blob: 69e9c7b4a83ebf3b0c3850fc68ff71d4f6e31d58 [file] [log] [blame]
Evan Cheng7e763d82011-07-25 18:43:53 +00001//===-- X86BaseInfo.h - Top level definitions for X86 -------- --*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains small standalone helper functions and enum definitions for
11// the X86 target useful for the compiler back-end and the MC libraries.
12// As such, it deliberately does not include references to LLVM core
13// code gen types, passes, etc..
14//
15//===----------------------------------------------------------------------===//
16
Benjamin Kramera7c40ef2014-08-13 16:26:38 +000017#ifndef LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H
18#define LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H
Evan Cheng7e763d82011-07-25 18:43:53 +000019
20#include "X86MCTargetDesc.h"
Craig Topperc6d4efa2014-03-19 06:53:25 +000021#include "llvm/MC/MCInstrDesc.h"
Evan Cheng7e763d82011-07-25 18:43:53 +000022#include "llvm/Support/DataTypes.h"
Craig Topper4ed72782012-02-05 05:38:58 +000023#include "llvm/Support/ErrorHandling.h"
Evan Cheng7e763d82011-07-25 18:43:53 +000024
25namespace llvm {
26
27namespace X86 {
28 // Enums for memory operand decoding. Each memory operand is represented with
29 // a 5 operand sequence in the form:
30 // [BaseReg, ScaleAmt, IndexReg, Disp, Segment]
31 // These enums help decode this.
32 enum {
33 AddrBaseReg = 0,
34 AddrScaleAmt = 1,
35 AddrIndexReg = 2,
36 AddrDisp = 3,
37
38 /// AddrSegmentReg - The operand # of the segment in the memory operand.
39 AddrSegmentReg = 4,
40
41 /// AddrNumOperands - Total number of operands in a memory reference.
42 AddrNumOperands = 5
43 };
Alexander Kornienko70bc5f12015-06-19 15:57:42 +000044} // namespace X86
Evan Cheng7e763d82011-07-25 18:43:53 +000045
46/// X86II - This namespace holds all of the target specific flags that
47/// instruction info tracks.
48///
49namespace X86II {
50 /// Target Operand Flag enum.
51 enum TOF {
52 //===------------------------------------------------------------------===//
53 // X86 Specific MachineOperand flags.
54
55 MO_NO_FLAG,
56
57 /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a
58 /// relocation of:
59 /// SYMBOL_LABEL + [. - PICBASELABEL]
60 MO_GOT_ABSOLUTE_ADDRESS,
61
62 /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the
63 /// immediate should get the value of the symbol minus the PIC base label:
64 /// SYMBOL_LABEL - PICBASELABEL
65 MO_PIC_BASE_OFFSET,
66
67 /// MO_GOT - On a symbol operand this indicates that the immediate is the
68 /// offset to the GOT entry for the symbol name from the base of the GOT.
69 ///
70 /// See the X86-64 ELF ABI supplement for more details.
71 /// SYMBOL_LABEL @GOT
72 MO_GOT,
73
74 /// MO_GOTOFF - On a symbol operand this indicates that the immediate is
75 /// the offset to the location of the symbol name from the base of the GOT.
76 ///
77 /// See the X86-64 ELF ABI supplement for more details.
78 /// SYMBOL_LABEL @GOTOFF
79 MO_GOTOFF,
80
81 /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is
82 /// offset to the GOT entry for the symbol name from the current code
83 /// location.
84 ///
85 /// See the X86-64 ELF ABI supplement for more details.
86 /// SYMBOL_LABEL @GOTPCREL
87 MO_GOTPCREL,
88
89 /// MO_PLT - On a symbol operand this indicates that the immediate is
90 /// offset to the PLT entry of symbol name from the current code location.
91 ///
92 /// See the X86-64 ELF ABI supplement for more details.
93 /// SYMBOL_LABEL @PLT
94 MO_PLT,
95
96 /// MO_TLSGD - On a symbol operand this indicates that the immediate is
Hans Wennborg09610f32012-06-04 09:55:36 +000097 /// the offset of the GOT entry with the TLS index structure that contains
98 /// the module number and variable offset for the symbol. Used in the
99 /// general dynamic TLS access model.
Evan Cheng7e763d82011-07-25 18:43:53 +0000100 ///
101 /// See 'ELF Handling for Thread-Local Storage' for more details.
102 /// SYMBOL_LABEL @TLSGD
103 MO_TLSGD,
104
Hans Wennborg789acfb2012-06-01 16:27:21 +0000105 /// MO_TLSLD - On a symbol operand this indicates that the immediate is
106 /// the offset of the GOT entry with the TLS index for the module that
Hans Wennborg5deecd92013-01-29 14:05:57 +0000107 /// contains the symbol. When this index is passed to a call to
Hans Wennborg789acfb2012-06-01 16:27:21 +0000108 /// __tls_get_addr, the function will return the base address of the TLS
Hans Wennborg09610f32012-06-04 09:55:36 +0000109 /// block for the symbol. Used in the x86-64 local dynamic TLS access model.
Hans Wennborg789acfb2012-06-01 16:27:21 +0000110 ///
111 /// See 'ELF Handling for Thread-Local Storage' for more details.
112 /// SYMBOL_LABEL @TLSLD
113 MO_TLSLD,
114
115 /// MO_TLSLDM - On a symbol operand this indicates that the immediate is
116 /// the offset of the GOT entry with the TLS index for the module that
Hans Wennborg5deecd92013-01-29 14:05:57 +0000117 /// contains the symbol. When this index is passed to a call to
Hans Wennborg789acfb2012-06-01 16:27:21 +0000118 /// ___tls_get_addr, the function will return the base address of the TLS
Hans Wennborg09610f32012-06-04 09:55:36 +0000119 /// block for the symbol. Used in the IA32 local dynamic TLS access model.
Hans Wennborg789acfb2012-06-01 16:27:21 +0000120 ///
121 /// See 'ELF Handling for Thread-Local Storage' for more details.
122 /// SYMBOL_LABEL @TLSLDM
123 MO_TLSLDM,
124
Evan Cheng7e763d82011-07-25 18:43:53 +0000125 /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is
Hans Wennborg09610f32012-06-04 09:55:36 +0000126 /// the offset of the GOT entry with the thread-pointer offset for the
127 /// symbol. Used in the x86-64 initial exec TLS access model.
Evan Cheng7e763d82011-07-25 18:43:53 +0000128 ///
129 /// See 'ELF Handling for Thread-Local Storage' for more details.
130 /// SYMBOL_LABEL @GOTTPOFF
131 MO_GOTTPOFF,
132
133 /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is
Hans Wennborg09610f32012-06-04 09:55:36 +0000134 /// the absolute address of the GOT entry with the negative thread-pointer
135 /// offset for the symbol. Used in the non-PIC IA32 initial exec TLS access
136 /// model.
Evan Cheng7e763d82011-07-25 18:43:53 +0000137 ///
138 /// See 'ELF Handling for Thread-Local Storage' for more details.
139 /// SYMBOL_LABEL @INDNTPOFF
140 MO_INDNTPOFF,
141
142 /// MO_TPOFF - On a symbol operand this indicates that the immediate is
Hans Wennborg09610f32012-06-04 09:55:36 +0000143 /// the thread-pointer offset for the symbol. Used in the x86-64 local
144 /// exec TLS access model.
Evan Cheng7e763d82011-07-25 18:43:53 +0000145 ///
146 /// See 'ELF Handling for Thread-Local Storage' for more details.
147 /// SYMBOL_LABEL @TPOFF
148 MO_TPOFF,
149
Hans Wennborg789acfb2012-06-01 16:27:21 +0000150 /// MO_DTPOFF - On a symbol operand this indicates that the immediate is
Hans Wennborg09610f32012-06-04 09:55:36 +0000151 /// the offset of the GOT entry with the TLS offset of the symbol. Used
152 /// in the local dynamic TLS access model.
Hans Wennborg789acfb2012-06-01 16:27:21 +0000153 ///
154 /// See 'ELF Handling for Thread-Local Storage' for more details.
155 /// SYMBOL_LABEL @DTPOFF
156 MO_DTPOFF,
157
Evan Cheng7e763d82011-07-25 18:43:53 +0000158 /// MO_NTPOFF - On a symbol operand this indicates that the immediate is
Hans Wennborg09610f32012-06-04 09:55:36 +0000159 /// the negative thread-pointer offset for the symbol. Used in the IA32
160 /// local exec TLS access model.
Evan Cheng7e763d82011-07-25 18:43:53 +0000161 ///
162 /// See 'ELF Handling for Thread-Local Storage' for more details.
163 /// SYMBOL_LABEL @NTPOFF
164 MO_NTPOFF,
165
Hans Wennborgf9d0e442012-05-11 10:11:01 +0000166 /// MO_GOTNTPOFF - On a symbol operand this indicates that the immediate is
Hans Wennborg09610f32012-06-04 09:55:36 +0000167 /// the offset of the GOT entry with the negative thread-pointer offset for
168 /// the symbol. Used in the PIC IA32 initial exec TLS access model.
Hans Wennborgf9d0e442012-05-11 10:11:01 +0000169 ///
170 /// See 'ELF Handling for Thread-Local Storage' for more details.
171 /// SYMBOL_LABEL @GOTNTPOFF
172 MO_GOTNTPOFF,
173
Evan Cheng7e763d82011-07-25 18:43:53 +0000174 /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the
175 /// reference is actually to the "__imp_FOO" symbol. This is used for
176 /// dllimport linkage on windows.
177 MO_DLLIMPORT,
178
179 /// MO_DARWIN_STUB - On a symbol operand "FOO", this indicates that the
180 /// reference is actually to the "FOO$stub" symbol. This is used for calls
181 /// and jumps to external functions on Tiger and earlier.
182 MO_DARWIN_STUB,
183
184 /// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the
185 /// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a
186 /// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
187 MO_DARWIN_NONLAZY,
188
189 /// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates
190 /// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is
191 /// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
192 MO_DARWIN_NONLAZY_PIC_BASE,
193
194 /// MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this
195 /// indicates that the reference is actually to "FOO$non_lazy_ptr -PICBASE",
196 /// which is a PIC-base-relative reference to a hidden dyld lazy pointer
197 /// stub.
198 MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE,
199
200 /// MO_TLVP - On a symbol operand this indicates that the immediate is
201 /// some TLS offset.
202 ///
203 /// This is the TLS offset for the Darwin TLS mechanism.
204 MO_TLVP,
205
206 /// MO_TLVP_PIC_BASE - On a symbol operand this indicates that the immediate
207 /// is some TLS offset from the picbase.
208 ///
209 /// This is the 32-bit TLS offset for Darwin TLS in PIC mode.
Anton Korobeynikovc6b40172012-02-11 17:26:53 +0000210 MO_TLVP_PIC_BASE,
211
212 /// MO_SECREL - On a symbol operand this indicates that the immediate is
213 /// the offset from beginning of section.
214 ///
215 /// This is the TLS offset for the COFF/Windows TLS mechanism.
Reid Klecknerc6954712015-04-29 16:46:01 +0000216 MO_SECREL,
217
218 /// MO_NOPREFIX - On a symbol operand this indicates that the symbol should
219 /// not be mangled with a prefix.
220 MO_NOPREFIX,
Evan Cheng7e763d82011-07-25 18:43:53 +0000221 };
222
Craig Topperf655cdd2014-11-11 07:32:32 +0000223 enum : uint64_t {
Evan Cheng7e763d82011-07-25 18:43:53 +0000224 //===------------------------------------------------------------------===//
225 // Instruction encodings. These are the standard/most common forms for X86
226 // instructions.
227 //
228
229 // PseudoFrm - This represents an instruction that is a pseudo instruction
230 // or one that has not been implemented yet. It is illegal to code generate
231 // it, but tolerated for intermediate implementation stages.
232 Pseudo = 0,
233
234 /// Raw - This form is for instructions that don't have any operands, so
235 /// they are just a fixed opcode value, like 'leave'.
236 RawFrm = 1,
237
238 /// AddRegFrm - This form is used for instructions like 'push r32' that have
239 /// their one register operand added to their opcode.
240 AddRegFrm = 2,
241
242 /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
243 /// to specify a destination, which in this case is a register.
244 ///
245 MRMDestReg = 3,
246
247 /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
248 /// to specify a destination, which in this case is memory.
249 ///
250 MRMDestMem = 4,
251
252 /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
253 /// to specify a source, which in this case is a register.
254 ///
255 MRMSrcReg = 5,
256
257 /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
258 /// to specify a source, which in this case is memory.
259 ///
260 MRMSrcMem = 6,
261
Craig Topper35da3d12014-01-16 07:36:58 +0000262 /// RawFrmMemOffs - This form is for instructions that store an absolute
263 /// memory offset as an immediate with a possible segment override.
264 RawFrmMemOffs = 7,
265
David Woodhouse2ef8d9c2014-01-22 15:08:08 +0000266 /// RawFrmSrc - This form is for instructions that use the source index
267 /// register SI/ESI/RSI with a possible segment override.
268 RawFrmSrc = 8,
269
David Woodhouseb33c2ef2014-01-22 15:08:21 +0000270 /// RawFrmDst - This form is for instructions that use the destination index
271 /// register DI/EDI/ESI.
272 RawFrmDst = 9,
273
Eric Christopher572e03a2015-06-19 01:53:21 +0000274 /// RawFrmSrc - This form is for instructions that use the source index
David Woodhouse9bbf7ca2014-01-22 15:08:36 +0000275 /// register SI/ESI/ERI with a possible segment override, and also the
276 /// destination index register DI/ESI/RDI.
277 RawFrmDstSrc = 10,
278
Craig Topper2fb696b2014-02-19 06:59:13 +0000279 /// RawFrmImm8 - This is used for the ENTER instruction, which has two
280 /// immediates, the first of which is a 16-bit immediate (specified by
281 /// the imm encoding) and the second is a 8-bit fixed value.
282 RawFrmImm8 = 11,
283
284 /// RawFrmImm16 - This is used for CALL FAR instructions, which have two
285 /// immediates, the first of which is a 16 or 32-bit immediate (specified by
286 /// the imm encoding) and the second is a 16-bit fixed value. In the AMD
287 /// manual, this operand is described as pntr16:32 and pntr16:16
288 RawFrmImm16 = 12,
289
Craig Toppera0869dc2014-02-10 06:55:41 +0000290 /// MRMX[rm] - The forms are used to represent instructions that use a
291 /// Mod/RM byte, and don't use the middle field for anything.
292 MRMXr = 14, MRMXm = 15,
293
Evan Cheng7e763d82011-07-25 18:43:53 +0000294 /// MRM[0-7][rm] - These forms are used to represent instructions that use
295 /// a Mod/RM byte, and use the middle field to hold extended opcode
296 /// information. In the intel manual these are represented as /0, /1, ...
297 ///
298
299 // First, instructions that operate on a register r/m operand...
300 MRM0r = 16, MRM1r = 17, MRM2r = 18, MRM3r = 19, // Format /0 /1 /2 /3
301 MRM4r = 20, MRM5r = 21, MRM6r = 22, MRM7r = 23, // Format /4 /5 /6 /7
302
303 // Next, instructions that operate on a memory r/m operand...
304 MRM0m = 24, MRM1m = 25, MRM2m = 26, MRM3m = 27, // Format /0 /1 /2 /3
305 MRM4m = 28, MRM5m = 29, MRM6m = 30, MRM7m = 31, // Format /4 /5 /6 /7
306
Craig Toppered7aa462012-02-18 08:19:49 +0000307 //// MRM_XX - A mod/rm byte of exactly 0xXX.
Craig Topper0d1fd552014-02-19 05:34:21 +0000308 MRM_C0 = 32, MRM_C1 = 33, MRM_C2 = 34, MRM_C3 = 35,
Craig Toppera3776de2015-02-15 04:16:44 +0000309 MRM_C4 = 36, MRM_C5 = 37, MRM_C6 = 38, MRM_C7 = 39,
310 MRM_C8 = 40, MRM_C9 = 41, MRM_CA = 42, MRM_CB = 43,
311 MRM_CC = 44, MRM_CD = 45, MRM_CE = 46, MRM_CF = 47,
312 MRM_D0 = 48, MRM_D1 = 49, MRM_D2 = 50, MRM_D3 = 51,
313 MRM_D4 = 52, MRM_D5 = 53, MRM_D6 = 54, MRM_D7 = 55,
314 MRM_D8 = 56, MRM_D9 = 57, MRM_DA = 58, MRM_DB = 59,
315 MRM_DC = 60, MRM_DD = 61, MRM_DE = 62, MRM_DF = 63,
316 MRM_E0 = 64, MRM_E1 = 65, MRM_E2 = 66, MRM_E3 = 67,
317 MRM_E4 = 68, MRM_E5 = 69, MRM_E6 = 70, MRM_E7 = 71,
318 MRM_E8 = 72, MRM_E9 = 73, MRM_EA = 74, MRM_EB = 75,
319 MRM_EC = 76, MRM_ED = 77, MRM_EE = 78, MRM_EF = 79,
320 MRM_F0 = 80, MRM_F1 = 81, MRM_F2 = 82, MRM_F3 = 83,
321 MRM_F4 = 84, MRM_F5 = 85, MRM_F6 = 86, MRM_F7 = 87,
322 MRM_F8 = 88, MRM_F9 = 89, MRM_FA = 90, MRM_FB = 91,
323 MRM_FC = 92, MRM_FD = 93, MRM_FE = 94, MRM_FF = 95,
Evan Cheng7e763d82011-07-25 18:43:53 +0000324
Craig Topper56f0ed812014-02-19 08:25:02 +0000325 FormMask = 127,
Evan Cheng7e763d82011-07-25 18:43:53 +0000326
327 //===------------------------------------------------------------------===//
328 // Actual flags...
329
Craig Topperfa6298a2014-02-02 09:25:09 +0000330 // OpSize - OpSizeFixed implies instruction never needs a 0x66 prefix.
331 // OpSize16 means this is a 16-bit instruction and needs 0x66 prefix in
332 // 32-bit mode. OpSize32 means this is a 32-bit instruction needs a 0x66
333 // prefix in 16-bit mode.
Craig Topper56f0ed812014-02-19 08:25:02 +0000334 OpSizeShift = 7,
Craig Topperfa6298a2014-02-02 09:25:09 +0000335 OpSizeMask = 0x3 << OpSizeShift,
336
Craig Topperb86338f2014-12-24 06:05:22 +0000337 OpSizeFixed = 0 << OpSizeShift,
338 OpSize16 = 1 << OpSizeShift,
339 OpSize32 = 2 << OpSizeShift,
Evan Cheng7e763d82011-07-25 18:43:53 +0000340
Craig Topperb86338f2014-12-24 06:05:22 +0000341 // AsSize - AdSizeX implies this instruction determines its need of 0x67
342 // prefix from a normal ModRM memory operand. The other types indicate that
343 // an operand is encoded with a specific width and a prefix is needed if
344 // it differs from the current mode.
Craig Topper56f0ed812014-02-19 08:25:02 +0000345 AdSizeShift = OpSizeShift + 2,
Craig Topperb86338f2014-12-24 06:05:22 +0000346 AdSizeMask = 0x3 << AdSizeShift,
347
348 AdSizeX = 1 << AdSizeShift,
349 AdSize16 = 1 << AdSizeShift,
350 AdSize32 = 2 << AdSizeShift,
351 AdSize64 = 3 << AdSizeShift,
Evan Cheng7e763d82011-07-25 18:43:53 +0000352
353 //===------------------------------------------------------------------===//
Craig Topper10243c82014-01-31 08:47:06 +0000354 // OpPrefix - There are several prefix bytes that are used as opcode
355 // extensions. These are 0x66, 0xF3, and 0xF2. If this field is 0 there is
356 // no prefix.
Evan Cheng7e763d82011-07-25 18:43:53 +0000357 //
Craig Topperb86338f2014-12-24 06:05:22 +0000358 OpPrefixShift = AdSizeShift + 2,
Craig Topper5ccb6172014-02-18 00:21:49 +0000359 OpPrefixMask = 0x7 << OpPrefixShift,
Yunzhong Gaob8bbcbf2013-09-27 18:38:42 +0000360
Craig Topper5ccb6172014-02-18 00:21:49 +0000361 // PS, PD - Prefix code for packed single and double precision vector
362 // floating point operations performed in the SSE registers.
363 PS = 1 << OpPrefixShift, PD = 2 << OpPrefixShift,
Craig Topperae11aed2014-01-14 07:41:20 +0000364
Craig Topper10243c82014-01-31 08:47:06 +0000365 // XS, XD - These prefix codes are for single and double precision scalar
366 // floating point operations performed in the SSE registers.
Craig Topper5ccb6172014-02-18 00:21:49 +0000367 XS = 3 << OpPrefixShift, XD = 4 << OpPrefixShift,
Craig Topperae11aed2014-01-14 07:41:20 +0000368
Craig Topper10243c82014-01-31 08:47:06 +0000369 //===------------------------------------------------------------------===//
370 // OpMap - This field determines which opcode map this instruction
371 // belongs to. i.e. one-byte, two-byte, 0x0f 0x38, 0x0f 0x3a, etc.
372 //
Craig Topper5ccb6172014-02-18 00:21:49 +0000373 OpMapShift = OpPrefixShift + 3,
Craig Topper56f0ed812014-02-19 08:25:02 +0000374 OpMapMask = 0x7 << OpMapShift,
Craig Topper10243c82014-01-31 08:47:06 +0000375
376 // OB - OneByte - Set if this instruction has a one byte opcode.
377 OB = 0 << OpMapShift,
378
379 // TB - TwoByte - Set if this instruction has a two byte opcode, which
380 // starts with a 0x0F byte before the real opcode.
381 TB = 1 << OpMapShift,
382
383 // T8, TA - Prefix after the 0x0F prefix.
384 T8 = 2 << OpMapShift, TA = 3 << OpMapShift,
385
386 // XOP8 - Prefix to include use of imm byte.
387 XOP8 = 4 << OpMapShift,
388
389 // XOP9 - Prefix to exclude use of imm byte.
390 XOP9 = 5 << OpMapShift,
391
392 // XOPA - Prefix to encode 0xA in VEX.MMMM of XOP instructions.
393 XOPA = 6 << OpMapShift,
394
Evan Cheng7e763d82011-07-25 18:43:53 +0000395 //===------------------------------------------------------------------===//
396 // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
397 // They are used to specify GPRs and SSE registers, 64-bit operand size,
398 // etc. We only cares about REX.W and REX.R bits and only the former is
399 // statically determined.
400 //
Craig Topper56f0ed812014-02-19 08:25:02 +0000401 REXShift = OpMapShift + 3,
Evan Cheng7e763d82011-07-25 18:43:53 +0000402 REX_W = 1 << REXShift,
403
404 //===------------------------------------------------------------------===//
405 // This three-bit field describes the size of an immediate operand. Zero is
406 // unused so that we can tell if we forgot to set a value.
407 ImmShift = REXShift + 1,
David Woodhouse0b6c9492014-01-30 22:20:41 +0000408 ImmMask = 15 << ImmShift,
Evan Cheng7e763d82011-07-25 18:43:53 +0000409 Imm8 = 1 << ImmShift,
410 Imm8PCRel = 2 << ImmShift,
411 Imm16 = 3 << ImmShift,
412 Imm16PCRel = 4 << ImmShift,
413 Imm32 = 5 << ImmShift,
414 Imm32PCRel = 6 << ImmShift,
David Woodhouse0b6c9492014-01-30 22:20:41 +0000415 Imm32S = 7 << ImmShift,
416 Imm64 = 8 << ImmShift,
Evan Cheng7e763d82011-07-25 18:43:53 +0000417
418 //===------------------------------------------------------------------===//
419 // FP Instruction Classification... Zero is non-fp instruction.
420
421 // FPTypeMask - Mask for all of the FP types...
David Woodhouse0b6c9492014-01-30 22:20:41 +0000422 FPTypeShift = ImmShift + 4,
Evan Cheng7e763d82011-07-25 18:43:53 +0000423 FPTypeMask = 7 << FPTypeShift,
424
425 // NotFP - The default, set for instructions that do not use FP registers.
426 NotFP = 0 << FPTypeShift,
427
428 // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
429 ZeroArgFP = 1 << FPTypeShift,
430
431 // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
432 OneArgFP = 2 << FPTypeShift,
433
434 // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
435 // result back to ST(0). For example, fcos, fsqrt, etc.
436 //
437 OneArgFPRW = 3 << FPTypeShift,
438
439 // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
440 // explicit argument, storing the result to either ST(0) or the implicit
441 // argument. For example: fadd, fsub, fmul, etc...
442 TwoArgFP = 4 << FPTypeShift,
443
444 // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
445 // explicit argument, but have no destination. Example: fucom, fucomi, ...
446 CompareFP = 5 << FPTypeShift,
447
448 // CondMovFP - "2 operand" floating point conditional move instructions.
449 CondMovFP = 6 << FPTypeShift,
450
451 // SpecialFP - Special instruction forms. Dispatch by opcode explicitly.
452 SpecialFP = 7 << FPTypeShift,
453
454 // Lock prefix
455 LOCKShift = FPTypeShift + 3,
456 LOCK = 1 << LOCKShift,
457
Craig Topperec688662014-01-31 07:00:55 +0000458 // REP prefix
459 REPShift = LOCKShift + 1,
460 REP = 1 << REPShift,
461
462 // Execution domain for SSE instructions.
463 // 0 means normal, non-SSE instruction.
464 SSEDomainShift = REPShift + 1,
Evan Cheng7e763d82011-07-25 18:43:53 +0000465
Craig Topperd402df32014-02-02 07:08:01 +0000466 // Encoding
467 EncodingShift = SSEDomainShift + 2,
468 EncodingMask = 0x3 << EncodingShift,
469
470 // VEX - encoding using 0xC4/0xC5
Craig Topperf655cdd2014-11-11 07:32:32 +0000471 VEX = 1 << EncodingShift,
Craig Topperd402df32014-02-02 07:08:01 +0000472
473 /// XOP - Opcode prefix used by XOP instructions.
Craig Topperf655cdd2014-11-11 07:32:32 +0000474 XOP = 2 << EncodingShift,
Craig Topperd402df32014-02-02 07:08:01 +0000475
476 // VEX_EVEX - Specifies that this instruction use EVEX form which provides
477 // syntax support up to 32 512-bit register operands and up to 7 16-bit
478 // mask operands as well as source operand data swizzling/memory operand
479 // conversion, eviction hint, and rounding mode.
Craig Topperf655cdd2014-11-11 07:32:32 +0000480 EVEX = 3 << EncodingShift,
Craig Topperd402df32014-02-02 07:08:01 +0000481
482 // Opcode
483 OpcodeShift = EncodingShift + 2,
Evan Cheng7e763d82011-07-25 18:43:53 +0000484
Evan Cheng7e763d82011-07-25 18:43:53 +0000485 /// VEX_W - Has a opcode specific functionality, but is used in the same
486 /// way as REX_W is for regular SSE instructions.
Craig Topperf655cdd2014-11-11 07:32:32 +0000487 VEX_WShift = OpcodeShift + 8,
488 VEX_W = 1ULL << VEX_WShift,
Evan Cheng7e763d82011-07-25 18:43:53 +0000489
490 /// VEX_4V - Used to specify an additional AVX/SSE register. Several 2
491 /// address instructions in SSE are represented as 3 address ones in AVX
492 /// and the additional register is encoded in VEX_VVVV prefix.
Craig Topperf655cdd2014-11-11 07:32:32 +0000493 VEX_4VShift = VEX_WShift + 1,
494 VEX_4V = 1ULL << VEX_4VShift,
Evan Cheng7e763d82011-07-25 18:43:53 +0000495
Craig Topperaea148c2011-10-16 07:55:05 +0000496 /// VEX_4VOp3 - Similar to VEX_4V, but used on instructions that encode
497 /// operand 3 with VEX.vvvv.
Craig Topperf655cdd2014-11-11 07:32:32 +0000498 VEX_4VOp3Shift = VEX_4VShift + 1,
499 VEX_4VOp3 = 1ULL << VEX_4VOp3Shift,
Craig Topperaea148c2011-10-16 07:55:05 +0000500
Evan Cheng7e763d82011-07-25 18:43:53 +0000501 /// VEX_I8IMM - Specifies that the last register used in a AVX instruction,
502 /// must be encoded in the i8 immediate field. This usually happens in
503 /// instructions with 4 operands.
Craig Topperf655cdd2014-11-11 07:32:32 +0000504 VEX_I8IMMShift = VEX_4VOp3Shift + 1,
505 VEX_I8IMM = 1ULL << VEX_I8IMMShift,
Evan Cheng7e763d82011-07-25 18:43:53 +0000506
507 /// VEX_L - Stands for a bit in the VEX opcode prefix meaning the current
508 /// instruction uses 256-bit wide registers. This is usually auto detected
509 /// if a VR256 register is used, but some AVX instructions also have this
510 /// field marked when using a f256 memory references.
Craig Topperf655cdd2014-11-11 07:32:32 +0000511 VEX_LShift = VEX_I8IMMShift + 1,
512 VEX_L = 1ULL << VEX_LShift,
Evan Cheng7e763d82011-07-25 18:43:53 +0000513
Craig Topperf18c8962011-10-04 06:30:42 +0000514 // VEX_LIG - Specifies that this instruction ignores the L-bit in the VEX
515 // prefix. Usually used for scalar instructions. Needed by disassembler.
Craig Topperf655cdd2014-11-11 07:32:32 +0000516 VEX_LIGShift = VEX_LShift + 1,
517 VEX_LIG = 1ULL << VEX_LIGShift,
Craig Topperf18c8962011-10-04 06:30:42 +0000518
Elena Demikhovsky003e7d72013-07-28 08:28:38 +0000519 // TODO: we should combine VEX_L and VEX_LIG together to form a 2-bit field
520 // with following encoding:
521 // - 00 V128
522 // - 01 V256
523 // - 10 V512
524 // - 11 LIG (but, in insn encoding, leave VEX.L and EVEX.L in zeros.
525 // this will save 1 tsflag bit
526
Elena Demikhovsky003e7d72013-07-28 08:28:38 +0000527 // EVEX_K - Set if this instruction requires masking
Craig Topperf655cdd2014-11-11 07:32:32 +0000528 EVEX_KShift = VEX_LIGShift + 1,
529 EVEX_K = 1ULL << EVEX_KShift,
Elena Demikhovsky003e7d72013-07-28 08:28:38 +0000530
531 // EVEX_Z - Set if this instruction has EVEX.Z field set.
Craig Topperf655cdd2014-11-11 07:32:32 +0000532 EVEX_ZShift = EVEX_KShift + 1,
533 EVEX_Z = 1ULL << EVEX_ZShift,
Elena Demikhovsky003e7d72013-07-28 08:28:38 +0000534
535 // EVEX_L2 - Set if this instruction has EVEX.L' field set.
Craig Topperf655cdd2014-11-11 07:32:32 +0000536 EVEX_L2Shift = EVEX_ZShift + 1,
537 EVEX_L2 = 1ULL << EVEX_L2Shift,
Elena Demikhovsky003e7d72013-07-28 08:28:38 +0000538
539 // EVEX_B - Set if this instruction has EVEX.B field set.
Craig Topperf655cdd2014-11-11 07:32:32 +0000540 EVEX_BShift = EVEX_L2Shift + 1,
541 EVEX_B = 1ULL << EVEX_BShift,
Elena Demikhovsky003e7d72013-07-28 08:28:38 +0000542
Adam Nemet54adb0f2014-07-17 17:04:50 +0000543 // The scaling factor for the AVX512's 8-bit compressed displacement.
Craig Topperf655cdd2014-11-11 07:32:32 +0000544 CD8_Scale_Shift = EVEX_BShift + 1,
545 CD8_Scale_Mask = 127ULL << CD8_Scale_Shift,
Elena Demikhovsky003e7d72013-07-28 08:28:38 +0000546
Evan Cheng7e763d82011-07-25 18:43:53 +0000547 /// Has3DNow0F0FOpcode - This flag indicates that the instruction uses the
548 /// wacky 0x0F 0x0F prefix for 3DNow! instructions. The manual documents
549 /// this as having a 0x0F prefix with a 0x0F opcode, and each instruction
550 /// storing a classifier in the imm8 field. To simplify our implementation,
551 /// we handle this by storeing the classifier in the opcode field and using
552 /// this flag to indicate that the encoder should do the wacky 3DNow! thing.
Adam Nemet54adb0f2014-07-17 17:04:50 +0000553 Has3DNow0F0FOpcodeShift = CD8_Scale_Shift + 7,
Craig Topperf655cdd2014-11-11 07:32:32 +0000554 Has3DNow0F0FOpcode = 1ULL << Has3DNow0F0FOpcodeShift,
Bruno Cardoso Lopes0f9a1f52011-11-25 19:33:42 +0000555
Craig Toppercd93de92011-12-30 04:48:54 +0000556 /// MemOp4 - Used to indicate swapping of operand 3 and 4 to be encoded in
557 /// ModRM or I8IMM. This is used for FMA4 and XOP instructions.
Adam Nemetcf7c9052014-07-14 23:18:39 +0000558 MemOp4Shift = Has3DNow0F0FOpcodeShift + 1,
Craig Topperf655cdd2014-11-11 07:32:32 +0000559 MemOp4 = 1ULL << MemOp4Shift,
Jan Sjödin6dd24882011-12-12 19:12:26 +0000560
Elena Demikhovskyb19c9dc2014-01-13 12:55:03 +0000561 /// Explicitly specified rounding control
Adam Nemetcf7c9052014-07-14 23:18:39 +0000562 EVEX_RCShift = MemOp4Shift + 1,
Craig Topperf655cdd2014-11-11 07:32:32 +0000563 EVEX_RC = 1ULL << EVEX_RCShift
Evan Cheng7e763d82011-07-25 18:43:53 +0000564 };
565
566 // getBaseOpcodeFor - This function returns the "base" X86 opcode for the
567 // specified machine instruction.
568 //
Chandler Carruth5c0997f2012-06-20 08:39:33 +0000569 inline unsigned char getBaseOpcodeFor(uint64_t TSFlags) {
Evan Cheng7e763d82011-07-25 18:43:53 +0000570 return TSFlags >> X86II::OpcodeShift;
571 }
572
Chandler Carruth5c0997f2012-06-20 08:39:33 +0000573 inline bool hasImm(uint64_t TSFlags) {
Evan Cheng7e763d82011-07-25 18:43:53 +0000574 return (TSFlags & X86II::ImmMask) != 0;
575 }
576
577 /// getSizeOfImm - Decode the "size of immediate" field from the TSFlags field
578 /// of the specified instruction.
Chandler Carruth5c0997f2012-06-20 08:39:33 +0000579 inline unsigned getSizeOfImm(uint64_t TSFlags) {
Evan Cheng7e763d82011-07-25 18:43:53 +0000580 switch (TSFlags & X86II::ImmMask) {
Craig Topper4ed72782012-02-05 05:38:58 +0000581 default: llvm_unreachable("Unknown immediate size");
Evan Cheng7e763d82011-07-25 18:43:53 +0000582 case X86II::Imm8:
583 case X86II::Imm8PCRel: return 1;
584 case X86II::Imm16:
585 case X86II::Imm16PCRel: return 2;
586 case X86II::Imm32:
David Woodhouse0b6c9492014-01-30 22:20:41 +0000587 case X86II::Imm32S:
Evan Cheng7e763d82011-07-25 18:43:53 +0000588 case X86II::Imm32PCRel: return 4;
589 case X86II::Imm64: return 8;
590 }
591 }
592
593 /// isImmPCRel - Return true if the immediate of the specified instruction's
594 /// TSFlags indicates that it is pc relative.
Chandler Carruth5c0997f2012-06-20 08:39:33 +0000595 inline unsigned isImmPCRel(uint64_t TSFlags) {
Evan Cheng7e763d82011-07-25 18:43:53 +0000596 switch (TSFlags & X86II::ImmMask) {
Craig Topper4ed72782012-02-05 05:38:58 +0000597 default: llvm_unreachable("Unknown immediate size");
Evan Cheng7e763d82011-07-25 18:43:53 +0000598 case X86II::Imm8PCRel:
599 case X86II::Imm16PCRel:
600 case X86II::Imm32PCRel:
601 return true;
602 case X86II::Imm8:
603 case X86II::Imm16:
604 case X86II::Imm32:
David Woodhouse0b6c9492014-01-30 22:20:41 +0000605 case X86II::Imm32S:
606 case X86II::Imm64:
607 return false;
608 }
609 }
610
611 /// isImmSigned - Return true if the immediate of the specified instruction's
612 /// TSFlags indicates that it is signed.
613 inline unsigned isImmSigned(uint64_t TSFlags) {
614 switch (TSFlags & X86II::ImmMask) {
615 default: llvm_unreachable("Unknown immediate signedness");
616 case X86II::Imm32S:
617 return true;
618 case X86II::Imm8:
619 case X86II::Imm8PCRel:
620 case X86II::Imm16:
621 case X86II::Imm16PCRel:
622 case X86II::Imm32:
623 case X86II::Imm32PCRel:
Evan Cheng7e763d82011-07-25 18:43:53 +0000624 case X86II::Imm64:
625 return false;
626 }
627 }
628
Preston Gurdddf96b52013-04-10 20:11:59 +0000629 /// getOperandBias - compute any additional adjustment needed to
630 /// the offset to the start of the memory operand
631 /// in this instruction.
632 /// If this is a two-address instruction,skip one of the register operands.
633 /// FIXME: This should be handled during MCInst lowering.
634 inline int getOperandBias(const MCInstrDesc& Desc)
635 {
636 unsigned NumOps = Desc.getNumOperands();
637 unsigned CurOp = 0;
638 if (NumOps > 1 && Desc.getOperandConstraint(1, MCOI::TIED_TO) == 0)
639 ++CurOp;
Elena Demikhovsky003e7d72013-07-28 08:28:38 +0000640 else if (NumOps > 3 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
641 Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1)
642 // Special case for AVX-512 GATHER with 2 TIED_TO operands
643 // Skip the first 2 operands: dst, mask_wb
644 CurOp += 2;
645 else if (NumOps > 3 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
646 Desc.getOperandConstraint(NumOps - 1, MCOI::TIED_TO) == 1)
Preston Gurdddf96b52013-04-10 20:11:59 +0000647 // Special case for GATHER with 2 TIED_TO operands
648 // Skip the first 2 operands: dst, mask_wb
649 CurOp += 2;
Elena Demikhovsky003e7d72013-07-28 08:28:38 +0000650 else if (NumOps > 2 && Desc.getOperandConstraint(NumOps - 2, MCOI::TIED_TO) == 0)
651 // SCATTER
652 ++CurOp;
Preston Gurdddf96b52013-04-10 20:11:59 +0000653 return CurOp;
654 }
655
Evan Cheng7e763d82011-07-25 18:43:53 +0000656 /// getMemoryOperandNo - The function returns the MCInst operand # for the
657 /// first field of the memory operand. If the instruction doesn't have a
658 /// memory operand, this returns -1.
659 ///
660 /// Note that this ignores tied operands. If there is a tied register which
661 /// is duplicated in the MCInst (e.g. "EAX = addl EAX, [mem]") it is only
662 /// counted as one operand.
663 ///
Chandler Carruth5c0997f2012-06-20 08:39:33 +0000664 inline int getMemoryOperandNo(uint64_t TSFlags, unsigned Opcode) {
Craig Topperf655cdd2014-11-11 07:32:32 +0000665 bool HasVEX_4V = TSFlags & X86II::VEX_4V;
666 bool HasMemOp4 = TSFlags & X86II::MemOp4;
667 bool HasEVEX_K = TSFlags & X86II::EVEX_K;
668
Evan Cheng7e763d82011-07-25 18:43:53 +0000669 switch (TSFlags & X86II::FormMask) {
Craig Topper4ed72782012-02-05 05:38:58 +0000670 default: llvm_unreachable("Unknown FormMask value in getMemoryOperandNo!");
Evan Cheng7e763d82011-07-25 18:43:53 +0000671 case X86II::Pseudo:
672 case X86II::RawFrm:
673 case X86II::AddRegFrm:
674 case X86II::MRMDestReg:
675 case X86II::MRMSrcReg:
676 case X86II::RawFrmImm8:
677 case X86II::RawFrmImm16:
Craig Topper35da3d12014-01-16 07:36:58 +0000678 case X86II::RawFrmMemOffs:
David Woodhouse2ef8d9c2014-01-22 15:08:08 +0000679 case X86II::RawFrmSrc:
David Woodhouseb33c2ef2014-01-22 15:08:21 +0000680 case X86II::RawFrmDst:
David Woodhouse9bbf7ca2014-01-22 15:08:36 +0000681 case X86II::RawFrmDstSrc:
Evan Cheng7e763d82011-07-25 18:43:53 +0000682 return -1;
683 case X86II::MRMDestMem:
684 return 0;
Craig Topper3dcdde22015-01-05 08:19:10 +0000685 case X86II::MRMSrcMem:
686 // Start from 1, skip any registers encoded in VEX_VVVV or I8IMM, or a
687 // mask register.
688 return 1 + HasVEX_4V + HasMemOp4 + HasEVEX_K;
Craig Toppera0869dc2014-02-10 06:55:41 +0000689 case X86II::MRMXr:
Evan Cheng7e763d82011-07-25 18:43:53 +0000690 case X86II::MRM0r: case X86II::MRM1r:
691 case X86II::MRM2r: case X86II::MRM3r:
692 case X86II::MRM4r: case X86II::MRM5r:
693 case X86II::MRM6r: case X86II::MRM7r:
694 return -1;
Craig Toppera0869dc2014-02-10 06:55:41 +0000695 case X86II::MRMXm:
Evan Cheng7e763d82011-07-25 18:43:53 +0000696 case X86II::MRM0m: case X86II::MRM1m:
697 case X86II::MRM2m: case X86II::MRM3m:
698 case X86II::MRM4m: case X86II::MRM5m:
Craig Topper3dcdde22015-01-05 08:19:10 +0000699 case X86II::MRM6m: case X86II::MRM7m:
700 // Start from 0, skip registers encoded in VEX_VVVV or a mask register.
701 return 0 + HasVEX_4V + HasEVEX_K;
Craig Topper0d1fd552014-02-19 05:34:21 +0000702 case X86II::MRM_C0: case X86II::MRM_C1: case X86II::MRM_C2:
703 case X86II::MRM_C3: case X86II::MRM_C4: case X86II::MRM_C8:
704 case X86II::MRM_C9: case X86II::MRM_CA: case X86II::MRM_CB:
Kevin Enderby0d928a12014-07-31 23:57:38 +0000705 case X86II::MRM_CF: case X86II::MRM_D0: case X86II::MRM_D1:
706 case X86II::MRM_D4: case X86II::MRM_D5: case X86II::MRM_D6:
707 case X86II::MRM_D7: case X86II::MRM_D8: case X86II::MRM_D9:
708 case X86II::MRM_DA: case X86II::MRM_DB: case X86II::MRM_DC:
709 case X86II::MRM_DD: case X86II::MRM_DE: case X86II::MRM_DF:
710 case X86II::MRM_E0: case X86II::MRM_E1: case X86II::MRM_E2:
711 case X86II::MRM_E3: case X86II::MRM_E4: case X86II::MRM_E5:
712 case X86II::MRM_E8: case X86II::MRM_E9: case X86II::MRM_EA:
713 case X86II::MRM_EB: case X86II::MRM_EC: case X86II::MRM_ED:
714 case X86II::MRM_EE: case X86II::MRM_F0: case X86II::MRM_F1:
715 case X86II::MRM_F2: case X86II::MRM_F3: case X86II::MRM_F4:
716 case X86II::MRM_F5: case X86II::MRM_F6: case X86II::MRM_F7:
717 case X86II::MRM_F8: case X86II::MRM_F9: case X86II::MRM_FA:
718 case X86II::MRM_FB: case X86II::MRM_FC: case X86II::MRM_FD:
719 case X86II::MRM_FE: case X86II::MRM_FF:
Evan Cheng7e763d82011-07-25 18:43:53 +0000720 return -1;
721 }
722 }
723
724 /// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended (r8 or
725 /// higher) register? e.g. r8, xmm8, xmm13, etc.
Chandler Carruth5c0997f2012-06-20 08:39:33 +0000726 inline bool isX86_64ExtendedReg(unsigned RegNo) {
Elena Demikhovsky003e7d72013-07-28 08:28:38 +0000727 if ((RegNo > X86::XMM7 && RegNo <= X86::XMM15) ||
728 (RegNo > X86::XMM23 && RegNo <= X86::XMM31) ||
729 (RegNo > X86::YMM7 && RegNo <= X86::YMM15) ||
730 (RegNo > X86::YMM23 && RegNo <= X86::YMM31) ||
731 (RegNo > X86::ZMM7 && RegNo <= X86::ZMM15) ||
732 (RegNo > X86::ZMM23 && RegNo <= X86::ZMM31))
733 return true;
734
Evan Cheng7e763d82011-07-25 18:43:53 +0000735 switch (RegNo) {
736 default: break;
737 case X86::R8: case X86::R9: case X86::R10: case X86::R11:
738 case X86::R12: case X86::R13: case X86::R14: case X86::R15:
739 case X86::R8D: case X86::R9D: case X86::R10D: case X86::R11D:
740 case X86::R12D: case X86::R13D: case X86::R14D: case X86::R15D:
741 case X86::R8W: case X86::R9W: case X86::R10W: case X86::R11W:
742 case X86::R12W: case X86::R13W: case X86::R14W: case X86::R15W:
743 case X86::R8B: case X86::R9B: case X86::R10B: case X86::R11B:
744 case X86::R12B: case X86::R13B: case X86::R14B: case X86::R15B:
Evan Cheng7e763d82011-07-25 18:43:53 +0000745 case X86::CR8: case X86::CR9: case X86::CR10: case X86::CR11:
746 case X86::CR12: case X86::CR13: case X86::CR14: case X86::CR15:
747 return true;
748 }
749 return false;
750 }
Elena Demikhovsky003e7d72013-07-28 08:28:38 +0000751
752 /// is32ExtendedReg - Is the MemoryOperand a 32 extended (zmm16 or higher)
753 /// registers? e.g. zmm21, etc.
754 static inline bool is32ExtendedReg(unsigned RegNo) {
755 return ((RegNo > X86::XMM15 && RegNo <= X86::XMM31) ||
756 (RegNo > X86::YMM15 && RegNo <= X86::YMM31) ||
757 (RegNo > X86::ZMM15 && RegNo <= X86::ZMM31));
758 }
759
Michael Liao5bf95782014-12-04 05:20:33 +0000760
Chandler Carruth5c0997f2012-06-20 08:39:33 +0000761 inline bool isX86_64NonExtLowByteReg(unsigned reg) {
Evan Cheng7e763d82011-07-25 18:43:53 +0000762 return (reg == X86::SPL || reg == X86::BPL ||
763 reg == X86::SIL || reg == X86::DIL);
764 }
Alexander Kornienko70bc5f12015-06-19 15:57:42 +0000765} // namespace X86II
Evan Cheng7e763d82011-07-25 18:43:53 +0000766
Alexander Kornienko70bc5f12015-06-19 15:57:42 +0000767} // namespace llvm
Evan Cheng7e763d82011-07-25 18:43:53 +0000768
769#endif