blob: 9d7f1238fff0a9ff56e81aa451f273cf0033fc35 [file] [log] [blame]
Chandler Carruth664e3542013-01-07 01:37:14 +00001//===-- X86TargetTransformInfo.cpp - X86 specific TTI pass ----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10/// This file implements a TargetTransformInfo analysis pass specific to the
11/// X86 target machine. It uses the target's detailed information to provide
12/// more precise answers to certain TTI queries, while letting the target
13/// independent and default TTI implementations handle the rest.
14///
15//===----------------------------------------------------------------------===//
16
Chandler Carruth664e3542013-01-07 01:37:14 +000017#include "X86.h"
18#include "X86TargetMachine.h"
Chandler Carruthd3e73552013-01-07 03:08:10 +000019#include "llvm/Analysis/TargetTransformInfo.h"
Juergen Ributzkaf26beda2014-01-25 02:02:55 +000020#include "llvm/IR/IntrinsicInst.h"
Chandler Carruth664e3542013-01-07 01:37:14 +000021#include "llvm/Support/Debug.h"
Renato Golind4c392e2013-01-24 23:01:00 +000022#include "llvm/Target/CostTable.h"
Chandler Carruth8a8cd2b2014-01-07 11:48:04 +000023#include "llvm/Target/TargetLowering.h"
Chandler Carruth664e3542013-01-07 01:37:14 +000024using namespace llvm;
25
Chandler Carruth84e68b22014-04-22 02:41:26 +000026#define DEBUG_TYPE "x86tti"
27
Chandler Carruth664e3542013-01-07 01:37:14 +000028// Declare the pass initialization routine locally as target-specific passes
Eric Christopher89f18802014-05-22 01:21:44 +000029// don't have a target-wide initialization entry point, and so we rely on the
Chandler Carruth664e3542013-01-07 01:37:14 +000030// pass constructor initialization.
31namespace llvm {
32void initializeX86TTIPass(PassRegistry &);
33}
34
35namespace {
36
Craig Topper77dfe452014-03-02 08:08:51 +000037class X86TTI final : public ImmutablePass, public TargetTransformInfo {
Chandler Carruth664e3542013-01-07 01:37:14 +000038 const X86Subtarget *ST;
39 const X86TargetLowering *TLI;
40
41 /// Estimate the overhead of scalarizing an instruction. Insert and Extract
42 /// are set if the result needs to be inserted and/or extracted from vectors.
43 unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const;
44
45public:
Craig Topper062a2ba2014-04-25 05:30:21 +000046 X86TTI() : ImmutablePass(ID), ST(nullptr), TLI(nullptr) {
Chandler Carruth664e3542013-01-07 01:37:14 +000047 llvm_unreachable("This pass cannot be directly constructed");
48 }
49
50 X86TTI(const X86TargetMachine *TM)
Eric Christopherd9134482014-08-04 21:25:23 +000051 : ImmutablePass(ID), ST(TM->getSubtargetImpl()),
52 TLI(TM->getSubtargetImpl()->getTargetLowering()) {
Chandler Carruth664e3542013-01-07 01:37:14 +000053 initializeX86TTIPass(*PassRegistry::getPassRegistry());
54 }
55
Craig Topper24e685f2014-03-10 05:29:18 +000056 void initializePass() override {
Chandler Carruth664e3542013-01-07 01:37:14 +000057 pushTTIStack(this);
58 }
59
Craig Topper24e685f2014-03-10 05:29:18 +000060 void getAnalysisUsage(AnalysisUsage &AU) const override {
Chandler Carruth664e3542013-01-07 01:37:14 +000061 TargetTransformInfo::getAnalysisUsage(AU);
62 }
63
64 /// Pass identification.
65 static char ID;
66
67 /// Provide necessary pointer adjustments for the two base classes.
Craig Topper24e685f2014-03-10 05:29:18 +000068 void *getAdjustedAnalysisPointer(const void *ID) override {
Chandler Carruth664e3542013-01-07 01:37:14 +000069 if (ID == &TargetTransformInfo::ID)
70 return (TargetTransformInfo*)this;
71 return this;
72 }
73
74 /// \name Scalar TTI Implementations
75 /// @{
Craig Topper24e685f2014-03-10 05:29:18 +000076 PopcntSupportKind getPopcntSupport(unsigned TyWidth) const override;
Chandler Carruth664e3542013-01-07 01:37:14 +000077
78 /// @}
79
80 /// \name Vector TTI Implementations
81 /// @{
82
Craig Topper24e685f2014-03-10 05:29:18 +000083 unsigned getNumberOfRegisters(bool Vector) const override;
84 unsigned getRegisterBitWidth(bool Vector) const override;
Sanjay Patelb653de12014-09-10 17:58:16 +000085 unsigned getMaxInterleaveFactor() const override;
Craig Topper24e685f2014-03-10 05:29:18 +000086 unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty, OperandValueKind,
Karthik Bhat7f33ff72014-08-25 04:56:54 +000087 OperandValueKind, OperandValueProperties,
88 OperandValueProperties) const override;
Craig Topper24e685f2014-03-10 05:29:18 +000089 unsigned getShuffleCost(ShuffleKind Kind, Type *Tp,
90 int Index, Type *SubTp) const override;
91 unsigned getCastInstrCost(unsigned Opcode, Type *Dst,
92 Type *Src) const override;
93 unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
94 Type *CondTy) const override;
95 unsigned getVectorInstrCost(unsigned Opcode, Type *Val,
96 unsigned Index) const override;
97 unsigned getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
98 unsigned AddressSpace) const override;
Elena Demikhovskya3232f72015-01-25 08:44:46 +000099 unsigned getMaskedMemoryOpCost(unsigned Opcode, Type *Src,
100 unsigned Alignment,
101 unsigned AddressSpace) const override;
Chandler Carruth664e3542013-01-07 01:37:14 +0000102
Craig Topper24e685f2014-03-10 05:29:18 +0000103 unsigned getAddressComputationCost(Type *PtrTy,
104 bool IsComplex) const override;
Arnold Schwaighofer6042a262013-07-12 19:16:07 +0000105
Craig Topper24e685f2014-03-10 05:29:18 +0000106 unsigned getReductionCost(unsigned Opcode, Type *Ty,
107 bool IsPairwiseForm) const override;
Craig Topper73156022014-03-02 09:09:27 +0000108
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +0000109 unsigned getIntImmCost(int64_t) const;
110
Craig Topper24e685f2014-03-10 05:29:18 +0000111 unsigned getIntImmCost(const APInt &Imm, Type *Ty) const override;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +0000112
Juergen Ributzkaf0dff492014-03-21 06:04:45 +0000113 unsigned getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
Craig Topper24e685f2014-03-10 05:29:18 +0000114 Type *Ty) const override;
Juergen Ributzkaf0dff492014-03-21 06:04:45 +0000115 unsigned getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
Craig Topper24e685f2014-03-10 05:29:18 +0000116 Type *Ty) const override;
Elena Demikhovsky3fcafa22014-12-14 09:43:50 +0000117 bool isLegalMaskedLoad (Type *DataType, int Consecutive) const override;
118 bool isLegalMaskedStore(Type *DataType, int Consecutive) const override;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +0000119
Chandler Carruth664e3542013-01-07 01:37:14 +0000120 /// @}
121};
122
123} // end anonymous namespace
124
125INITIALIZE_AG_PASS(X86TTI, TargetTransformInfo, "x86tti",
126 "X86 Target Transform Info", true, true, false)
127char X86TTI::ID = 0;
128
129ImmutablePass *
130llvm::createX86TargetTransformInfoPass(const X86TargetMachine *TM) {
131 return new X86TTI(TM);
132}
133
134
135//===----------------------------------------------------------------------===//
136//
137// X86 cost model.
138//
139//===----------------------------------------------------------------------===//
140
Chandler Carruth50a36cd2013-01-07 03:16:03 +0000141X86TTI::PopcntSupportKind X86TTI::getPopcntSupport(unsigned TyWidth) const {
Chandler Carruth664e3542013-01-07 01:37:14 +0000142 assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
143 // TODO: Currently the __builtin_popcount() implementation using SSE3
144 // instructions is inefficient. Once the problem is fixed, we should
Craig Topper0a63e1d2013-09-08 00:47:31 +0000145 // call ST->hasSSE3() instead of ST->hasPOPCNT().
146 return ST->hasPOPCNT() ? PSK_FastHardware : PSK_Software;
Chandler Carruth664e3542013-01-07 01:37:14 +0000147}
148
149unsigned X86TTI::getNumberOfRegisters(bool Vector) const {
Nadav Rotemb1791a72013-01-09 22:29:00 +0000150 if (Vector && !ST->hasSSE1())
151 return 0;
152
Adam Nemet2820a5b2014-07-09 18:22:33 +0000153 if (ST->is64Bit()) {
154 if (Vector && ST->hasAVX512())
155 return 32;
Chandler Carruth664e3542013-01-07 01:37:14 +0000156 return 16;
Adam Nemet2820a5b2014-07-09 18:22:33 +0000157 }
Chandler Carruth664e3542013-01-07 01:37:14 +0000158 return 8;
159}
160
Nadav Rotemb1791a72013-01-09 22:29:00 +0000161unsigned X86TTI::getRegisterBitWidth(bool Vector) const {
162 if (Vector) {
Adam Nemet2820a5b2014-07-09 18:22:33 +0000163 if (ST->hasAVX512()) return 512;
Nadav Rotemb1791a72013-01-09 22:29:00 +0000164 if (ST->hasAVX()) return 256;
165 if (ST->hasSSE1()) return 128;
166 return 0;
167 }
168
169 if (ST->is64Bit())
170 return 64;
171 return 32;
172
173}
174
Sanjay Patelb653de12014-09-10 17:58:16 +0000175unsigned X86TTI::getMaxInterleaveFactor() const {
Nadav Rotemb696c362013-01-09 01:15:42 +0000176 if (ST->isAtom())
177 return 1;
178
179 // Sandybridge and Haswell have multiple execution ports and pipelined
180 // vector units.
181 if (ST->hasAVX())
182 return 4;
183
184 return 2;
185}
186
Karthik Bhat7f33ff72014-08-25 04:56:54 +0000187unsigned X86TTI::getArithmeticInstrCost(
188 unsigned Opcode, Type *Ty, OperandValueKind Op1Info,
189 OperandValueKind Op2Info, OperandValueProperties Opd1PropInfo,
190 OperandValueProperties Opd2PropInfo) const {
Chandler Carruth664e3542013-01-07 01:37:14 +0000191 // Legalize the type.
192 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Ty);
193
194 int ISD = TLI->InstructionOpcodeToISD(Opcode);
195 assert(ISD && "Invalid opcode");
196
Karthik Bhat7f33ff72014-08-25 04:56:54 +0000197 if (ISD == ISD::SDIV &&
198 Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
199 Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) {
200 // On X86, vector signed division by constants power-of-two are
201 // normally expanded to the sequence SRA + SRL + ADD + SRA.
202 // The OperandValue properties many not be same as that of previous
203 // operation;conservatively assume OP_None.
204 unsigned Cost =
205 2 * getArithmeticInstrCost(Instruction::AShr, Ty, Op1Info, Op2Info,
206 TargetTransformInfo::OP_None,
207 TargetTransformInfo::OP_None);
208 Cost += getArithmeticInstrCost(Instruction::LShr, Ty, Op1Info, Op2Info,
209 TargetTransformInfo::OP_None,
210 TargetTransformInfo::OP_None);
211 Cost += getArithmeticInstrCost(Instruction::Add, Ty, Op1Info, Op2Info,
212 TargetTransformInfo::OP_None,
213 TargetTransformInfo::OP_None);
214
215 return Cost;
216 }
217
Benjamin Kramer7c372272014-04-26 14:53:05 +0000218 static const CostTblEntry<MVT::SimpleValueType>
219 AVX2UniformConstCostTable[] = {
220 { ISD::SDIV, MVT::v16i16, 6 }, // vpmulhw sequence
221 { ISD::UDIV, MVT::v16i16, 6 }, // vpmulhuw sequence
222 { ISD::SDIV, MVT::v8i32, 15 }, // vpmuldq sequence
223 { ISD::UDIV, MVT::v8i32, 15 }, // vpmuludq sequence
224 };
225
226 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
227 ST->hasAVX2()) {
228 int Idx = CostTableLookup(AVX2UniformConstCostTable, ISD, LT.second);
229 if (Idx != -1)
230 return LT.first * AVX2UniformConstCostTable[Idx].Cost;
231 }
232
Elena Demikhovsky27012472014-09-16 07:57:37 +0000233 static const CostTblEntry<MVT::SimpleValueType> AVX512CostTable[] = {
234 { ISD::SHL, MVT::v16i32, 1 },
235 { ISD::SRL, MVT::v16i32, 1 },
236 { ISD::SRA, MVT::v16i32, 1 },
237 { ISD::SHL, MVT::v8i64, 1 },
238 { ISD::SRL, MVT::v8i64, 1 },
239 { ISD::SRA, MVT::v8i64, 1 },
240 };
241
Benjamin Kramer21585fd2013-08-09 19:33:32 +0000242 static const CostTblEntry<MVT::SimpleValueType> AVX2CostTable[] = {
Michael Liao70dd7f92013-03-20 22:01:10 +0000243 // Shifts on v4i64/v8i32 on AVX2 is legal even though we declare to
244 // customize them to detect the cases where shift amount is a scalar one.
245 { ISD::SHL, MVT::v4i32, 1 },
246 { ISD::SRL, MVT::v4i32, 1 },
247 { ISD::SRA, MVT::v4i32, 1 },
248 { ISD::SHL, MVT::v8i32, 1 },
249 { ISD::SRL, MVT::v8i32, 1 },
250 { ISD::SRA, MVT::v8i32, 1 },
251 { ISD::SHL, MVT::v2i64, 1 },
252 { ISD::SRL, MVT::v2i64, 1 },
253 { ISD::SHL, MVT::v4i64, 1 },
254 { ISD::SRL, MVT::v4i64, 1 },
Arnold Schwaighofere9b50162013-04-03 21:46:05 +0000255
256 { ISD::SHL, MVT::v32i8, 42 }, // cmpeqb sequence.
257 { ISD::SHL, MVT::v16i16, 16*10 }, // Scalarized.
258
259 { ISD::SRL, MVT::v32i8, 32*10 }, // Scalarized.
260 { ISD::SRL, MVT::v16i16, 8*10 }, // Scalarized.
261
262 { ISD::SRA, MVT::v32i8, 32*10 }, // Scalarized.
263 { ISD::SRA, MVT::v16i16, 16*10 }, // Scalarized.
264 { ISD::SRA, MVT::v4i64, 4*10 }, // Scalarized.
Arnold Schwaighofera04b9ef2013-06-25 19:14:09 +0000265
266 // Vectorizing division is a bad idea. See the SSE2 table for more comments.
267 { ISD::SDIV, MVT::v32i8, 32*20 },
268 { ISD::SDIV, MVT::v16i16, 16*20 },
269 { ISD::SDIV, MVT::v8i32, 8*20 },
270 { ISD::SDIV, MVT::v4i64, 4*20 },
271 { ISD::UDIV, MVT::v32i8, 32*20 },
272 { ISD::UDIV, MVT::v16i16, 16*20 },
273 { ISD::UDIV, MVT::v8i32, 8*20 },
274 { ISD::UDIV, MVT::v4i64, 4*20 },
Michael Liao70dd7f92013-03-20 22:01:10 +0000275 };
276
Elena Demikhovsky27012472014-09-16 07:57:37 +0000277 if (ST->hasAVX512()) {
278 int Idx = CostTableLookup(AVX512CostTable, ISD, LT.second);
279 if (Idx != -1)
280 return LT.first * AVX512CostTable[Idx].Cost;
281 }
Michael Liao70dd7f92013-03-20 22:01:10 +0000282 // Look for AVX2 lowering tricks.
283 if (ST->hasAVX2()) {
Andrea Di Biagiob7882b32014-02-12 23:43:47 +0000284 if (ISD == ISD::SHL && LT.second == MVT::v16i16 &&
285 (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
286 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
287 // On AVX2, a packed v16i16 shift left by a constant build_vector
288 // is lowered into a vector multiply (vpmullw).
289 return LT.first;
290
Benjamin Kramer21585fd2013-08-09 19:33:32 +0000291 int Idx = CostTableLookup(AVX2CostTable, ISD, LT.second);
Michael Liao70dd7f92013-03-20 22:01:10 +0000292 if (Idx != -1)
293 return LT.first * AVX2CostTable[Idx].Cost;
294 }
295
Benjamin Kramer21585fd2013-08-09 19:33:32 +0000296 static const CostTblEntry<MVT::SimpleValueType>
297 SSE2UniformConstCostTable[] = {
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000298 // We don't correctly identify costs of casts because they are marked as
299 // custom.
300 // Constant splats are cheaper for the following instructions.
301 { ISD::SHL, MVT::v16i8, 1 }, // psllw.
302 { ISD::SHL, MVT::v8i16, 1 }, // psllw.
303 { ISD::SHL, MVT::v4i32, 1 }, // pslld
304 { ISD::SHL, MVT::v2i64, 1 }, // psllq.
305
306 { ISD::SRL, MVT::v16i8, 1 }, // psrlw.
307 { ISD::SRL, MVT::v8i16, 1 }, // psrlw.
308 { ISD::SRL, MVT::v4i32, 1 }, // psrld.
309 { ISD::SRL, MVT::v2i64, 1 }, // psrlq.
310
311 { ISD::SRA, MVT::v16i8, 4 }, // psrlw, pand, pxor, psubb.
312 { ISD::SRA, MVT::v8i16, 1 }, // psraw.
313 { ISD::SRA, MVT::v4i32, 1 }, // psrad.
Benjamin Kramer7c372272014-04-26 14:53:05 +0000314
315 { ISD::SDIV, MVT::v8i16, 6 }, // pmulhw sequence
316 { ISD::UDIV, MVT::v8i16, 6 }, // pmulhuw sequence
Benjamin Kramerce4b3fe2014-04-27 18:47:54 +0000317 { ISD::SDIV, MVT::v4i32, 19 }, // pmuludq sequence
Benjamin Kramer7c372272014-04-26 14:53:05 +0000318 { ISD::UDIV, MVT::v4i32, 15 }, // pmuludq sequence
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000319 };
320
321 if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
322 ST->hasSSE2()) {
Benjamin Kramerce4b3fe2014-04-27 18:47:54 +0000323 // pmuldq sequence.
324 if (ISD == ISD::SDIV && LT.second == MVT::v4i32 && ST->hasSSE41())
325 return LT.first * 15;
326
Benjamin Kramer21585fd2013-08-09 19:33:32 +0000327 int Idx = CostTableLookup(SSE2UniformConstCostTable, ISD, LT.second);
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000328 if (Idx != -1)
329 return LT.first * SSE2UniformConstCostTable[Idx].Cost;
330 }
331
Andrea Di Biagiob7882b32014-02-12 23:43:47 +0000332 if (ISD == ISD::SHL &&
333 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) {
334 EVT VT = LT.second;
335 if ((VT == MVT::v8i16 && ST->hasSSE2()) ||
336 (VT == MVT::v4i32 && ST->hasSSE41()))
337 // Vector shift left by non uniform constant can be lowered
338 // into vector multiply (pmullw/pmulld).
339 return LT.first;
340 if (VT == MVT::v4i32 && ST->hasSSE2())
341 // A vector shift left by non uniform constant is converted
342 // into a vector multiply; the new multiply is eventually
343 // lowered into a sequence of shuffles and 2 x pmuludq.
344 ISD = ISD::MUL;
345 }
Arnold Schwaighofer44f902e2013-04-04 23:26:24 +0000346
Benjamin Kramer21585fd2013-08-09 19:33:32 +0000347 static const CostTblEntry<MVT::SimpleValueType> SSE2CostTable[] = {
Arnold Schwaighofere9b50162013-04-03 21:46:05 +0000348 // We don't correctly identify costs of casts because they are marked as
349 // custom.
350 // For some cases, where the shift amount is a scalar we would be able
351 // to generate better code. Unfortunately, when this is the case the value
352 // (the splat) will get hoisted out of the loop, thereby making it invisible
353 // to ISel. The cost model must return worst case assumptions because it is
354 // used for vectorization and we don't want to make vectorized code worse
355 // than scalar code.
356 { ISD::SHL, MVT::v16i8, 30 }, // cmpeqb sequence.
357 { ISD::SHL, MVT::v8i16, 8*10 }, // Scalarized.
358 { ISD::SHL, MVT::v4i32, 2*5 }, // We optimized this using mul.
359 { ISD::SHL, MVT::v2i64, 2*10 }, // Scalarized.
Michael Liao5bf95782014-12-04 05:20:33 +0000360 { ISD::SHL, MVT::v4i64, 4*10 }, // Scalarized.
Arnold Schwaighofere9b50162013-04-03 21:46:05 +0000361
362 { ISD::SRL, MVT::v16i8, 16*10 }, // Scalarized.
363 { ISD::SRL, MVT::v8i16, 8*10 }, // Scalarized.
364 { ISD::SRL, MVT::v4i32, 4*10 }, // Scalarized.
365 { ISD::SRL, MVT::v2i64, 2*10 }, // Scalarized.
366
367 { ISD::SRA, MVT::v16i8, 16*10 }, // Scalarized.
368 { ISD::SRA, MVT::v8i16, 8*10 }, // Scalarized.
369 { ISD::SRA, MVT::v4i32, 4*10 }, // Scalarized.
370 { ISD::SRA, MVT::v2i64, 2*10 }, // Scalarized.
Arnold Schwaighofera04b9ef2013-06-25 19:14:09 +0000371
372 // It is not a good idea to vectorize division. We have to scalarize it and
373 // in the process we will often end up having to spilling regular
374 // registers. The overhead of division is going to dominate most kernels
375 // anyways so try hard to prevent vectorization of division - it is
376 // generally a bad idea. Assume somewhat arbitrarily that we have to be able
377 // to hide "20 cycles" for each lane.
378 { ISD::SDIV, MVT::v16i8, 16*20 },
379 { ISD::SDIV, MVT::v8i16, 8*20 },
380 { ISD::SDIV, MVT::v4i32, 4*20 },
381 { ISD::SDIV, MVT::v2i64, 2*20 },
382 { ISD::UDIV, MVT::v16i8, 16*20 },
383 { ISD::UDIV, MVT::v8i16, 8*20 },
384 { ISD::UDIV, MVT::v4i32, 4*20 },
385 { ISD::UDIV, MVT::v2i64, 2*20 },
Arnold Schwaighofere9b50162013-04-03 21:46:05 +0000386 };
387
388 if (ST->hasSSE2()) {
Benjamin Kramer21585fd2013-08-09 19:33:32 +0000389 int Idx = CostTableLookup(SSE2CostTable, ISD, LT.second);
Arnold Schwaighofere9b50162013-04-03 21:46:05 +0000390 if (Idx != -1)
391 return LT.first * SSE2CostTable[Idx].Cost;
392 }
393
Benjamin Kramer21585fd2013-08-09 19:33:32 +0000394 static const CostTblEntry<MVT::SimpleValueType> AVX1CostTable[] = {
Renato Goline1fb0592013-01-20 20:57:20 +0000395 // We don't have to scalarize unsupported ops. We can issue two half-sized
396 // operations and we only need to extract the upper YMM half.
397 // Two ops + 1 extract + 1 insert = 4.
Andrea Di Biagiob7882b32014-02-12 23:43:47 +0000398 { ISD::MUL, MVT::v16i16, 4 },
Renato Goline1fb0592013-01-20 20:57:20 +0000399 { ISD::MUL, MVT::v8i32, 4 },
400 { ISD::SUB, MVT::v8i32, 4 },
401 { ISD::ADD, MVT::v8i32, 4 },
Renato Goline1fb0592013-01-20 20:57:20 +0000402 { ISD::SUB, MVT::v4i64, 4 },
403 { ISD::ADD, MVT::v4i64, 4 },
Arnold Schwaighofer20ef54f2013-03-02 04:02:52 +0000404 // A v4i64 multiply is custom lowered as two split v2i64 vectors that then
405 // are lowered as a series of long multiplies(3), shifts(4) and adds(2)
406 // Because we believe v4i64 to be a legal type, we must also include the
407 // split factor of two in the cost table. Therefore, the cost here is 18
408 // instead of 9.
409 { ISD::MUL, MVT::v4i64, 18 },
410 };
Chandler Carruth664e3542013-01-07 01:37:14 +0000411
412 // Look for AVX1 lowering tricks.
Arnold Schwaighofer20ef54f2013-03-02 04:02:52 +0000413 if (ST->hasAVX() && !ST->hasAVX2()) {
Andrea Di Biagiob7882b32014-02-12 23:43:47 +0000414 EVT VT = LT.second;
415
416 // v16i16 and v8i32 shifts by non-uniform constants are lowered into a
417 // sequence of extract + two vector multiply + insert.
418 if (ISD == ISD::SHL && (VT == MVT::v8i32 || VT == MVT::v16i16) &&
419 Op2Info == TargetTransformInfo::OK_NonUniformConstantValue)
420 ISD = ISD::MUL;
421
422 int Idx = CostTableLookup(AVX1CostTable, ISD, VT);
Renato Goline1fb0592013-01-20 20:57:20 +0000423 if (Idx != -1)
424 return LT.first * AVX1CostTable[Idx].Cost;
Chandler Carruth664e3542013-01-07 01:37:14 +0000425 }
Arnold Schwaighofer20ef54f2013-03-02 04:02:52 +0000426
427 // Custom lowering of vectors.
Benjamin Kramer21585fd2013-08-09 19:33:32 +0000428 static const CostTblEntry<MVT::SimpleValueType> CustomLowered[] = {
Arnold Schwaighofer20ef54f2013-03-02 04:02:52 +0000429 // A v2i64/v4i64 and multiply is custom lowered as a series of long
430 // multiplies(3), shifts(4) and adds(2).
431 { ISD::MUL, MVT::v2i64, 9 },
432 { ISD::MUL, MVT::v4i64, 9 },
433 };
Benjamin Kramer21585fd2013-08-09 19:33:32 +0000434 int Idx = CostTableLookup(CustomLowered, ISD, LT.second);
Arnold Schwaighofer20ef54f2013-03-02 04:02:52 +0000435 if (Idx != -1)
436 return LT.first * CustomLowered[Idx].Cost;
437
438 // Special lowering of v4i32 mul on sse2, sse3: Lower v4i32 mul as 2x shuffle,
439 // 2x pmuludq, 2x shuffle.
440 if (ISD == ISD::MUL && LT.second == MVT::v4i32 && ST->hasSSE2() &&
441 !ST->hasSSE41())
Andrea Di Biagiob7882b32014-02-12 23:43:47 +0000442 return LT.first * 6;
Arnold Schwaighofer20ef54f2013-03-02 04:02:52 +0000443
Chandler Carruth664e3542013-01-07 01:37:14 +0000444 // Fallback to the default implementation.
Arnold Schwaighoferb9773872013-04-04 23:26:21 +0000445 return TargetTransformInfo::getArithmeticInstrCost(Opcode, Ty, Op1Info,
446 Op2Info);
Chandler Carruth664e3542013-01-07 01:37:14 +0000447}
448
449unsigned X86TTI::getShuffleCost(ShuffleKind Kind, Type *Tp, int Index,
450 Type *SubTp) const {
Karthik Bhate03a25d2014-06-20 04:32:48 +0000451 // We only estimate the cost of reverse and alternate shuffles.
452 if (Kind != SK_Reverse && Kind != SK_Alternate)
Chandler Carruth664e3542013-01-07 01:37:14 +0000453 return TargetTransformInfo::getShuffleCost(Kind, Tp, Index, SubTp);
454
Karthik Bhate03a25d2014-06-20 04:32:48 +0000455 if (Kind == SK_Reverse) {
456 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Tp);
457 unsigned Cost = 1;
458 if (LT.second.getSizeInBits() > 128)
459 Cost = 3; // Extract + insert + copy.
Chandler Carruth664e3542013-01-07 01:37:14 +0000460
Karthik Bhate03a25d2014-06-20 04:32:48 +0000461 // Multiple by the number of parts.
462 return Cost * LT.first;
463 }
464
465 if (Kind == SK_Alternate) {
Andrea Di Biagioc8e8bda2014-07-03 22:24:18 +0000466 // 64-bit packed float vectors (v2f32) are widened to type v4f32.
467 // 64-bit packed integer vectors (v2i32) are promoted to type v2i64.
Karthik Bhate03a25d2014-06-20 04:32:48 +0000468 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Tp);
469
Andrea Di Biagioc8e8bda2014-07-03 22:24:18 +0000470 // The backend knows how to generate a single VEX.256 version of
471 // instruction VPBLENDW if the target supports AVX2.
472 if (ST->hasAVX2() && LT.second == MVT::v16i16)
473 return LT.first;
474
475 static const CostTblEntry<MVT::SimpleValueType> AVXAltShuffleTbl[] = {
476 {ISD::VECTOR_SHUFFLE, MVT::v4i64, 1}, // vblendpd
477 {ISD::VECTOR_SHUFFLE, MVT::v4f64, 1}, // vblendpd
478
479 {ISD::VECTOR_SHUFFLE, MVT::v8i32, 1}, // vblendps
480 {ISD::VECTOR_SHUFFLE, MVT::v8f32, 1}, // vblendps
481
482 // This shuffle is custom lowered into a sequence of:
483 // 2x vextractf128 , 2x vpblendw , 1x vinsertf128
484 {ISD::VECTOR_SHUFFLE, MVT::v16i16, 5},
485
486 // This shuffle is custom lowered into a long sequence of:
487 // 2x vextractf128 , 4x vpshufb , 2x vpor , 1x vinsertf128
488 {ISD::VECTOR_SHUFFLE, MVT::v32i8, 9}
489 };
490
491 if (ST->hasAVX()) {
492 int Idx = CostTableLookup(AVXAltShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second);
493 if (Idx != -1)
494 return LT.first * AVXAltShuffleTbl[Idx].Cost;
495 }
496
497 static const CostTblEntry<MVT::SimpleValueType> SSE41AltShuffleTbl[] = {
498 // These are lowered into movsd.
499 {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
500 {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
501
502 // packed float vectors with four elements are lowered into BLENDI dag
503 // nodes. A v4i32/v4f32 BLENDI generates a single 'blendps'/'blendpd'.
504 {ISD::VECTOR_SHUFFLE, MVT::v4i32, 1},
505 {ISD::VECTOR_SHUFFLE, MVT::v4f32, 1},
506
507 // This shuffle generates a single pshufw.
508 {ISD::VECTOR_SHUFFLE, MVT::v8i16, 1},
509
510 // There is no instruction that matches a v16i8 alternate shuffle.
511 // The backend will expand it into the sequence 'pshufb + pshufb + or'.
512 {ISD::VECTOR_SHUFFLE, MVT::v16i8, 3}
513 };
514
515 if (ST->hasSSE41()) {
516 int Idx = CostTableLookup(SSE41AltShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second);
517 if (Idx != -1)
518 return LT.first * SSE41AltShuffleTbl[Idx].Cost;
519 }
520
521 static const CostTblEntry<MVT::SimpleValueType> SSSE3AltShuffleTbl[] = {
522 {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1}, // movsd
523 {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1}, // movsd
524
525 // SSE3 doesn't have 'blendps'. The following shuffles are expanded into
526 // the sequence 'shufps + pshufd'
527 {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2},
528 {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2},
529
530 {ISD::VECTOR_SHUFFLE, MVT::v8i16, 3}, // pshufb + pshufb + or
531 {ISD::VECTOR_SHUFFLE, MVT::v16i8, 3} // pshufb + pshufb + or
532 };
Michael Liao5bf95782014-12-04 05:20:33 +0000533
Andrea Di Biagioc8e8bda2014-07-03 22:24:18 +0000534 if (ST->hasSSSE3()) {
535 int Idx = CostTableLookup(SSSE3AltShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second);
536 if (Idx != -1)
537 return LT.first * SSSE3AltShuffleTbl[Idx].Cost;
538 }
539
540 static const CostTblEntry<MVT::SimpleValueType> SSEAltShuffleTbl[] = {
541 {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1}, // movsd
542 {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1}, // movsd
543
544 {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2}, // shufps + pshufd
545 {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2}, // shufps + pshufd
Michael Liao5bf95782014-12-04 05:20:33 +0000546
Andrea Di Biagioc8e8bda2014-07-03 22:24:18 +0000547 // This is expanded into a long sequence of four extract + four insert.
548 {ISD::VECTOR_SHUFFLE, MVT::v8i16, 8}, // 4 x pextrw + 4 pinsrw.
549
550 // 8 x (pinsrw + pextrw + and + movb + movzb + or)
551 {ISD::VECTOR_SHUFFLE, MVT::v16i8, 48}
552 };
553
Michael Liao5bf95782014-12-04 05:20:33 +0000554 // Fall-back (SSE3 and SSE2).
Andrea Di Biagioc8e8bda2014-07-03 22:24:18 +0000555 int Idx = CostTableLookup(SSEAltShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second);
556 if (Idx != -1)
557 return LT.first * SSEAltShuffleTbl[Idx].Cost;
558 return TargetTransformInfo::getShuffleCost(Kind, Tp, Index, SubTp);
Karthik Bhate03a25d2014-06-20 04:32:48 +0000559 }
560
561 return TargetTransformInfo::getShuffleCost(Kind, Tp, Index, SubTp);
Chandler Carruth664e3542013-01-07 01:37:14 +0000562}
563
564unsigned X86TTI::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) const {
565 int ISD = TLI->InstructionOpcodeToISD(Opcode);
566 assert(ISD && "Invalid opcode");
567
Arnold Schwaighoferf47d2d72013-04-08 18:05:48 +0000568 std::pair<unsigned, MVT> LTSrc = TLI->getTypeLegalizationCost(Src);
569 std::pair<unsigned, MVT> LTDest = TLI->getTypeLegalizationCost(Dst);
570
Benjamin Kramer21585fd2013-08-09 19:33:32 +0000571 static const TypeConversionCostTblEntry<MVT::SimpleValueType>
572 SSE2ConvTbl[] = {
Arnold Schwaighoferf47d2d72013-04-08 18:05:48 +0000573 // These are somewhat magic numbers justified by looking at the output of
574 // Intel's IACA, running some kernels and making sure when we take
575 // legalization into account the throughput will be overestimated.
576 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
577 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
578 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
579 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
580 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
581 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
582 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
583 { ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
584 // There are faster sequences for float conversions.
585 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
Quentin Colombet360460b2014-11-11 02:23:47 +0000586 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 8 },
Arnold Schwaighoferf47d2d72013-04-08 18:05:48 +0000587 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
588 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
589 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
590 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 15 },
591 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
592 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
593 };
594
595 if (ST->hasSSE2() && !ST->hasAVX()) {
Benjamin Kramer21585fd2013-08-09 19:33:32 +0000596 int Idx =
597 ConvertCostTableLookup(SSE2ConvTbl, ISD, LTDest.second, LTSrc.second);
Arnold Schwaighoferf47d2d72013-04-08 18:05:48 +0000598 if (Idx != -1)
599 return LTSrc.first * SSE2ConvTbl[Idx].Cost;
600 }
601
Elena Demikhovsky27012472014-09-16 07:57:37 +0000602 static const TypeConversionCostTblEntry<MVT::SimpleValueType>
603 AVX512ConversionTbl[] = {
604 { ISD::FP_EXTEND, MVT::v8f64, MVT::v8f32, 1 },
605 { ISD::FP_EXTEND, MVT::v8f64, MVT::v16f32, 3 },
606 { ISD::FP_ROUND, MVT::v8f32, MVT::v8f64, 1 },
607 { ISD::FP_ROUND, MVT::v16f32, MVT::v8f64, 3 },
608
609 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 1 },
610 { ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 1 },
611 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i64, 1 },
612 { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 1 },
613 { ISD::TRUNCATE, MVT::v16i32, MVT::v8i64, 4 },
614
615 // v16i1 -> v16i32 - load + broadcast
616 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i1, 2 },
617 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i1, 2 },
618
619 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 1 },
620 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 1 },
621 { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
622 { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
623 { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v16i32, 3 },
624 { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v16i32, 3 },
625
Elena Demikhovskyd5e95b52014-11-13 11:46:16 +0000626 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i1, 3 },
627 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i8, 2 },
628 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i16, 2 },
629 { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i32, 1 },
630 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i1, 4 },
631 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i16, 2 },
632 { ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i32, 1 },
Elena Demikhovsky27012472014-09-16 07:57:37 +0000633 };
634
635 if (ST->hasAVX512()) {
636 int Idx = ConvertCostTableLookup(AVX512ConversionTbl, ISD, LTDest.second,
637 LTSrc.second);
638 if (Idx != -1)
639 return AVX512ConversionTbl[Idx].Cost;
640 }
Chandler Carruth664e3542013-01-07 01:37:14 +0000641 EVT SrcTy = TLI->getValueType(Src);
642 EVT DstTy = TLI->getValueType(Dst);
643
Arnold Schwaighoferc0c7ff42013-04-17 20:04:53 +0000644 // The function getSimpleVT only handles simple value types.
645 if (!SrcTy.isSimple() || !DstTy.isSimple())
646 return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src);
647
Benjamin Kramer21585fd2013-08-09 19:33:32 +0000648 static const TypeConversionCostTblEntry<MVT::SimpleValueType>
Tim Northoverf0e21612014-02-06 18:18:36 +0000649 AVX2ConversionTbl[] = {
650 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 1 },
651 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 1 },
652 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 3 },
653 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 3 },
654 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
655 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
656 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 1 },
657 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 1 },
658 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 3 },
659 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 3 },
660 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 3 },
661 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 3 },
662 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
663 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
664 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 1 },
665 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 1 },
666
667 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i64, 2 },
668 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i64, 2 },
669 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 2 },
670 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 2 },
671 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 2 },
672 { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 4 },
Elena Demikhovsky27012472014-09-16 07:57:37 +0000673
674 { ISD::FP_EXTEND, MVT::v8f64, MVT::v8f32, 3 },
675 { ISD::FP_ROUND, MVT::v8f32, MVT::v8f64, 3 },
Quentin Colombet360460b2014-11-11 02:23:47 +0000676
677 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 8 },
Tim Northoverf0e21612014-02-06 18:18:36 +0000678 };
679
680 static const TypeConversionCostTblEntry<MVT::SimpleValueType>
Benjamin Kramer21585fd2013-08-09 19:33:32 +0000681 AVXConversionTbl[] = {
Tim Northoverf0e21612014-02-06 18:18:36 +0000682 { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
683 { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
684 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 7 },
685 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 4 },
686 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 7 },
687 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 4 },
688 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 4 },
689 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 4 },
690 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 6 },
691 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 4 },
692 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8, 6 },
693 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8, 4 },
694 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 6 },
695 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
696 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 4 },
697 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 4 },
698
699 { ISD::TRUNCATE, MVT::v4i8, MVT::v4i64, 4 },
700 { ISD::TRUNCATE, MVT::v4i16, MVT::v4i64, 4 },
701 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 4 },
702 { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 4 },
703 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 5 },
704 { ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 4 },
705 { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 9 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +0000706
707 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i1, 8 },
708 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i8, 8 },
709 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 5 },
710 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i32, 1 },
711 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 },
712 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 },
713 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 3 },
714 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
715 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i1, 3 },
716 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i8, 3 },
717 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i16, 3 },
718 { ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i32, 1 },
719
720 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i1, 6 },
721 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8, 5 },
722 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 5 },
723 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 9 },
724 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i1, 7 },
725 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 2 },
726 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
727 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 6 },
728 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i1, 7 },
729 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i8, 2 },
730 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i16, 2 },
731 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i32, 6 },
Quentin Colombet85b904d2014-03-27 22:27:41 +0000732 // The generic code to compute the scalar overhead is currently broken.
733 // Workaround this limitation by estimating the scalarization overhead
734 // here. We have roughly 10 instructions per scalar element.
735 // Multiply that by the vector width.
736 // FIXME: remove that when PR19268 is fixed.
Quentin Colombet3914bf52014-03-27 00:52:16 +0000737 { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
738 { ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 4*10 },
Benjamin Kramer52ceb442013-04-01 10:23:49 +0000739
Jim Grosbach72fbde82014-03-27 00:04:11 +0000740 { ISD::FP_TO_SINT, MVT::v8i8, MVT::v8f32, 7 },
Renato Goline1fb0592013-01-20 20:57:20 +0000741 { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 1 },
Adam Nemet6dafe972014-03-30 18:07:13 +0000742 // This node is expanded into scalarized operations but BasicTTI is overly
743 // optimistic estimating its cost. It computes 3 per element (one
744 // vector-extract, one scalar conversion and one vector-insert). The
745 // problem is that the inserts form a read-modify-write chain so latency
746 // should be factored in too. Inflating the cost per element by 1.
747 { ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f32, 8*4 },
Adam Nemet10c4ce22014-03-31 21:54:48 +0000748 { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f64, 4*4 },
Chandler Carruth664e3542013-01-07 01:37:14 +0000749 };
750
Tim Northoverf0e21612014-02-06 18:18:36 +0000751 if (ST->hasAVX2()) {
752 int Idx = ConvertCostTableLookup(AVX2ConversionTbl, ISD,
753 DstTy.getSimpleVT(), SrcTy.getSimpleVT());
754 if (Idx != -1)
755 return AVX2ConversionTbl[Idx].Cost;
756 }
757
Chandler Carruth664e3542013-01-07 01:37:14 +0000758 if (ST->hasAVX()) {
Benjamin Kramer21585fd2013-08-09 19:33:32 +0000759 int Idx = ConvertCostTableLookup(AVXConversionTbl, ISD, DstTy.getSimpleVT(),
760 SrcTy.getSimpleVT());
Renato Goline1fb0592013-01-20 20:57:20 +0000761 if (Idx != -1)
762 return AVXConversionTbl[Idx].Cost;
Chandler Carruth664e3542013-01-07 01:37:14 +0000763 }
764
765 return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src);
766}
767
768unsigned X86TTI::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
769 Type *CondTy) const {
770 // Legalize the type.
771 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(ValTy);
772
773 MVT MTy = LT.second;
774
775 int ISD = TLI->InstructionOpcodeToISD(Opcode);
776 assert(ISD && "Invalid opcode");
777
Benjamin Kramer21585fd2013-08-09 19:33:32 +0000778 static const CostTblEntry<MVT::SimpleValueType> SSE42CostTbl[] = {
Renato Goline1fb0592013-01-20 20:57:20 +0000779 { ISD::SETCC, MVT::v2f64, 1 },
780 { ISD::SETCC, MVT::v4f32, 1 },
781 { ISD::SETCC, MVT::v2i64, 1 },
782 { ISD::SETCC, MVT::v4i32, 1 },
783 { ISD::SETCC, MVT::v8i16, 1 },
784 { ISD::SETCC, MVT::v16i8, 1 },
Chandler Carruth664e3542013-01-07 01:37:14 +0000785 };
786
Benjamin Kramer21585fd2013-08-09 19:33:32 +0000787 static const CostTblEntry<MVT::SimpleValueType> AVX1CostTbl[] = {
Renato Goline1fb0592013-01-20 20:57:20 +0000788 { ISD::SETCC, MVT::v4f64, 1 },
789 { ISD::SETCC, MVT::v8f32, 1 },
Chandler Carruth664e3542013-01-07 01:37:14 +0000790 // AVX1 does not support 8-wide integer compare.
Renato Goline1fb0592013-01-20 20:57:20 +0000791 { ISD::SETCC, MVT::v4i64, 4 },
792 { ISD::SETCC, MVT::v8i32, 4 },
793 { ISD::SETCC, MVT::v16i16, 4 },
794 { ISD::SETCC, MVT::v32i8, 4 },
Chandler Carruth664e3542013-01-07 01:37:14 +0000795 };
796
Benjamin Kramer21585fd2013-08-09 19:33:32 +0000797 static const CostTblEntry<MVT::SimpleValueType> AVX2CostTbl[] = {
Renato Goline1fb0592013-01-20 20:57:20 +0000798 { ISD::SETCC, MVT::v4i64, 1 },
799 { ISD::SETCC, MVT::v8i32, 1 },
800 { ISD::SETCC, MVT::v16i16, 1 },
801 { ISD::SETCC, MVT::v32i8, 1 },
Chandler Carruth664e3542013-01-07 01:37:14 +0000802 };
803
Elena Demikhovsky27012472014-09-16 07:57:37 +0000804 static const CostTblEntry<MVT::SimpleValueType> AVX512CostTbl[] = {
805 { ISD::SETCC, MVT::v8i64, 1 },
806 { ISD::SETCC, MVT::v16i32, 1 },
807 { ISD::SETCC, MVT::v8f64, 1 },
808 { ISD::SETCC, MVT::v16f32, 1 },
809 };
810
811 if (ST->hasAVX512()) {
812 int Idx = CostTableLookup(AVX512CostTbl, ISD, MTy);
813 if (Idx != -1)
814 return LT.first * AVX512CostTbl[Idx].Cost;
815 }
816
Chandler Carruth664e3542013-01-07 01:37:14 +0000817 if (ST->hasAVX2()) {
Benjamin Kramer21585fd2013-08-09 19:33:32 +0000818 int Idx = CostTableLookup(AVX2CostTbl, ISD, MTy);
Renato Goline1fb0592013-01-20 20:57:20 +0000819 if (Idx != -1)
820 return LT.first * AVX2CostTbl[Idx].Cost;
Chandler Carruth664e3542013-01-07 01:37:14 +0000821 }
822
823 if (ST->hasAVX()) {
Benjamin Kramer21585fd2013-08-09 19:33:32 +0000824 int Idx = CostTableLookup(AVX1CostTbl, ISD, MTy);
Renato Goline1fb0592013-01-20 20:57:20 +0000825 if (Idx != -1)
826 return LT.first * AVX1CostTbl[Idx].Cost;
Chandler Carruth664e3542013-01-07 01:37:14 +0000827 }
828
829 if (ST->hasSSE42()) {
Benjamin Kramer21585fd2013-08-09 19:33:32 +0000830 int Idx = CostTableLookup(SSE42CostTbl, ISD, MTy);
Renato Goline1fb0592013-01-20 20:57:20 +0000831 if (Idx != -1)
832 return LT.first * SSE42CostTbl[Idx].Cost;
Chandler Carruth664e3542013-01-07 01:37:14 +0000833 }
834
835 return TargetTransformInfo::getCmpSelInstrCost(Opcode, ValTy, CondTy);
836}
837
838unsigned X86TTI::getVectorInstrCost(unsigned Opcode, Type *Val,
839 unsigned Index) const {
840 assert(Val->isVectorTy() && "This must be a vector type");
841
842 if (Index != -1U) {
843 // Legalize the type.
844 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Val);
845
846 // This type is legalized to a scalar type.
847 if (!LT.second.isVector())
848 return 0;
849
850 // The type may be split. Normalize the index to the new type.
851 unsigned Width = LT.second.getVectorNumElements();
852 Index = Index % Width;
853
854 // Floating point scalars are already located in index #0.
855 if (Val->getScalarType()->isFloatingPointTy() && Index == 0)
856 return 0;
857 }
858
859 return TargetTransformInfo::getVectorInstrCost(Opcode, Val, Index);
860}
861
Nadav Rotemf9ecbcb2013-06-27 17:52:04 +0000862unsigned X86TTI::getScalarizationOverhead(Type *Ty, bool Insert,
863 bool Extract) const {
864 assert (Ty->isVectorTy() && "Can only scalarize vectors");
865 unsigned Cost = 0;
866
867 for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) {
868 if (Insert)
869 Cost += TopTTI->getVectorInstrCost(Instruction::InsertElement, Ty, i);
870 if (Extract)
871 Cost += TopTTI->getVectorInstrCost(Instruction::ExtractElement, Ty, i);
872 }
873
874 return Cost;
875}
876
Chandler Carruth664e3542013-01-07 01:37:14 +0000877unsigned X86TTI::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
878 unsigned AddressSpace) const {
Alp Tokerf907b892013-12-05 05:44:44 +0000879 // Handle non-power-of-two vectors such as <3 x float>
Nadav Rotemf9ecbcb2013-06-27 17:52:04 +0000880 if (VectorType *VTy = dyn_cast<VectorType>(Src)) {
881 unsigned NumElem = VTy->getVectorNumElements();
882
883 // Handle a few common cases:
884 // <3 x float>
885 if (NumElem == 3 && VTy->getScalarSizeInBits() == 32)
886 // Cost = 64 bit store + extract + 32 bit store.
887 return 3;
888
889 // <3 x double>
890 if (NumElem == 3 && VTy->getScalarSizeInBits() == 64)
891 // Cost = 128 bit store + unpack + 64 bit store.
892 return 3;
893
Alp Tokerf907b892013-12-05 05:44:44 +0000894 // Assume that all other non-power-of-two numbers are scalarized.
Nadav Rotemf9ecbcb2013-06-27 17:52:04 +0000895 if (!isPowerOf2_32(NumElem)) {
896 unsigned Cost = TargetTransformInfo::getMemoryOpCost(Opcode,
897 VTy->getScalarType(),
898 Alignment,
899 AddressSpace);
900 unsigned SplitCost = getScalarizationOverhead(Src,
901 Opcode == Instruction::Load,
902 Opcode==Instruction::Store);
903 return NumElem * Cost + SplitCost;
904 }
905 }
906
Chandler Carruth664e3542013-01-07 01:37:14 +0000907 // Legalize the type.
908 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Src);
909 assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
910 "Invalid Opcode");
911
912 // Each load/store unit costs 1.
913 unsigned Cost = LT.first * 1;
914
915 // On Sandybridge 256bit load/stores are double pumped
916 // (but not on Haswell).
917 if (LT.second.getSizeInBits() > 128 && !ST->hasAVX2())
918 Cost*=2;
919
920 return Cost;
921}
Arnold Schwaighofer6042a262013-07-12 19:16:07 +0000922
Elena Demikhovskya3232f72015-01-25 08:44:46 +0000923unsigned X86TTI::getMaskedMemoryOpCost(unsigned Opcode, Type *SrcTy,
924 unsigned Alignment,
925 unsigned AddressSpace) const {
926 VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy);
927 if (!SrcVTy)
928 // To calculate scalar take the regular cost, without mask
929 return getMemoryOpCost(Opcode, SrcTy, Alignment, AddressSpace);
930
931 unsigned NumElem = SrcVTy->getVectorNumElements();
932 VectorType *MaskTy =
933 VectorType::get(Type::getInt8Ty(getGlobalContext()), NumElem);
934 if ((Opcode == Instruction::Load && !isLegalMaskedLoad(SrcVTy, 1)) ||
935 (Opcode == Instruction::Store && !isLegalMaskedStore(SrcVTy, 1)) ||
936 !isPowerOf2_32(NumElem)) {
937 // Scalarization
938 unsigned MaskSplitCost = getScalarizationOverhead(MaskTy, false, true);
939 unsigned ScalarCompareCost =
940 getCmpSelInstrCost(Instruction::ICmp,
941 Type::getInt8Ty(getGlobalContext()), NULL);
942 unsigned BranchCost = getCFInstrCost(Instruction::Br);
943 unsigned MaskCmpCost = NumElem * (BranchCost + ScalarCompareCost);
944
945 unsigned ValueSplitCost =
946 getScalarizationOverhead(SrcVTy, Opcode == Instruction::Load,
947 Opcode == Instruction::Store);
948 unsigned MemopCost = NumElem *
949 TargetTransformInfo::getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
950 Alignment, AddressSpace);
951 return MemopCost + ValueSplitCost + MaskSplitCost + MaskCmpCost;
952 }
953
954 // Legalize the type.
955 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(SrcVTy);
956 unsigned Cost = 0;
957 if (LT.second != TLI->getValueType(SrcVTy).getSimpleVT() &&
958 LT.second.getVectorNumElements() == NumElem)
959 // Promotion requires expand/truncate for data and a shuffle for mask.
960 Cost += getShuffleCost(TargetTransformInfo::SK_Alternate, SrcVTy, 0, 0) +
961 getShuffleCost(TargetTransformInfo::SK_Alternate, MaskTy, 0, 0);
962
963 else if (LT.second.getVectorNumElements() > NumElem) {
964 VectorType *NewMaskTy = VectorType::get(MaskTy->getVectorElementType(),
965 LT.second.getVectorNumElements());
966 // Expanding requires fill mask with zeroes
967 Cost += getShuffleCost(TargetTransformInfo::SK_InsertSubvector,
968 NewMaskTy, 0, MaskTy);
969 }
970 if (!ST->hasAVX512())
971 return Cost + LT.first*4; // Each maskmov costs 4
972
973 // AVX-512 masked load/store is cheapper
974 return Cost+LT.first;
975}
976
Arnold Schwaighofer6042a262013-07-12 19:16:07 +0000977unsigned X86TTI::getAddressComputationCost(Type *Ty, bool IsComplex) const {
978 // Address computations in vectorized code with non-consecutive addresses will
979 // likely result in more instructions compared to scalar code where the
980 // computation can more often be merged into the index mode. The resulting
981 // extra micro-ops can significantly decrease throughput.
982 unsigned NumVectorInstToHideOverhead = 10;
983
984 if (Ty->isVectorTy() && IsComplex)
985 return NumVectorInstToHideOverhead;
986
987 return TargetTransformInfo::getAddressComputationCost(Ty, IsComplex);
988}
Yi Jiang5c343de2013-09-19 17:48:48 +0000989
990unsigned X86TTI::getReductionCost(unsigned Opcode, Type *ValTy,
991 bool IsPairwise) const {
Michael Liao5bf95782014-12-04 05:20:33 +0000992
Yi Jiang5c343de2013-09-19 17:48:48 +0000993 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(ValTy);
Michael Liao5bf95782014-12-04 05:20:33 +0000994
Yi Jiang5c343de2013-09-19 17:48:48 +0000995 MVT MTy = LT.second;
Michael Liao5bf95782014-12-04 05:20:33 +0000996
Yi Jiang5c343de2013-09-19 17:48:48 +0000997 int ISD = TLI->InstructionOpcodeToISD(Opcode);
998 assert(ISD && "Invalid opcode");
Michael Liao5bf95782014-12-04 05:20:33 +0000999
1000 // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
1001 // and make it as the cost.
1002
Yi Jiang5c343de2013-09-19 17:48:48 +00001003 static const CostTblEntry<MVT::SimpleValueType> SSE42CostTblPairWise[] = {
1004 { ISD::FADD, MVT::v2f64, 2 },
1005 { ISD::FADD, MVT::v4f32, 4 },
1006 { ISD::ADD, MVT::v2i64, 2 }, // The data reported by the IACA tool is "1.6".
1007 { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "3.5".
1008 { ISD::ADD, MVT::v8i16, 5 },
1009 };
Michael Liao5bf95782014-12-04 05:20:33 +00001010
Yi Jiang5c343de2013-09-19 17:48:48 +00001011 static const CostTblEntry<MVT::SimpleValueType> AVX1CostTblPairWise[] = {
1012 { ISD::FADD, MVT::v4f32, 4 },
1013 { ISD::FADD, MVT::v4f64, 5 },
1014 { ISD::FADD, MVT::v8f32, 7 },
1015 { ISD::ADD, MVT::v2i64, 1 }, // The data reported by the IACA tool is "1.5".
1016 { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "3.5".
1017 { ISD::ADD, MVT::v4i64, 5 }, // The data reported by the IACA tool is "4.8".
1018 { ISD::ADD, MVT::v8i16, 5 },
1019 { ISD::ADD, MVT::v8i32, 5 },
1020 };
1021
1022 static const CostTblEntry<MVT::SimpleValueType> SSE42CostTblNoPairWise[] = {
1023 { ISD::FADD, MVT::v2f64, 2 },
1024 { ISD::FADD, MVT::v4f32, 4 },
1025 { ISD::ADD, MVT::v2i64, 2 }, // The data reported by the IACA tool is "1.6".
1026 { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "3.3".
1027 { ISD::ADD, MVT::v8i16, 4 }, // The data reported by the IACA tool is "4.3".
1028 };
Michael Liao5bf95782014-12-04 05:20:33 +00001029
Yi Jiang5c343de2013-09-19 17:48:48 +00001030 static const CostTblEntry<MVT::SimpleValueType> AVX1CostTblNoPairWise[] = {
1031 { ISD::FADD, MVT::v4f32, 3 },
1032 { ISD::FADD, MVT::v4f64, 3 },
1033 { ISD::FADD, MVT::v8f32, 4 },
1034 { ISD::ADD, MVT::v2i64, 1 }, // The data reported by the IACA tool is "1.5".
1035 { ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "2.8".
1036 { ISD::ADD, MVT::v4i64, 3 },
1037 { ISD::ADD, MVT::v8i16, 4 },
1038 { ISD::ADD, MVT::v8i32, 5 },
1039 };
Michael Liao5bf95782014-12-04 05:20:33 +00001040
Yi Jiang5c343de2013-09-19 17:48:48 +00001041 if (IsPairwise) {
1042 if (ST->hasAVX()) {
1043 int Idx = CostTableLookup(AVX1CostTblPairWise, ISD, MTy);
1044 if (Idx != -1)
1045 return LT.first * AVX1CostTblPairWise[Idx].Cost;
1046 }
Michael Liao5bf95782014-12-04 05:20:33 +00001047
Yi Jiang5c343de2013-09-19 17:48:48 +00001048 if (ST->hasSSE42()) {
1049 int Idx = CostTableLookup(SSE42CostTblPairWise, ISD, MTy);
1050 if (Idx != -1)
1051 return LT.first * SSE42CostTblPairWise[Idx].Cost;
1052 }
1053 } else {
1054 if (ST->hasAVX()) {
1055 int Idx = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy);
1056 if (Idx != -1)
1057 return LT.first * AVX1CostTblNoPairWise[Idx].Cost;
1058 }
Michael Liao5bf95782014-12-04 05:20:33 +00001059
Yi Jiang5c343de2013-09-19 17:48:48 +00001060 if (ST->hasSSE42()) {
1061 int Idx = CostTableLookup(SSE42CostTblNoPairWise, ISD, MTy);
1062 if (Idx != -1)
1063 return LT.first * SSE42CostTblNoPairWise[Idx].Cost;
1064 }
1065 }
1066
1067 return TargetTransformInfo::getReductionCost(Opcode, ValTy, IsPairwise);
1068}
1069
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001070/// \brief Calculate the cost of materializing a 64-bit value. This helper
1071/// method might only calculate a fraction of a larger immediate. Therefore it
1072/// is valid to return a cost of ZERO.
1073unsigned X86TTI::getIntImmCost(int64_t Val) const {
1074 if (Val == 0)
1075 return TCC_Free;
1076
1077 if (isInt<32>(Val))
1078 return TCC_Basic;
1079
1080 return 2 * TCC_Basic;
1081}
1082
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001083unsigned X86TTI::getIntImmCost(const APInt &Imm, Type *Ty) const {
1084 assert(Ty->isIntegerTy());
1085
1086 unsigned BitSize = Ty->getPrimitiveSizeInBits();
1087 if (BitSize == 0)
1088 return ~0U;
1089
Juergen Ributzka43176172014-05-19 21:00:53 +00001090 // Never hoist constants larger than 128bit, because this might lead to
1091 // incorrect code generation or assertions in codegen.
1092 // Fixme: Create a cost model for types larger than i128 once the codegen
1093 // issues have been fixed.
1094 if (BitSize > 128)
1095 return TCC_Free;
1096
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001097 if (Imm == 0)
1098 return TCC_Free;
1099
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001100 // Sign-extend all constants to a multiple of 64-bit.
1101 APInt ImmVal = Imm;
1102 if (BitSize & 0x3f)
1103 ImmVal = Imm.sext((BitSize + 63) & ~0x3fU);
1104
1105 // Split the constant into 64-bit chunks and calculate the cost for each
1106 // chunk.
1107 unsigned Cost = 0;
1108 for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
1109 APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
1110 int64_t Val = Tmp.getSExtValue();
1111 Cost += getIntImmCost(Val);
1112 }
1113 // We need at least one instruction to materialze the constant.
1114 return std::max(1U, Cost);
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001115}
1116
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001117unsigned X86TTI::getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001118 Type *Ty) const {
1119 assert(Ty->isIntegerTy());
1120
1121 unsigned BitSize = Ty->getPrimitiveSizeInBits();
Juergen Ributzka43176172014-05-19 21:00:53 +00001122 // There is no cost model for constants with a bit size of 0. Return TCC_Free
1123 // here, so that constant hoisting will ignore this constant.
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001124 if (BitSize == 0)
Juergen Ributzka43176172014-05-19 21:00:53 +00001125 return TCC_Free;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001126
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001127 unsigned ImmIdx = ~0U;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001128 switch (Opcode) {
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001129 default: return TCC_Free;
1130 case Instruction::GetElementPtr:
Juergen Ributzka27435b32014-04-02 21:45:36 +00001131 // Always hoist the base address of a GetElementPtr. This prevents the
1132 // creation of new constants for every base constant that gets constant
1133 // folded with the offset.
Juergen Ributzka631c4912014-03-25 18:01:25 +00001134 if (Idx == 0)
1135 return 2 * TCC_Basic;
1136 return TCC_Free;
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001137 case Instruction::Store:
1138 ImmIdx = 0;
1139 break;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001140 case Instruction::Add:
1141 case Instruction::Sub:
1142 case Instruction::Mul:
1143 case Instruction::UDiv:
1144 case Instruction::SDiv:
1145 case Instruction::URem:
1146 case Instruction::SRem:
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001147 case Instruction::And:
1148 case Instruction::Or:
1149 case Instruction::Xor:
1150 case Instruction::ICmp:
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001151 ImmIdx = 1;
1152 break;
Michael Zolotukhin1f4a9602014-04-30 19:17:32 +00001153 // Always return TCC_Free for the shift value of a shift instruction.
1154 case Instruction::Shl:
1155 case Instruction::LShr:
1156 case Instruction::AShr:
1157 if (Idx == 1)
1158 return TCC_Free;
1159 break;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001160 case Instruction::Trunc:
1161 case Instruction::ZExt:
1162 case Instruction::SExt:
1163 case Instruction::IntToPtr:
1164 case Instruction::PtrToInt:
1165 case Instruction::BitCast:
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001166 case Instruction::PHI:
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001167 case Instruction::Call:
1168 case Instruction::Select:
1169 case Instruction::Ret:
1170 case Instruction::Load:
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001171 break;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001172 }
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001173
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001174 if (Idx == ImmIdx) {
1175 unsigned NumConstants = (BitSize + 63) / 64;
1176 unsigned Cost = X86TTI::getIntImmCost(Imm, Ty);
Saleem Abdulrasool3c890c42014-06-12 17:56:18 +00001177 return (Cost <= NumConstants * TCC_Basic)
1178 ? static_cast<unsigned>(TCC_Free)
1179 : Cost;
Juergen Ributzkab2e4edb2014-06-10 00:32:29 +00001180 }
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001181
1182 return X86TTI::getIntImmCost(Imm, Ty);
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001183}
1184
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001185unsigned X86TTI::getIntImmCost(Intrinsic::ID IID, unsigned Idx,
1186 const APInt &Imm, Type *Ty) const {
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001187 assert(Ty->isIntegerTy());
1188
1189 unsigned BitSize = Ty->getPrimitiveSizeInBits();
Juergen Ributzka43176172014-05-19 21:00:53 +00001190 // There is no cost model for constants with a bit size of 0. Return TCC_Free
1191 // here, so that constant hoisting will ignore this constant.
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001192 if (BitSize == 0)
Juergen Ributzka43176172014-05-19 21:00:53 +00001193 return TCC_Free;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001194
1195 switch (IID) {
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001196 default: return TCC_Free;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001197 case Intrinsic::sadd_with_overflow:
1198 case Intrinsic::uadd_with_overflow:
1199 case Intrinsic::ssub_with_overflow:
1200 case Intrinsic::usub_with_overflow:
1201 case Intrinsic::smul_with_overflow:
1202 case Intrinsic::umul_with_overflow:
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001203 if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<32>(Imm.getSExtValue()))
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001204 return TCC_Free;
Juergen Ributzka5eef98c2014-03-25 18:01:23 +00001205 break;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001206 case Intrinsic::experimental_stackmap:
Juergen Ributzka5eef98c2014-03-25 18:01:23 +00001207 if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
Juergen Ributzkaf0dff492014-03-21 06:04:45 +00001208 return TCC_Free;
Juergen Ributzka5eef98c2014-03-25 18:01:23 +00001209 break;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001210 case Intrinsic::experimental_patchpoint_void:
1211 case Intrinsic::experimental_patchpoint_i64:
Juergen Ributzka5eef98c2014-03-25 18:01:23 +00001212 if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001213 return TCC_Free;
Juergen Ributzka5eef98c2014-03-25 18:01:23 +00001214 break;
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001215 }
Juergen Ributzka5eef98c2014-03-25 18:01:23 +00001216 return X86TTI::getIntImmCost(Imm, Ty);
Juergen Ributzkaf26beda2014-01-25 02:02:55 +00001217}
Elena Demikhovskyf1de34b2014-12-04 09:40:44 +00001218
Elena Demikhovskyfb81b932014-12-25 07:49:20 +00001219bool X86TTI::isLegalMaskedLoad(Type *DataTy, int Consecutive) const {
1220 int DataWidth = DataTy->getPrimitiveSizeInBits();
Elena Demikhovskyf1de34b2014-12-04 09:40:44 +00001221
1222 // Todo: AVX512 allows gather/scatter, works with strided and random as well
Elena Demikhovskyfb81b932014-12-25 07:49:20 +00001223 if ((DataWidth < 32) || (Consecutive == 0))
Elena Demikhovskyf1de34b2014-12-04 09:40:44 +00001224 return false;
1225 if (ST->hasAVX512() || ST->hasAVX2())
1226 return true;
1227 return false;
1228}
1229
Elena Demikhovsky3fcafa22014-12-14 09:43:50 +00001230bool X86TTI::isLegalMaskedStore(Type *DataType, int Consecutive) const {
1231 return isLegalMaskedLoad(DataType, Consecutive);
Elena Demikhovskyf1de34b2014-12-04 09:40:44 +00001232}
1233