blob: 3c5e299fae9837df10b92179e6becdf788f0833c [file] [log] [blame]
Peter Collingbourne9f7ec142016-02-03 02:51:00 +00001//===- Evaluator.cpp - LLVM IR evaluator ----------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Function evaluator for LLVM IR.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Transforms/Utils/Evaluator.h"
Eugene Zelenko5adb96c2017-10-26 00:55:39 +000015#include "llvm/ADT/DenseMap.h"
16#include "llvm/ADT/STLExtras.h"
17#include "llvm/ADT/SmallPtrSet.h"
18#include "llvm/ADT/SmallVector.h"
Peter Collingbourne9f7ec142016-02-03 02:51:00 +000019#include "llvm/Analysis/ConstantFolding.h"
20#include "llvm/IR/BasicBlock.h"
21#include "llvm/IR/CallSite.h"
Eugene Zelenko5adb96c2017-10-26 00:55:39 +000022#include "llvm/IR/Constant.h"
Peter Collingbourne9f7ec142016-02-03 02:51:00 +000023#include "llvm/IR/Constants.h"
Craig Topperb5c2bfa2017-03-20 05:08:41 +000024#include "llvm/IR/DataLayout.h"
Peter Collingbourne9f7ec142016-02-03 02:51:00 +000025#include "llvm/IR/DerivedTypes.h"
Eugene Zelenko5adb96c2017-10-26 00:55:39 +000026#include "llvm/IR/Function.h"
27#include "llvm/IR/GlobalValue.h"
Peter Collingbourne9f7ec142016-02-03 02:51:00 +000028#include "llvm/IR/GlobalVariable.h"
Eugene Zelenko5adb96c2017-10-26 00:55:39 +000029#include "llvm/IR/InstrTypes.h"
30#include "llvm/IR/Instruction.h"
Peter Collingbourne9f7ec142016-02-03 02:51:00 +000031#include "llvm/IR/Instructions.h"
Chandler Carruth6bda14b2017-06-06 11:49:48 +000032#include "llvm/IR/IntrinsicInst.h"
Eugene Zelenko5adb96c2017-10-26 00:55:39 +000033#include "llvm/IR/Intrinsics.h"
Peter Collingbourne9f7ec142016-02-03 02:51:00 +000034#include "llvm/IR/Operator.h"
Eugene Zelenko5adb96c2017-10-26 00:55:39 +000035#include "llvm/IR/Type.h"
36#include "llvm/IR/User.h"
37#include "llvm/IR/Value.h"
38#include "llvm/Support/Casting.h"
Peter Collingbourne9f7ec142016-02-03 02:51:00 +000039#include "llvm/Support/Debug.h"
Peter Collingbourne83cc9812016-02-03 03:16:37 +000040#include "llvm/Support/raw_ostream.h"
Eugene Zelenko5adb96c2017-10-26 00:55:39 +000041#include <iterator>
Peter Collingbourne9f7ec142016-02-03 02:51:00 +000042
43#define DEBUG_TYPE "evaluator"
44
45using namespace llvm;
46
47static inline bool
48isSimpleEnoughValueToCommit(Constant *C,
49 SmallPtrSetImpl<Constant *> &SimpleConstants,
50 const DataLayout &DL);
51
52/// Return true if the specified constant can be handled by the code generator.
53/// We don't want to generate something like:
54/// void *X = &X/42;
55/// because the code generator doesn't have a relocation that can handle that.
56///
57/// This function should be called if C was not found (but just got inserted)
58/// in SimpleConstants to avoid having to rescan the same constants all the
59/// time.
60static bool
61isSimpleEnoughValueToCommitHelper(Constant *C,
62 SmallPtrSetImpl<Constant *> &SimpleConstants,
63 const DataLayout &DL) {
64 // Simple global addresses are supported, do not allow dllimport or
65 // thread-local globals.
66 if (auto *GV = dyn_cast<GlobalValue>(C))
67 return !GV->hasDLLImportStorageClass() && !GV->isThreadLocal();
68
69 // Simple integer, undef, constant aggregate zero, etc are all supported.
70 if (C->getNumOperands() == 0 || isa<BlockAddress>(C))
71 return true;
72
73 // Aggregate values are safe if all their elements are.
Duncan P. N. Exon Smith1de3c7e2016-04-05 21:10:45 +000074 if (isa<ConstantAggregate>(C)) {
Peter Collingbourne9f7ec142016-02-03 02:51:00 +000075 for (Value *Op : C->operands())
76 if (!isSimpleEnoughValueToCommit(cast<Constant>(Op), SimpleConstants, DL))
77 return false;
78 return true;
79 }
80
81 // We don't know exactly what relocations are allowed in constant expressions,
82 // so we allow &global+constantoffset, which is safe and uniformly supported
83 // across targets.
84 ConstantExpr *CE = cast<ConstantExpr>(C);
85 switch (CE->getOpcode()) {
86 case Instruction::BitCast:
87 // Bitcast is fine if the casted value is fine.
88 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
89
90 case Instruction::IntToPtr:
91 case Instruction::PtrToInt:
92 // int <=> ptr is fine if the int type is the same size as the
93 // pointer type.
94 if (DL.getTypeSizeInBits(CE->getType()) !=
95 DL.getTypeSizeInBits(CE->getOperand(0)->getType()))
96 return false;
97 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
98
99 // GEP is fine if it is simple + constant offset.
100 case Instruction::GetElementPtr:
101 for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
102 if (!isa<ConstantInt>(CE->getOperand(i)))
103 return false;
104 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
105
106 case Instruction::Add:
107 // We allow simple+cst.
108 if (!isa<ConstantInt>(CE->getOperand(1)))
109 return false;
110 return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
111 }
112 return false;
113}
114
115static inline bool
116isSimpleEnoughValueToCommit(Constant *C,
117 SmallPtrSetImpl<Constant *> &SimpleConstants,
118 const DataLayout &DL) {
119 // If we already checked this constant, we win.
120 if (!SimpleConstants.insert(C).second)
121 return true;
122 // Check the constant.
123 return isSimpleEnoughValueToCommitHelper(C, SimpleConstants, DL);
124}
125
126/// Return true if this constant is simple enough for us to understand. In
127/// particular, if it is a cast to anything other than from one pointer type to
128/// another pointer type, we punt. We basically just support direct accesses to
129/// globals and GEP's of globals. This should be kept up to date with
130/// CommitValueTo.
131static bool isSimpleEnoughPointerToCommit(Constant *C) {
132 // Conservatively, avoid aggregate types. This is because we don't
133 // want to worry about them partially overlapping other stores.
134 if (!cast<PointerType>(C->getType())->getElementType()->isSingleValueType())
135 return false;
136
137 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
138 // Do not allow weak/*_odr/linkonce linkage or external globals.
139 return GV->hasUniqueInitializer();
140
141 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
142 // Handle a constantexpr gep.
143 if (CE->getOpcode() == Instruction::GetElementPtr &&
144 isa<GlobalVariable>(CE->getOperand(0)) &&
145 cast<GEPOperator>(CE)->isInBounds()) {
146 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
147 // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
148 // external globals.
149 if (!GV->hasUniqueInitializer())
150 return false;
151
152 // The first index must be zero.
153 ConstantInt *CI = dyn_cast<ConstantInt>(*std::next(CE->op_begin()));
154 if (!CI || !CI->isZero()) return false;
155
156 // The remaining indices must be compile-time known integers within the
157 // notional bounds of the corresponding static array types.
158 if (!CE->isGEPWithNoNotionalOverIndexing())
159 return false;
160
161 return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
162
163 // A constantexpr bitcast from a pointer to another pointer is a no-op,
164 // and we know how to evaluate it by moving the bitcast from the pointer
165 // operand to the value operand.
166 } else if (CE->getOpcode() == Instruction::BitCast &&
167 isa<GlobalVariable>(CE->getOperand(0))) {
168 // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
169 // external globals.
170 return cast<GlobalVariable>(CE->getOperand(0))->hasUniqueInitializer();
171 }
172 }
173
174 return false;
175}
176
177/// Return the value that would be computed by a load from P after the stores
178/// reflected by 'memory' have been performed. If we can't decide, return null.
179Constant *Evaluator::ComputeLoadResult(Constant *P) {
180 // If this memory location has been recently stored, use the stored value: it
181 // is the most up-to-date.
182 DenseMap<Constant*, Constant*>::const_iterator I = MutatedMemory.find(P);
183 if (I != MutatedMemory.end()) return I->second;
184
185 // Access it.
186 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
187 if (GV->hasDefinitiveInitializer())
188 return GV->getInitializer();
189 return nullptr;
190 }
191
192 // Handle a constantexpr getelementptr.
193 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(P))
194 if (CE->getOpcode() == Instruction::GetElementPtr &&
195 isa<GlobalVariable>(CE->getOperand(0))) {
196 GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
197 if (GV->hasDefinitiveInitializer())
198 return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
199 }
200
201 return nullptr; // don't know how to evaluate.
202}
203
204/// Evaluate all instructions in block BB, returning true if successful, false
205/// if we can't evaluate it. NewBB returns the next BB that control flows into,
206/// or null upon return.
207bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst,
208 BasicBlock *&NextBB) {
209 // This is the main evaluation loop.
Eugene Zelenko5adb96c2017-10-26 00:55:39 +0000210 while (true) {
Peter Collingbourne9f7ec142016-02-03 02:51:00 +0000211 Constant *InstResult = nullptr;
212
213 DEBUG(dbgs() << "Evaluating Instruction: " << *CurInst << "\n");
214
215 if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) {
216 if (!SI->isSimple()) {
217 DEBUG(dbgs() << "Store is not simple! Can not evaluate.\n");
218 return false; // no volatile/atomic accesses.
219 }
220 Constant *Ptr = getVal(SI->getOperand(1));
David Majnemerd536f232016-07-29 03:27:26 +0000221 if (auto *FoldedPtr = ConstantFoldConstant(Ptr, DL, TLI)) {
Peter Collingbourne9f7ec142016-02-03 02:51:00 +0000222 DEBUG(dbgs() << "Folding constant ptr expression: " << *Ptr);
David Majnemerd536f232016-07-29 03:27:26 +0000223 Ptr = FoldedPtr;
Peter Collingbourne9f7ec142016-02-03 02:51:00 +0000224 DEBUG(dbgs() << "; To: " << *Ptr << "\n");
225 }
226 if (!isSimpleEnoughPointerToCommit(Ptr)) {
227 // If this is too complex for us to commit, reject it.
228 DEBUG(dbgs() << "Pointer is too complex for us to evaluate store.");
229 return false;
230 }
231
232 Constant *Val = getVal(SI->getOperand(0));
233
234 // If this might be too difficult for the backend to handle (e.g. the addr
235 // of one global variable divided by another) then we can't commit it.
236 if (!isSimpleEnoughValueToCommit(Val, SimpleConstants, DL)) {
237 DEBUG(dbgs() << "Store value is too complex to evaluate store. " << *Val
238 << "\n");
239 return false;
240 }
241
242 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
243 if (CE->getOpcode() == Instruction::BitCast) {
244 DEBUG(dbgs() << "Attempting to resolve bitcast on constant ptr.\n");
245 // If we're evaluating a store through a bitcast, then we need
246 // to pull the bitcast off the pointer type and push it onto the
247 // stored value.
248 Ptr = CE->getOperand(0);
249
250 Type *NewTy = cast<PointerType>(Ptr->getType())->getElementType();
251
252 // In order to push the bitcast onto the stored value, a bitcast
253 // from NewTy to Val's type must be legal. If it's not, we can try
254 // introspecting NewTy to find a legal conversion.
255 while (!Val->getType()->canLosslesslyBitCastTo(NewTy)) {
256 // If NewTy is a struct, we can convert the pointer to the struct
257 // into a pointer to its first member.
258 // FIXME: This could be extended to support arrays as well.
259 if (StructType *STy = dyn_cast<StructType>(NewTy)) {
260 NewTy = STy->getTypeAtIndex(0U);
261
262 IntegerType *IdxTy = IntegerType::get(NewTy->getContext(), 32);
263 Constant *IdxZero = ConstantInt::get(IdxTy, 0, false);
264 Constant * const IdxList[] = {IdxZero, IdxZero};
265
266 Ptr = ConstantExpr::getGetElementPtr(nullptr, Ptr, IdxList);
David Majnemerd536f232016-07-29 03:27:26 +0000267 if (auto *FoldedPtr = ConstantFoldConstant(Ptr, DL, TLI))
268 Ptr = FoldedPtr;
Peter Collingbourne9f7ec142016-02-03 02:51:00 +0000269
270 // If we can't improve the situation by introspecting NewTy,
271 // we have to give up.
272 } else {
273 DEBUG(dbgs() << "Failed to bitcast constant ptr, can not "
274 "evaluate.\n");
275 return false;
276 }
277 }
278
279 // If we found compatible types, go ahead and push the bitcast
280 // onto the stored value.
281 Val = ConstantExpr::getBitCast(Val, NewTy);
282
283 DEBUG(dbgs() << "Evaluated bitcast: " << *Val << "\n");
284 }
285 }
286
287 MutatedMemory[Ptr] = Val;
288 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) {
289 InstResult = ConstantExpr::get(BO->getOpcode(),
290 getVal(BO->getOperand(0)),
291 getVal(BO->getOperand(1)));
292 DEBUG(dbgs() << "Found a BinaryOperator! Simplifying: " << *InstResult
293 << "\n");
294 } else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) {
295 InstResult = ConstantExpr::getCompare(CI->getPredicate(),
296 getVal(CI->getOperand(0)),
297 getVal(CI->getOperand(1)));
298 DEBUG(dbgs() << "Found a CmpInst! Simplifying: " << *InstResult
299 << "\n");
300 } else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) {
301 InstResult = ConstantExpr::getCast(CI->getOpcode(),
302 getVal(CI->getOperand(0)),
303 CI->getType());
304 DEBUG(dbgs() << "Found a Cast! Simplifying: " << *InstResult
305 << "\n");
306 } else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) {
307 InstResult = ConstantExpr::getSelect(getVal(SI->getOperand(0)),
308 getVal(SI->getOperand(1)),
309 getVal(SI->getOperand(2)));
310 DEBUG(dbgs() << "Found a Select! Simplifying: " << *InstResult
311 << "\n");
312 } else if (auto *EVI = dyn_cast<ExtractValueInst>(CurInst)) {
313 InstResult = ConstantExpr::getExtractValue(
314 getVal(EVI->getAggregateOperand()), EVI->getIndices());
315 DEBUG(dbgs() << "Found an ExtractValueInst! Simplifying: " << *InstResult
316 << "\n");
317 } else if (auto *IVI = dyn_cast<InsertValueInst>(CurInst)) {
318 InstResult = ConstantExpr::getInsertValue(
319 getVal(IVI->getAggregateOperand()),
320 getVal(IVI->getInsertedValueOperand()), IVI->getIndices());
321 DEBUG(dbgs() << "Found an InsertValueInst! Simplifying: " << *InstResult
322 << "\n");
323 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) {
324 Constant *P = getVal(GEP->getOperand(0));
325 SmallVector<Constant*, 8> GEPOps;
326 for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end();
327 i != e; ++i)
328 GEPOps.push_back(getVal(*i));
329 InstResult =
330 ConstantExpr::getGetElementPtr(GEP->getSourceElementType(), P, GEPOps,
331 cast<GEPOperator>(GEP)->isInBounds());
332 DEBUG(dbgs() << "Found a GEP! Simplifying: " << *InstResult
333 << "\n");
334 } else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) {
Peter Collingbourne9f7ec142016-02-03 02:51:00 +0000335 if (!LI->isSimple()) {
336 DEBUG(dbgs() << "Found a Load! Not a simple load, can not evaluate.\n");
337 return false; // no volatile/atomic accesses.
338 }
339
340 Constant *Ptr = getVal(LI->getOperand(0));
David Majnemerd536f232016-07-29 03:27:26 +0000341 if (auto *FoldedPtr = ConstantFoldConstant(Ptr, DL, TLI)) {
342 Ptr = FoldedPtr;
Peter Collingbourne9f7ec142016-02-03 02:51:00 +0000343 DEBUG(dbgs() << "Found a constant pointer expression, constant "
344 "folding: " << *Ptr << "\n");
345 }
346 InstResult = ComputeLoadResult(Ptr);
347 if (!InstResult) {
348 DEBUG(dbgs() << "Failed to compute load result. Can not evaluate load."
349 "\n");
350 return false; // Could not evaluate load.
351 }
352
353 DEBUG(dbgs() << "Evaluated load: " << *InstResult << "\n");
354 } else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) {
355 if (AI->isArrayAllocation()) {
356 DEBUG(dbgs() << "Found an array alloca. Can not evaluate.\n");
357 return false; // Cannot handle array allocs.
358 }
359 Type *Ty = AI->getAllocatedType();
Eugene Zelenko5adb96c2017-10-26 00:55:39 +0000360 AllocaTmps.push_back(llvm::make_unique<GlobalVariable>(
361 Ty, false, GlobalValue::InternalLinkage, UndefValue::get(Ty),
362 AI->getName()));
Peter Collingbourne9f7ec142016-02-03 02:51:00 +0000363 InstResult = AllocaTmps.back().get();
364 DEBUG(dbgs() << "Found an alloca. Result: " << *InstResult << "\n");
365 } else if (isa<CallInst>(CurInst) || isa<InvokeInst>(CurInst)) {
366 CallSite CS(&*CurInst);
367
368 // Debug info can safely be ignored here.
369 if (isa<DbgInfoIntrinsic>(CS.getInstruction())) {
370 DEBUG(dbgs() << "Ignoring debug info.\n");
371 ++CurInst;
372 continue;
373 }
374
375 // Cannot handle inline asm.
376 if (isa<InlineAsm>(CS.getCalledValue())) {
377 DEBUG(dbgs() << "Found inline asm, can not evaluate.\n");
378 return false;
379 }
380
381 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) {
382 if (MemSetInst *MSI = dyn_cast<MemSetInst>(II)) {
383 if (MSI->isVolatile()) {
384 DEBUG(dbgs() << "Can not optimize a volatile memset " <<
385 "intrinsic.\n");
386 return false;
387 }
388 Constant *Ptr = getVal(MSI->getDest());
389 Constant *Val = getVal(MSI->getValue());
390 Constant *DestVal = ComputeLoadResult(getVal(Ptr));
391 if (Val->isNullValue() && DestVal && DestVal->isNullValue()) {
392 // This memset is a no-op.
393 DEBUG(dbgs() << "Ignoring no-op memset.\n");
394 ++CurInst;
395 continue;
396 }
397 }
398
399 if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
400 II->getIntrinsicID() == Intrinsic::lifetime_end) {
401 DEBUG(dbgs() << "Ignoring lifetime intrinsic.\n");
402 ++CurInst;
403 continue;
404 }
405
406 if (II->getIntrinsicID() == Intrinsic::invariant_start) {
407 // We don't insert an entry into Values, as it doesn't have a
408 // meaningful return value.
409 if (!II->use_empty()) {
410 DEBUG(dbgs() << "Found unused invariant_start. Can't evaluate.\n");
411 return false;
412 }
413 ConstantInt *Size = cast<ConstantInt>(II->getArgOperand(0));
414 Value *PtrArg = getVal(II->getArgOperand(1));
415 Value *Ptr = PtrArg->stripPointerCasts();
416 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
417 Type *ElemTy = GV->getValueType();
Craig Topper79ab6432017-07-06 18:39:47 +0000418 if (!Size->isMinusOne() &&
Peter Collingbourne9f7ec142016-02-03 02:51:00 +0000419 Size->getValue().getLimitedValue() >=
420 DL.getTypeStoreSize(ElemTy)) {
421 Invariants.insert(GV);
422 DEBUG(dbgs() << "Found a global var that is an invariant: " << *GV
423 << "\n");
424 } else {
425 DEBUG(dbgs() << "Found a global var, but can not treat it as an "
426 "invariant.\n");
427 }
428 }
429 // Continue even if we do nothing.
430 ++CurInst;
431 continue;
432 } else if (II->getIntrinsicID() == Intrinsic::assume) {
433 DEBUG(dbgs() << "Skipping assume intrinsic.\n");
434 ++CurInst;
435 continue;
Dan Gohman2c74fe92017-11-08 21:59:51 +0000436 } else if (II->getIntrinsicID() == Intrinsic::sideeffect) {
437 DEBUG(dbgs() << "Skipping sideeffect intrinsic.\n");
438 ++CurInst;
439 continue;
Peter Collingbourne9f7ec142016-02-03 02:51:00 +0000440 }
441
442 DEBUG(dbgs() << "Unknown intrinsic. Can not evaluate.\n");
443 return false;
444 }
445
446 // Resolve function pointers.
447 Function *Callee = dyn_cast<Function>(getVal(CS.getCalledValue()));
Sanjoy Das5ce32722016-04-08 00:48:30 +0000448 if (!Callee || Callee->isInterposable()) {
Peter Collingbourne9f7ec142016-02-03 02:51:00 +0000449 DEBUG(dbgs() << "Can not resolve function pointer.\n");
450 return false; // Cannot resolve.
451 }
452
453 SmallVector<Constant*, 8> Formals;
454 for (User::op_iterator i = CS.arg_begin(), e = CS.arg_end(); i != e; ++i)
455 Formals.push_back(getVal(*i));
456
457 if (Callee->isDeclaration()) {
458 // If this is a function we can constant fold, do it.
Andrew Kaylor647025f2017-06-09 23:18:11 +0000459 if (Constant *C = ConstantFoldCall(CS, Callee, Formals, TLI)) {
Peter Collingbourne9f7ec142016-02-03 02:51:00 +0000460 InstResult = C;
461 DEBUG(dbgs() << "Constant folded function call. Result: " <<
462 *InstResult << "\n");
463 } else {
464 DEBUG(dbgs() << "Can not constant fold function call.\n");
465 return false;
466 }
467 } else {
468 if (Callee->getFunctionType()->isVarArg()) {
469 DEBUG(dbgs() << "Can not constant fold vararg function call.\n");
470 return false;
471 }
472
473 Constant *RetVal = nullptr;
474 // Execute the call, if successful, use the return value.
475 ValueStack.emplace_back();
476 if (!EvaluateFunction(Callee, RetVal, Formals)) {
477 DEBUG(dbgs() << "Failed to evaluate function.\n");
478 return false;
479 }
480 ValueStack.pop_back();
481 InstResult = RetVal;
482
483 if (InstResult) {
484 DEBUG(dbgs() << "Successfully evaluated function. Result: "
485 << *InstResult << "\n\n");
486 } else {
487 DEBUG(dbgs() << "Successfully evaluated function. Result: 0\n\n");
488 }
489 }
490 } else if (isa<TerminatorInst>(CurInst)) {
491 DEBUG(dbgs() << "Found a terminator instruction.\n");
492
493 if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) {
494 if (BI->isUnconditional()) {
495 NextBB = BI->getSuccessor(0);
496 } else {
497 ConstantInt *Cond =
498 dyn_cast<ConstantInt>(getVal(BI->getCondition()));
499 if (!Cond) return false; // Cannot determine.
500
501 NextBB = BI->getSuccessor(!Cond->getZExtValue());
502 }
503 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) {
504 ConstantInt *Val =
505 dyn_cast<ConstantInt>(getVal(SI->getCondition()));
506 if (!Val) return false; // Cannot determine.
Chandler Carruth927d8e62017-04-12 07:27:28 +0000507 NextBB = SI->findCaseValue(Val)->getCaseSuccessor();
Peter Collingbourne9f7ec142016-02-03 02:51:00 +0000508 } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(CurInst)) {
509 Value *Val = getVal(IBI->getAddress())->stripPointerCasts();
510 if (BlockAddress *BA = dyn_cast<BlockAddress>(Val))
511 NextBB = BA->getBasicBlock();
512 else
513 return false; // Cannot determine.
514 } else if (isa<ReturnInst>(CurInst)) {
515 NextBB = nullptr;
516 } else {
517 // invoke, unwind, resume, unreachable.
518 DEBUG(dbgs() << "Can not handle terminator.");
519 return false; // Cannot handle this terminator.
520 }
521
522 // We succeeded at evaluating this block!
523 DEBUG(dbgs() << "Successfully evaluated block.\n");
524 return true;
525 } else {
526 // Did not know how to evaluate this!
527 DEBUG(dbgs() << "Failed to evaluate block due to unhandled instruction."
528 "\n");
529 return false;
530 }
531
532 if (!CurInst->use_empty()) {
David Majnemerd536f232016-07-29 03:27:26 +0000533 if (auto *FoldedInstResult = ConstantFoldConstant(InstResult, DL, TLI))
534 InstResult = FoldedInstResult;
Peter Collingbourne9f7ec142016-02-03 02:51:00 +0000535
536 setVal(&*CurInst, InstResult);
537 }
538
539 // If we just processed an invoke, we finished evaluating the block.
540 if (InvokeInst *II = dyn_cast<InvokeInst>(CurInst)) {
541 NextBB = II->getNormalDest();
542 DEBUG(dbgs() << "Found an invoke instruction. Finished Block.\n\n");
543 return true;
544 }
545
546 // Advance program counter.
547 ++CurInst;
548 }
549}
550
551/// Evaluate a call to function F, returning true if successful, false if we
552/// can't evaluate it. ActualArgs contains the formal arguments for the
553/// function.
554bool Evaluator::EvaluateFunction(Function *F, Constant *&RetVal,
555 const SmallVectorImpl<Constant*> &ActualArgs) {
556 // Check to see if this function is already executing (recursion). If so,
557 // bail out. TODO: we might want to accept limited recursion.
David Majnemer0d955d02016-08-11 22:21:41 +0000558 if (is_contained(CallStack, F))
Peter Collingbourne9f7ec142016-02-03 02:51:00 +0000559 return false;
560
561 CallStack.push_back(F);
562
563 // Initialize arguments to the incoming values specified.
564 unsigned ArgNo = 0;
565 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
566 ++AI, ++ArgNo)
567 setVal(&*AI, ActualArgs[ArgNo]);
568
569 // ExecutedBlocks - We only handle non-looping, non-recursive code. As such,
570 // we can only evaluate any one basic block at most once. This set keeps
571 // track of what we have executed so we can detect recursive cases etc.
572 SmallPtrSet<BasicBlock*, 32> ExecutedBlocks;
573
574 // CurBB - The current basic block we're evaluating.
575 BasicBlock *CurBB = &F->front();
576
577 BasicBlock::iterator CurInst = CurBB->begin();
578
Eugene Zelenko5adb96c2017-10-26 00:55:39 +0000579 while (true) {
Peter Collingbourne9f7ec142016-02-03 02:51:00 +0000580 BasicBlock *NextBB = nullptr; // Initialized to avoid compiler warnings.
581 DEBUG(dbgs() << "Trying to evaluate BB: " << *CurBB << "\n");
582
583 if (!EvaluateBlock(CurInst, NextBB))
584 return false;
585
586 if (!NextBB) {
587 // Successfully running until there's no next block means that we found
588 // the return. Fill it the return value and pop the call stack.
589 ReturnInst *RI = cast<ReturnInst>(CurBB->getTerminator());
590 if (RI->getNumOperands())
591 RetVal = getVal(RI->getOperand(0));
592 CallStack.pop_back();
593 return true;
594 }
595
596 // Okay, we succeeded in evaluating this control flow. See if we have
597 // executed the new block before. If so, we have a looping function,
598 // which we cannot evaluate in reasonable time.
599 if (!ExecutedBlocks.insert(NextBB).second)
600 return false; // looped!
601
602 // Okay, we have never been in this block before. Check to see if there
603 // are any PHI nodes. If so, evaluate them with information about where
604 // we came from.
605 PHINode *PN = nullptr;
606 for (CurInst = NextBB->begin();
607 (PN = dyn_cast<PHINode>(CurInst)); ++CurInst)
608 setVal(PN, getVal(PN->getIncomingValueForBlock(CurBB)));
609
610 // Advance to the next block.
611 CurBB = NextBB;
612 }
613}