Saar Raz | 5d98ba6 | 2019-10-15 15:24:26 +0000 | [diff] [blame] | 1 | //===-- SemaConcept.cpp - Semantic Analysis for Constraints and Concepts --===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file implements semantic analysis for C++ constraints and concepts. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "clang/Sema/Sema.h" |
Saar Raz | fdf80e8 | 2019-12-06 01:30:21 +0200 | [diff] [blame] | 15 | #include "clang/Sema/SemaInternal.h" |
Saar Raz | 5d98ba6 | 2019-10-15 15:24:26 +0000 | [diff] [blame] | 16 | #include "clang/Sema/SemaDiagnostic.h" |
| 17 | #include "clang/Sema/TemplateDeduction.h" |
| 18 | #include "clang/Sema/Template.h" |
| 19 | #include "clang/AST/ExprCXX.h" |
Saar Raz | df061c3 | 2019-12-23 08:37:35 +0200 | [diff] [blame^] | 20 | #include "clang/AST/RecursiveASTVisitor.h" |
Saar Raz | fdf80e8 | 2019-12-06 01:30:21 +0200 | [diff] [blame] | 21 | #include "llvm/ADT/DenseMap.h" |
| 22 | #include "llvm/ADT/PointerUnion.h" |
Saar Raz | 5d98ba6 | 2019-10-15 15:24:26 +0000 | [diff] [blame] | 23 | using namespace clang; |
| 24 | using namespace sema; |
| 25 | |
| 26 | bool Sema::CheckConstraintExpression(Expr *ConstraintExpression) { |
| 27 | // C++2a [temp.constr.atomic]p1 |
| 28 | // ..E shall be a constant expression of type bool. |
| 29 | |
| 30 | ConstraintExpression = ConstraintExpression->IgnoreParenImpCasts(); |
| 31 | |
| 32 | if (auto *BinOp = dyn_cast<BinaryOperator>(ConstraintExpression)) { |
| 33 | if (BinOp->getOpcode() == BO_LAnd || BinOp->getOpcode() == BO_LOr) |
| 34 | return CheckConstraintExpression(BinOp->getLHS()) && |
| 35 | CheckConstraintExpression(BinOp->getRHS()); |
| 36 | } else if (auto *C = dyn_cast<ExprWithCleanups>(ConstraintExpression)) |
| 37 | return CheckConstraintExpression(C->getSubExpr()); |
| 38 | |
| 39 | // An atomic constraint! |
| 40 | if (ConstraintExpression->isTypeDependent()) |
| 41 | return true; |
| 42 | |
| 43 | QualType Type = ConstraintExpression->getType(); |
| 44 | if (!Context.hasSameUnqualifiedType(Type, Context.BoolTy)) { |
| 45 | Diag(ConstraintExpression->getExprLoc(), |
| 46 | diag::err_non_bool_atomic_constraint) << Type |
| 47 | << ConstraintExpression->getSourceRange(); |
| 48 | return false; |
| 49 | } |
| 50 | return true; |
| 51 | } |
| 52 | |
Saar Raz | fdf80e8 | 2019-12-06 01:30:21 +0200 | [diff] [blame] | 53 | template <typename AtomicEvaluator> |
| 54 | static bool |
| 55 | calculateConstraintSatisfaction(Sema &S, const Expr *ConstraintExpr, |
| 56 | ConstraintSatisfaction &Satisfaction, |
| 57 | AtomicEvaluator &&Evaluator) { |
Saar Raz | 5d98ba6 | 2019-10-15 15:24:26 +0000 | [diff] [blame] | 58 | ConstraintExpr = ConstraintExpr->IgnoreParenImpCasts(); |
| 59 | |
| 60 | if (auto *BO = dyn_cast<BinaryOperator>(ConstraintExpr)) { |
Saar Raz | fdf80e8 | 2019-12-06 01:30:21 +0200 | [diff] [blame] | 61 | if (BO->getOpcode() == BO_LAnd || BO->getOpcode() == BO_LOr) { |
| 62 | if (calculateConstraintSatisfaction(S, BO->getLHS(), Satisfaction, |
| 63 | Evaluator)) |
Saar Raz | 5d98ba6 | 2019-10-15 15:24:26 +0000 | [diff] [blame] | 64 | return true; |
Saar Raz | fdf80e8 | 2019-12-06 01:30:21 +0200 | [diff] [blame] | 65 | |
| 66 | bool IsLHSSatisfied = Satisfaction.IsSatisfied; |
| 67 | |
| 68 | if (BO->getOpcode() == BO_LOr && IsLHSSatisfied) |
| 69 | // [temp.constr.op] p3 |
| 70 | // A disjunction is a constraint taking two operands. To determine if |
| 71 | // a disjunction is satisfied, the satisfaction of the first operand |
| 72 | // is checked. If that is satisfied, the disjunction is satisfied. |
| 73 | // Otherwise, the disjunction is satisfied if and only if the second |
| 74 | // operand is satisfied. |
Saar Raz | 5d98ba6 | 2019-10-15 15:24:26 +0000 | [diff] [blame] | 75 | return false; |
Saar Raz | fdf80e8 | 2019-12-06 01:30:21 +0200 | [diff] [blame] | 76 | |
| 77 | if (BO->getOpcode() == BO_LAnd && !IsLHSSatisfied) |
| 78 | // [temp.constr.op] p2 |
| 79 | // A conjunction is a constraint taking two operands. To determine if |
| 80 | // a conjunction is satisfied, the satisfaction of the first operand |
| 81 | // is checked. If that is not satisfied, the conjunction is not |
| 82 | // satisfied. Otherwise, the conjunction is satisfied if and only if |
| 83 | // the second operand is satisfied. |
Saar Raz | 5d98ba6 | 2019-10-15 15:24:26 +0000 | [diff] [blame] | 84 | return false; |
Saar Raz | fdf80e8 | 2019-12-06 01:30:21 +0200 | [diff] [blame] | 85 | |
| 86 | return calculateConstraintSatisfaction(S, BO->getRHS(), Satisfaction, |
| 87 | std::forward<AtomicEvaluator>(Evaluator)); |
Saar Raz | 5d98ba6 | 2019-10-15 15:24:26 +0000 | [diff] [blame] | 88 | } |
| 89 | } |
| 90 | else if (auto *C = dyn_cast<ExprWithCleanups>(ConstraintExpr)) |
Saar Raz | fdf80e8 | 2019-12-06 01:30:21 +0200 | [diff] [blame] | 91 | return calculateConstraintSatisfaction(S, C->getSubExpr(), Satisfaction, |
| 92 | std::forward<AtomicEvaluator>(Evaluator)); |
Saar Raz | ffa214e | 2019-10-25 00:09:37 +0300 | [diff] [blame] | 93 | |
Saar Raz | fdf80e8 | 2019-12-06 01:30:21 +0200 | [diff] [blame] | 94 | // An atomic constraint expression |
| 95 | ExprResult SubstitutedAtomicExpr = Evaluator(ConstraintExpr); |
Vlad Tsyrklevich | 38839d0 | 2019-10-28 14:36:31 -0700 | [diff] [blame] | 96 | |
Saar Raz | fdf80e8 | 2019-12-06 01:30:21 +0200 | [diff] [blame] | 97 | if (SubstitutedAtomicExpr.isInvalid()) |
Vlad Tsyrklevich | 38839d0 | 2019-10-28 14:36:31 -0700 | [diff] [blame] | 98 | return true; |
| 99 | |
Saar Raz | fdf80e8 | 2019-12-06 01:30:21 +0200 | [diff] [blame] | 100 | if (!SubstitutedAtomicExpr.isUsable()) |
| 101 | // Evaluator has decided satisfaction without yielding an expression. |
| 102 | return false; |
| 103 | |
| 104 | EnterExpressionEvaluationContext ConstantEvaluated( |
| 105 | S, Sema::ExpressionEvaluationContext::ConstantEvaluated); |
Saar Raz | 5d98ba6 | 2019-10-15 15:24:26 +0000 | [diff] [blame] | 106 | SmallVector<PartialDiagnosticAt, 2> EvaluationDiags; |
| 107 | Expr::EvalResult EvalResult; |
| 108 | EvalResult.Diag = &EvaluationDiags; |
Saar Raz | fdf80e8 | 2019-12-06 01:30:21 +0200 | [diff] [blame] | 109 | if (!SubstitutedAtomicExpr.get()->EvaluateAsRValue(EvalResult, S.Context)) { |
| 110 | // C++2a [temp.constr.atomic]p1 |
| 111 | // ...E shall be a constant expression of type bool. |
| 112 | S.Diag(SubstitutedAtomicExpr.get()->getBeginLoc(), |
| 113 | diag::err_non_constant_constraint_expression) |
| 114 | << SubstitutedAtomicExpr.get()->getSourceRange(); |
Saar Raz | 5d98ba6 | 2019-10-15 15:24:26 +0000 | [diff] [blame] | 115 | for (const PartialDiagnosticAt &PDiag : EvaluationDiags) |
Saar Raz | fdf80e8 | 2019-12-06 01:30:21 +0200 | [diff] [blame] | 116 | S.Diag(PDiag.first, PDiag.second); |
Saar Raz | 5d98ba6 | 2019-10-15 15:24:26 +0000 | [diff] [blame] | 117 | return true; |
| 118 | } |
| 119 | |
Saar Raz | fdf80e8 | 2019-12-06 01:30:21 +0200 | [diff] [blame] | 120 | Satisfaction.IsSatisfied = EvalResult.Val.getInt().getBoolValue(); |
| 121 | if (!Satisfaction.IsSatisfied) |
| 122 | Satisfaction.Details.emplace_back(ConstraintExpr, |
| 123 | SubstitutedAtomicExpr.get()); |
Saar Raz | 5d98ba6 | 2019-10-15 15:24:26 +0000 | [diff] [blame] | 124 | |
| 125 | return false; |
Saar Raz | fdf80e8 | 2019-12-06 01:30:21 +0200 | [diff] [blame] | 126 | } |
| 127 | |
| 128 | template <typename TemplateDeclT> |
| 129 | static bool calculateConstraintSatisfaction( |
| 130 | Sema &S, TemplateDeclT *Template, ArrayRef<TemplateArgument> TemplateArgs, |
| 131 | SourceLocation TemplateNameLoc, MultiLevelTemplateArgumentList &MLTAL, |
| 132 | const Expr *ConstraintExpr, ConstraintSatisfaction &Satisfaction) { |
| 133 | return calculateConstraintSatisfaction( |
| 134 | S, ConstraintExpr, Satisfaction, [&](const Expr *AtomicExpr) { |
| 135 | EnterExpressionEvaluationContext ConstantEvaluated( |
| 136 | S, Sema::ExpressionEvaluationContext::ConstantEvaluated); |
| 137 | |
| 138 | // Atomic constraint - substitute arguments and check satisfaction. |
| 139 | ExprResult SubstitutedExpression; |
| 140 | { |
| 141 | TemplateDeductionInfo Info(TemplateNameLoc); |
| 142 | Sema::InstantiatingTemplate Inst(S, AtomicExpr->getBeginLoc(), |
| 143 | Sema::InstantiatingTemplate::ConstraintSubstitution{}, Template, |
| 144 | Info, AtomicExpr->getSourceRange()); |
| 145 | if (Inst.isInvalid()) |
| 146 | return ExprError(); |
| 147 | // We do not want error diagnostics escaping here. |
| 148 | Sema::SFINAETrap Trap(S); |
| 149 | SubstitutedExpression = S.SubstExpr(const_cast<Expr *>(AtomicExpr), |
| 150 | MLTAL); |
| 151 | if (SubstitutedExpression.isInvalid() || Trap.hasErrorOccurred()) { |
| 152 | // C++2a [temp.constr.atomic]p1 |
| 153 | // ...If substitution results in an invalid type or expression, the |
| 154 | // constraint is not satisfied. |
| 155 | if (!Trap.hasErrorOccurred()) |
| 156 | // A non-SFINAE error has occured as a result of this |
| 157 | // substitution. |
| 158 | return ExprError(); |
| 159 | |
| 160 | PartialDiagnosticAt SubstDiag{SourceLocation(), |
| 161 | PartialDiagnostic::NullDiagnostic()}; |
| 162 | Info.takeSFINAEDiagnostic(SubstDiag); |
| 163 | // FIXME: Concepts: This is an unfortunate consequence of there |
| 164 | // being no serialization code for PartialDiagnostics and the fact |
| 165 | // that serializing them would likely take a lot more storage than |
| 166 | // just storing them as strings. We would still like, in the |
| 167 | // future, to serialize the proper PartialDiagnostic as serializing |
| 168 | // it as a string defeats the purpose of the diagnostic mechanism. |
| 169 | SmallString<128> DiagString; |
| 170 | DiagString = ": "; |
| 171 | SubstDiag.second.EmitToString(S.getDiagnostics(), DiagString); |
| 172 | unsigned MessageSize = DiagString.size(); |
| 173 | char *Mem = new (S.Context) char[MessageSize]; |
| 174 | memcpy(Mem, DiagString.c_str(), MessageSize); |
| 175 | Satisfaction.Details.emplace_back( |
| 176 | AtomicExpr, |
| 177 | new (S.Context) ConstraintSatisfaction::SubstitutionDiagnostic{ |
| 178 | SubstDiag.first, StringRef(Mem, MessageSize)}); |
| 179 | Satisfaction.IsSatisfied = false; |
| 180 | return ExprEmpty(); |
| 181 | } |
| 182 | } |
| 183 | |
| 184 | if (!S.CheckConstraintExpression(SubstitutedExpression.get())) |
| 185 | return ExprError(); |
| 186 | |
| 187 | return SubstitutedExpression; |
| 188 | }); |
| 189 | } |
| 190 | |
| 191 | template<typename TemplateDeclT> |
| 192 | static bool CheckConstraintSatisfaction(Sema &S, TemplateDeclT *Template, |
| 193 | ArrayRef<const Expr *> ConstraintExprs, |
| 194 | ArrayRef<TemplateArgument> TemplateArgs, |
| 195 | SourceRange TemplateIDRange, |
| 196 | ConstraintSatisfaction &Satisfaction) { |
| 197 | if (ConstraintExprs.empty()) { |
| 198 | Satisfaction.IsSatisfied = true; |
| 199 | return false; |
| 200 | } |
| 201 | |
| 202 | for (auto& Arg : TemplateArgs) |
| 203 | if (Arg.isInstantiationDependent()) { |
| 204 | // No need to check satisfaction for dependent constraint expressions. |
| 205 | Satisfaction.IsSatisfied = true; |
| 206 | return false; |
| 207 | } |
| 208 | |
| 209 | Sema::InstantiatingTemplate Inst(S, TemplateIDRange.getBegin(), |
| 210 | Sema::InstantiatingTemplate::ConstraintsCheck{}, Template, TemplateArgs, |
| 211 | TemplateIDRange); |
| 212 | if (Inst.isInvalid()) |
| 213 | return true; |
| 214 | |
| 215 | MultiLevelTemplateArgumentList MLTAL; |
| 216 | MLTAL.addOuterTemplateArguments(TemplateArgs); |
| 217 | |
| 218 | for (const Expr *ConstraintExpr : ConstraintExprs) { |
| 219 | if (calculateConstraintSatisfaction(S, Template, TemplateArgs, |
| 220 | TemplateIDRange.getBegin(), MLTAL, |
| 221 | ConstraintExpr, Satisfaction)) |
| 222 | return true; |
| 223 | if (!Satisfaction.IsSatisfied) |
| 224 | // [temp.constr.op] p2 |
| 225 | // [...] To determine if a conjunction is satisfied, the satisfaction |
| 226 | // of the first operand is checked. If that is not satisfied, the |
| 227 | // conjunction is not satisfied. [...] |
| 228 | return false; |
| 229 | } |
| 230 | return false; |
| 231 | } |
| 232 | |
| 233 | bool Sema::CheckConstraintSatisfaction(TemplateDecl *Template, |
| 234 | ArrayRef<const Expr *> ConstraintExprs, |
| 235 | ArrayRef<TemplateArgument> TemplateArgs, |
| 236 | SourceRange TemplateIDRange, |
| 237 | ConstraintSatisfaction &Satisfaction) { |
| 238 | return ::CheckConstraintSatisfaction(*this, Template, ConstraintExprs, |
| 239 | TemplateArgs, TemplateIDRange, |
| 240 | Satisfaction); |
| 241 | } |
| 242 | |
| 243 | bool |
| 244 | Sema::CheckConstraintSatisfaction(ClassTemplatePartialSpecializationDecl* Part, |
| 245 | ArrayRef<const Expr *> ConstraintExprs, |
| 246 | ArrayRef<TemplateArgument> TemplateArgs, |
| 247 | SourceRange TemplateIDRange, |
| 248 | ConstraintSatisfaction &Satisfaction) { |
| 249 | return ::CheckConstraintSatisfaction(*this, Part, ConstraintExprs, |
| 250 | TemplateArgs, TemplateIDRange, |
| 251 | Satisfaction); |
| 252 | } |
| 253 | |
| 254 | bool |
| 255 | Sema::CheckConstraintSatisfaction(VarTemplatePartialSpecializationDecl* Partial, |
| 256 | ArrayRef<const Expr *> ConstraintExprs, |
| 257 | ArrayRef<TemplateArgument> TemplateArgs, |
| 258 | SourceRange TemplateIDRange, |
| 259 | ConstraintSatisfaction &Satisfaction) { |
| 260 | return ::CheckConstraintSatisfaction(*this, Partial, ConstraintExprs, |
| 261 | TemplateArgs, TemplateIDRange, |
| 262 | Satisfaction); |
| 263 | } |
| 264 | |
| 265 | bool Sema::CheckConstraintSatisfaction(const Expr *ConstraintExpr, |
| 266 | ConstraintSatisfaction &Satisfaction) { |
| 267 | return calculateConstraintSatisfaction( |
| 268 | *this, ConstraintExpr, Satisfaction, |
| 269 | [](const Expr *AtomicExpr) -> ExprResult { |
| 270 | return ExprResult(const_cast<Expr *>(AtomicExpr)); |
| 271 | }); |
| 272 | } |
| 273 | |
| 274 | bool Sema::EnsureTemplateArgumentListConstraints( |
| 275 | TemplateDecl *TD, ArrayRef<TemplateArgument> TemplateArgs, |
| 276 | SourceRange TemplateIDRange) { |
| 277 | ConstraintSatisfaction Satisfaction; |
| 278 | llvm::SmallVector<const Expr *, 3> AssociatedConstraints; |
| 279 | TD->getAssociatedConstraints(AssociatedConstraints); |
| 280 | if (CheckConstraintSatisfaction(TD, AssociatedConstraints, TemplateArgs, |
| 281 | TemplateIDRange, Satisfaction)) |
| 282 | return true; |
| 283 | |
| 284 | if (!Satisfaction.IsSatisfied) { |
| 285 | SmallString<128> TemplateArgString; |
| 286 | TemplateArgString = " "; |
| 287 | TemplateArgString += getTemplateArgumentBindingsText( |
| 288 | TD->getTemplateParameters(), TemplateArgs.data(), TemplateArgs.size()); |
| 289 | |
| 290 | Diag(TemplateIDRange.getBegin(), |
| 291 | diag::err_template_arg_list_constraints_not_satisfied) |
| 292 | << (int)getTemplateNameKindForDiagnostics(TemplateName(TD)) << TD |
| 293 | << TemplateArgString << TemplateIDRange; |
| 294 | DiagnoseUnsatisfiedConstraint(Satisfaction); |
| 295 | return true; |
| 296 | } |
| 297 | return false; |
| 298 | } |
| 299 | |
| 300 | static void diagnoseWellFormedUnsatisfiedConstraintExpr(Sema &S, |
| 301 | Expr *SubstExpr, |
| 302 | bool First = true) { |
| 303 | SubstExpr = SubstExpr->IgnoreParenImpCasts(); |
| 304 | if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SubstExpr)) { |
| 305 | switch (BO->getOpcode()) { |
| 306 | // These two cases will in practice only be reached when using fold |
| 307 | // expressions with || and &&, since otherwise the || and && will have been |
| 308 | // broken down into atomic constraints during satisfaction checking. |
| 309 | case BO_LOr: |
| 310 | // Or evaluated to false - meaning both RHS and LHS evaluated to false. |
| 311 | diagnoseWellFormedUnsatisfiedConstraintExpr(S, BO->getLHS(), First); |
| 312 | diagnoseWellFormedUnsatisfiedConstraintExpr(S, BO->getRHS(), |
| 313 | /*First=*/false); |
| 314 | return; |
| 315 | case BO_LAnd: |
| 316 | bool LHSSatisfied; |
| 317 | BO->getLHS()->EvaluateAsBooleanCondition(LHSSatisfied, S.Context); |
| 318 | if (LHSSatisfied) { |
| 319 | // LHS is true, so RHS must be false. |
| 320 | diagnoseWellFormedUnsatisfiedConstraintExpr(S, BO->getRHS(), First); |
| 321 | return; |
| 322 | } |
| 323 | // LHS is false |
| 324 | diagnoseWellFormedUnsatisfiedConstraintExpr(S, BO->getLHS(), First); |
| 325 | |
| 326 | // RHS might also be false |
| 327 | bool RHSSatisfied; |
| 328 | BO->getRHS()->EvaluateAsBooleanCondition(RHSSatisfied, S.Context); |
| 329 | if (!RHSSatisfied) |
| 330 | diagnoseWellFormedUnsatisfiedConstraintExpr(S, BO->getRHS(), |
| 331 | /*First=*/false); |
| 332 | return; |
| 333 | case BO_GE: |
| 334 | case BO_LE: |
| 335 | case BO_GT: |
| 336 | case BO_LT: |
| 337 | case BO_EQ: |
| 338 | case BO_NE: |
| 339 | if (BO->getLHS()->getType()->isIntegerType() && |
| 340 | BO->getRHS()->getType()->isIntegerType()) { |
| 341 | Expr::EvalResult SimplifiedLHS; |
| 342 | Expr::EvalResult SimplifiedRHS; |
| 343 | BO->getLHS()->EvaluateAsInt(SimplifiedLHS, S.Context); |
| 344 | BO->getRHS()->EvaluateAsInt(SimplifiedRHS, S.Context); |
| 345 | if (!SimplifiedLHS.Diag && ! SimplifiedRHS.Diag) { |
| 346 | S.Diag(SubstExpr->getBeginLoc(), |
| 347 | diag::note_atomic_constraint_evaluated_to_false_elaborated) |
| 348 | << (int)First << SubstExpr |
| 349 | << SimplifiedLHS.Val.getInt().toString(10) |
| 350 | << BinaryOperator::getOpcodeStr(BO->getOpcode()) |
| 351 | << SimplifiedRHS.Val.getInt().toString(10); |
| 352 | return; |
| 353 | } |
| 354 | } |
| 355 | break; |
| 356 | |
| 357 | default: |
| 358 | break; |
| 359 | } |
| 360 | } else if (auto *CSE = dyn_cast<ConceptSpecializationExpr>(SubstExpr)) { |
| 361 | if (CSE->getTemplateArgsAsWritten()->NumTemplateArgs == 1) { |
| 362 | S.Diag( |
| 363 | CSE->getSourceRange().getBegin(), |
| 364 | diag:: |
| 365 | note_single_arg_concept_specialization_constraint_evaluated_to_false) |
| 366 | << (int)First |
| 367 | << CSE->getTemplateArgsAsWritten()->arguments()[0].getArgument() |
| 368 | << CSE->getNamedConcept(); |
| 369 | } else { |
| 370 | S.Diag(SubstExpr->getSourceRange().getBegin(), |
| 371 | diag::note_concept_specialization_constraint_evaluated_to_false) |
| 372 | << (int)First << CSE; |
| 373 | } |
| 374 | S.DiagnoseUnsatisfiedConstraint(CSE->getSatisfaction()); |
| 375 | return; |
| 376 | } |
| 377 | |
| 378 | S.Diag(SubstExpr->getSourceRange().getBegin(), |
| 379 | diag::note_atomic_constraint_evaluated_to_false) |
| 380 | << (int)First << SubstExpr; |
| 381 | } |
| 382 | |
| 383 | template<typename SubstitutionDiagnostic> |
| 384 | static void diagnoseUnsatisfiedConstraintExpr( |
| 385 | Sema &S, const Expr *E, |
| 386 | const llvm::PointerUnion<Expr *, SubstitutionDiagnostic *> &Record, |
| 387 | bool First = true) { |
| 388 | if (auto *Diag = Record.template dyn_cast<SubstitutionDiagnostic *>()){ |
| 389 | S.Diag(Diag->first, diag::note_substituted_constraint_expr_is_ill_formed) |
| 390 | << Diag->second; |
| 391 | return; |
| 392 | } |
| 393 | |
| 394 | diagnoseWellFormedUnsatisfiedConstraintExpr(S, |
| 395 | Record.template get<Expr *>(), First); |
| 396 | } |
| 397 | |
| 398 | void Sema::DiagnoseUnsatisfiedConstraint( |
| 399 | const ConstraintSatisfaction& Satisfaction) { |
| 400 | assert(!Satisfaction.IsSatisfied && |
| 401 | "Attempted to diagnose a satisfied constraint"); |
| 402 | bool First = true; |
| 403 | for (auto &Pair : Satisfaction.Details) { |
| 404 | diagnoseUnsatisfiedConstraintExpr(*this, Pair.first, Pair.second, First); |
| 405 | First = false; |
| 406 | } |
| 407 | } |
| 408 | |
| 409 | void Sema::DiagnoseUnsatisfiedConstraint( |
| 410 | const ASTConstraintSatisfaction &Satisfaction) { |
| 411 | assert(!Satisfaction.IsSatisfied && |
| 412 | "Attempted to diagnose a satisfied constraint"); |
| 413 | bool First = true; |
| 414 | for (auto &Pair : Satisfaction) { |
| 415 | diagnoseUnsatisfiedConstraintExpr(*this, Pair.first, Pair.second, First); |
| 416 | First = false; |
| 417 | } |
Saar Raz | df061c3 | 2019-12-23 08:37:35 +0200 | [diff] [blame^] | 418 | } |
| 419 | |
| 420 | namespace { |
| 421 | struct AtomicConstraint { |
| 422 | const Expr *ConstraintExpr; |
| 423 | llvm::Optional<llvm::SmallVector<TemplateArgumentLoc, 3>> ParameterMapping; |
| 424 | |
| 425 | AtomicConstraint(Sema &S, const Expr *ConstraintExpr) : |
| 426 | ConstraintExpr(ConstraintExpr) { }; |
| 427 | |
| 428 | bool hasMatchingParameterMapping(ASTContext &C, |
| 429 | const AtomicConstraint &Other) const { |
| 430 | if (!ParameterMapping != !Other.ParameterMapping) |
| 431 | return false; |
| 432 | if (!ParameterMapping) |
| 433 | return true; |
| 434 | if (ParameterMapping->size() != Other.ParameterMapping->size()) |
| 435 | return false; |
| 436 | |
| 437 | for (unsigned I = 0, S = ParameterMapping->size(); I < S; ++I) |
| 438 | if (!C.getCanonicalTemplateArgument((*ParameterMapping)[I].getArgument()) |
| 439 | .structurallyEquals(C.getCanonicalTemplateArgument( |
| 440 | (*Other.ParameterMapping)[I].getArgument()))) |
| 441 | return false; |
| 442 | return true; |
| 443 | } |
| 444 | |
| 445 | bool subsumes(ASTContext &C, const AtomicConstraint &Other) const { |
| 446 | // C++ [temp.constr.order] p2 |
| 447 | // - an atomic constraint A subsumes another atomic constraint B |
| 448 | // if and only if the A and B are identical [...] |
| 449 | // |
| 450 | // C++ [temp.constr.atomic] p2 |
| 451 | // Two atomic constraints are identical if they are formed from the |
| 452 | // same expression and the targets of the parameter mappings are |
| 453 | // equivalent according to the rules for expressions [...] |
| 454 | |
| 455 | // We do not actually substitute the parameter mappings into the |
| 456 | // constraint expressions, therefore the constraint expressions are |
| 457 | // the originals, and comparing them will suffice. |
| 458 | if (ConstraintExpr != Other.ConstraintExpr) |
| 459 | return false; |
| 460 | |
| 461 | // Check that the parameter lists are identical |
| 462 | return hasMatchingParameterMapping(C, Other); |
| 463 | } |
| 464 | }; |
| 465 | |
| 466 | /// \brief A normalized constraint, as defined in C++ [temp.constr.normal], is |
| 467 | /// either an atomic constraint, a conjunction of normalized constraints or a |
| 468 | /// disjunction of normalized constraints. |
| 469 | struct NormalizedConstraint { |
| 470 | enum CompoundConstraintKind { CCK_Conjunction, CCK_Disjunction }; |
| 471 | |
| 472 | using CompoundConstraint = llvm::PointerIntPair< |
| 473 | std::pair<NormalizedConstraint, NormalizedConstraint> *, 1, |
| 474 | CompoundConstraintKind>; |
| 475 | |
| 476 | llvm::PointerUnion<AtomicConstraint *, CompoundConstraint> Constraint; |
| 477 | |
| 478 | NormalizedConstraint(AtomicConstraint *C): Constraint{C} { }; |
| 479 | NormalizedConstraint(ASTContext &C, NormalizedConstraint LHS, |
| 480 | NormalizedConstraint RHS, CompoundConstraintKind Kind) |
| 481 | : Constraint{CompoundConstraint{ |
| 482 | new (C) std::pair<NormalizedConstraint, NormalizedConstraint>{LHS, |
| 483 | RHS}, |
| 484 | Kind}} { }; |
| 485 | |
| 486 | CompoundConstraintKind getCompoundKind() const { |
| 487 | assert(!isAtomic() && "getCompoundKind called on atomic constraint."); |
| 488 | return Constraint.get<CompoundConstraint>().getInt(); |
| 489 | } |
| 490 | |
| 491 | bool isAtomic() const { return Constraint.is<AtomicConstraint *>(); } |
| 492 | |
| 493 | NormalizedConstraint &getLHS() const { |
| 494 | assert(!isAtomic() && "getLHS called on atomic constraint."); |
| 495 | return Constraint.get<CompoundConstraint>().getPointer()->first; |
| 496 | } |
| 497 | |
| 498 | NormalizedConstraint &getRHS() const { |
| 499 | assert(!isAtomic() && "getRHS called on atomic constraint."); |
| 500 | return Constraint.get<CompoundConstraint>().getPointer()->second; |
| 501 | } |
| 502 | |
| 503 | AtomicConstraint *getAtomicConstraint() const { |
| 504 | assert(isAtomic() && |
| 505 | "getAtomicConstraint called on non-atomic constraint."); |
| 506 | return Constraint.get<AtomicConstraint *>(); |
| 507 | } |
| 508 | |
| 509 | static llvm::Optional<NormalizedConstraint> |
| 510 | fromConstraintExprs(Sema &S, NamedDecl *D, ArrayRef<const Expr *> E) { |
| 511 | assert(E.size() != 0); |
| 512 | auto First = fromConstraintExpr(S, D, E[0]); |
| 513 | if (E.size() == 1) |
| 514 | return First; |
| 515 | auto Second = fromConstraintExpr(S, D, E[1]); |
| 516 | if (!Second) |
| 517 | return llvm::Optional<NormalizedConstraint>{}; |
| 518 | llvm::Optional<NormalizedConstraint> Conjunction; |
| 519 | Conjunction.emplace(S.Context, std::move(*First), std::move(*Second), |
| 520 | CCK_Conjunction); |
| 521 | for (unsigned I = 2; I < E.size(); ++I) { |
| 522 | auto Next = fromConstraintExpr(S, D, E[I]); |
| 523 | if (!Next) |
| 524 | return llvm::Optional<NormalizedConstraint>{}; |
| 525 | NormalizedConstraint NewConjunction(S.Context, std::move(*Conjunction), |
| 526 | std::move(*Next), CCK_Conjunction); |
| 527 | *Conjunction = std::move(NewConjunction); |
| 528 | } |
| 529 | return Conjunction; |
| 530 | } |
| 531 | |
| 532 | private: |
| 533 | static llvm::Optional<NormalizedConstraint> fromConstraintExpr(Sema &S, |
| 534 | NamedDecl *D, |
| 535 | const Expr *E); |
| 536 | }; |
| 537 | |
| 538 | static bool substituteParameterMappings(Sema &S, NormalizedConstraint &N, |
| 539 | ConceptDecl *Concept, ArrayRef<TemplateArgument> TemplateArgs, |
| 540 | const ASTTemplateArgumentListInfo *ArgsAsWritten) { |
| 541 | if (!N.isAtomic()) { |
| 542 | if (substituteParameterMappings(S, N.getLHS(), Concept, TemplateArgs, |
| 543 | ArgsAsWritten)) |
| 544 | return true; |
| 545 | return substituteParameterMappings(S, N.getRHS(), Concept, TemplateArgs, |
| 546 | ArgsAsWritten); |
| 547 | } |
| 548 | TemplateParameterList *TemplateParams = Concept->getTemplateParameters(); |
| 549 | |
| 550 | AtomicConstraint &Atomic = *N.getAtomicConstraint(); |
| 551 | TemplateArgumentListInfo SubstArgs; |
| 552 | MultiLevelTemplateArgumentList MLTAL; |
| 553 | MLTAL.addOuterTemplateArguments(TemplateArgs); |
| 554 | if (!Atomic.ParameterMapping) { |
| 555 | llvm::SmallBitVector OccurringIndices(TemplateParams->size()); |
| 556 | S.MarkUsedTemplateParameters(Atomic.ConstraintExpr, /*OnlyDeduced=*/false, |
| 557 | /*Depth=*/0, OccurringIndices); |
| 558 | Atomic.ParameterMapping.emplace(); |
| 559 | Atomic.ParameterMapping->reserve(OccurringIndices.size()); |
| 560 | for (unsigned I = 0, C = TemplateParams->size(); I != C; ++I) |
| 561 | if (OccurringIndices[I]) |
| 562 | Atomic.ParameterMapping->push_back( |
| 563 | S.getIdentityTemplateArgumentLoc(TemplateParams->begin()[I], |
| 564 | // Here we assume we do not support things like |
| 565 | // template<typename A, typename B> |
| 566 | // concept C = ...; |
| 567 | // |
| 568 | // template<typename... Ts> requires C<Ts...> |
| 569 | // struct S { }; |
| 570 | // The above currently yields a diagnostic. |
| 571 | // We still might have default arguments for concept parameters. |
| 572 | ArgsAsWritten->NumTemplateArgs > I ? |
| 573 | ArgsAsWritten->arguments()[I].getLocation() : |
| 574 | SourceLocation())); |
| 575 | } |
| 576 | Sema::InstantiatingTemplate Inst( |
| 577 | S, ArgsAsWritten->arguments().front().getSourceRange().getBegin(), |
| 578 | Sema::InstantiatingTemplate::ParameterMappingSubstitution{}, Concept, |
| 579 | SourceRange(ArgsAsWritten->arguments()[0].getSourceRange().getBegin(), |
| 580 | ArgsAsWritten->arguments().back().getSourceRange().getEnd())); |
| 581 | if (S.SubstTemplateArguments(*Atomic.ParameterMapping, MLTAL, SubstArgs)) |
| 582 | return true; |
| 583 | std::copy(SubstArgs.arguments().begin(), SubstArgs.arguments().end(), |
| 584 | N.getAtomicConstraint()->ParameterMapping->begin()); |
| 585 | return false; |
| 586 | } |
| 587 | |
| 588 | llvm::Optional<NormalizedConstraint> |
| 589 | NormalizedConstraint::fromConstraintExpr(Sema &S, NamedDecl *D, const Expr *E) { |
| 590 | assert(E != nullptr); |
| 591 | |
| 592 | // C++ [temp.constr.normal]p1.1 |
| 593 | // [...] |
| 594 | // - The normal form of an expression (E) is the normal form of E. |
| 595 | // [...] |
| 596 | E = E->IgnoreParenImpCasts(); |
| 597 | if (auto *BO = dyn_cast<const BinaryOperator>(E)) { |
| 598 | if (BO->getOpcode() == BO_LAnd || BO->getOpcode() == BO_LOr) { |
| 599 | auto LHS = fromConstraintExpr(S, D, BO->getLHS()); |
| 600 | if (!LHS) |
| 601 | return None; |
| 602 | auto RHS = fromConstraintExpr(S, D, BO->getRHS()); |
| 603 | if (!RHS) |
| 604 | return None; |
| 605 | |
| 606 | return NormalizedConstraint( |
| 607 | S.Context, *LHS, *RHS, |
| 608 | BO->getOpcode() == BO_LAnd ? CCK_Conjunction : CCK_Disjunction); |
| 609 | } |
| 610 | } else if (auto *CSE = dyn_cast<const ConceptSpecializationExpr>(E)) { |
| 611 | Optional<NormalizedConstraint> SubNF; |
| 612 | { |
| 613 | Sema::InstantiatingTemplate Inst( |
| 614 | S, CSE->getExprLoc(), |
| 615 | Sema::InstantiatingTemplate::ConstraintNormalization{}, D, |
| 616 | CSE->getSourceRange()); |
| 617 | // C++ [temp.constr.normal]p1.1 |
| 618 | // [...] |
| 619 | // The normal form of an id-expression of the form C<A1, A2, ..., AN>, |
| 620 | // where C names a concept, is the normal form of the |
| 621 | // constraint-expression of C, after substituting A1, A2, ..., AN for C’s |
| 622 | // respective template parameters in the parameter mappings in each atomic |
| 623 | // constraint. If any such substitution results in an invalid type or |
| 624 | // expression, the program is ill-formed; no diagnostic is required. |
| 625 | // [...] |
| 626 | SubNF = fromConstraintExpr(S, CSE->getNamedConcept(), |
| 627 | CSE->getNamedConcept()->getConstraintExpr()); |
| 628 | if (!SubNF) |
| 629 | return None; |
| 630 | } |
| 631 | |
| 632 | if (substituteParameterMappings( |
| 633 | S, *SubNF, CSE->getNamedConcept(), |
| 634 | CSE->getTemplateArguments(), CSE->getTemplateArgsAsWritten())) |
| 635 | return None; |
| 636 | |
| 637 | return SubNF; |
| 638 | } |
| 639 | return NormalizedConstraint{new (S.Context) AtomicConstraint(S, E)}; |
| 640 | } |
| 641 | |
| 642 | } // namespace |
| 643 | |
| 644 | using NormalForm = |
| 645 | llvm::SmallVector<llvm::SmallVector<AtomicConstraint *, 2>, 4>; |
| 646 | |
| 647 | static NormalForm makeCNF(const NormalizedConstraint &Normalized) { |
| 648 | if (Normalized.isAtomic()) |
| 649 | return {{Normalized.getAtomicConstraint()}}; |
| 650 | |
| 651 | NormalForm LCNF = makeCNF(Normalized.getLHS()); |
| 652 | NormalForm RCNF = makeCNF(Normalized.getRHS()); |
| 653 | if (Normalized.getCompoundKind() == NormalizedConstraint::CCK_Conjunction) { |
| 654 | LCNF.reserve(LCNF.size() + RCNF.size()); |
| 655 | while (!RCNF.empty()) |
| 656 | LCNF.push_back(RCNF.pop_back_val()); |
| 657 | return LCNF; |
| 658 | } |
| 659 | |
| 660 | // Disjunction |
| 661 | NormalForm Res; |
| 662 | Res.reserve(LCNF.size() * RCNF.size()); |
| 663 | for (auto &LDisjunction : LCNF) |
| 664 | for (auto &RDisjunction : RCNF) { |
| 665 | NormalForm::value_type Combined; |
| 666 | Combined.reserve(LDisjunction.size() + RDisjunction.size()); |
| 667 | std::copy(LDisjunction.begin(), LDisjunction.end(), |
| 668 | std::back_inserter(Combined)); |
| 669 | std::copy(RDisjunction.begin(), RDisjunction.end(), |
| 670 | std::back_inserter(Combined)); |
| 671 | Res.emplace_back(Combined); |
| 672 | } |
| 673 | return Res; |
| 674 | } |
| 675 | |
| 676 | static NormalForm makeDNF(const NormalizedConstraint &Normalized) { |
| 677 | if (Normalized.isAtomic()) |
| 678 | return {{Normalized.getAtomicConstraint()}}; |
| 679 | |
| 680 | NormalForm LDNF = makeDNF(Normalized.getLHS()); |
| 681 | NormalForm RDNF = makeDNF(Normalized.getRHS()); |
| 682 | if (Normalized.getCompoundKind() == NormalizedConstraint::CCK_Disjunction) { |
| 683 | LDNF.reserve(LDNF.size() + RDNF.size()); |
| 684 | while (!RDNF.empty()) |
| 685 | LDNF.push_back(RDNF.pop_back_val()); |
| 686 | return LDNF; |
| 687 | } |
| 688 | |
| 689 | // Conjunction |
| 690 | NormalForm Res; |
| 691 | Res.reserve(LDNF.size() * RDNF.size()); |
| 692 | for (auto &LConjunction : LDNF) { |
| 693 | for (auto &RConjunction : RDNF) { |
| 694 | NormalForm::value_type Combined; |
| 695 | Combined.reserve(LConjunction.size() + RConjunction.size()); |
| 696 | std::copy(LConjunction.begin(), LConjunction.end(), |
| 697 | std::back_inserter(Combined)); |
| 698 | std::copy(RConjunction.begin(), RConjunction.end(), |
| 699 | std::back_inserter(Combined)); |
| 700 | Res.emplace_back(Combined); |
| 701 | } |
| 702 | } |
| 703 | return Res; |
| 704 | } |
| 705 | |
| 706 | static bool subsumes(Sema &S, NamedDecl *DP, ArrayRef<const Expr *> P, |
| 707 | NamedDecl *DQ, ArrayRef<const Expr *> Q, bool &Subsumes) { |
| 708 | // C++ [temp.constr.order] p2 |
| 709 | // In order to determine if a constraint P subsumes a constraint Q, P is |
| 710 | // transformed into disjunctive normal form, and Q is transformed into |
| 711 | // conjunctive normal form. [...] |
| 712 | auto PNormalized = NormalizedConstraint::fromConstraintExprs(S, DP, P); |
| 713 | if (!PNormalized) |
| 714 | return true; |
| 715 | const NormalForm PDNF = makeDNF(*PNormalized); |
| 716 | |
| 717 | auto QNormalized = NormalizedConstraint::fromConstraintExprs(S, DQ, Q); |
| 718 | if (!QNormalized) |
| 719 | return true; |
| 720 | const NormalForm QCNF = makeCNF(*QNormalized); |
| 721 | |
| 722 | // C++ [temp.constr.order] p2 |
| 723 | // Then, P subsumes Q if and only if, for every disjunctive clause Pi in the |
| 724 | // disjunctive normal form of P, Pi subsumes every conjunctive clause Qj in |
| 725 | // the conjuctive normal form of Q, where [...] |
| 726 | for (const auto &Pi : PDNF) { |
| 727 | for (const auto &Qj : QCNF) { |
| 728 | // C++ [temp.constr.order] p2 |
| 729 | // - [...] a disjunctive clause Pi subsumes a conjunctive clause Qj if |
| 730 | // and only if there exists an atomic constraint Pia in Pi for which |
| 731 | // there exists an atomic constraint, Qjb, in Qj such that Pia |
| 732 | // subsumes Qjb. |
| 733 | bool Found = false; |
| 734 | for (const AtomicConstraint *Pia : Pi) { |
| 735 | for (const AtomicConstraint *Qjb : Qj) { |
| 736 | if (Pia->subsumes(S.Context, *Qjb)) { |
| 737 | Found = true; |
| 738 | break; |
| 739 | } |
| 740 | } |
| 741 | if (Found) |
| 742 | break; |
| 743 | } |
| 744 | if (!Found) { |
| 745 | Subsumes = false; |
| 746 | return false; |
| 747 | } |
| 748 | } |
| 749 | } |
| 750 | Subsumes = true; |
| 751 | return false; |
| 752 | } |
| 753 | |
| 754 | bool Sema::IsAtLeastAsConstrained(NamedDecl *D1, ArrayRef<const Expr *> AC1, |
| 755 | NamedDecl *D2, ArrayRef<const Expr *> AC2, |
| 756 | bool &Result) { |
| 757 | if (AC1.empty()) { |
| 758 | Result = AC2.empty(); |
| 759 | return false; |
| 760 | } |
| 761 | if (AC2.empty()) { |
| 762 | // TD1 has associated constraints and TD2 does not. |
| 763 | Result = true; |
| 764 | return false; |
| 765 | } |
| 766 | |
| 767 | std::pair<NamedDecl *, NamedDecl *> Key{D1, D2}; |
| 768 | auto CacheEntry = SubsumptionCache.find(Key); |
| 769 | if (CacheEntry != SubsumptionCache.end()) { |
| 770 | Result = CacheEntry->second; |
| 771 | return false; |
| 772 | } |
| 773 | if (subsumes(*this, D1, AC1, D2, AC2, Result)) |
| 774 | return true; |
| 775 | SubsumptionCache.try_emplace(Key, Result); |
| 776 | return false; |
Saar Raz | 0330fba | 2019-10-15 18:44:06 +0000 | [diff] [blame] | 777 | } |