blob: 50c3d9683a66d98a658a2f1d741ca6695c1f9202 [file] [log] [blame]
Nemanja Ivanovic6f590bf2017-12-13 14:47:35 +00001//===---- PPCReduceCRLogicals.cpp - Reduce CR Bit Logical operations ------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===---------------------------------------------------------------------===//
9//
10// This pass aims to reduce the number of logical operations on bits in the CR
11// register. These instructions have a fairly high latency and only a single
12// pipeline at their disposal in modern PPC cores. Furthermore, they have a
13// tendency to occur in fairly small blocks where there's little opportunity
14// to hide the latency between the CR logical operation and its user.
15//
16//===---------------------------------------------------------------------===//
17
18#include "PPCInstrInfo.h"
19#include "PPC.h"
20#include "PPCTargetMachine.h"
21#include "llvm/CodeGen/MachineFunctionPass.h"
22#include "llvm/CodeGen/MachineDominators.h"
23#include "llvm/Support/Debug.h"
24#include "llvm/ADT/Statistic.h"
25
26using namespace llvm;
27
28#define DEBUG_TYPE "ppc-reduce-cr-ops"
29#include "PPCMachineBasicBlockUtils.h"
30
31STATISTIC(NumContainedSingleUseBinOps,
32 "Number of single-use binary CR logical ops contained in a block");
33STATISTIC(NumToSplitBlocks,
34 "Number of binary CR logical ops that can be used to split blocks");
35STATISTIC(TotalCRLogicals, "Number of CR logical ops.");
36STATISTIC(TotalNullaryCRLogicals,
37 "Number of nullary CR logical ops (CRSET/CRUNSET).");
38STATISTIC(TotalUnaryCRLogicals, "Number of unary CR logical ops.");
39STATISTIC(TotalBinaryCRLogicals, "Number of CR logical ops.");
40STATISTIC(NumBlocksSplitOnBinaryCROp,
41 "Number of blocks split on CR binary logical ops.");
42STATISTIC(NumNotSplitIdenticalOperands,
43 "Number of blocks not split due to operands being identical.");
44STATISTIC(NumNotSplitChainCopies,
45 "Number of blocks not split due to operands being chained copies.");
46STATISTIC(NumNotSplitWrongOpcode,
47 "Number of blocks not split due to the wrong opcode.");
48
49namespace llvm {
50 void initializePPCReduceCRLogicalsPass(PassRegistry&);
51}
52
53namespace {
54
55static bool isBinary(MachineInstr &MI) {
56 return MI.getNumOperands() == 3;
57}
58
59static bool isNullary(MachineInstr &MI) {
60 return MI.getNumOperands() == 1;
61}
62
63/// Given a CR logical operation \p CROp, branch opcode \p BROp as well as
64/// a flag to indicate if the first operand of \p CROp is used as the
65/// SplitBefore operand, determines whether either of the branches are to be
66/// inverted as well as whether the new target should be the original
67/// fall-through block.
68static void
69computeBranchTargetAndInversion(unsigned CROp, unsigned BROp, bool UsingDef1,
70 bool &InvertNewBranch, bool &InvertOrigBranch,
71 bool &TargetIsFallThrough) {
72 // The conditions under which each of the output operands should be [un]set
73 // can certainly be written much more concisely with just 3 if statements or
74 // ternary expressions. However, this provides a much clearer overview to the
75 // reader as to what is set for each <CROp, BROp, OpUsed> combination.
76 if (BROp == PPC::BC || BROp == PPC::BCLR) {
77 // Regular branches.
78 switch (CROp) {
79 default:
80 llvm_unreachable("Don't know how to handle this CR logical.");
81 case PPC::CROR:
82 InvertNewBranch = false;
83 InvertOrigBranch = false;
84 TargetIsFallThrough = false;
85 return;
86 case PPC::CRAND:
87 InvertNewBranch = true;
88 InvertOrigBranch = false;
89 TargetIsFallThrough = true;
90 return;
91 case PPC::CRNAND:
92 InvertNewBranch = true;
93 InvertOrigBranch = true;
94 TargetIsFallThrough = false;
95 return;
96 case PPC::CRNOR:
97 InvertNewBranch = false;
98 InvertOrigBranch = true;
99 TargetIsFallThrough = true;
100 return;
101 case PPC::CRORC:
102 InvertNewBranch = UsingDef1;
103 InvertOrigBranch = !UsingDef1;
104 TargetIsFallThrough = false;
105 return;
106 case PPC::CRANDC:
107 InvertNewBranch = !UsingDef1;
108 InvertOrigBranch = !UsingDef1;
109 TargetIsFallThrough = true;
110 return;
111 }
112 } else if (BROp == PPC::BCn || BROp == PPC::BCLRn) {
113 // Negated branches.
114 switch (CROp) {
115 default:
116 llvm_unreachable("Don't know how to handle this CR logical.");
117 case PPC::CROR:
118 InvertNewBranch = true;
119 InvertOrigBranch = false;
120 TargetIsFallThrough = true;
121 return;
122 case PPC::CRAND:
123 InvertNewBranch = false;
124 InvertOrigBranch = false;
125 TargetIsFallThrough = false;
126 return;
127 case PPC::CRNAND:
128 InvertNewBranch = false;
129 InvertOrigBranch = true;
130 TargetIsFallThrough = true;
131 return;
132 case PPC::CRNOR:
133 InvertNewBranch = true;
134 InvertOrigBranch = true;
135 TargetIsFallThrough = false;
136 return;
137 case PPC::CRORC:
138 InvertNewBranch = !UsingDef1;
139 InvertOrigBranch = !UsingDef1;
140 TargetIsFallThrough = true;
141 return;
142 case PPC::CRANDC:
143 InvertNewBranch = UsingDef1;
144 InvertOrigBranch = !UsingDef1;
145 TargetIsFallThrough = false;
146 return;
147 }
148 } else
149 llvm_unreachable("Don't know how to handle this branch.");
150}
151
152class PPCReduceCRLogicals : public MachineFunctionPass {
153
154public:
155 static char ID;
156 struct CRLogicalOpInfo {
157 MachineInstr *MI;
158 // FIXME: If chains of copies are to be handled, this should be a vector.
159 std::pair<MachineInstr*, MachineInstr*> CopyDefs;
160 std::pair<MachineInstr*, MachineInstr*> TrueDefs;
161 unsigned IsBinary : 1;
162 unsigned IsNullary : 1;
163 unsigned ContainedInBlock : 1;
164 unsigned FeedsISEL : 1;
165 unsigned FeedsBR : 1;
166 unsigned FeedsLogical : 1;
167 unsigned SingleUse : 1;
168 unsigned DefsSingleUse : 1;
169 unsigned SubregDef1;
170 unsigned SubregDef2;
171 CRLogicalOpInfo() : MI(nullptr), IsBinary(0), IsNullary(0),
172 ContainedInBlock(0), FeedsISEL(0), FeedsBR(0),
173 FeedsLogical(0), SingleUse(0), DefsSingleUse(1),
174 SubregDef1(0), SubregDef2(0) { }
175 void dump();
176 };
177
178private:
179 const PPCInstrInfo *TII;
180 MachineFunction *MF;
181 MachineRegisterInfo *MRI;
182 const MachineBranchProbabilityInfo *MBPI;
183
184 // A vector to contain all the CR logical operations
185 std::vector<CRLogicalOpInfo> AllCRLogicalOps;
186 void initialize(MachineFunction &MFParm);
187 void collectCRLogicals();
188 bool handleCROp(CRLogicalOpInfo &CRI);
189 bool splitBlockOnBinaryCROp(CRLogicalOpInfo &CRI);
190 static bool isCRLogical(MachineInstr &MI) {
191 unsigned Opc = MI.getOpcode();
192 return Opc == PPC::CRAND || Opc == PPC::CRNAND || Opc == PPC::CROR ||
193 Opc == PPC::CRXOR || Opc == PPC::CRNOR || Opc == PPC::CREQV ||
194 Opc == PPC::CRANDC || Opc == PPC::CRORC || Opc == PPC::CRSET ||
195 Opc == PPC::CRUNSET || Opc == PPC::CR6SET || Opc == PPC::CR6UNSET;
196 }
197 bool simplifyCode() {
198 bool Changed = false;
199 // Not using a range-based for loop here as the vector may grow while being
200 // operated on.
201 for (unsigned i = 0; i < AllCRLogicalOps.size(); i++)
202 Changed |= handleCROp(AllCRLogicalOps[i]);
203 return Changed;
204 }
205
206public:
207 PPCReduceCRLogicals() : MachineFunctionPass(ID) {
208 initializePPCReduceCRLogicalsPass(*PassRegistry::getPassRegistry());
209 }
210
211 MachineInstr *lookThroughCRCopy(unsigned Reg, unsigned &Subreg,
212 MachineInstr *&CpDef);
213 bool runOnMachineFunction(MachineFunction &MF) override {
214 if (skipFunction(*MF.getFunction()))
215 return false;
216
217 // If the subtarget doesn't use CR bits, there's nothing to do.
218 const PPCSubtarget &STI = MF.getSubtarget<PPCSubtarget>();
219 if (!STI.useCRBits())
220 return false;
221
222 initialize(MF);
223 collectCRLogicals();
224 return simplifyCode();
225 }
226 CRLogicalOpInfo createCRLogicalOpInfo(MachineInstr &MI);
227 void getAnalysisUsage(AnalysisUsage &AU) const override {
228 AU.addRequired<MachineBranchProbabilityInfo>();
229 AU.addRequired<MachineDominatorTree>();
230 MachineFunctionPass::getAnalysisUsage(AU);
231 }
232};
233
234void PPCReduceCRLogicals::CRLogicalOpInfo::dump() {
235 dbgs() << "CRLogicalOpMI: ";
236 MI->dump();
237 dbgs() << "IsBinary: " << IsBinary << ", FeedsISEL: " << FeedsISEL;
238 dbgs() << ", FeedsBR: " << FeedsBR << ", FeedsLogical: ";
239 dbgs() << FeedsLogical << ", SingleUse: " << SingleUse;
240 dbgs() << ", DefsSingleUse: " << DefsSingleUse;
241 dbgs() << ", SubregDef1: " << SubregDef1 << ", SubregDef2: ";
242 dbgs() << SubregDef2 << ", ContainedInBlock: " << ContainedInBlock;
243 if (!IsNullary) {
244 dbgs() << "\nDefs:\n";
245 TrueDefs.first->dump();
246 }
247 if (IsBinary)
248 TrueDefs.second->dump();
249 dbgs() << "\n";
250 if (CopyDefs.first) {
251 dbgs() << "CopyDef1: ";
252 CopyDefs.first->dump();
253 }
254 if (CopyDefs.second) {
255 dbgs() << "CopyDef2: ";
256 CopyDefs.second->dump();
257 }
258}
259
260PPCReduceCRLogicals::CRLogicalOpInfo
261PPCReduceCRLogicals::createCRLogicalOpInfo(MachineInstr &MIParam) {
262 CRLogicalOpInfo Ret;
263 Ret.MI = &MIParam;
264 // Get the defs
265 if (isNullary(MIParam)) {
266 Ret.IsNullary = 1;
267 Ret.TrueDefs = std::make_pair(nullptr, nullptr);
268 Ret.CopyDefs = std::make_pair(nullptr, nullptr);
269 } else {
270 MachineInstr *Def1 = lookThroughCRCopy(MIParam.getOperand(1).getReg(),
271 Ret.SubregDef1, Ret.CopyDefs.first);
272 Ret.DefsSingleUse &=
273 MRI->hasOneNonDBGUse(Def1->getOperand(0).getReg());
274 Ret.DefsSingleUse &=
275 MRI->hasOneNonDBGUse(Ret.CopyDefs.first->getOperand(0).getReg());
276 assert(Def1 && "Must be able to find a definition of operand 1.");
277 if (isBinary(MIParam)) {
278 Ret.IsBinary = 1;
279 MachineInstr *Def2 = lookThroughCRCopy(MIParam.getOperand(2).getReg(),
280 Ret.SubregDef2,
281 Ret.CopyDefs.second);
282 Ret.DefsSingleUse &=
283 MRI->hasOneNonDBGUse(Def2->getOperand(0).getReg());
284 Ret.DefsSingleUse &=
285 MRI->hasOneNonDBGUse(Ret.CopyDefs.second->getOperand(0).getReg());
286 assert(Def2 && "Must be able to find a definition of operand 2.");
287 Ret.TrueDefs = std::make_pair(Def1, Def2);
288 } else {
289 Ret.TrueDefs = std::make_pair(Def1, nullptr);
290 Ret.CopyDefs.second = nullptr;
291 }
292 }
293
294 Ret.ContainedInBlock = 1;
295 // Get the uses
296 for (MachineInstr &UseMI :
297 MRI->use_nodbg_instructions(MIParam.getOperand(0).getReg())) {
298 unsigned Opc = UseMI.getOpcode();
299 if (Opc == PPC::ISEL || Opc == PPC::ISEL8)
300 Ret.FeedsISEL = 1;
301 if (Opc == PPC::BC || Opc == PPC::BCn || Opc == PPC::BCLR ||
302 Opc == PPC::BCLRn)
303 Ret.FeedsBR = 1;
304 Ret.FeedsLogical = isCRLogical(UseMI);
305 if (UseMI.getParent() != MIParam.getParent())
306 Ret.ContainedInBlock = 0;
307 }
308 Ret.SingleUse = MRI->hasOneNonDBGUse(MIParam.getOperand(0).getReg()) ? 1 : 0;
309
310 // We now know whether all the uses of the CR logical are in the same block.
311 if (!Ret.IsNullary) {
312 Ret.ContainedInBlock &=
313 (MIParam.getParent() == Ret.TrueDefs.first->getParent());
314 if (Ret.IsBinary)
315 Ret.ContainedInBlock &=
316 (MIParam.getParent() == Ret.TrueDefs.second->getParent());
317 }
318 DEBUG(Ret.dump());
319 if (Ret.IsBinary && Ret.ContainedInBlock && Ret.SingleUse) {
320 NumContainedSingleUseBinOps++;
321 if (Ret.FeedsBR && Ret.DefsSingleUse)
322 NumToSplitBlocks++;
323 }
324 return Ret;
325}
326
327/// Looks trhough a COPY instruction to the actual definition of the CR-bit
328/// register and returns the instruction that defines it.
329/// FIXME: This currently handles what is by-far the most common case:
330/// an instruction that defines a CR field followed by a single copy of a bit
331/// from that field into a virtual register. If chains of copies need to be
332/// handled, this should have a loop until a non-copy instruction is found.
333MachineInstr *PPCReduceCRLogicals::lookThroughCRCopy(unsigned Reg,
334 unsigned &Subreg,
335 MachineInstr *&CpDef) {
336 Subreg = -1;
337 if (!TargetRegisterInfo::isVirtualRegister(Reg))
338 return nullptr;
339 MachineInstr *Copy = MRI->getVRegDef(Reg);
340 CpDef = Copy;
341 if (!Copy->isCopy())
342 return Copy;
343 unsigned CopySrc = Copy->getOperand(1).getReg();
344 Subreg = Copy->getOperand(1).getSubReg();
345 if (!TargetRegisterInfo::isVirtualRegister(CopySrc)) {
346 const TargetRegisterInfo *TRI = &TII->getRegisterInfo();
347 // Set the Subreg
348 if (CopySrc == PPC::CR0EQ || CopySrc == PPC::CR6EQ)
349 Subreg = PPC::sub_eq;
350 if (CopySrc == PPC::CR0LT || CopySrc == PPC::CR6LT)
351 Subreg = PPC::sub_lt;
352 if (CopySrc == PPC::CR0GT || CopySrc == PPC::CR6GT)
353 Subreg = PPC::sub_gt;
354 if (CopySrc == PPC::CR0UN || CopySrc == PPC::CR6UN)
355 Subreg = PPC::sub_un;
356 // Loop backwards and return the first MI that modifies the physical CR Reg.
357 MachineBasicBlock::iterator Me = Copy, B = Copy->getParent()->begin();
358 while (Me != B)
359 if ((--Me)->modifiesRegister(CopySrc, TRI))
360 return &*Me;
361 return nullptr;
362 }
363 return MRI->getVRegDef(CopySrc);
364}
365
366void PPCReduceCRLogicals::initialize(MachineFunction &MFParam) {
367 MF = &MFParam;
368 MRI = &MF->getRegInfo();
369 TII = MF->getSubtarget<PPCSubtarget>().getInstrInfo();
370 MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
371
372 AllCRLogicalOps.clear();
373}
374
375/// Contains all the implemented transformations on CR logical operations.
376/// For example, a binary CR logical can be used to split a block on its inputs,
377/// a unary CR logical might be used to change the condition code on a
378/// comparison feeding it. A nullary CR logical might simply be removable
379/// if the user of the bit it [un]sets can be transformed.
380bool PPCReduceCRLogicals::handleCROp(CRLogicalOpInfo &CRI) {
381 // We can definitely split a block on the inputs to a binary CR operation
382 // whose defs and (single) use are within the same block.
383 bool Changed = false;
384 if (CRI.IsBinary && CRI.ContainedInBlock && CRI.SingleUse && CRI.FeedsBR &&
385 CRI.DefsSingleUse) {
386 Changed = splitBlockOnBinaryCROp(CRI);
387 if (Changed)
388 NumBlocksSplitOnBinaryCROp++;
389 }
390 return Changed;
391}
392
393/// Splits a block that contains a CR-logical operation that feeds a branch
394/// and whose operands are produced within the block.
395/// Example:
396/// %vr5<def> = CMPDI %vr2, 0; CRRC:%vr5 G8RC:%vr2
397/// %vr6<def> = COPY %vr5:sub_eq; CRBITRC:%vr6 CRRC:%vr5
398/// %vr7<def> = CMPDI %vr3, 0; CRRC:%vr7 G8RC:%vr3
399/// %vr8<def> = COPY %vr7:sub_eq; CRBITRC:%vr8 CRRC:%vr7
400/// %vr9<def> = CROR %vr6<kill>, %vr8<kill>; CRBITRC:%vr9,%vr6,%vr8
401/// BC %vr9<kill>, <BB#2>; CRBITRC:%vr9
402/// Becomes:
403/// %vr5<def> = CMPDI %vr2, 0; CRRC:%vr5 G8RC:%vr2
404/// %vr6<def> = COPY %vr5:sub_eq; CRBITRC:%vr6 CRRC:%vr5
405/// BC %vr6<kill>, <BB#2>; CRBITRC:%vr6
406///
407/// %vr7<def> = CMPDI %vr3, 0; CRRC:%vr7 G8RC:%vr3
408/// %vr8<def> = COPY %vr7:sub_eq; CRBITRC:%vr8 CRRC:%vr7
409/// BC %vr9<kill>, <BB#2>; CRBITRC:%vr9
410bool PPCReduceCRLogicals::splitBlockOnBinaryCROp(CRLogicalOpInfo &CRI) {
411 if (CRI.CopyDefs.first == CRI.CopyDefs.second) {
412 DEBUG(dbgs() << "Unable to split as the two operands are the same\n");
413 NumNotSplitIdenticalOperands++;
414 return false;
415 }
416 if (CRI.TrueDefs.first->isCopy() || CRI.TrueDefs.second->isCopy() ||
417 CRI.TrueDefs.first->isPHI() || CRI.TrueDefs.second->isPHI()) {
418 DEBUG(dbgs() << "Unable to split because one of the operands is a PHI or "
419 "chain of copies.\n");
420 NumNotSplitChainCopies++;
421 return false;
422 }
423 // Note: keep in sync with computeBranchTargetAndInversion().
424 if (CRI.MI->getOpcode() != PPC::CROR &&
425 CRI.MI->getOpcode() != PPC::CRAND &&
426 CRI.MI->getOpcode() != PPC::CRNOR &&
427 CRI.MI->getOpcode() != PPC::CRNAND &&
428 CRI.MI->getOpcode() != PPC::CRORC &&
429 CRI.MI->getOpcode() != PPC::CRANDC) {
430 DEBUG(dbgs() << "Unable to split blocks on this opcode.\n");
431 NumNotSplitWrongOpcode++;
432 return false;
433 }
434 DEBUG(dbgs() << "Splitting the following CR op:\n"; CRI.dump());
435 MachineBasicBlock::iterator Def1It = CRI.TrueDefs.first;
436 MachineBasicBlock::iterator Def2It = CRI.TrueDefs.second;
437
438 bool UsingDef1 = false;
439 MachineInstr *SplitBefore = &*Def2It;
440 for (auto E = CRI.MI->getParent()->end(); Def2It != E; ++Def2It) {
441 if (Def1It == Def2It) { // Def2 comes before Def1.
442 SplitBefore = &*Def1It;
443 UsingDef1 = true;
444 break;
445 }
446 }
447
448 DEBUG(dbgs() << "We will split the following block:\n";);
449 DEBUG(CRI.MI->getParent()->dump());
450 DEBUG(dbgs() << "Before instruction:\n"; SplitBefore->dump());
451
452 // Get the branch instruction.
453 MachineInstr *Branch =
454 MRI->use_nodbg_begin(CRI.MI->getOperand(0).getReg())->getParent();
455
456 // We want the new block to have no code in it other than the definition
457 // of the input to the CR logical and the CR logical itself. So we move
458 // those to the bottom of the block (just before the branch). Then we
459 // will split before the CR logical.
460 MachineBasicBlock *MBB = SplitBefore->getParent();
461 auto FirstTerminator = MBB->getFirstTerminator();
462 MachineBasicBlock::iterator FirstInstrToMove =
463 UsingDef1 ? CRI.TrueDefs.first : CRI.TrueDefs.second;
464 MachineBasicBlock::iterator SecondInstrToMove =
465 UsingDef1 ? CRI.CopyDefs.first : CRI.CopyDefs.second;
466
467 // The instructions that need to be moved are not guaranteed to be
468 // contiguous. Move them individually.
469 // FIXME: If one of the operands is a chain of (single use) copies, they
470 // can all be moved and we can still split.
471 MBB->splice(FirstTerminator, MBB, FirstInstrToMove);
472 if (FirstInstrToMove != SecondInstrToMove)
473 MBB->splice(FirstTerminator, MBB, SecondInstrToMove);
474 MBB->splice(FirstTerminator, MBB, CRI.MI);
475
476 unsigned Opc = CRI.MI->getOpcode();
477 bool InvertOrigBranch, InvertNewBranch, TargetIsFallThrough;
478 computeBranchTargetAndInversion(Opc, Branch->getOpcode(), UsingDef1,
479 InvertNewBranch, InvertOrigBranch,
480 TargetIsFallThrough);
481 MachineInstr *SplitCond =
482 UsingDef1 ? CRI.CopyDefs.second : CRI.CopyDefs.first;
483 DEBUG(dbgs() << "We will " << (InvertNewBranch ? "invert" : "copy"));
484 DEBUG(dbgs() << " the original branch and the target is the " <<
485 (TargetIsFallThrough ? "fallthrough block\n" : "orig. target block\n"));
486 DEBUG(dbgs() << "Original branch instruction: "; Branch->dump());
487 BlockSplitInfo BSI { Branch, SplitBefore, SplitCond, InvertNewBranch,
488 InvertOrigBranch, TargetIsFallThrough, MBPI, CRI.MI,
489 UsingDef1 ? CRI.CopyDefs.first : CRI.CopyDefs.second };
490 bool Changed = splitMBB(BSI);
491 // If we've split on a CR logical that is fed by a CR logical,
492 // recompute the source CR logical as it may be usable for splitting.
493 if (Changed) {
494 bool Input1CRlogical =
495 CRI.TrueDefs.first && isCRLogical(*CRI.TrueDefs.first);
496 bool Input2CRlogical =
497 CRI.TrueDefs.second && isCRLogical(*CRI.TrueDefs.second);
498 if (Input1CRlogical)
499 AllCRLogicalOps.push_back(createCRLogicalOpInfo(*CRI.TrueDefs.first));
500 if (Input2CRlogical)
501 AllCRLogicalOps.push_back(createCRLogicalOpInfo(*CRI.TrueDefs.second));
502 }
503 return Changed;
504}
505
506void PPCReduceCRLogicals::collectCRLogicals() {
507 for (MachineBasicBlock &MBB : *MF) {
508 for (MachineInstr &MI : MBB) {
509 if (isCRLogical(MI)) {
510 AllCRLogicalOps.push_back(createCRLogicalOpInfo(MI));
511 TotalCRLogicals++;
512 if (AllCRLogicalOps.back().IsNullary)
513 TotalNullaryCRLogicals++;
514 else if (AllCRLogicalOps.back().IsBinary)
515 TotalBinaryCRLogicals++;
516 else
517 TotalUnaryCRLogicals++;
518 }
519 }
520 }
521}
522
523} // end annonymous namespace
524
525INITIALIZE_PASS_BEGIN(PPCReduceCRLogicals, DEBUG_TYPE,
526 "PowerPC Reduce CR logical Operation", false, false)
527INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
528INITIALIZE_PASS_END(PPCReduceCRLogicals, DEBUG_TYPE,
529 "PowerPC Reduce CR logical Operation", false, false)
530
531char PPCReduceCRLogicals::ID = 0;
532FunctionPass*
533llvm::createPPCReduceCRLogicalsPass() { return new PPCReduceCRLogicals(); }