blob: 6ab08cbd12997aafac7f323a1aa2d8b7da29e4b3 [file] [log] [blame]
Chandler Carruth664e3542013-01-07 01:37:14 +00001//===-- X86TargetTransformInfo.cpp - X86 specific TTI pass ----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10/// This file implements a TargetTransformInfo analysis pass specific to the
11/// X86 target machine. It uses the target's detailed information to provide
12/// more precise answers to certain TTI queries, while letting the target
13/// independent and default TTI implementations handle the rest.
14///
15//===----------------------------------------------------------------------===//
16
17#define DEBUG_TYPE "x86tti"
18#include "X86.h"
19#include "X86TargetMachine.h"
Chandler Carruthd3e73552013-01-07 03:08:10 +000020#include "llvm/Analysis/TargetTransformInfo.h"
Chandler Carruth664e3542013-01-07 01:37:14 +000021#include "llvm/Support/Debug.h"
22#include "llvm/Target/TargetLowering.h"
Chandler Carruth664e3542013-01-07 01:37:14 +000023using namespace llvm;
24
25// Declare the pass initialization routine locally as target-specific passes
26// don't havve a target-wide initialization entry point, and so we rely on the
27// pass constructor initialization.
28namespace llvm {
29void initializeX86TTIPass(PassRegistry &);
30}
31
32namespace {
33
34class X86TTI : public ImmutablePass, public TargetTransformInfo {
35 const X86TargetMachine *TM;
36 const X86Subtarget *ST;
37 const X86TargetLowering *TLI;
38
39 /// Estimate the overhead of scalarizing an instruction. Insert and Extract
40 /// are set if the result needs to be inserted and/or extracted from vectors.
41 unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const;
42
43public:
44 X86TTI() : ImmutablePass(ID), TM(0), ST(0), TLI(0) {
45 llvm_unreachable("This pass cannot be directly constructed");
46 }
47
48 X86TTI(const X86TargetMachine *TM)
49 : ImmutablePass(ID), TM(TM), ST(TM->getSubtargetImpl()),
50 TLI(TM->getTargetLowering()) {
51 initializeX86TTIPass(*PassRegistry::getPassRegistry());
52 }
53
54 virtual void initializePass() {
55 pushTTIStack(this);
56 }
57
58 virtual void finalizePass() {
59 popTTIStack();
60 }
61
62 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
63 TargetTransformInfo::getAnalysisUsage(AU);
64 }
65
66 /// Pass identification.
67 static char ID;
68
69 /// Provide necessary pointer adjustments for the two base classes.
70 virtual void *getAdjustedAnalysisPointer(const void *ID) {
71 if (ID == &TargetTransformInfo::ID)
72 return (TargetTransformInfo*)this;
73 return this;
74 }
75
76 /// \name Scalar TTI Implementations
77 /// @{
Chandler Carruth50a36cd2013-01-07 03:16:03 +000078 virtual PopcntSupportKind getPopcntSupport(unsigned TyWidth) const;
Chandler Carruth664e3542013-01-07 01:37:14 +000079
80 /// @}
81
82 /// \name Vector TTI Implementations
83 /// @{
84
85 virtual unsigned getNumberOfRegisters(bool Vector) const;
Nadav Rotemb696c362013-01-09 01:15:42 +000086 virtual unsigned getMaximumUnrollFactor() const;
Chandler Carruth664e3542013-01-07 01:37:14 +000087 virtual unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty) const;
88 virtual unsigned getShuffleCost(ShuffleKind Kind, Type *Tp,
89 int Index, Type *SubTp) const;
90 virtual unsigned getCastInstrCost(unsigned Opcode, Type *Dst,
91 Type *Src) const;
92 virtual unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
93 Type *CondTy) const;
94 virtual unsigned getVectorInstrCost(unsigned Opcode, Type *Val,
95 unsigned Index) const;
96 virtual unsigned getMemoryOpCost(unsigned Opcode, Type *Src,
97 unsigned Alignment,
98 unsigned AddressSpace) const;
99
100 /// @}
101};
102
103} // end anonymous namespace
104
105INITIALIZE_AG_PASS(X86TTI, TargetTransformInfo, "x86tti",
106 "X86 Target Transform Info", true, true, false)
107char X86TTI::ID = 0;
108
109ImmutablePass *
110llvm::createX86TargetTransformInfoPass(const X86TargetMachine *TM) {
111 return new X86TTI(TM);
112}
113
114
115//===----------------------------------------------------------------------===//
116//
117// X86 cost model.
118//
119//===----------------------------------------------------------------------===//
120
121namespace {
122struct X86CostTblEntry {
123 int ISD;
124 MVT Type;
125 unsigned Cost;
126};
127}
128
129static int
130FindInTable(const X86CostTblEntry *Tbl, unsigned len, int ISD, MVT Ty) {
131 for (unsigned int i = 0; i < len; ++i)
132 if (Tbl[i].ISD == ISD && Tbl[i].Type == Ty)
133 return i;
134
135 // Could not find an entry.
136 return -1;
137}
138
139namespace {
140struct X86TypeConversionCostTblEntry {
141 int ISD;
142 MVT Dst;
143 MVT Src;
144 unsigned Cost;
145};
146}
147
148static int
149FindInConvertTable(const X86TypeConversionCostTblEntry *Tbl, unsigned len,
150 int ISD, MVT Dst, MVT Src) {
151 for (unsigned int i = 0; i < len; ++i)
152 if (Tbl[i].ISD == ISD && Tbl[i].Src == Src && Tbl[i].Dst == Dst)
153 return i;
154
155 // Could not find an entry.
156 return -1;
157}
158
Chandler Carruth50a36cd2013-01-07 03:16:03 +0000159X86TTI::PopcntSupportKind X86TTI::getPopcntSupport(unsigned TyWidth) const {
Chandler Carruth664e3542013-01-07 01:37:14 +0000160 assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
161 // TODO: Currently the __builtin_popcount() implementation using SSE3
162 // instructions is inefficient. Once the problem is fixed, we should
163 // call ST->hasSSE3() instead of ST->hasSSE4().
Chandler Carruth50a36cd2013-01-07 03:16:03 +0000164 return ST->hasSSE41() ? PSK_FastHardware : PSK_Software;
Chandler Carruth664e3542013-01-07 01:37:14 +0000165}
166
167unsigned X86TTI::getNumberOfRegisters(bool Vector) const {
168 if (ST->is64Bit())
169 return 16;
170 return 8;
171}
172
Nadav Rotemb696c362013-01-09 01:15:42 +0000173unsigned X86TTI::getMaximumUnrollFactor() const {
174 if (ST->isAtom())
175 return 1;
176
177 // Sandybridge and Haswell have multiple execution ports and pipelined
178 // vector units.
179 if (ST->hasAVX())
180 return 4;
181
182 return 2;
183}
184
Chandler Carruth664e3542013-01-07 01:37:14 +0000185unsigned X86TTI::getArithmeticInstrCost(unsigned Opcode, Type *Ty) const {
186 // Legalize the type.
187 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Ty);
188
189 int ISD = TLI->InstructionOpcodeToISD(Opcode);
190 assert(ISD && "Invalid opcode");
191
192 static const X86CostTblEntry AVX1CostTable[] = {
193 // We don't have to scalarize unsupported ops. We can issue two half-sized
194 // operations and we only need to extract the upper YMM half.
195 // Two ops + 1 extract + 1 insert = 4.
196 { ISD::MUL, MVT::v8i32, 4 },
197 { ISD::SUB, MVT::v8i32, 4 },
198 { ISD::ADD, MVT::v8i32, 4 },
199 { ISD::MUL, MVT::v4i64, 4 },
200 { ISD::SUB, MVT::v4i64, 4 },
201 { ISD::ADD, MVT::v4i64, 4 },
202 };
203
204 // Look for AVX1 lowering tricks.
205 if (ST->hasAVX()) {
206 int Idx = FindInTable(AVX1CostTable, array_lengthof(AVX1CostTable), ISD,
207 LT.second);
208 if (Idx != -1)
209 return LT.first * AVX1CostTable[Idx].Cost;
210 }
211 // Fallback to the default implementation.
212 return TargetTransformInfo::getArithmeticInstrCost(Opcode, Ty);
213}
214
215unsigned X86TTI::getShuffleCost(ShuffleKind Kind, Type *Tp, int Index,
216 Type *SubTp) const {
217 // We only estimate the cost of reverse shuffles.
Chandler Carruth2109f472013-01-07 03:20:02 +0000218 if (Kind != SK_Reverse)
Chandler Carruth664e3542013-01-07 01:37:14 +0000219 return TargetTransformInfo::getShuffleCost(Kind, Tp, Index, SubTp);
220
221 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Tp);
222 unsigned Cost = 1;
223 if (LT.second.getSizeInBits() > 128)
224 Cost = 3; // Extract + insert + copy.
225
226 // Multiple by the number of parts.
227 return Cost * LT.first;
228}
229
230unsigned X86TTI::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) const {
231 int ISD = TLI->InstructionOpcodeToISD(Opcode);
232 assert(ISD && "Invalid opcode");
233
234 EVT SrcTy = TLI->getValueType(Src);
235 EVT DstTy = TLI->getValueType(Dst);
236
237 if (!SrcTy.isSimple() || !DstTy.isSimple())
238 return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src);
239
240 static const X86TypeConversionCostTblEntry AVXConversionTbl[] = {
241 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 1 },
242 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 1 },
243 { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 1 },
244 { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 1 },
245 { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 1 },
246 { ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 1 },
247 { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i8, 1 },
248 { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 1 },
249 { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8, 1 },
250 { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 1 },
251 { ISD::FP_TO_SINT, MVT::v8i8, MVT::v8f32, 1 },
252 { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 1 },
253 { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 6 },
254 { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 9 },
255 { ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 3 },
256 };
257
258 if (ST->hasAVX()) {
259 int Idx = FindInConvertTable(AVXConversionTbl,
260 array_lengthof(AVXConversionTbl),
261 ISD, DstTy.getSimpleVT(), SrcTy.getSimpleVT());
262 if (Idx != -1)
263 return AVXConversionTbl[Idx].Cost;
264 }
265
266 return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src);
267}
268
269unsigned X86TTI::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
270 Type *CondTy) const {
271 // Legalize the type.
272 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(ValTy);
273
274 MVT MTy = LT.second;
275
276 int ISD = TLI->InstructionOpcodeToISD(Opcode);
277 assert(ISD && "Invalid opcode");
278
279 static const X86CostTblEntry SSE42CostTbl[] = {
280 { ISD::SETCC, MVT::v2f64, 1 },
281 { ISD::SETCC, MVT::v4f32, 1 },
282 { ISD::SETCC, MVT::v2i64, 1 },
283 { ISD::SETCC, MVT::v4i32, 1 },
284 { ISD::SETCC, MVT::v8i16, 1 },
285 { ISD::SETCC, MVT::v16i8, 1 },
286 };
287
288 static const X86CostTblEntry AVX1CostTbl[] = {
289 { ISD::SETCC, MVT::v4f64, 1 },
290 { ISD::SETCC, MVT::v8f32, 1 },
291 // AVX1 does not support 8-wide integer compare.
292 { ISD::SETCC, MVT::v4i64, 4 },
293 { ISD::SETCC, MVT::v8i32, 4 },
294 { ISD::SETCC, MVT::v16i16, 4 },
295 { ISD::SETCC, MVT::v32i8, 4 },
296 };
297
298 static const X86CostTblEntry AVX2CostTbl[] = {
299 { ISD::SETCC, MVT::v4i64, 1 },
300 { ISD::SETCC, MVT::v8i32, 1 },
301 { ISD::SETCC, MVT::v16i16, 1 },
302 { ISD::SETCC, MVT::v32i8, 1 },
303 };
304
305 if (ST->hasAVX2()) {
306 int Idx = FindInTable(AVX2CostTbl, array_lengthof(AVX2CostTbl), ISD, MTy);
307 if (Idx != -1)
308 return LT.first * AVX2CostTbl[Idx].Cost;
309 }
310
311 if (ST->hasAVX()) {
312 int Idx = FindInTable(AVX1CostTbl, array_lengthof(AVX1CostTbl), ISD, MTy);
313 if (Idx != -1)
314 return LT.first * AVX1CostTbl[Idx].Cost;
315 }
316
317 if (ST->hasSSE42()) {
318 int Idx = FindInTable(SSE42CostTbl, array_lengthof(SSE42CostTbl), ISD, MTy);
319 if (Idx != -1)
320 return LT.first * SSE42CostTbl[Idx].Cost;
321 }
322
323 return TargetTransformInfo::getCmpSelInstrCost(Opcode, ValTy, CondTy);
324}
325
326unsigned X86TTI::getVectorInstrCost(unsigned Opcode, Type *Val,
327 unsigned Index) const {
328 assert(Val->isVectorTy() && "This must be a vector type");
329
330 if (Index != -1U) {
331 // Legalize the type.
332 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Val);
333
334 // This type is legalized to a scalar type.
335 if (!LT.second.isVector())
336 return 0;
337
338 // The type may be split. Normalize the index to the new type.
339 unsigned Width = LT.second.getVectorNumElements();
340 Index = Index % Width;
341
342 // Floating point scalars are already located in index #0.
343 if (Val->getScalarType()->isFloatingPointTy() && Index == 0)
344 return 0;
345 }
346
347 return TargetTransformInfo::getVectorInstrCost(Opcode, Val, Index);
348}
349
350unsigned X86TTI::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
351 unsigned AddressSpace) const {
352 // Legalize the type.
353 std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Src);
354 assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
355 "Invalid Opcode");
356
357 // Each load/store unit costs 1.
358 unsigned Cost = LT.first * 1;
359
360 // On Sandybridge 256bit load/stores are double pumped
361 // (but not on Haswell).
362 if (LT.second.getSizeInBits() > 128 && !ST->hasAVX2())
363 Cost*=2;
364
365 return Cost;
366}