blob: 81601b09ce0d64f09f09c274801433ca6e1b0e1c [file] [log] [blame]
Saar Raz5d98ba62019-10-15 15:24:26 +00001//===-- SemaConcept.cpp - Semantic Analysis for Constraints and Concepts --===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements semantic analysis for C++ constraints and concepts.
11//
12//===----------------------------------------------------------------------===//
13
Saar Razb65b1f32020-01-09 15:07:51 +020014#include "clang/Sema/SemaConcept.h"
Saar Raz5d98ba62019-10-15 15:24:26 +000015#include "clang/Sema/Sema.h"
Saar Razfdf80e82019-12-06 01:30:21 +020016#include "clang/Sema/SemaInternal.h"
Saar Raz5d98ba62019-10-15 15:24:26 +000017#include "clang/Sema/SemaDiagnostic.h"
18#include "clang/Sema/TemplateDeduction.h"
19#include "clang/Sema/Template.h"
Saar Raza0f50d72020-01-18 09:11:43 +020020#include "clang/Sema/Overload.h"
21#include "clang/Sema/Initialization.h"
22#include "clang/Sema/SemaInternal.h"
23#include "clang/AST/ExprConcepts.h"
Saar Razdf061c32019-12-23 08:37:35 +020024#include "clang/AST/RecursiveASTVisitor.h"
Saar Razb65b1f32020-01-09 15:07:51 +020025#include "clang/Basic/OperatorPrecedence.h"
Saar Razfdf80e82019-12-06 01:30:21 +020026#include "llvm/ADT/DenseMap.h"
27#include "llvm/ADT/PointerUnion.h"
Saar Raz5d98ba62019-10-15 15:24:26 +000028using namespace clang;
29using namespace sema;
30
Saar Razb65b1f32020-01-09 15:07:51 +020031bool
32Sema::CheckConstraintExpression(Expr *ConstraintExpression, Token NextToken,
33 bool *PossibleNonPrimary,
34 bool IsTrailingRequiresClause) {
Saar Raz5d98ba62019-10-15 15:24:26 +000035 // C++2a [temp.constr.atomic]p1
36 // ..E shall be a constant expression of type bool.
37
38 ConstraintExpression = ConstraintExpression->IgnoreParenImpCasts();
39
40 if (auto *BinOp = dyn_cast<BinaryOperator>(ConstraintExpression)) {
41 if (BinOp->getOpcode() == BO_LAnd || BinOp->getOpcode() == BO_LOr)
Saar Razb65b1f32020-01-09 15:07:51 +020042 return CheckConstraintExpression(BinOp->getLHS(), NextToken,
43 PossibleNonPrimary) &&
44 CheckConstraintExpression(BinOp->getRHS(), NextToken,
45 PossibleNonPrimary);
Saar Raz5d98ba62019-10-15 15:24:26 +000046 } else if (auto *C = dyn_cast<ExprWithCleanups>(ConstraintExpression))
Saar Razb65b1f32020-01-09 15:07:51 +020047 return CheckConstraintExpression(C->getSubExpr(), NextToken,
48 PossibleNonPrimary);
Saar Raz5d98ba62019-10-15 15:24:26 +000049
50 QualType Type = ConstraintExpression->getType();
Saar Razb65b1f32020-01-09 15:07:51 +020051
52 auto CheckForNonPrimary = [&] {
53 if (PossibleNonPrimary)
54 *PossibleNonPrimary =
55 // We have the following case:
56 // template<typename> requires func(0) struct S { };
57 // The user probably isn't aware of the parentheses required around
58 // the function call, and we're only going to parse 'func' as the
59 // primary-expression, and complain that it is of non-bool type.
60 (NextToken.is(tok::l_paren) &&
61 (IsTrailingRequiresClause ||
62 (Type->isDependentType() &&
63 IsDependentFunctionNameExpr(ConstraintExpression)) ||
64 Type->isFunctionType() ||
65 Type->isSpecificBuiltinType(BuiltinType::Overload))) ||
66 // We have the following case:
67 // template<typename T> requires size_<T> == 0 struct S { };
68 // The user probably isn't aware of the parentheses required around
69 // the binary operator, and we're only going to parse 'func' as the
70 // first operand, and complain that it is of non-bool type.
71 getBinOpPrecedence(NextToken.getKind(),
72 /*GreaterThanIsOperator=*/true,
73 getLangOpts().CPlusPlus11) > prec::LogicalAnd;
74 };
75
76 // An atomic constraint!
77 if (ConstraintExpression->isTypeDependent()) {
78 CheckForNonPrimary();
79 return true;
80 }
81
Saar Raz5d98ba62019-10-15 15:24:26 +000082 if (!Context.hasSameUnqualifiedType(Type, Context.BoolTy)) {
83 Diag(ConstraintExpression->getExprLoc(),
84 diag::err_non_bool_atomic_constraint) << Type
85 << ConstraintExpression->getSourceRange();
Saar Razb65b1f32020-01-09 15:07:51 +020086 CheckForNonPrimary();
Saar Raz5d98ba62019-10-15 15:24:26 +000087 return false;
88 }
Saar Razb65b1f32020-01-09 15:07:51 +020089
90 if (PossibleNonPrimary)
91 *PossibleNonPrimary = false;
Saar Raz5d98ba62019-10-15 15:24:26 +000092 return true;
93}
94
Saar Razfdf80e82019-12-06 01:30:21 +020095template <typename AtomicEvaluator>
96static bool
97calculateConstraintSatisfaction(Sema &S, const Expr *ConstraintExpr,
98 ConstraintSatisfaction &Satisfaction,
99 AtomicEvaluator &&Evaluator) {
Saar Raz5d98ba62019-10-15 15:24:26 +0000100 ConstraintExpr = ConstraintExpr->IgnoreParenImpCasts();
101
102 if (auto *BO = dyn_cast<BinaryOperator>(ConstraintExpr)) {
Saar Razfdf80e82019-12-06 01:30:21 +0200103 if (BO->getOpcode() == BO_LAnd || BO->getOpcode() == BO_LOr) {
104 if (calculateConstraintSatisfaction(S, BO->getLHS(), Satisfaction,
105 Evaluator))
Saar Raz5d98ba62019-10-15 15:24:26 +0000106 return true;
Saar Razfdf80e82019-12-06 01:30:21 +0200107
108 bool IsLHSSatisfied = Satisfaction.IsSatisfied;
109
110 if (BO->getOpcode() == BO_LOr && IsLHSSatisfied)
111 // [temp.constr.op] p3
112 // A disjunction is a constraint taking two operands. To determine if
113 // a disjunction is satisfied, the satisfaction of the first operand
114 // is checked. If that is satisfied, the disjunction is satisfied.
115 // Otherwise, the disjunction is satisfied if and only if the second
116 // operand is satisfied.
Saar Raz5d98ba62019-10-15 15:24:26 +0000117 return false;
Saar Razfdf80e82019-12-06 01:30:21 +0200118
119 if (BO->getOpcode() == BO_LAnd && !IsLHSSatisfied)
120 // [temp.constr.op] p2
121 // A conjunction is a constraint taking two operands. To determine if
122 // a conjunction is satisfied, the satisfaction of the first operand
123 // is checked. If that is not satisfied, the conjunction is not
124 // satisfied. Otherwise, the conjunction is satisfied if and only if
125 // the second operand is satisfied.
Saar Raz5d98ba62019-10-15 15:24:26 +0000126 return false;
Saar Razfdf80e82019-12-06 01:30:21 +0200127
128 return calculateConstraintSatisfaction(S, BO->getRHS(), Satisfaction,
129 std::forward<AtomicEvaluator>(Evaluator));
Saar Raz5d98ba62019-10-15 15:24:26 +0000130 }
131 }
132 else if (auto *C = dyn_cast<ExprWithCleanups>(ConstraintExpr))
Saar Razfdf80e82019-12-06 01:30:21 +0200133 return calculateConstraintSatisfaction(S, C->getSubExpr(), Satisfaction,
134 std::forward<AtomicEvaluator>(Evaluator));
Saar Razffa214e2019-10-25 00:09:37 +0300135
Saar Razfdf80e82019-12-06 01:30:21 +0200136 // An atomic constraint expression
137 ExprResult SubstitutedAtomicExpr = Evaluator(ConstraintExpr);
Vlad Tsyrklevich38839d02019-10-28 14:36:31 -0700138
Saar Razfdf80e82019-12-06 01:30:21 +0200139 if (SubstitutedAtomicExpr.isInvalid())
Vlad Tsyrklevich38839d02019-10-28 14:36:31 -0700140 return true;
141
Saar Razfdf80e82019-12-06 01:30:21 +0200142 if (!SubstitutedAtomicExpr.isUsable())
143 // Evaluator has decided satisfaction without yielding an expression.
144 return false;
145
146 EnterExpressionEvaluationContext ConstantEvaluated(
147 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
Saar Raz5d98ba62019-10-15 15:24:26 +0000148 SmallVector<PartialDiagnosticAt, 2> EvaluationDiags;
149 Expr::EvalResult EvalResult;
150 EvalResult.Diag = &EvaluationDiags;
Saar Razfdf80e82019-12-06 01:30:21 +0200151 if (!SubstitutedAtomicExpr.get()->EvaluateAsRValue(EvalResult, S.Context)) {
152 // C++2a [temp.constr.atomic]p1
153 // ...E shall be a constant expression of type bool.
154 S.Diag(SubstitutedAtomicExpr.get()->getBeginLoc(),
155 diag::err_non_constant_constraint_expression)
156 << SubstitutedAtomicExpr.get()->getSourceRange();
Saar Raz5d98ba62019-10-15 15:24:26 +0000157 for (const PartialDiagnosticAt &PDiag : EvaluationDiags)
Saar Razfdf80e82019-12-06 01:30:21 +0200158 S.Diag(PDiag.first, PDiag.second);
Saar Raz5d98ba62019-10-15 15:24:26 +0000159 return true;
160 }
161
Saar Razfdf80e82019-12-06 01:30:21 +0200162 Satisfaction.IsSatisfied = EvalResult.Val.getInt().getBoolValue();
163 if (!Satisfaction.IsSatisfied)
164 Satisfaction.Details.emplace_back(ConstraintExpr,
165 SubstitutedAtomicExpr.get());
Saar Raz5d98ba62019-10-15 15:24:26 +0000166
167 return false;
Saar Razfdf80e82019-12-06 01:30:21 +0200168}
169
170template <typename TemplateDeclT>
171static bool calculateConstraintSatisfaction(
172 Sema &S, TemplateDeclT *Template, ArrayRef<TemplateArgument> TemplateArgs,
173 SourceLocation TemplateNameLoc, MultiLevelTemplateArgumentList &MLTAL,
174 const Expr *ConstraintExpr, ConstraintSatisfaction &Satisfaction) {
175 return calculateConstraintSatisfaction(
176 S, ConstraintExpr, Satisfaction, [&](const Expr *AtomicExpr) {
177 EnterExpressionEvaluationContext ConstantEvaluated(
178 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
179
180 // Atomic constraint - substitute arguments and check satisfaction.
181 ExprResult SubstitutedExpression;
182 {
183 TemplateDeductionInfo Info(TemplateNameLoc);
184 Sema::InstantiatingTemplate Inst(S, AtomicExpr->getBeginLoc(),
185 Sema::InstantiatingTemplate::ConstraintSubstitution{}, Template,
186 Info, AtomicExpr->getSourceRange());
187 if (Inst.isInvalid())
188 return ExprError();
189 // We do not want error diagnostics escaping here.
190 Sema::SFINAETrap Trap(S);
191 SubstitutedExpression = S.SubstExpr(const_cast<Expr *>(AtomicExpr),
192 MLTAL);
193 if (SubstitutedExpression.isInvalid() || Trap.hasErrorOccurred()) {
194 // C++2a [temp.constr.atomic]p1
195 // ...If substitution results in an invalid type or expression, the
196 // constraint is not satisfied.
197 if (!Trap.hasErrorOccurred())
198 // A non-SFINAE error has occured as a result of this
199 // substitution.
200 return ExprError();
201
202 PartialDiagnosticAt SubstDiag{SourceLocation(),
203 PartialDiagnostic::NullDiagnostic()};
204 Info.takeSFINAEDiagnostic(SubstDiag);
205 // FIXME: Concepts: This is an unfortunate consequence of there
206 // being no serialization code for PartialDiagnostics and the fact
207 // that serializing them would likely take a lot more storage than
208 // just storing them as strings. We would still like, in the
209 // future, to serialize the proper PartialDiagnostic as serializing
210 // it as a string defeats the purpose of the diagnostic mechanism.
211 SmallString<128> DiagString;
212 DiagString = ": ";
213 SubstDiag.second.EmitToString(S.getDiagnostics(), DiagString);
214 unsigned MessageSize = DiagString.size();
215 char *Mem = new (S.Context) char[MessageSize];
216 memcpy(Mem, DiagString.c_str(), MessageSize);
217 Satisfaction.Details.emplace_back(
218 AtomicExpr,
219 new (S.Context) ConstraintSatisfaction::SubstitutionDiagnostic{
220 SubstDiag.first, StringRef(Mem, MessageSize)});
221 Satisfaction.IsSatisfied = false;
222 return ExprEmpty();
223 }
224 }
225
226 if (!S.CheckConstraintExpression(SubstitutedExpression.get()))
227 return ExprError();
228
229 return SubstitutedExpression;
230 });
231}
232
233template<typename TemplateDeclT>
234static bool CheckConstraintSatisfaction(Sema &S, TemplateDeclT *Template,
235 ArrayRef<const Expr *> ConstraintExprs,
236 ArrayRef<TemplateArgument> TemplateArgs,
237 SourceRange TemplateIDRange,
238 ConstraintSatisfaction &Satisfaction) {
239 if (ConstraintExprs.empty()) {
240 Satisfaction.IsSatisfied = true;
241 return false;
242 }
243
244 for (auto& Arg : TemplateArgs)
245 if (Arg.isInstantiationDependent()) {
246 // No need to check satisfaction for dependent constraint expressions.
247 Satisfaction.IsSatisfied = true;
248 return false;
249 }
250
251 Sema::InstantiatingTemplate Inst(S, TemplateIDRange.getBegin(),
252 Sema::InstantiatingTemplate::ConstraintsCheck{}, Template, TemplateArgs,
253 TemplateIDRange);
254 if (Inst.isInvalid())
255 return true;
256
257 MultiLevelTemplateArgumentList MLTAL;
258 MLTAL.addOuterTemplateArguments(TemplateArgs);
259
260 for (const Expr *ConstraintExpr : ConstraintExprs) {
261 if (calculateConstraintSatisfaction(S, Template, TemplateArgs,
262 TemplateIDRange.getBegin(), MLTAL,
263 ConstraintExpr, Satisfaction))
264 return true;
265 if (!Satisfaction.IsSatisfied)
266 // [temp.constr.op] p2
267 // [...] To determine if a conjunction is satisfied, the satisfaction
268 // of the first operand is checked. If that is not satisfied, the
269 // conjunction is not satisfied. [...]
270 return false;
271 }
272 return false;
273}
274
Saar Razb933d372020-01-22 02:50:12 +0200275bool Sema::CheckConstraintSatisfaction(
276 NamedDecl *Template, ArrayRef<const Expr *> ConstraintExprs,
277 ArrayRef<TemplateArgument> TemplateArgs, SourceRange TemplateIDRange,
278 ConstraintSatisfaction &OutSatisfaction) {
279 if (ConstraintExprs.empty()) {
280 OutSatisfaction.IsSatisfied = true;
281 return false;
282 }
Saar Razfdf80e82019-12-06 01:30:21 +0200283
Saar Razb933d372020-01-22 02:50:12 +0200284 llvm::FoldingSetNodeID ID;
285 void *InsertPos;
286 ConstraintSatisfaction *Satisfaction = nullptr;
287 if (LangOpts.ConceptSatisfactionCaching) {
288 ConstraintSatisfaction::Profile(ID, Context, Template, TemplateArgs);
289 Satisfaction = SatisfactionCache.FindNodeOrInsertPos(ID, InsertPos);
290 if (Satisfaction) {
291 OutSatisfaction = *Satisfaction;
292 return false;
293 }
294 Satisfaction = new ConstraintSatisfaction(Template, TemplateArgs);
295 } else {
296 Satisfaction = &OutSatisfaction;
297 }
298 bool Failed;
299 if (auto *T = dyn_cast<TemplateDecl>(Template))
300 Failed = ::CheckConstraintSatisfaction(*this, T, ConstraintExprs,
301 TemplateArgs, TemplateIDRange,
302 *Satisfaction);
303 else if (auto *P =
304 dyn_cast<ClassTemplatePartialSpecializationDecl>(Template))
305 Failed = ::CheckConstraintSatisfaction(*this, P, ConstraintExprs,
306 TemplateArgs, TemplateIDRange,
307 *Satisfaction);
308 else
309 Failed = ::CheckConstraintSatisfaction(
310 *this, cast<VarTemplatePartialSpecializationDecl>(Template),
311 ConstraintExprs, TemplateArgs, TemplateIDRange, *Satisfaction);
312 if (Failed) {
313 if (LangOpts.ConceptSatisfactionCaching)
314 delete Satisfaction;
315 return true;
316 }
Saar Razfdf80e82019-12-06 01:30:21 +0200317
Saar Razb933d372020-01-22 02:50:12 +0200318 if (LangOpts.ConceptSatisfactionCaching) {
319 // We cannot use InsertNode here because CheckConstraintSatisfaction might
320 // have invalidated it.
321 SatisfactionCache.InsertNode(Satisfaction);
322 OutSatisfaction = *Satisfaction;
323 }
324 return false;
Saar Razfdf80e82019-12-06 01:30:21 +0200325}
326
327bool Sema::CheckConstraintSatisfaction(const Expr *ConstraintExpr,
328 ConstraintSatisfaction &Satisfaction) {
329 return calculateConstraintSatisfaction(
330 *this, ConstraintExpr, Satisfaction,
331 [](const Expr *AtomicExpr) -> ExprResult {
332 return ExprResult(const_cast<Expr *>(AtomicExpr));
333 });
334}
335
336bool Sema::EnsureTemplateArgumentListConstraints(
337 TemplateDecl *TD, ArrayRef<TemplateArgument> TemplateArgs,
338 SourceRange TemplateIDRange) {
339 ConstraintSatisfaction Satisfaction;
340 llvm::SmallVector<const Expr *, 3> AssociatedConstraints;
341 TD->getAssociatedConstraints(AssociatedConstraints);
342 if (CheckConstraintSatisfaction(TD, AssociatedConstraints, TemplateArgs,
343 TemplateIDRange, Satisfaction))
344 return true;
345
346 if (!Satisfaction.IsSatisfied) {
347 SmallString<128> TemplateArgString;
348 TemplateArgString = " ";
349 TemplateArgString += getTemplateArgumentBindingsText(
350 TD->getTemplateParameters(), TemplateArgs.data(), TemplateArgs.size());
351
352 Diag(TemplateIDRange.getBegin(),
353 diag::err_template_arg_list_constraints_not_satisfied)
354 << (int)getTemplateNameKindForDiagnostics(TemplateName(TD)) << TD
355 << TemplateArgString << TemplateIDRange;
356 DiagnoseUnsatisfiedConstraint(Satisfaction);
357 return true;
358 }
359 return false;
360}
361
Saar Raza0f50d72020-01-18 09:11:43 +0200362static void diagnoseUnsatisfiedRequirement(Sema &S,
363 concepts::ExprRequirement *Req,
364 bool First) {
365 assert(!Req->isSatisfied()
366 && "Diagnose() can only be used on an unsatisfied requirement");
367 switch (Req->getSatisfactionStatus()) {
368 case concepts::ExprRequirement::SS_Dependent:
369 llvm_unreachable("Diagnosing a dependent requirement");
370 break;
371 case concepts::ExprRequirement::SS_ExprSubstitutionFailure: {
372 auto *SubstDiag = Req->getExprSubstitutionDiagnostic();
373 if (!SubstDiag->DiagMessage.empty())
374 S.Diag(SubstDiag->DiagLoc,
375 diag::note_expr_requirement_expr_substitution_error)
376 << (int)First << SubstDiag->SubstitutedEntity
377 << SubstDiag->DiagMessage;
378 else
379 S.Diag(SubstDiag->DiagLoc,
380 diag::note_expr_requirement_expr_unknown_substitution_error)
381 << (int)First << SubstDiag->SubstitutedEntity;
382 break;
383 }
384 case concepts::ExprRequirement::SS_NoexceptNotMet:
385 S.Diag(Req->getNoexceptLoc(),
386 diag::note_expr_requirement_noexcept_not_met)
387 << (int)First << Req->getExpr();
388 break;
389 case concepts::ExprRequirement::SS_TypeRequirementSubstitutionFailure: {
390 auto *SubstDiag =
391 Req->getReturnTypeRequirement().getSubstitutionDiagnostic();
392 if (!SubstDiag->DiagMessage.empty())
393 S.Diag(SubstDiag->DiagLoc,
394 diag::note_expr_requirement_type_requirement_substitution_error)
395 << (int)First << SubstDiag->SubstitutedEntity
396 << SubstDiag->DiagMessage;
397 else
398 S.Diag(SubstDiag->DiagLoc,
399 diag::note_expr_requirement_type_requirement_unknown_substitution_error)
400 << (int)First << SubstDiag->SubstitutedEntity;
401 break;
402 }
403 case concepts::ExprRequirement::SS_ConstraintsNotSatisfied: {
404 ConceptSpecializationExpr *ConstraintExpr =
405 Req->getReturnTypeRequirementSubstitutedConstraintExpr();
406 if (ConstraintExpr->getTemplateArgsAsWritten()->NumTemplateArgs == 1)
407 // A simple case - expr type is the type being constrained and the concept
408 // was not provided arguments.
409 S.Diag(ConstraintExpr->getBeginLoc(),
410 diag::note_expr_requirement_constraints_not_satisfied_simple)
411 << (int)First << S.BuildDecltypeType(Req->getExpr(),
412 Req->getExpr()->getBeginLoc())
413 << ConstraintExpr->getNamedConcept();
414 else
415 S.Diag(ConstraintExpr->getBeginLoc(),
416 diag::note_expr_requirement_constraints_not_satisfied)
417 << (int)First << ConstraintExpr;
418 S.DiagnoseUnsatisfiedConstraint(ConstraintExpr->getSatisfaction());
419 break;
420 }
421 case concepts::ExprRequirement::SS_Satisfied:
422 llvm_unreachable("We checked this above");
423 }
424}
425
426static void diagnoseUnsatisfiedRequirement(Sema &S,
427 concepts::TypeRequirement *Req,
428 bool First) {
429 assert(!Req->isSatisfied()
430 && "Diagnose() can only be used on an unsatisfied requirement");
431 switch (Req->getSatisfactionStatus()) {
432 case concepts::TypeRequirement::SS_Dependent:
433 llvm_unreachable("Diagnosing a dependent requirement");
434 return;
435 case concepts::TypeRequirement::SS_SubstitutionFailure: {
436 auto *SubstDiag = Req->getSubstitutionDiagnostic();
437 if (!SubstDiag->DiagMessage.empty())
438 S.Diag(SubstDiag->DiagLoc,
439 diag::note_type_requirement_substitution_error) << (int)First
440 << SubstDiag->SubstitutedEntity << SubstDiag->DiagMessage;
441 else
442 S.Diag(SubstDiag->DiagLoc,
443 diag::note_type_requirement_unknown_substitution_error)
444 << (int)First << SubstDiag->SubstitutedEntity;
445 return;
446 }
447 default:
448 llvm_unreachable("Unknown satisfaction status");
449 return;
450 }
451}
452
453static void diagnoseUnsatisfiedRequirement(Sema &S,
454 concepts::NestedRequirement *Req,
455 bool First) {
456 if (Req->isSubstitutionFailure()) {
457 concepts::Requirement::SubstitutionDiagnostic *SubstDiag =
458 Req->getSubstitutionDiagnostic();
459 if (!SubstDiag->DiagMessage.empty())
460 S.Diag(SubstDiag->DiagLoc,
461 diag::note_nested_requirement_substitution_error)
462 << (int)First << SubstDiag->SubstitutedEntity
463 << SubstDiag->DiagMessage;
464 else
465 S.Diag(SubstDiag->DiagLoc,
466 diag::note_nested_requirement_unknown_substitution_error)
467 << (int)First << SubstDiag->SubstitutedEntity;
468 return;
469 }
470 S.DiagnoseUnsatisfiedConstraint(Req->getConstraintSatisfaction(), First);
471}
472
473
Saar Razfdf80e82019-12-06 01:30:21 +0200474static void diagnoseWellFormedUnsatisfiedConstraintExpr(Sema &S,
475 Expr *SubstExpr,
476 bool First = true) {
477 SubstExpr = SubstExpr->IgnoreParenImpCasts();
478 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SubstExpr)) {
479 switch (BO->getOpcode()) {
480 // These two cases will in practice only be reached when using fold
481 // expressions with || and &&, since otherwise the || and && will have been
482 // broken down into atomic constraints during satisfaction checking.
483 case BO_LOr:
484 // Or evaluated to false - meaning both RHS and LHS evaluated to false.
485 diagnoseWellFormedUnsatisfiedConstraintExpr(S, BO->getLHS(), First);
486 diagnoseWellFormedUnsatisfiedConstraintExpr(S, BO->getRHS(),
487 /*First=*/false);
488 return;
489 case BO_LAnd:
490 bool LHSSatisfied;
491 BO->getLHS()->EvaluateAsBooleanCondition(LHSSatisfied, S.Context);
492 if (LHSSatisfied) {
493 // LHS is true, so RHS must be false.
494 diagnoseWellFormedUnsatisfiedConstraintExpr(S, BO->getRHS(), First);
495 return;
496 }
497 // LHS is false
498 diagnoseWellFormedUnsatisfiedConstraintExpr(S, BO->getLHS(), First);
499
500 // RHS might also be false
501 bool RHSSatisfied;
502 BO->getRHS()->EvaluateAsBooleanCondition(RHSSatisfied, S.Context);
503 if (!RHSSatisfied)
504 diagnoseWellFormedUnsatisfiedConstraintExpr(S, BO->getRHS(),
505 /*First=*/false);
506 return;
507 case BO_GE:
508 case BO_LE:
509 case BO_GT:
510 case BO_LT:
511 case BO_EQ:
512 case BO_NE:
513 if (BO->getLHS()->getType()->isIntegerType() &&
514 BO->getRHS()->getType()->isIntegerType()) {
515 Expr::EvalResult SimplifiedLHS;
516 Expr::EvalResult SimplifiedRHS;
517 BO->getLHS()->EvaluateAsInt(SimplifiedLHS, S.Context);
518 BO->getRHS()->EvaluateAsInt(SimplifiedRHS, S.Context);
519 if (!SimplifiedLHS.Diag && ! SimplifiedRHS.Diag) {
520 S.Diag(SubstExpr->getBeginLoc(),
521 diag::note_atomic_constraint_evaluated_to_false_elaborated)
522 << (int)First << SubstExpr
523 << SimplifiedLHS.Val.getInt().toString(10)
524 << BinaryOperator::getOpcodeStr(BO->getOpcode())
525 << SimplifiedRHS.Val.getInt().toString(10);
526 return;
527 }
528 }
529 break;
530
531 default:
532 break;
533 }
534 } else if (auto *CSE = dyn_cast<ConceptSpecializationExpr>(SubstExpr)) {
535 if (CSE->getTemplateArgsAsWritten()->NumTemplateArgs == 1) {
536 S.Diag(
537 CSE->getSourceRange().getBegin(),
538 diag::
539 note_single_arg_concept_specialization_constraint_evaluated_to_false)
540 << (int)First
541 << CSE->getTemplateArgsAsWritten()->arguments()[0].getArgument()
542 << CSE->getNamedConcept();
543 } else {
544 S.Diag(SubstExpr->getSourceRange().getBegin(),
545 diag::note_concept_specialization_constraint_evaluated_to_false)
546 << (int)First << CSE;
547 }
548 S.DiagnoseUnsatisfiedConstraint(CSE->getSatisfaction());
549 return;
Saar Raza0f50d72020-01-18 09:11:43 +0200550 } else if (auto *RE = dyn_cast<RequiresExpr>(SubstExpr)) {
551 for (concepts::Requirement *Req : RE->getRequirements())
552 if (!Req->isDependent() && !Req->isSatisfied()) {
553 if (auto *E = dyn_cast<concepts::ExprRequirement>(Req))
554 diagnoseUnsatisfiedRequirement(S, E, First);
555 else if (auto *T = dyn_cast<concepts::TypeRequirement>(Req))
556 diagnoseUnsatisfiedRequirement(S, T, First);
557 else
558 diagnoseUnsatisfiedRequirement(
559 S, cast<concepts::NestedRequirement>(Req), First);
560 break;
561 }
562 return;
Saar Razfdf80e82019-12-06 01:30:21 +0200563 }
564
565 S.Diag(SubstExpr->getSourceRange().getBegin(),
566 diag::note_atomic_constraint_evaluated_to_false)
567 << (int)First << SubstExpr;
568}
569
570template<typename SubstitutionDiagnostic>
571static void diagnoseUnsatisfiedConstraintExpr(
572 Sema &S, const Expr *E,
573 const llvm::PointerUnion<Expr *, SubstitutionDiagnostic *> &Record,
574 bool First = true) {
575 if (auto *Diag = Record.template dyn_cast<SubstitutionDiagnostic *>()){
576 S.Diag(Diag->first, diag::note_substituted_constraint_expr_is_ill_formed)
577 << Diag->second;
578 return;
579 }
580
581 diagnoseWellFormedUnsatisfiedConstraintExpr(S,
582 Record.template get<Expr *>(), First);
583}
584
Saar Raza0f50d72020-01-18 09:11:43 +0200585void
586Sema::DiagnoseUnsatisfiedConstraint(const ConstraintSatisfaction& Satisfaction,
587 bool First) {
Saar Razfdf80e82019-12-06 01:30:21 +0200588 assert(!Satisfaction.IsSatisfied &&
589 "Attempted to diagnose a satisfied constraint");
Saar Razfdf80e82019-12-06 01:30:21 +0200590 for (auto &Pair : Satisfaction.Details) {
591 diagnoseUnsatisfiedConstraintExpr(*this, Pair.first, Pair.second, First);
592 First = false;
593 }
594}
595
596void Sema::DiagnoseUnsatisfiedConstraint(
Saar Raza0f50d72020-01-18 09:11:43 +0200597 const ASTConstraintSatisfaction &Satisfaction,
598 bool First) {
Saar Razfdf80e82019-12-06 01:30:21 +0200599 assert(!Satisfaction.IsSatisfied &&
600 "Attempted to diagnose a satisfied constraint");
Saar Razfdf80e82019-12-06 01:30:21 +0200601 for (auto &Pair : Satisfaction) {
602 diagnoseUnsatisfiedConstraintExpr(*this, Pair.first, Pair.second, First);
603 First = false;
604 }
Saar Razdf061c32019-12-23 08:37:35 +0200605}
606
Saar Razb65b1f32020-01-09 15:07:51 +0200607const NormalizedConstraint *
608Sema::getNormalizedAssociatedConstraints(
609 NamedDecl *ConstrainedDecl, ArrayRef<const Expr *> AssociatedConstraints) {
610 auto CacheEntry = NormalizationCache.find(ConstrainedDecl);
611 if (CacheEntry == NormalizationCache.end()) {
612 auto Normalized =
613 NormalizedConstraint::fromConstraintExprs(*this, ConstrainedDecl,
614 AssociatedConstraints);
615 CacheEntry =
616 NormalizationCache
617 .try_emplace(ConstrainedDecl,
618 Normalized
619 ? new (Context) NormalizedConstraint(
620 std::move(*Normalized))
621 : nullptr)
622 .first;
Saar Razdf061c32019-12-23 08:37:35 +0200623 }
Saar Razb65b1f32020-01-09 15:07:51 +0200624 return CacheEntry->second;
625}
Saar Razdf061c32019-12-23 08:37:35 +0200626
627static bool substituteParameterMappings(Sema &S, NormalizedConstraint &N,
628 ConceptDecl *Concept, ArrayRef<TemplateArgument> TemplateArgs,
629 const ASTTemplateArgumentListInfo *ArgsAsWritten) {
630 if (!N.isAtomic()) {
631 if (substituteParameterMappings(S, N.getLHS(), Concept, TemplateArgs,
632 ArgsAsWritten))
633 return true;
634 return substituteParameterMappings(S, N.getRHS(), Concept, TemplateArgs,
635 ArgsAsWritten);
636 }
637 TemplateParameterList *TemplateParams = Concept->getTemplateParameters();
638
639 AtomicConstraint &Atomic = *N.getAtomicConstraint();
640 TemplateArgumentListInfo SubstArgs;
641 MultiLevelTemplateArgumentList MLTAL;
642 MLTAL.addOuterTemplateArguments(TemplateArgs);
643 if (!Atomic.ParameterMapping) {
644 llvm::SmallBitVector OccurringIndices(TemplateParams->size());
645 S.MarkUsedTemplateParameters(Atomic.ConstraintExpr, /*OnlyDeduced=*/false,
646 /*Depth=*/0, OccurringIndices);
Saar Razb65b1f32020-01-09 15:07:51 +0200647 Atomic.ParameterMapping.emplace(
648 MutableArrayRef<TemplateArgumentLoc>(
649 new (S.Context) TemplateArgumentLoc[OccurringIndices.count()],
650 OccurringIndices.count()));
651 for (unsigned I = 0, J = 0, C = TemplateParams->size(); I != C; ++I)
Saar Razdf061c32019-12-23 08:37:35 +0200652 if (OccurringIndices[I])
Saar Razb65b1f32020-01-09 15:07:51 +0200653 new (&(*Atomic.ParameterMapping)[J++]) TemplateArgumentLoc(
Saar Razdf061c32019-12-23 08:37:35 +0200654 S.getIdentityTemplateArgumentLoc(TemplateParams->begin()[I],
655 // Here we assume we do not support things like
656 // template<typename A, typename B>
657 // concept C = ...;
658 //
659 // template<typename... Ts> requires C<Ts...>
660 // struct S { };
661 // The above currently yields a diagnostic.
662 // We still might have default arguments for concept parameters.
663 ArgsAsWritten->NumTemplateArgs > I ?
664 ArgsAsWritten->arguments()[I].getLocation() :
665 SourceLocation()));
666 }
667 Sema::InstantiatingTemplate Inst(
668 S, ArgsAsWritten->arguments().front().getSourceRange().getBegin(),
669 Sema::InstantiatingTemplate::ParameterMappingSubstitution{}, Concept,
670 SourceRange(ArgsAsWritten->arguments()[0].getSourceRange().getBegin(),
671 ArgsAsWritten->arguments().back().getSourceRange().getEnd()));
672 if (S.SubstTemplateArguments(*Atomic.ParameterMapping, MLTAL, SubstArgs))
673 return true;
674 std::copy(SubstArgs.arguments().begin(), SubstArgs.arguments().end(),
675 N.getAtomicConstraint()->ParameterMapping->begin());
676 return false;
677}
678
Saar Razb65b1f32020-01-09 15:07:51 +0200679Optional<NormalizedConstraint>
680NormalizedConstraint::fromConstraintExprs(Sema &S, NamedDecl *D,
681 ArrayRef<const Expr *> E) {
682 assert(E.size() != 0);
683 auto First = fromConstraintExpr(S, D, E[0]);
684 if (E.size() == 1)
685 return First;
686 auto Second = fromConstraintExpr(S, D, E[1]);
687 if (!Second)
688 return None;
689 llvm::Optional<NormalizedConstraint> Conjunction;
690 Conjunction.emplace(S.Context, std::move(*First), std::move(*Second),
691 CCK_Conjunction);
692 for (unsigned I = 2; I < E.size(); ++I) {
693 auto Next = fromConstraintExpr(S, D, E[I]);
694 if (!Next)
695 return llvm::Optional<NormalizedConstraint>{};
696 NormalizedConstraint NewConjunction(S.Context, std::move(*Conjunction),
697 std::move(*Next), CCK_Conjunction);
698 *Conjunction = std::move(NewConjunction);
699 }
700 return Conjunction;
701}
702
Saar Razdf061c32019-12-23 08:37:35 +0200703llvm::Optional<NormalizedConstraint>
704NormalizedConstraint::fromConstraintExpr(Sema &S, NamedDecl *D, const Expr *E) {
705 assert(E != nullptr);
706
707 // C++ [temp.constr.normal]p1.1
708 // [...]
709 // - The normal form of an expression (E) is the normal form of E.
710 // [...]
711 E = E->IgnoreParenImpCasts();
712 if (auto *BO = dyn_cast<const BinaryOperator>(E)) {
713 if (BO->getOpcode() == BO_LAnd || BO->getOpcode() == BO_LOr) {
714 auto LHS = fromConstraintExpr(S, D, BO->getLHS());
715 if (!LHS)
716 return None;
717 auto RHS = fromConstraintExpr(S, D, BO->getRHS());
718 if (!RHS)
719 return None;
720
721 return NormalizedConstraint(
Saar Razb65b1f32020-01-09 15:07:51 +0200722 S.Context, std::move(*LHS), std::move(*RHS),
Saar Razdf061c32019-12-23 08:37:35 +0200723 BO->getOpcode() == BO_LAnd ? CCK_Conjunction : CCK_Disjunction);
724 }
725 } else if (auto *CSE = dyn_cast<const ConceptSpecializationExpr>(E)) {
Saar Razb65b1f32020-01-09 15:07:51 +0200726 const NormalizedConstraint *SubNF;
Saar Razdf061c32019-12-23 08:37:35 +0200727 {
728 Sema::InstantiatingTemplate Inst(
729 S, CSE->getExprLoc(),
730 Sema::InstantiatingTemplate::ConstraintNormalization{}, D,
731 CSE->getSourceRange());
732 // C++ [temp.constr.normal]p1.1
733 // [...]
734 // The normal form of an id-expression of the form C<A1, A2, ..., AN>,
735 // where C names a concept, is the normal form of the
736 // constraint-expression of C, after substituting A1, A2, ..., AN for C’s
737 // respective template parameters in the parameter mappings in each atomic
738 // constraint. If any such substitution results in an invalid type or
739 // expression, the program is ill-formed; no diagnostic is required.
740 // [...]
Saar Razb65b1f32020-01-09 15:07:51 +0200741 ConceptDecl *CD = CSE->getNamedConcept();
742 SubNF = S.getNormalizedAssociatedConstraints(CD,
743 {CD->getConstraintExpr()});
Saar Razdf061c32019-12-23 08:37:35 +0200744 if (!SubNF)
745 return None;
746 }
747
Saar Razb65b1f32020-01-09 15:07:51 +0200748 Optional<NormalizedConstraint> New;
749 New.emplace(S.Context, *SubNF);
750
Saar Razdf061c32019-12-23 08:37:35 +0200751 if (substituteParameterMappings(
Saar Razb65b1f32020-01-09 15:07:51 +0200752 S, *New, CSE->getNamedConcept(),
Saar Razdf061c32019-12-23 08:37:35 +0200753 CSE->getTemplateArguments(), CSE->getTemplateArgsAsWritten()))
754 return None;
755
Saar Razb65b1f32020-01-09 15:07:51 +0200756 return New;
Saar Razdf061c32019-12-23 08:37:35 +0200757 }
758 return NormalizedConstraint{new (S.Context) AtomicConstraint(S, E)};
759}
760
Saar Razdf061c32019-12-23 08:37:35 +0200761using NormalForm =
762 llvm::SmallVector<llvm::SmallVector<AtomicConstraint *, 2>, 4>;
763
764static NormalForm makeCNF(const NormalizedConstraint &Normalized) {
765 if (Normalized.isAtomic())
766 return {{Normalized.getAtomicConstraint()}};
767
768 NormalForm LCNF = makeCNF(Normalized.getLHS());
769 NormalForm RCNF = makeCNF(Normalized.getRHS());
770 if (Normalized.getCompoundKind() == NormalizedConstraint::CCK_Conjunction) {
771 LCNF.reserve(LCNF.size() + RCNF.size());
772 while (!RCNF.empty())
773 LCNF.push_back(RCNF.pop_back_val());
774 return LCNF;
775 }
776
777 // Disjunction
778 NormalForm Res;
779 Res.reserve(LCNF.size() * RCNF.size());
780 for (auto &LDisjunction : LCNF)
781 for (auto &RDisjunction : RCNF) {
782 NormalForm::value_type Combined;
783 Combined.reserve(LDisjunction.size() + RDisjunction.size());
784 std::copy(LDisjunction.begin(), LDisjunction.end(),
785 std::back_inserter(Combined));
786 std::copy(RDisjunction.begin(), RDisjunction.end(),
787 std::back_inserter(Combined));
788 Res.emplace_back(Combined);
789 }
790 return Res;
791}
792
793static NormalForm makeDNF(const NormalizedConstraint &Normalized) {
794 if (Normalized.isAtomic())
795 return {{Normalized.getAtomicConstraint()}};
796
797 NormalForm LDNF = makeDNF(Normalized.getLHS());
798 NormalForm RDNF = makeDNF(Normalized.getRHS());
799 if (Normalized.getCompoundKind() == NormalizedConstraint::CCK_Disjunction) {
800 LDNF.reserve(LDNF.size() + RDNF.size());
801 while (!RDNF.empty())
802 LDNF.push_back(RDNF.pop_back_val());
803 return LDNF;
804 }
805
806 // Conjunction
807 NormalForm Res;
808 Res.reserve(LDNF.size() * RDNF.size());
809 for (auto &LConjunction : LDNF) {
810 for (auto &RConjunction : RDNF) {
811 NormalForm::value_type Combined;
812 Combined.reserve(LConjunction.size() + RConjunction.size());
813 std::copy(LConjunction.begin(), LConjunction.end(),
814 std::back_inserter(Combined));
815 std::copy(RConjunction.begin(), RConjunction.end(),
816 std::back_inserter(Combined));
817 Res.emplace_back(Combined);
818 }
819 }
820 return Res;
821}
822
Saar Razb65b1f32020-01-09 15:07:51 +0200823template<typename AtomicSubsumptionEvaluator>
824static bool subsumes(NormalForm PDNF, NormalForm QCNF,
825 AtomicSubsumptionEvaluator E) {
Saar Razdf061c32019-12-23 08:37:35 +0200826 // C++ [temp.constr.order] p2
827 // Then, P subsumes Q if and only if, for every disjunctive clause Pi in the
828 // disjunctive normal form of P, Pi subsumes every conjunctive clause Qj in
829 // the conjuctive normal form of Q, where [...]
830 for (const auto &Pi : PDNF) {
831 for (const auto &Qj : QCNF) {
832 // C++ [temp.constr.order] p2
833 // - [...] a disjunctive clause Pi subsumes a conjunctive clause Qj if
834 // and only if there exists an atomic constraint Pia in Pi for which
835 // there exists an atomic constraint, Qjb, in Qj such that Pia
836 // subsumes Qjb.
837 bool Found = false;
838 for (const AtomicConstraint *Pia : Pi) {
839 for (const AtomicConstraint *Qjb : Qj) {
Saar Razb65b1f32020-01-09 15:07:51 +0200840 if (E(*Pia, *Qjb)) {
Saar Razdf061c32019-12-23 08:37:35 +0200841 Found = true;
842 break;
843 }
844 }
845 if (Found)
846 break;
847 }
Saar Razb65b1f32020-01-09 15:07:51 +0200848 if (!Found)
Saar Razdf061c32019-12-23 08:37:35 +0200849 return false;
Saar Razdf061c32019-12-23 08:37:35 +0200850 }
851 }
Saar Razb65b1f32020-01-09 15:07:51 +0200852 return true;
853}
854
855template<typename AtomicSubsumptionEvaluator>
856static bool subsumes(Sema &S, NamedDecl *DP, ArrayRef<const Expr *> P,
857 NamedDecl *DQ, ArrayRef<const Expr *> Q, bool &Subsumes,
858 AtomicSubsumptionEvaluator E) {
859 // C++ [temp.constr.order] p2
860 // In order to determine if a constraint P subsumes a constraint Q, P is
861 // transformed into disjunctive normal form, and Q is transformed into
862 // conjunctive normal form. [...]
863 auto *PNormalized = S.getNormalizedAssociatedConstraints(DP, P);
864 if (!PNormalized)
865 return true;
866 const NormalForm PDNF = makeDNF(*PNormalized);
867
868 auto *QNormalized = S.getNormalizedAssociatedConstraints(DQ, Q);
869 if (!QNormalized)
870 return true;
871 const NormalForm QCNF = makeCNF(*QNormalized);
872
873 Subsumes = subsumes(PDNF, QCNF, E);
Saar Razdf061c32019-12-23 08:37:35 +0200874 return false;
875}
876
877bool Sema::IsAtLeastAsConstrained(NamedDecl *D1, ArrayRef<const Expr *> AC1,
878 NamedDecl *D2, ArrayRef<const Expr *> AC2,
879 bool &Result) {
880 if (AC1.empty()) {
881 Result = AC2.empty();
882 return false;
883 }
884 if (AC2.empty()) {
885 // TD1 has associated constraints and TD2 does not.
886 Result = true;
887 return false;
888 }
889
890 std::pair<NamedDecl *, NamedDecl *> Key{D1, D2};
891 auto CacheEntry = SubsumptionCache.find(Key);
892 if (CacheEntry != SubsumptionCache.end()) {
893 Result = CacheEntry->second;
894 return false;
895 }
Saar Razb65b1f32020-01-09 15:07:51 +0200896
897 if (subsumes(*this, D1, AC1, D2, AC2, Result,
898 [this] (const AtomicConstraint &A, const AtomicConstraint &B) {
899 return A.subsumes(Context, B);
900 }))
Saar Razdf061c32019-12-23 08:37:35 +0200901 return true;
902 SubsumptionCache.try_emplace(Key, Result);
903 return false;
Saar Razb65b1f32020-01-09 15:07:51 +0200904}
905
906bool Sema::MaybeEmitAmbiguousAtomicConstraintsDiagnostic(NamedDecl *D1,
907 ArrayRef<const Expr *> AC1, NamedDecl *D2, ArrayRef<const Expr *> AC2) {
908 if (isSFINAEContext())
909 // No need to work here because our notes would be discarded.
910 return false;
911
912 if (AC1.empty() || AC2.empty())
913 return false;
914
915 auto NormalExprEvaluator =
916 [this] (const AtomicConstraint &A, const AtomicConstraint &B) {
917 return A.subsumes(Context, B);
918 };
919
920 const Expr *AmbiguousAtomic1 = nullptr, *AmbiguousAtomic2 = nullptr;
921 auto IdenticalExprEvaluator =
922 [&] (const AtomicConstraint &A, const AtomicConstraint &B) {
923 if (!A.hasMatchingParameterMapping(Context, B))
924 return false;
925 const Expr *EA = A.ConstraintExpr, *EB = B.ConstraintExpr;
926 if (EA == EB)
927 return true;
928
929 // Not the same source level expression - are the expressions
930 // identical?
931 llvm::FoldingSetNodeID IDA, IDB;
932 EA->Profile(IDA, Context, /*Cannonical=*/true);
933 EB->Profile(IDB, Context, /*Cannonical=*/true);
934 if (IDA != IDB)
935 return false;
936
937 AmbiguousAtomic1 = EA;
938 AmbiguousAtomic2 = EB;
939 return true;
940 };
941
942 {
943 // The subsumption checks might cause diagnostics
944 SFINAETrap Trap(*this);
945 auto *Normalized1 = getNormalizedAssociatedConstraints(D1, AC1);
946 if (!Normalized1)
947 return false;
948 const NormalForm DNF1 = makeDNF(*Normalized1);
949 const NormalForm CNF1 = makeCNF(*Normalized1);
950
951 auto *Normalized2 = getNormalizedAssociatedConstraints(D2, AC2);
952 if (!Normalized2)
953 return false;
954 const NormalForm DNF2 = makeDNF(*Normalized2);
955 const NormalForm CNF2 = makeCNF(*Normalized2);
956
957 bool Is1AtLeastAs2Normally = subsumes(DNF1, CNF2, NormalExprEvaluator);
958 bool Is2AtLeastAs1Normally = subsumes(DNF2, CNF1, NormalExprEvaluator);
959 bool Is1AtLeastAs2 = subsumes(DNF1, CNF2, IdenticalExprEvaluator);
960 bool Is2AtLeastAs1 = subsumes(DNF2, CNF1, IdenticalExprEvaluator);
961 if (Is1AtLeastAs2 == Is1AtLeastAs2Normally &&
962 Is2AtLeastAs1 == Is2AtLeastAs1Normally)
963 // Same result - no ambiguity was caused by identical atomic expressions.
964 return false;
965 }
966
967 // A different result! Some ambiguous atomic constraint(s) caused a difference
968 assert(AmbiguousAtomic1 && AmbiguousAtomic2);
969
970 Diag(AmbiguousAtomic1->getBeginLoc(), diag::note_ambiguous_atomic_constraints)
971 << AmbiguousAtomic1->getSourceRange();
972 Diag(AmbiguousAtomic2->getBeginLoc(),
973 diag::note_ambiguous_atomic_constraints_similar_expression)
974 << AmbiguousAtomic2->getSourceRange();
975 return true;
976}
Saar Raza0f50d72020-01-18 09:11:43 +0200977
978concepts::ExprRequirement::ExprRequirement(
979 Expr *E, bool IsSimple, SourceLocation NoexceptLoc,
980 ReturnTypeRequirement Req, SatisfactionStatus Status,
981 ConceptSpecializationExpr *SubstitutedConstraintExpr) :
982 Requirement(IsSimple ? RK_Simple : RK_Compound, Status == SS_Dependent,
983 Status == SS_Dependent &&
984 (E->containsUnexpandedParameterPack() ||
985 Req.containsUnexpandedParameterPack()),
986 Status == SS_Satisfied), Value(E), NoexceptLoc(NoexceptLoc),
987 TypeReq(Req), SubstitutedConstraintExpr(SubstitutedConstraintExpr),
988 Status(Status) {
989 assert((!IsSimple || (Req.isEmpty() && NoexceptLoc.isInvalid())) &&
990 "Simple requirement must not have a return type requirement or a "
991 "noexcept specification");
992 assert((Status > SS_TypeRequirementSubstitutionFailure && Req.isTypeConstraint()) ==
993 (SubstitutedConstraintExpr != nullptr));
994}
995
996concepts::ExprRequirement::ExprRequirement(
997 SubstitutionDiagnostic *ExprSubstDiag, bool IsSimple,
998 SourceLocation NoexceptLoc, ReturnTypeRequirement Req) :
999 Requirement(IsSimple ? RK_Simple : RK_Compound, Req.isDependent(),
1000 Req.containsUnexpandedParameterPack(), /*IsSatisfied=*/false),
1001 Value(ExprSubstDiag), NoexceptLoc(NoexceptLoc), TypeReq(Req),
1002 Status(SS_ExprSubstitutionFailure) {
1003 assert((!IsSimple || (Req.isEmpty() && NoexceptLoc.isInvalid())) &&
1004 "Simple requirement must not have a return type requirement or a "
1005 "noexcept specification");
1006}
1007
1008concepts::ExprRequirement::ReturnTypeRequirement::
1009ReturnTypeRequirement(TemplateParameterList *TPL) :
1010 TypeConstraintInfo(TPL, 0) {
1011 assert(TPL->size() == 1);
1012 const TypeConstraint *TC =
1013 cast<TemplateTypeParmDecl>(TPL->getParam(0))->getTypeConstraint();
1014 assert(TC &&
1015 "TPL must have a template type parameter with a type constraint");
1016 auto *Constraint =
1017 cast_or_null<ConceptSpecializationExpr>(
1018 TC->getImmediatelyDeclaredConstraint());
1019 bool Dependent = false;
1020 if (Constraint->getTemplateArgsAsWritten()) {
1021 for (auto &ArgLoc :
1022 Constraint->getTemplateArgsAsWritten()->arguments().drop_front(1)) {
1023 if (ArgLoc.getArgument().isDependent()) {
1024 Dependent = true;
1025 break;
1026 }
1027 }
1028 }
1029 TypeConstraintInfo.setInt(Dependent ? 1 : 0);
1030}
1031
1032concepts::TypeRequirement::TypeRequirement(TypeSourceInfo *T) :
1033 Requirement(RK_Type, T->getType()->isDependentType(),
1034 T->getType()->containsUnexpandedParameterPack(),
1035 // We reach this ctor with either dependent types (in which
1036 // IsSatisfied doesn't matter) or with non-dependent type in
1037 // which the existence of the type indicates satisfaction.
1038 /*IsSatisfied=*/true
1039 ), Value(T),
1040 Status(T->getType()->isDependentType() ? SS_Dependent : SS_Satisfied) {}