
| 262 | unsigned NumRows = DepMatrix.size(); |
| 263 | // For each row check if it is valid to interchange. |
| 264 | for (unsigned Row = 0; Row < NumRows; ++Row) { |
| 265 | char InnerDep = DepMatrix[Row][InnerLoopId]; |
| 266 | char OuterDep = DepMatrix[Row][OuterLoopId]; |
| 267 | if (InnerDep == '*' || OuterDep == '*') |
| 268 | return false; |
| 269 | else if (!validDepInterchange(DepMatrix, Row, OuterLoopId, InnerDep, |
| 270 | OuterDep)) |
| 271 | return false; |
| 272 | } |
| 273 | return true; |
| 274 | } |
| 275 | |
| 276 | static void populateWorklist(Loop &L, SmallVector<LoopVector, 8> &V) { |
| 277 | |
| 278 | DEBUG(dbgs() << "Calling populateWorklist called\n"); |
| 279 | LoopVector LoopList; |
| 280 | Loop *CurrentLoop = &L; |
| 281 | std::vector<Loop *> vec = CurrentLoop->getSubLoopsVector(); |
| 282 | while (vec.size() != 0) { |
| 283 | // The current loop has multiple subloops in it hence it is not tightly |
| 284 | // nested. |
| 285 | // Discard all loops above it added into Worklist. |
| 286 | if (vec.size() != 1) { |
| 287 | LoopList.clear(); |
| 288 | return; |
| 289 | } |
| 290 | LoopList.push_back(CurrentLoop); |
| 291 | CurrentLoop = *(vec.begin()); |
| 292 | vec = CurrentLoop->getSubLoopsVector(); |
| 293 | } |
| 294 | LoopList.push_back(CurrentLoop); |
| 295 | V.push_back(LoopList); |
| 296 | } |
| 297 | |
| 298 | static PHINode *getInductionVariable(Loop *L, ScalarEvolution *SE) { |
| 299 | PHINode *InnerIndexVar = L->getCanonicalInductionVariable(); |
| 300 | if (InnerIndexVar) |
| 301 | return InnerIndexVar; |
| 302 | if (L->getLoopLatch() == nullptr || L->getLoopPredecessor() == nullptr) |
| 303 | return nullptr; |
| 304 | for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { |
| 305 | PHINode *PhiVar = cast<PHINode>(I); |
| 306 | Type *PhiTy = PhiVar->getType(); |
| 307 | if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && |
| 308 | !PhiTy->isPointerTy()) |
| 309 | return nullptr; |
| 310 | const SCEVAddRecExpr *AddRec = |
| 311 | dyn_cast<SCEVAddRecExpr>(SE->getSCEV(PhiVar)); |
| 312 | if (!AddRec || !AddRec->isAffine()) |
| 313 | continue; |
| 314 | const SCEV *Step = AddRec->getStepRecurrence(*SE); |
| 315 | const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); |
| 316 | if (!C) |
| 317 | continue; |
| 318 | // Found the induction variable. |
| 319 | // FIXME: Handle loops with more than one induction variable. Note that, |
| 320 | // currently, legality makes sure we have only one induction variable. |
| 321 | return PhiVar; |
| 322 | } |
| 323 | return nullptr; |
| 324 | } |
| 325 | |
| 326 | /// LoopInterchangeLegality checks if it is legal to interchange the loop. |
| 327 | class LoopInterchangeLegality { |
| 328 | public: |
| 329 | LoopInterchangeLegality(Loop *Outer, Loop *Inner, ScalarEvolution *SE, |
| 330 | LoopInterchange *Pass) |
| 331 | : OuterLoop(Outer), InnerLoop(Inner), SE(SE), CurrentPass(Pass) {} |
| 332 | |
| 333 | /// Check if the loops can be interchanged. |
| 334 | bool canInterchangeLoops(unsigned InnerLoopId, unsigned OuterLoopId, |
| 335 | CharMatrix &DepMatrix); |
| 336 | /// Check if the loop structure is understood. We do not handle triangular |
| 337 | /// loops for now. |
| 338 | bool isLoopStructureUnderstood(PHINode *InnerInductionVar); |
| 339 | |
| 340 | bool currentLimitations(); |
| 341 | |
| 342 | private: |
| 343 | bool tightlyNested(Loop *Outer, Loop *Inner); |
| 344 | |
| 345 | Loop *OuterLoop; |
| 346 | Loop *InnerLoop; |
| 347 | |
| 348 | /// Scev analysis. |
| 349 | ScalarEvolution *SE; |
| 350 | LoopInterchange *CurrentPass; |
| 351 | }; |
| 352 | |
| 353 | /// LoopInterchangeProfitability checks if it is profitable to interchange the |
| 354 | /// loop. |
| 355 | class LoopInterchangeProfitability { |
| 356 | public: |
| 357 | LoopInterchangeProfitability(Loop *Outer, Loop *Inner, ScalarEvolution *SE) |
| 358 | : OuterLoop(Outer), InnerLoop(Inner), SE(SE) {} |
| 359 | |
| 360 | /// Check if the loop interchange is profitable |
| 361 | bool isProfitable(unsigned InnerLoopId, unsigned OuterLoopId, |
| 362 | CharMatrix &DepMatrix); |
| 363 | |
| 364 | private: |
| 365 | int getInstrOrderCost(); |
| 366 | |
| 367 | Loop *OuterLoop; |
| 368 | Loop *InnerLoop; |
| 369 | |
| 370 | /// Scev analysis. |
| 371 | ScalarEvolution *SE; |
| 372 | }; |
| 373 | |
| 374 | /// LoopInterchangeTransform interchanges the loop |
| 375 | class LoopInterchangeTransform { |
| 376 | public: |
| 377 | LoopInterchangeTransform(Loop *Outer, Loop *Inner, ScalarEvolution *SE, |
| 378 | LoopInfo *LI, DominatorTree *DT, |
| 379 | LoopInterchange *Pass, BasicBlock *LoopNestExit) |
| 380 | : OuterLoop(Outer), InnerLoop(Inner), SE(SE), LI(LI), DT(DT), |
| 381 | LoopExit(LoopNestExit) { |
| 382 | initialize(); |
| 383 | } |
| 384 | |
| 385 | /// Interchange OuterLoop and InnerLoop. |
| 386 | bool transform(); |
| 387 | void restructureLoops(Loop *InnerLoop, Loop *OuterLoop); |
| 388 | void removeChildLoop(Loop *OuterLoop, Loop *InnerLoop); |
| 389 | void initialize(); |
| 390 | |
| 391 | private: |
| 392 | void splitInnerLoopLatch(Instruction *); |
| 393 | void splitOuterLoopLatch(); |
| 394 | void splitInnerLoopHeader(); |
| 395 | bool adjustLoopLinks(); |
| 396 | void adjustLoopPreheaders(); |
| 397 | void adjustOuterLoopPreheader(); |
| 398 | void adjustInnerLoopPreheader(); |
| 399 | bool adjustLoopBranches(); |
| 400 | |
| 401 | Loop *OuterLoop; |
| 402 | Loop *InnerLoop; |
| 403 | |
| 404 | /// Scev analysis. |
| 405 | ScalarEvolution *SE; |
| 406 | LoopInfo *LI; |
| 407 | DominatorTree *DT; |
| 408 | BasicBlock *LoopExit; |
| 409 | }; |
| 410 | |
| 411 | // Main LoopInterchange Pass |
| 412 | struct LoopInterchange : public FunctionPass { |
| 413 | static char ID; |
| 414 | ScalarEvolution *SE; |
| 415 | LoopInfo *LI; |
| 416 | DependenceAnalysis *DA; |
| 417 | DominatorTree *DT; |
| 418 | LoopInterchange() |
| 419 | : FunctionPass(ID), SE(nullptr), LI(nullptr), DA(nullptr), DT(nullptr) { |
| 420 | initializeLoopInterchangePass(*PassRegistry::getPassRegistry()); |
| 421 | } |
| 422 | |
| 423 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
| 424 | AU.addRequired<ScalarEvolution>(); |
| 425 | AU.addRequired<AliasAnalysis>(); |
| 426 | AU.addRequired<DominatorTreeWrapperPass>(); |
| 427 | AU.addRequired<LoopInfoWrapperPass>(); |
| 428 | AU.addRequired<DependenceAnalysis>(); |
| 429 | AU.addRequiredID(LoopSimplifyID); |
| 430 | AU.addRequiredID(LCSSAID); |
| 431 | } |
| 432 | |
| 433 | bool runOnFunction(Function &F) override { |
| 434 | SE = &getAnalysis<ScalarEvolution>(); |
| 435 | LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); |
| 436 | DA = &getAnalysis<DependenceAnalysis>(); |
| 437 | auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); |
| 438 | DT = DTWP ? &DTWP->getDomTree() : nullptr; |
| 439 | // Build up a worklist of loop pairs to analyze. |
| 440 | SmallVector<LoopVector, 8> Worklist; |
| 441 | |
| 442 | for (Loop *L : *LI) |
| 443 | populateWorklist(*L, Worklist); |
| 444 | |
| 445 | DEBUG(dbgs() << "Worklist size = " << Worklist.size() << "\n"); |
| 446 | bool Changed = true; |
| 447 | while (!Worklist.empty()) { |
| 448 | LoopVector LoopList = Worklist.pop_back_val(); |
| 449 | Changed = processLoopList(LoopList); |
| 450 | } |
| 451 | return Changed; |
| 452 | } |
| 453 | |
| 454 | bool isComputableLoopNest(LoopVector LoopList) { |
| 455 | for (auto I = LoopList.begin(), E = LoopList.end(); I != E; ++I) { |
| 456 | Loop *L = *I; |
| 457 | const SCEV *ExitCountOuter = SE->getBackedgeTakenCount(L); |
| 458 | if (ExitCountOuter == SE->getCouldNotCompute()) { |
| 459 | DEBUG(dbgs() << "Couldn't compute Backedge count\n"); |
| 460 | return false; |
| 461 | } |
| 462 | if (L->getNumBackEdges() != 1) { |
| 463 | DEBUG(dbgs() << "NumBackEdges is not equal to 1\n"); |
| 464 | return false; |
| 465 | } |
| 466 | if (!L->getExitingBlock()) { |
| 467 | DEBUG(dbgs() << "Loop Doesn't have unique exit block\n"); |
| 468 | return false; |
| 469 | } |
| 470 | } |
| 471 | return true; |
| 472 | } |
| 473 | |
| 474 | unsigned selectLoopForInterchange(LoopVector LoopList) { |
| 475 | // TODO: Add a better heuristic to select the loop to be interchanged based |
| 476 | // on the dependece matrix. Currently we select the innermost loop. |
| 477 | return LoopList.size() - 1; |
| 478 | } |
| 479 | |
| 480 | bool processLoopList(LoopVector LoopList) { |
| 481 | bool Changed = false; |
| 482 | bool containsLCSSAPHI = false; |
| 483 | CharMatrix DependencyMatrix; |
| 484 | if (LoopList.size() < 2) { |
| 485 | DEBUG(dbgs() << "Loop doesn't contain minimum nesting level.\n"); |
| 486 | return false; |
| 487 | } |
| 488 | if (!isComputableLoopNest(LoopList)) { |
| 489 | DEBUG(dbgs() << "Not vaild loop candidate for interchange\n"); |
| 490 | return false; |
| 491 | } |
| 492 | Loop *OuterMostLoop = *(LoopList.begin()); |
| 493 | |
| 494 | DEBUG(dbgs() << "Processing LoopList of size = " << LoopList.size() |
| 495 | << "\n"); |
| 496 | |
| 497 | if (!populateDependencyMatrix(DependencyMatrix, LoopList.size(), |
| 498 | OuterMostLoop, DA)) { |
| 499 | DEBUG(dbgs() << "Populating Dependency matrix failed\n"); |
| 500 | return false; |
| 501 | } |
| 502 | #ifdef DUMP_DEP_MATRICIES |
| 503 | DEBUG(dbgs() << "Dependence before inter change \n"); |
| 504 | printDepMatrix(DependencyMatrix); |
| 505 | #endif |
| 506 | |
| 507 | BasicBlock *OuterMostLoopLatch = OuterMostLoop->getLoopLatch(); |
| 508 | BranchInst *OuterMostLoopLatchBI = |
| 509 | dyn_cast<BranchInst>(OuterMostLoopLatch->getTerminator()); |
| 510 | if (!OuterMostLoopLatchBI) |
| 511 | return false; |
| 512 | |
| 513 | // Since we currently do not handle LCSSA PHI's any failure in loop |
| 514 | // condition will now branch to LoopNestExit. |
| 515 | // TODO: This should be removed once we handle LCSSA PHI nodes. |
| 516 | |
| 517 | // Get the Outermost loop exit. |
| 518 | BasicBlock *LoopNestExit; |
| 519 | if (OuterMostLoopLatchBI->getSuccessor(0) == OuterMostLoop->getHeader()) |
| 520 | LoopNestExit = OuterMostLoopLatchBI->getSuccessor(1); |
| 521 | else |
| 522 | LoopNestExit = OuterMostLoopLatchBI->getSuccessor(0); |
| 523 | |
| 524 | for (auto I = LoopList.begin(), E = LoopList.end(); I != E; ++I) { |
| 525 | Loop *L = *I; |
| 526 | BasicBlock *Latch = L->getLoopLatch(); |
| 527 | BasicBlock *Header = L->getHeader(); |
| 528 | if (Latch && Latch != Header && isa<PHINode>(Latch->begin())) { |
| 529 | containsLCSSAPHI = true; |
| 530 | break; |
| 531 | } |
| 532 | } |
| 533 | |
| 534 | // TODO: Handle lcssa PHI's. Currently LCSSA PHI's are not handled. Handle |
| 535 | // the same by splitting the loop latch and adjusting loop links |
| 536 | // accordingly. |
| 537 | if (containsLCSSAPHI) |
| 538 | return false; |
| 539 | |
| 540 | unsigned SelecLoopId = selectLoopForInterchange(LoopList); |
| 541 | // Move the selected loop outwards to the best posible position. |
| 542 | for (unsigned i = SelecLoopId; i > 0; i--) { |
| 543 | bool Interchanged = |
| 544 | processLoop(LoopList, i, i - 1, LoopNestExit, DependencyMatrix); |
| 545 | if (!Interchanged) |
| 546 | return Changed; |
| 547 | // Loops interchanged reflect the same in LoopList |
| 548 | Loop *OldOuterLoop = LoopList[i - 1]; |
| 549 | LoopList[i - 1] = LoopList[i]; |
| 550 | LoopList[i] = OldOuterLoop; |
| 551 | |
| 552 | // Update the DependencyMatrix |
| 553 | interChangeDepedencies(DependencyMatrix, i, i - 1); |
| 554 | |
| 555 | #ifdef DUMP_DEP_MATRICIES |
| 556 | DEBUG(dbgs() << "Dependence after inter change \n"); |
| 557 | printDepMatrix(DependencyMatrix); |
| 558 | #endif |
| 559 | Changed |= Interchanged; |
| 560 | } |
| 561 | return Changed; |
| 562 | } |
| 563 | |
| 564 | bool processLoop(LoopVector LoopList, unsigned InnerLoopId, |
| 565 | unsigned OuterLoopId, BasicBlock *LoopNestExit, |
| 566 | std::vector<std::vector<char>> &DependencyMatrix) { |
| 567 | |
| 568 | DEBUG(dbgs() << "Processing Innder Loop Id = " << InnerLoopId |
| 569 | << " and OuterLoopId = " << OuterLoopId << "\n"); |
| 570 | Loop *InnerLoop = LoopList[InnerLoopId]; |
| 571 | Loop *OuterLoop = LoopList[OuterLoopId]; |
| 572 | |
| 573 | LoopInterchangeLegality LIL(OuterLoop, InnerLoop, SE, this); |
| 574 | if (!LIL.canInterchangeLoops(InnerLoopId, OuterLoopId, DependencyMatrix)) { |
| 575 | DEBUG(dbgs() << "Not interchanging Loops. Cannot prove legality\n"); |
| 576 | return false; |
| 577 | } |
| 578 | DEBUG(dbgs() << "Loops are legal to interchange\n"); |
| 579 | LoopInterchangeProfitability LIP(OuterLoop, InnerLoop, SE); |
| 580 | if (!LIP.isProfitable(InnerLoopId, OuterLoopId, DependencyMatrix)) { |
| 581 | DEBUG(dbgs() << "Interchanging Loops not profitable\n"); |
| 582 | return false; |
| 583 | } |
| 584 | |
| 585 | LoopInterchangeTransform LIT(OuterLoop, InnerLoop, SE, LI, DT, this, |
| 586 | LoopNestExit); |
| 587 | LIT.transform(); |
| 588 | DEBUG(dbgs() << "Loops interchanged\n"); |
| 589 | return true; |
| 590 | } |
| 591 | }; |
| 592 | |
| 593 | } // end of namespace |
| 594 | |
| 595 | static bool containsUnsafeInstructions(BasicBlock *BB) { |
| 596 | for (auto I = BB->begin(), E = BB->end(); I != E; ++I) { |
| 597 | if (I->mayHaveSideEffects() || I->mayReadFromMemory()) |
| 598 | return true; |
| 599 | } |
| 600 | return false; |
| 601 | } |
| 602 | |
| 603 | bool LoopInterchangeLegality::tightlyNested(Loop *OuterLoop, Loop *InnerLoop) { |
| 604 | BasicBlock *OuterLoopHeader = OuterLoop->getHeader(); |
| 605 | BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); |
| 606 | BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch(); |
| 607 | |
| 608 | DEBUG(dbgs() << "Checking if Loops are Tightly Nested\n"); |
| 609 | |
| 610 | // A perfectly nested loop will not have any branch in between the outer and |
| 611 | // inner block i.e. outer header will branch to either inner preheader and |
| 612 | // outerloop latch. |
| 613 | BranchInst *outerLoopHeaderBI = |
| 614 | dyn_cast<BranchInst>(OuterLoopHeader->getTerminator()); |
| 615 | if (!outerLoopHeaderBI) |
| 616 | return false; |
| 617 | unsigned num = outerLoopHeaderBI->getNumSuccessors(); |
| 618 | for (unsigned i = 0; i < num; i++) { |
| 619 | if (outerLoopHeaderBI->getSuccessor(i) != InnerLoopPreHeader && |
| 620 | outerLoopHeaderBI->getSuccessor(i) != OuterLoopLatch) |
| 621 | return false; |
| 622 | } |
| 623 | |
| 624 | DEBUG(dbgs() << "Checking instructions in Loop header and Loop latch \n"); |
| 625 | // We do not have any basic block in between now make sure the outer header |
| 626 | // and outer loop latch doesnt contain any unsafe instructions. |
| 627 | if (containsUnsafeInstructions(OuterLoopHeader) || |
| 628 | containsUnsafeInstructions(OuterLoopLatch)) |
| 629 | return false; |
| 630 | |
| 631 | DEBUG(dbgs() << "Loops are perfectly nested \n"); |
| 632 | // We have a perfect loop nest. |
| 633 | return true; |
| 634 | } |
| 635 | |
| 636 | static unsigned getPHICount(BasicBlock *BB) { |
| 637 | unsigned PhiCount = 0; |
| 638 | for (auto I = BB->begin(); isa<PHINode>(I); ++I) |
| 639 | PhiCount++; |
| 640 | return PhiCount; |
| 641 | } |
| 642 | |
| 643 | bool LoopInterchangeLegality::isLoopStructureUnderstood( |
| 644 | PHINode *InnerInduction) { |
| 645 | |
| 646 | unsigned Num = InnerInduction->getNumOperands(); |
| 647 | BasicBlock *InnerLoopPreheader = InnerLoop->getLoopPreheader(); |
| 648 | for (unsigned i = 0; i < Num; ++i) { |
| 649 | Value *Val = InnerInduction->getOperand(i); |
| 650 | if (isa<Constant>(Val)) |
| 651 | continue; |
| 652 | Instruction *I = dyn_cast<Instruction>(Val); |
| 653 | if (!I) |
| 654 | return false; |
| 655 | // TODO: Handle triangular loops. |
| 656 | // e.g. for(int i=0;i<N;i++) |
| 657 | // for(int j=i;j<N;j++) |
| 658 | unsigned IncomBlockIndx = PHINode::getIncomingValueNumForOperand(i); |
| 659 | if (InnerInduction->getIncomingBlock(IncomBlockIndx) == |
| 660 | InnerLoopPreheader && |
| 661 | !OuterLoop->isLoopInvariant(I)) { |
| 662 | return false; |
| 663 | } |
| 664 | } |
| 665 | return true; |
| 666 | } |
| 667 | |
| 668 | // This function indicates the current limitations in the transform as a result |
| 669 | // of which we do not proceed. |
| 670 | bool LoopInterchangeLegality::currentLimitations() { |
| 671 | |
| 672 | BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); |
| 673 | BasicBlock *InnerLoopHeader = InnerLoop->getHeader(); |
| 674 | BasicBlock *OuterLoopHeader = OuterLoop->getHeader(); |
| 675 | BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); |
| 676 | BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch(); |
| 677 | |
| 678 | PHINode *InnerInductionVar; |
| 679 | PHINode *OuterInductionVar; |
| 680 | |
| 681 | // We currently handle only 1 induction variable inside the loop. We also do |
| 682 | // not handle reductions as of now. |
| 683 | if (getPHICount(InnerLoopHeader) > 1) |
| 684 | return true; |
| 685 | |
| 686 | if (getPHICount(OuterLoopHeader) > 1) |
| 687 | return true; |
| 688 | |
| 689 | InnerInductionVar = getInductionVariable(InnerLoop, SE); |
| 690 | OuterInductionVar = getInductionVariable(OuterLoop, SE); |
| 691 | |
| 692 | if (!OuterInductionVar || !InnerInductionVar) { |
| 693 | DEBUG(dbgs() << "Induction variable not found\n"); |
| 694 | return true; |
| 695 | } |
| 696 | |
| 697 | // TODO: Triangular loops are not handled for now. |
| 698 | if (!isLoopStructureUnderstood(InnerInductionVar)) { |
| 699 | DEBUG(dbgs() << "Loop structure not understood by pass\n"); |
| 700 | return true; |
| 701 | } |
| 702 | |
| 703 | // TODO: Loops with LCSSA PHI's are currently not handled. |
| 704 | if (isa<PHINode>(OuterLoopLatch->begin())) { |
| 705 | DEBUG(dbgs() << "Found and LCSSA PHI in outer loop latch\n"); |
| 706 | return true; |
| 707 | } |
| 708 | if (InnerLoopLatch != InnerLoopHeader && |
| 709 | isa<PHINode>(InnerLoopLatch->begin())) { |
| 710 | DEBUG(dbgs() << "Found and LCSSA PHI in inner loop latch\n"); |
| 711 | return true; |
| 712 | } |
| 713 | |
| 714 | // TODO: Current limitation: Since we split the inner loop latch at the point |
| 715 | // were induction variable is incremented (induction.next); We cannot have |
| 716 | // more than 1 user of induction.next since it would result in broken code |
| 717 | // after split. |
| 718 | // e.g. |
| 719 | // for(i=0;i<N;i++) { |
| 720 | // for(j = 0;j<M;j++) { |
| 721 | // A[j+1][i+2] = A[j][i]+k; |
| 722 | // } |
| 723 | // } |
| 724 | bool FoundInduction = false; |
| 725 | Instruction *InnerIndexVarInc = nullptr; |
| 726 | if (InnerInductionVar->getIncomingBlock(0) == InnerLoopPreHeader) |
| 727 | InnerIndexVarInc = |
| 728 | dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(1)); |
| 729 | else |
| 730 | InnerIndexVarInc = |
| 731 | dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(0)); |
| 732 | |
| 733 | if (!InnerIndexVarInc) |
| 734 | return true; |
| 735 | |
| 736 | // Since we split the inner loop latch on this induction variable. Make sure |
| 737 | // we do not have any instruction between the induction variable and branch |
| 738 | // instruction. |
| 739 | |
| 740 | for (auto I = InnerLoopLatch->rbegin(), E = InnerLoopLatch->rend(); |
| 741 | I != E && !FoundInduction; ++I) { |
| 742 | if (isa<BranchInst>(*I) || isa<CmpInst>(*I) || isa<TruncInst>(*I)) |
| 743 | continue; |
| 744 | const Instruction &Ins = *I; |
| 745 | // We found an instruction. If this is not induction variable then it is not |
| 746 | // safe to split this loop latch. |
| 747 | if (!Ins.isIdenticalTo(InnerIndexVarInc)) |
| 748 | return true; |
| 749 | else |
| 750 | FoundInduction = true; |
| 751 | } |
| 752 | // The loop latch ended and we didnt find the induction variable return as |
| 753 | // current limitation. |
| 754 | if (!FoundInduction) |
| 755 | return true; |
| 756 | |
| 757 | return false; |
| 758 | } |
| 759 | |
| 760 | bool LoopInterchangeLegality::canInterchangeLoops(unsigned InnerLoopId, |
| 761 | unsigned OuterLoopId, |
| 762 | CharMatrix &DepMatrix) { |
| 763 | |
| 764 | if (!isLegalToInterChangeLoops(DepMatrix, InnerLoopId, OuterLoopId)) { |
| 765 | DEBUG(dbgs() << "Failed interchange InnerLoopId = " << InnerLoopId |
| 766 | << "and OuterLoopId = " << OuterLoopId |
| 767 | << "due to dependence\n"); |
| 768 | return false; |
| 769 | } |
| 770 | |
| 771 | // Create unique Preheaders if we already do not have one. |
| 772 | BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader(); |
| 773 | BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); |
| 774 | |
| 775 | // Create a unique outer preheader - |
| 776 | // 1) If OuterLoop preheader is not present. |
| 777 | // 2) If OuterLoop Preheader is same as OuterLoop Header |
| 778 | // 3) If OuterLoop Preheader is same as Header of the previous loop. |
| 779 | // 4) If OuterLoop Preheader is Entry node. |
| 780 | if (!OuterLoopPreHeader || OuterLoopPreHeader == OuterLoop->getHeader() || |
| 781 | isa<PHINode>(OuterLoopPreHeader->begin()) || |
| 782 | !OuterLoopPreHeader->getUniquePredecessor()) { |
| 783 | OuterLoopPreHeader = InsertPreheaderForLoop(OuterLoop, CurrentPass); |
| 784 | } |
| 785 | |
| 786 | if (!InnerLoopPreHeader || InnerLoopPreHeader == InnerLoop->getHeader() || |
| 787 | InnerLoopPreHeader == OuterLoop->getHeader()) { |
| 788 | InnerLoopPreHeader = InsertPreheaderForLoop(InnerLoop, CurrentPass); |
| 789 | } |
| 790 | |
| 791 | // Check if the loops are tightly nested. |
| 792 | if (!tightlyNested(OuterLoop, InnerLoop)) { |
| 793 | DEBUG(dbgs() << "Loops not tightly nested\n"); |
| 794 | return false; |
| 795 | } |
| 796 | |
| 797 | // TODO: The loops could not be interchanged due to current limitations in the |
| 798 | // transform module. |
| 799 | if (currentLimitations()) { |
| 800 | DEBUG(dbgs() << "Not legal because of current transform limitation\n"); |
| 801 | return false; |
| 802 | } |
| 803 | |
| 804 | return true; |
| 805 | } |
| 806 | |
| 807 | int LoopInterchangeProfitability::getInstrOrderCost() { |
| 808 | unsigned GoodOrder, BadOrder; |
| 809 | BadOrder = GoodOrder = 0; |
| 810 | for (auto BI = InnerLoop->block_begin(), BE = InnerLoop->block_end(); |
| 811 | BI != BE; ++BI) { |
| 812 | for (auto I = (*BI)->begin(), E = (*BI)->end(); I != E; ++I) { |
| 813 | const Instruction &Ins = *I; |
| 814 | if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&Ins)) { |
| 815 | unsigned NumOp = GEP->getNumOperands(); |
| 816 | bool FoundInnerInduction = false; |
| 817 | bool FoundOuterInduction = false; |
| 818 | for (unsigned i = 0; i < NumOp; ++i) { |
| 819 | const SCEV *OperandVal = SE->getSCEV(GEP->getOperand(i)); |
| 820 | const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(OperandVal); |
| 821 | if (!AR) |
| 822 | continue; |
| 823 | |
| 824 | // If we find the inner induction after an outer induction e.g. |
| 825 | // for(int i=0;i<N;i++) |
| 826 | // for(int j=0;j<N;j++) |
| 827 | // A[i][j] = A[i-1][j-1]+k; |
| 828 | // then it is a good order. |
| 829 | if (AR->getLoop() == InnerLoop) { |
| 830 | // We found an InnerLoop induction after OuterLoop induction. It is |
| 831 | // a good order. |
| 832 | FoundInnerInduction = true; |
| 833 | if (FoundOuterInduction) { |
| 834 | GoodOrder++; |
| 835 | break; |
| 836 | } |
| 837 | } |
| 838 | // If we find the outer induction after an inner induction e.g. |
| 839 | // for(int i=0;i<N;i++) |
| 840 | // for(int j=0;j<N;j++) |
| 841 | // A[j][i] = A[j-1][i-1]+k; |
| 842 | // then it is a bad order. |
| 843 | if (AR->getLoop() == OuterLoop) { |
| 844 | // We found an OuterLoop induction after InnerLoop induction. It is |
| 845 | // a bad order. |
| 846 | FoundOuterInduction = true; |
| 847 | if (FoundInnerInduction) { |
| 848 | BadOrder++; |
| 849 | break; |
| 850 | } |
| 851 | } |
| 852 | } |
| 853 | } |
| 854 | } |
| 855 | } |
| 856 | return GoodOrder - BadOrder; |
| 857 | } |
| 858 | |
| 859 | bool isProfitabileForVectorization(unsigned InnerLoopId, unsigned OuterLoopId, |
| 860 | CharMatrix &DepMatrix) { |
| 861 | // TODO: Improve this heuristic to catch more cases. |
| 862 | // If the inner loop is loop independent or doesn't carry any dependency it is |
| 863 | // profitable to move this to outer position. |
| 864 | unsigned Row = DepMatrix.size(); |
| 865 | for (unsigned i = 0; i < Row; ++i) { |
| 866 | if (DepMatrix[i][InnerLoopId] != 'S' && DepMatrix[i][InnerLoopId] != 'I') |
| 867 | return false; |
| 868 | // TODO: We need to improve this heuristic. |
| 869 | if (DepMatrix[i][OuterLoopId] != '=') |
| 870 | return false; |
| 871 | } |
| 872 | // If outer loop has dependence and inner loop is loop independent then it is |
| 873 | // profitable to interchange to enable parallelism. |
| 874 | return true; |
| 875 | } |
| 876 | |
| 877 | bool LoopInterchangeProfitability::isProfitable(unsigned InnerLoopId, |
| 878 | unsigned OuterLoopId, |
| 879 | CharMatrix &DepMatrix) { |
| 880 | |
| 881 | // TODO: Add Better Profitibility checks. |
| 882 | // e.g |
| 883 | // 1) Construct dependency matrix and move the one with no loop carried dep |
| 884 | // inside to enable vectorization. |
| 885 | |
| 886 | // This is rough cost estimation algorithm. It counts the good and bad order |
| 887 | // of induction variables in the instruction and allows reordering if number |
| 888 | // of bad orders is more than good. |
| 889 | int Cost = 0; |
| 890 | Cost += getInstrOrderCost(); |
| 891 | DEBUG(dbgs() << "Cost = " << Cost << "\n"); |
| 892 | if (Cost < 0) |
| 893 | return true; |
| 894 | |
| 895 | // It is not profitable as per current cache profitibility model. But check if |
| 896 | // we can move this loop outside to improve parallelism. |
| 897 | bool ImprovesPar = |
| 898 | isProfitabileForVectorization(InnerLoopId, OuterLoopId, DepMatrix); |
| 899 | return ImprovesPar; |
| 900 | } |
| 901 | |
| 902 | void LoopInterchangeTransform::removeChildLoop(Loop *OuterLoop, |
| 903 | Loop *InnerLoop) { |
Daniel Jasper | 6adbd7a | 2015-03-06 10:39:14 +0000 | [diff] [blame^] | 904 | for (Loop::iterator I = OuterLoop->begin(), E = OuterLoop->end(); I != E; |
| 905 | ++I) { |
Karthik Bhat | 88db86d | 2015-03-06 10:11:25 +0000 | [diff] [blame] | 906 | if (*I == InnerLoop) { |
| 907 | OuterLoop->removeChildLoop(I); |
| 908 | return; |
| 909 | } |
| 910 | } |
Daniel Jasper | 6adbd7a | 2015-03-06 10:39:14 +0000 | [diff] [blame^] | 911 | assert(false && "Couldn't find loop"); |
Karthik Bhat | 88db86d | 2015-03-06 10:11:25 +0000 | [diff] [blame] | 912 | } |
Daniel Jasper | 6adbd7a | 2015-03-06 10:39:14 +0000 | [diff] [blame^] | 913 | |
Karthik Bhat | 88db86d | 2015-03-06 10:11:25 +0000 | [diff] [blame] | 914 | void LoopInterchangeTransform::restructureLoops(Loop *InnerLoop, |
| 915 | Loop *OuterLoop) { |
| 916 | Loop *OuterLoopParent = OuterLoop->getParentLoop(); |
| 917 | if (OuterLoopParent) { |
| 918 | // Remove the loop from its parent loop. |
| 919 | removeChildLoop(OuterLoopParent, OuterLoop); |
| 920 | removeChildLoop(OuterLoop, InnerLoop); |
| 921 | OuterLoopParent->addChildLoop(InnerLoop); |
| 922 | } else { |
| 923 | removeChildLoop(OuterLoop, InnerLoop); |
| 924 | LI->changeTopLevelLoop(OuterLoop, InnerLoop); |
| 925 | } |
| 926 | |
| 927 | for (Loop::iterator I = InnerLoop->begin(), E = InnerLoop->end(); I != E; ++I) |
| 928 | OuterLoop->addChildLoop(InnerLoop->removeChildLoop(I)); |
| 929 | |
| 930 | InnerLoop->addChildLoop(OuterLoop); |
| 931 | } |
| 932 | |
| 933 | bool LoopInterchangeTransform::transform() { |
| 934 | |
| 935 | DEBUG(dbgs() << "transform\n"); |
| 936 | bool Transformed = false; |
| 937 | Instruction *InnerIndexVar; |
| 938 | |
| 939 | if (InnerLoop->getSubLoops().size() == 0) { |
| 940 | BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); |
| 941 | DEBUG(dbgs() << "Calling Split Inner Loop\n"); |
| 942 | PHINode *InductionPHI = getInductionVariable(InnerLoop, SE); |
| 943 | if (!InductionPHI) { |
| 944 | DEBUG(dbgs() << "Failed to find the point to split loop latch \n"); |
| 945 | return false; |
| 946 | } |
| 947 | |
| 948 | if (InductionPHI->getIncomingBlock(0) == InnerLoopPreHeader) |
| 949 | InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(1)); |
| 950 | else |
| 951 | InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(0)); |
| 952 | |
| 953 | // |
| 954 | // Split at the place were the induction variable is |
| 955 | // incremented/decremented. |
| 956 | // TODO: This splitting logic may not work always. Fix this. |
| 957 | splitInnerLoopLatch(InnerIndexVar); |
| 958 | DEBUG(dbgs() << "splitInnerLoopLatch Done\n"); |
| 959 | |
| 960 | // Splits the inner loops phi nodes out into a seperate basic block. |
| 961 | splitInnerLoopHeader(); |
| 962 | DEBUG(dbgs() << "splitInnerLoopHeader Done\n"); |
| 963 | } |
| 964 | |
| 965 | Transformed |= adjustLoopLinks(); |
| 966 | if (!Transformed) { |
| 967 | DEBUG(dbgs() << "adjustLoopLinks Failed\n"); |
| 968 | return false; |
| 969 | } |
| 970 | |
| 971 | restructureLoops(InnerLoop, OuterLoop); |
| 972 | return true; |
| 973 | } |
| 974 | |
| 975 | void LoopInterchangeTransform::initialize() {} |
| 976 | |
| 977 | void LoopInterchangeTransform::splitInnerLoopLatch(Instruction *inc) { |
| 978 | |
| 979 | BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); |
| 980 | BasicBlock::iterator I = InnerLoopLatch->begin(); |
| 981 | BasicBlock::iterator E = InnerLoopLatch->end(); |
| 982 | for (; I != E; ++I) { |
| 983 | if (inc == I) |
| 984 | break; |
| 985 | } |
| 986 | |
| 987 | BasicBlock *InnerLoopLatchPred = InnerLoopLatch; |
| 988 | InnerLoopLatch = SplitBlock(InnerLoopLatchPred, I, DT, LI); |
| 989 | } |
| 990 | |
| 991 | void LoopInterchangeTransform::splitOuterLoopLatch() { |
| 992 | BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch(); |
| 993 | BasicBlock *OuterLatchLcssaPhiBlock = OuterLoopLatch; |
| 994 | OuterLoopLatch = SplitBlock(OuterLatchLcssaPhiBlock, |
| 995 | OuterLoopLatch->getFirstNonPHI(), DT, LI); |
| 996 | } |
| 997 | |
| 998 | void LoopInterchangeTransform::splitInnerLoopHeader() { |
| 999 | |
| 1000 | // Split the inner loop header out. |
| 1001 | BasicBlock *InnerLoopHeader = InnerLoop->getHeader(); |
| 1002 | SplitBlock(InnerLoopHeader, InnerLoopHeader->getFirstNonPHI(), DT, LI); |
| 1003 | |
| 1004 | DEBUG(dbgs() << "Output of splitInnerLoopHeader InnerLoopHeaderSucc & " |
| 1005 | "InnerLoopHeader \n"); |
| 1006 | } |
| 1007 | |
| 1008 | void LoopInterchangeTransform::adjustOuterLoopPreheader() { |
| 1009 | BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader(); |
| 1010 | SmallVector<Instruction *, 8> Inst; |
| 1011 | for (auto I = OuterLoopPreHeader->begin(), E = OuterLoopPreHeader->end(); |
| 1012 | I != E; ++I) { |
| 1013 | if (isa<BranchInst>(*I)) |
| 1014 | break; |
| 1015 | Inst.push_back(I); |
| 1016 | } |
| 1017 | |
| 1018 | BasicBlock *InnerPreHeader = InnerLoop->getLoopPreheader(); |
| 1019 | for (auto I = Inst.begin(), E = Inst.end(); I != E; ++I) { |
| 1020 | Instruction *Ins = cast<Instruction>(*I); |
| 1021 | Ins->moveBefore(InnerPreHeader->getTerminator()); |
| 1022 | } |
| 1023 | } |
| 1024 | |
| 1025 | void LoopInterchangeTransform::adjustInnerLoopPreheader() { |
| 1026 | |
| 1027 | BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); |
| 1028 | SmallVector<Instruction *, 8> Inst; |
| 1029 | for (auto I = InnerLoopPreHeader->begin(), E = InnerLoopPreHeader->end(); |
| 1030 | I != E; ++I) { |
| 1031 | if (isa<BranchInst>(*I)) |
| 1032 | break; |
| 1033 | Inst.push_back(I); |
| 1034 | } |
| 1035 | BasicBlock *OuterHeader = OuterLoop->getHeader(); |
| 1036 | for (auto I = Inst.begin(), E = Inst.end(); I != E; ++I) { |
| 1037 | Instruction *Ins = cast<Instruction>(*I); |
| 1038 | Ins->moveBefore(OuterHeader->getTerminator()); |
| 1039 | } |
| 1040 | } |
| 1041 | |
| 1042 | bool LoopInterchangeTransform::adjustLoopBranches() { |
| 1043 | |
| 1044 | DEBUG(dbgs() << "adjustLoopBranches called\n"); |
| 1045 | // Adjust the loop preheader |
| 1046 | BasicBlock *InnerLoopHeader = InnerLoop->getHeader(); |
| 1047 | BasicBlock *OuterLoopHeader = OuterLoop->getHeader(); |
| 1048 | BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); |
| 1049 | BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch(); |
| 1050 | BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader(); |
| 1051 | BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); |
| 1052 | BasicBlock *OuterLoopPredecessor = OuterLoopPreHeader->getUniquePredecessor(); |
| 1053 | BasicBlock *InnerLoopLatchPredecessor = |
| 1054 | InnerLoopLatch->getUniquePredecessor(); |
| 1055 | BasicBlock *InnerLoopLatchSuccessor; |
| 1056 | BasicBlock *OuterLoopLatchSuccessor; |
| 1057 | |
| 1058 | BranchInst *OuterLoopLatchBI = |
| 1059 | dyn_cast<BranchInst>(OuterLoopLatch->getTerminator()); |
| 1060 | BranchInst *InnerLoopLatchBI = |
| 1061 | dyn_cast<BranchInst>(InnerLoopLatch->getTerminator()); |
| 1062 | BranchInst *OuterLoopHeaderBI = |
| 1063 | dyn_cast<BranchInst>(OuterLoopHeader->getTerminator()); |
| 1064 | BranchInst *InnerLoopHeaderBI = |
| 1065 | dyn_cast<BranchInst>(InnerLoopHeader->getTerminator()); |
| 1066 | |
| 1067 | if (!OuterLoopPredecessor || !InnerLoopLatchPredecessor || |
| 1068 | !OuterLoopLatchBI || !InnerLoopLatchBI || !OuterLoopHeaderBI || |
| 1069 | !InnerLoopHeaderBI) |
| 1070 | return false; |
| 1071 | |
| 1072 | BranchInst *InnerLoopLatchPredecessorBI = |
| 1073 | dyn_cast<BranchInst>(InnerLoopLatchPredecessor->getTerminator()); |
| 1074 | BranchInst *OuterLoopPredecessorBI = |
| 1075 | dyn_cast<BranchInst>(OuterLoopPredecessor->getTerminator()); |
| 1076 | |
| 1077 | if (!OuterLoopPredecessorBI || !InnerLoopLatchPredecessorBI) |
| 1078 | return false; |
| 1079 | BasicBlock *InnerLoopHeaderSucessor = InnerLoopHeader->getUniqueSuccessor(); |
| 1080 | if (!InnerLoopHeaderSucessor) |
| 1081 | return false; |
| 1082 | |
| 1083 | // Adjust Loop Preheader and headers |
| 1084 | |
| 1085 | unsigned NumSucc = OuterLoopPredecessorBI->getNumSuccessors(); |
| 1086 | for (unsigned i = 0; i < NumSucc; ++i) { |
| 1087 | if (OuterLoopPredecessorBI->getSuccessor(i) == OuterLoopPreHeader) |
| 1088 | OuterLoopPredecessorBI->setSuccessor(i, InnerLoopPreHeader); |
| 1089 | } |
| 1090 | |
| 1091 | NumSucc = OuterLoopHeaderBI->getNumSuccessors(); |
| 1092 | for (unsigned i = 0; i < NumSucc; ++i) { |
| 1093 | if (OuterLoopHeaderBI->getSuccessor(i) == OuterLoopLatch) |
| 1094 | OuterLoopHeaderBI->setSuccessor(i, LoopExit); |
| 1095 | else if (OuterLoopHeaderBI->getSuccessor(i) == InnerLoopPreHeader) |
| 1096 | OuterLoopHeaderBI->setSuccessor(i, InnerLoopHeaderSucessor); |
| 1097 | } |
| 1098 | |
| 1099 | BranchInst::Create(OuterLoopPreHeader, InnerLoopHeaderBI); |
| 1100 | InnerLoopHeaderBI->eraseFromParent(); |
| 1101 | |
| 1102 | // -------------Adjust loop latches----------- |
| 1103 | if (InnerLoopLatchBI->getSuccessor(0) == InnerLoopHeader) |
| 1104 | InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(1); |
| 1105 | else |
| 1106 | InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(0); |
| 1107 | |
| 1108 | NumSucc = InnerLoopLatchPredecessorBI->getNumSuccessors(); |
| 1109 | for (unsigned i = 0; i < NumSucc; ++i) { |
| 1110 | if (InnerLoopLatchPredecessorBI->getSuccessor(i) == InnerLoopLatch) |
| 1111 | InnerLoopLatchPredecessorBI->setSuccessor(i, InnerLoopLatchSuccessor); |
| 1112 | } |
| 1113 | |
| 1114 | if (OuterLoopLatchBI->getSuccessor(0) == OuterLoopHeader) |
| 1115 | OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(1); |
| 1116 | else |
| 1117 | OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(0); |
| 1118 | |
| 1119 | if (InnerLoopLatchBI->getSuccessor(1) == InnerLoopLatchSuccessor) |
| 1120 | InnerLoopLatchBI->setSuccessor(1, OuterLoopLatchSuccessor); |
| 1121 | else |
| 1122 | InnerLoopLatchBI->setSuccessor(0, OuterLoopLatchSuccessor); |
| 1123 | |
| 1124 | if (OuterLoopLatchBI->getSuccessor(0) == OuterLoopLatchSuccessor) { |
| 1125 | OuterLoopLatchBI->setSuccessor(0, InnerLoopLatch); |
| 1126 | } else { |
| 1127 | OuterLoopLatchBI->setSuccessor(1, InnerLoopLatch); |
| 1128 | } |
| 1129 | |
| 1130 | return true; |
| 1131 | } |
| 1132 | void LoopInterchangeTransform::adjustLoopPreheaders() { |
| 1133 | |
| 1134 | // We have interchanged the preheaders so we need to interchange the data in |
| 1135 | // the preheader as well. |
| 1136 | // This is because the content of inner preheader was previously executed |
| 1137 | // inside the outer loop. |
| 1138 | BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader(); |
| 1139 | BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); |
| 1140 | BasicBlock *OuterLoopHeader = OuterLoop->getHeader(); |
| 1141 | BranchInst *InnerTermBI = |
| 1142 | cast<BranchInst>(InnerLoopPreHeader->getTerminator()); |
| 1143 | |
| 1144 | SmallVector<Value *, 16> OuterPreheaderInstr; |
| 1145 | SmallVector<Value *, 16> InnerPreheaderInstr; |
| 1146 | |
| 1147 | for (auto I = OuterLoopPreHeader->begin(); !isa<BranchInst>(I); ++I) |
| 1148 | OuterPreheaderInstr.push_back(I); |
| 1149 | |
| 1150 | for (auto I = InnerLoopPreHeader->begin(); !isa<BranchInst>(I); ++I) |
| 1151 | InnerPreheaderInstr.push_back(I); |
| 1152 | |
| 1153 | BasicBlock *HeaderSplit = |
| 1154 | SplitBlock(OuterLoopHeader, OuterLoopHeader->getTerminator(), DT, LI); |
| 1155 | Instruction *InsPoint = HeaderSplit->getFirstNonPHI(); |
| 1156 | // These instructions should now be executed inside the loop. |
| 1157 | // Move instruction into a new block after outer header. |
| 1158 | for (auto I = InnerPreheaderInstr.begin(), E = InnerPreheaderInstr.end(); |
| 1159 | I != E; ++I) { |
| 1160 | Instruction *Ins = cast<Instruction>(*I); |
| 1161 | Ins->moveBefore(InsPoint); |
| 1162 | } |
| 1163 | // These instructions were not executed previously in the loop so move them to |
| 1164 | // the older inner loop preheader. |
| 1165 | for (auto I = OuterPreheaderInstr.begin(), E = OuterPreheaderInstr.end(); |
| 1166 | I != E; ++I) { |
| 1167 | Instruction *Ins = cast<Instruction>(*I); |
| 1168 | Ins->moveBefore(InnerTermBI); |
| 1169 | } |
| 1170 | } |
| 1171 | |
| 1172 | bool LoopInterchangeTransform::adjustLoopLinks() { |
| 1173 | |
| 1174 | // Adjust all branches in the inner and outer loop. |
| 1175 | bool Changed = adjustLoopBranches(); |
| 1176 | if (Changed) |
| 1177 | adjustLoopPreheaders(); |
| 1178 | return Changed; |
| 1179 | } |
| 1180 | |
| 1181 | char LoopInterchange::ID = 0; |
| 1182 | INITIALIZE_PASS_BEGIN(LoopInterchange, "loop-interchange", |
| 1183 | "Interchanges loops for cache reuse", false, false) |
| 1184 | INITIALIZE_AG_DEPENDENCY(AliasAnalysis) |
| 1185 | INITIALIZE_PASS_DEPENDENCY(DependenceAnalysis) |
| 1186 | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
| 1187 | INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) |
| 1188 | INITIALIZE_PASS_DEPENDENCY(LoopSimplify) |
| 1189 | INITIALIZE_PASS_DEPENDENCY(LCSSA) |
| 1190 | INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) |
| 1191 | |
| 1192 | INITIALIZE_PASS_END(LoopInterchange, "loop-interchange", |
| 1193 | "Interchanges loops for cache reuse", false, false) |
| 1194 | |
| 1195 | Pass *llvm::createLoopInterchangePass() { return new LoopInterchange(); } |