blob: e6dc8868c705a6921abb6e9af1a8fa0cc0e79f1f [file] [log] [blame]
Dylan McKay6eaa4e42016-10-27 06:56:46 +00001//===-- AVRMCCodeEmitter.cpp - Convert AVR Code to Machine Code -----------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the AVRMCCodeEmitter class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "AVRMCCodeEmitter.h"
15
16#include "MCTargetDesc/AVRMCExpr.h"
17#include "MCTargetDesc/AVRMCTargetDesc.h"
18
19#include "llvm/ADT/APFloat.h"
20#include "llvm/ADT/SmallVector.h"
21#include "llvm/MC/MCContext.h"
22#include "llvm/MC/MCExpr.h"
23#include "llvm/MC/MCFixup.h"
24#include "llvm/MC/MCInst.h"
25#include "llvm/MC/MCInstrInfo.h"
26#include "llvm/MC/MCRegisterInfo.h"
27#include "llvm/MC/MCSubtargetInfo.h"
28#include "llvm/Support/raw_ostream.h"
29
30#define DEBUG_TYPE "mccodeemitter"
31
32#define GET_INSTRMAP_INFO
33#include "AVRGenInstrInfo.inc"
34#undef GET_INSTRMAP_INFO
35
36namespace llvm {
37
38/// Performs a post-encoding step on a `LD` or `ST` instruction.
39///
40/// The encoding of the LD/ST family of instructions is inconsistent w.r.t
41/// the pointer register and the addressing mode.
42///
43/// The permutations of the format are as followed:
44/// ld Rd, X `1001 000d dddd 1100`
45/// ld Rd, X+ `1001 000d dddd 1101`
46/// ld Rd, -X `1001 000d dddd 1110`
47///
48/// ld Rd, Y `1000 000d dddd 1000`
49/// ld Rd, Y+ `1001 000d dddd 1001`
50/// ld Rd, -Y `1001 000d dddd 1010`
51///
52/// ld Rd, Z `1000 000d dddd 0000`
53/// ld Rd, Z+ `1001 000d dddd 0001`
54/// ld Rd, -Z `1001 000d dddd 0010`
55/// ^
56/// |
57/// Note this one inconsistent bit - it is 1 sometimes and 0 at other times.
58/// There is no logical pattern. Looking at a truth table, the following
59/// formula can be derived to fit the pattern:
60//
61/// ```
62/// inconsistent_bit = is_predec OR is_postinc OR is_reg_x
63/// ```
64//
65/// We manually set this bit in this post encoder method.
66unsigned
67AVRMCCodeEmitter::loadStorePostEncoder(const MCInst &MI, unsigned EncodedValue,
68 const MCSubtargetInfo &STI) const {
69
70 assert(MI.getOperand(0).isReg() && MI.getOperand(1).isReg() &&
71 "the load/store operands must be registers");
72
73 unsigned Opcode = MI.getOpcode();
74
75 // check whether either of the registers are the X pointer register.
76 bool IsRegX = MI.getOperand(0).getReg() == AVR::R27R26 ||
77 MI.getOperand(1).getReg() == AVR::R27R26;
78
79 bool IsPredec = Opcode == AVR::LDRdPtrPd || Opcode == AVR::STPtrPdRr;
80 bool IsPostinc = Opcode == AVR::LDRdPtrPi || Opcode == AVR::STPtrPiRr;
81
82 // Check if we need to set the inconsistent bit
83 if (IsRegX || IsPredec || IsPostinc) {
84 EncodedValue |= (1 << 12);
85 }
86
87 return EncodedValue;
88}
89
90template <AVR::Fixups Fixup>
91unsigned
92AVRMCCodeEmitter::encodeRelCondBrTarget(const MCInst &MI, unsigned OpNo,
93 SmallVectorImpl<MCFixup> &Fixups,
94 const MCSubtargetInfo &STI) const {
95 const MCOperand &MO = MI.getOperand(OpNo);
96
97 if (MO.isExpr()) {
98 Fixups.push_back(MCFixup::create(0, MO.getExpr(),
99 MCFixupKind(Fixup), MI.getLoc()));
100 return 0;
101 }
102
103 assert(MO.isImm());
104
105 // Take the size of the current instruction away.
106 // With labels, this is implicitly done.
107 auto target = MO.getImm();
108 AVR::fixups::adjustBranchTarget(target);
109 return target;
110}
111
112unsigned AVRMCCodeEmitter::encodeLDSTPtrReg(const MCInst &MI, unsigned OpNo,
113 SmallVectorImpl<MCFixup> &Fixups,
114 const MCSubtargetInfo &STI) const {
115 auto MO = MI.getOperand(OpNo);
116
117 // The operand should be a pointer register.
118 assert(MO.isReg());
119
120 switch (MO.getReg()) {
121 case AVR::R27R26: return 0x03; // X: 0b11
122 case AVR::R29R28: return 0x02; // Y: 0b10
123 case AVR::R31R30: return 0x00; // Z: 0b00
124 default:
125 llvm_unreachable("invalid pointer register");
126 }
127}
128
129/// Encodes a `memri` operand.
130/// The operand is 7-bits.
131/// * The lower 6 bits is the immediate
132/// * The upper bit is the pointer register bit (Z=0,Y=1)
133unsigned AVRMCCodeEmitter::encodeMemri(const MCInst &MI, unsigned OpNo,
134 SmallVectorImpl<MCFixup> &Fixups,
135 const MCSubtargetInfo &STI) const {
136 auto RegOp = MI.getOperand(OpNo);
137 auto OffsetOp = MI.getOperand(OpNo + 1);
138
139 assert(RegOp.isReg() && "Expected register operand");
140
141 uint8_t RegBit = 0;
142
143 switch (RegOp.getReg()) {
144 default:
145 llvm_unreachable("Expected either Y or Z register");
146 case AVR::R31R30:
147 RegBit = 0;
148 break; // Z register
149 case AVR::R29R28:
150 RegBit = 1;
151 break; // Y register
152 }
153
154 int8_t OffsetBits;
155
156 if (OffsetOp.isImm()) {
157 OffsetBits = OffsetOp.getImm();
158 } else if (OffsetOp.isExpr()) {
159 OffsetBits = 0;
160 Fixups.push_back(MCFixup::create(0, OffsetOp.getExpr(),
161 MCFixupKind(AVR::fixup_6), MI.getLoc()));
162 } else {
163 llvm_unreachable("invalid value for offset");
164 }
165
166 return (RegBit << 6) | OffsetBits;
167}
168
169unsigned AVRMCCodeEmitter::encodeComplement(const MCInst &MI, unsigned OpNo,
170 SmallVectorImpl<MCFixup> &Fixups,
171 const MCSubtargetInfo &STI) const {
172 // The operand should be an immediate.
173 assert(MI.getOperand(OpNo).isImm());
174
175 auto Imm = MI.getOperand(OpNo).getImm();
176 return (~0) - Imm;
177}
178
179template <AVR::Fixups Fixup>
180unsigned AVRMCCodeEmitter::encodeImm(const MCInst &MI, unsigned OpNo,
181 SmallVectorImpl<MCFixup> &Fixups,
182 const MCSubtargetInfo &STI) const {
183 auto MO = MI.getOperand(OpNo);
184
185 if (MO.isExpr()) {
186 if (isa<AVRMCExpr>(MO.getExpr())) {
187 // If the expression is already an AVRMCExpr (i.e. a lo8(symbol),
188 // we shouldn't perform any more fixups. Without this check, we would
189 // instead create a fixup to the symbol named 'lo8(symbol)' which
190 // is not correct.
191 return getExprOpValue(MO.getExpr(), Fixups, STI);
192 }
193
194 MCFixupKind FixupKind = static_cast<MCFixupKind>(Fixup);
195 Fixups.push_back(MCFixup::create(0, MO.getExpr(), FixupKind, MI.getLoc()));
196
197 return 0;
198 }
199
200 assert(MO.isImm());
201 return MO.getImm();
202}
203
204unsigned AVRMCCodeEmitter::encodeCallTarget(const MCInst &MI, unsigned OpNo,
205 SmallVectorImpl<MCFixup> &Fixups,
206 const MCSubtargetInfo &STI) const {
207 auto MO = MI.getOperand(OpNo);
208
209 if (MO.isExpr()) {
210 MCFixupKind FixupKind = static_cast<MCFixupKind>(AVR::fixup_call);
211 Fixups.push_back(MCFixup::create(0, MO.getExpr(), FixupKind, MI.getLoc()));
212 return 0;
213 }
214
215 assert(MO.isImm());
216
217 auto Target = MO.getImm();
218 AVR::fixups::adjustBranchTarget(Target);
219 return Target;
220}
221
222unsigned AVRMCCodeEmitter::getExprOpValue(const MCExpr *Expr,
223 SmallVectorImpl<MCFixup> &Fixups,
224 const MCSubtargetInfo &STI) const {
225
226 MCExpr::ExprKind Kind = Expr->getKind();
227
228 if (Kind == MCExpr::Binary) {
229 Expr = static_cast<const MCBinaryExpr *>(Expr)->getLHS();
230 Kind = Expr->getKind();
231 }
232
233 if (Kind == MCExpr::Target) {
234 AVRMCExpr const *AVRExpr = cast<AVRMCExpr>(Expr);
235 int64_t Result;
236 if (AVRExpr->evaluateAsConstant(Result)) {
237 return Result;
238 }
239
240 MCFixupKind FixupKind = static_cast<MCFixupKind>(AVRExpr->getFixupKind());
241 Fixups.push_back(MCFixup::create(0, AVRExpr, FixupKind));
242 return 0;
243 }
244
245 assert(Kind == MCExpr::SymbolRef);
246 return 0;
247}
248
249unsigned AVRMCCodeEmitter::getMachineOpValue(const MCInst &MI,
250 const MCOperand &MO,
251 SmallVectorImpl<MCFixup> &Fixups,
252 const MCSubtargetInfo &STI) const {
253 if (MO.isReg()) return Ctx.getRegisterInfo()->getEncodingValue(MO.getReg());
254 if (MO.isImm()) return static_cast<unsigned>(MO.getImm());
255
256 if (MO.isFPImm())
257 return static_cast<unsigned>(APFloat(MO.getFPImm())
258 .bitcastToAPInt()
259 .getHiBits(32)
260 .getLimitedValue());
261
262 // MO must be an Expr.
263 assert(MO.isExpr());
264
265 return getExprOpValue(MO.getExpr(), Fixups, STI);
266}
267
268void AVRMCCodeEmitter::emitInstruction(uint64_t Val, unsigned Size,
269 const MCSubtargetInfo &STI,
270 raw_ostream &OS) const {
271 const uint16_t *Words = reinterpret_cast<uint16_t const *>(&Val);
272 size_t WordCount = Size / 2;
273
274 for (int64_t i = WordCount - 1; i >= 0; --i) {
275 uint16_t Word = Words[i];
276
277 OS << (uint8_t) ((Word & 0x00ff) >> 0);
278 OS << (uint8_t) ((Word & 0xff00) >> 8);
279 }
280}
281
282void AVRMCCodeEmitter::encodeInstruction(const MCInst &MI, raw_ostream &OS,
283 SmallVectorImpl<MCFixup> &Fixups,
284 const MCSubtargetInfo &STI) const {
285 const MCInstrDesc &Desc = MCII.get(MI.getOpcode());
286
287 // Get byte count of instruction
288 unsigned Size = Desc.getSize();
289
290 assert(Size > 0 && "Instruction size cannot be zero");
291
292 uint64_t BinaryOpCode = getBinaryCodeForInstr(MI, Fixups, STI);
293 emitInstruction(BinaryOpCode, Size, STI, OS);
294}
295
296MCCodeEmitter *createAVRMCCodeEmitter(const MCInstrInfo &MCII,
297 const MCRegisterInfo &MRI,
298 MCContext &Ctx) {
299 return new AVRMCCodeEmitter(MCII, Ctx);
300}
301
302#include "AVRGenMCCodeEmitter.inc"
303
304} // end of namespace llvm