blob: 18751d41048665be9df2c071f0555ff6ec09fad8 [file] [log] [blame]
Eli Bendersky7325e562014-09-03 15:27:03 +00001//===--- SemaCUDA.cpp - Semantic Analysis for CUDA constructs -------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10/// \brief This file implements semantic analysis for CUDA constructs.
11///
12//===----------------------------------------------------------------------===//
13
Eli Bendersky7325e562014-09-03 15:27:03 +000014#include "clang/AST/ASTContext.h"
15#include "clang/AST/Decl.h"
Artem Belevich97c01c32016-02-02 22:29:48 +000016#include "clang/AST/ExprCXX.h"
Reid Klecknerbbc01782014-12-03 21:53:36 +000017#include "clang/Lex/Preprocessor.h"
Justin Lebarba122ab2016-03-30 23:30:21 +000018#include "clang/Sema/Lookup.h"
19#include "clang/Sema/Sema.h"
Eli Bendersky7325e562014-09-03 15:27:03 +000020#include "clang/Sema/SemaDiagnostic.h"
Justin Lebar179bdce2016-10-13 18:45:08 +000021#include "clang/Sema/SemaInternal.h"
Justin Lebarba122ab2016-03-30 23:30:21 +000022#include "clang/Sema/Template.h"
Eli Bendersky9a220fc2014-09-29 20:38:29 +000023#include "llvm/ADT/Optional.h"
24#include "llvm/ADT/SmallVector.h"
Eli Bendersky7325e562014-09-03 15:27:03 +000025using namespace clang;
26
Justin Lebar67a78a62016-10-08 22:15:58 +000027void Sema::PushForceCUDAHostDevice() {
28 assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
29 ForceCUDAHostDeviceDepth++;
30}
31
32bool Sema::PopForceCUDAHostDevice() {
33 assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
34 if (ForceCUDAHostDeviceDepth == 0)
35 return false;
36 ForceCUDAHostDeviceDepth--;
37 return true;
38}
39
Eli Bendersky7325e562014-09-03 15:27:03 +000040ExprResult Sema::ActOnCUDAExecConfigExpr(Scope *S, SourceLocation LLLLoc,
41 MultiExprArg ExecConfig,
42 SourceLocation GGGLoc) {
43 FunctionDecl *ConfigDecl = Context.getcudaConfigureCallDecl();
44 if (!ConfigDecl)
45 return ExprError(Diag(LLLLoc, diag::err_undeclared_var_use)
46 << "cudaConfigureCall");
47 QualType ConfigQTy = ConfigDecl->getType();
48
49 DeclRefExpr *ConfigDR = new (Context)
50 DeclRefExpr(ConfigDecl, false, ConfigQTy, VK_LValue, LLLLoc);
51 MarkFunctionReferenced(LLLLoc, ConfigDecl);
52
53 return ActOnCallExpr(S, ConfigDR, LLLLoc, ExecConfig, GGGLoc, nullptr,
54 /*IsExecConfig=*/true);
55}
56
57/// IdentifyCUDATarget - Determine the CUDA compilation target for this function
58Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D) {
Justin Lebar179bdce2016-10-13 18:45:08 +000059 // Code that lives outside a function is run on the host.
60 if (D == nullptr)
61 return CFT_Host;
62
Eli Bendersky9a220fc2014-09-29 20:38:29 +000063 if (D->hasAttr<CUDAInvalidTargetAttr>())
64 return CFT_InvalidTarget;
Eli Bendersky7325e562014-09-03 15:27:03 +000065
66 if (D->hasAttr<CUDAGlobalAttr>())
67 return CFT_Global;
68
69 if (D->hasAttr<CUDADeviceAttr>()) {
70 if (D->hasAttr<CUDAHostAttr>())
71 return CFT_HostDevice;
72 return CFT_Device;
Eli Benderskyf2787a02014-09-30 17:38:34 +000073 } else if (D->hasAttr<CUDAHostAttr>()) {
74 return CFT_Host;
75 } else if (D->isImplicit()) {
76 // Some implicit declarations (like intrinsic functions) are not marked.
77 // Set the most lenient target on them for maximal flexibility.
78 return CFT_HostDevice;
Eli Bendersky7325e562014-09-03 15:27:03 +000079 }
80
81 return CFT_Host;
82}
83
Artem Belevich94a55e82015-09-22 17:22:59 +000084// * CUDA Call preference table
85//
86// F - from,
87// T - to
88// Ph - preference in host mode
89// Pd - preference in device mode
90// H - handled in (x)
Justin Lebar39186472016-03-29 16:24:22 +000091// Preferences: N:native, SS:same side, HD:host-device, WS:wrong side, --:never.
Artem Belevich94a55e82015-09-22 17:22:59 +000092//
Artem Belevich18609102016-02-12 18:29:18 +000093// | F | T | Ph | Pd | H |
94// |----+----+-----+-----+-----+
95// | d | d | N | N | (c) |
96// | d | g | -- | -- | (a) |
97// | d | h | -- | -- | (e) |
98// | d | hd | HD | HD | (b) |
99// | g | d | N | N | (c) |
100// | g | g | -- | -- | (a) |
101// | g | h | -- | -- | (e) |
102// | g | hd | HD | HD | (b) |
103// | h | d | -- | -- | (e) |
104// | h | g | N | N | (c) |
105// | h | h | N | N | (c) |
106// | h | hd | HD | HD | (b) |
107// | hd | d | WS | SS | (d) |
108// | hd | g | SS | -- |(d/a)|
109// | hd | h | SS | WS | (d) |
110// | hd | hd | HD | HD | (b) |
Artem Belevich94a55e82015-09-22 17:22:59 +0000111
112Sema::CUDAFunctionPreference
113Sema::IdentifyCUDAPreference(const FunctionDecl *Caller,
114 const FunctionDecl *Callee) {
Artem Belevich94a55e82015-09-22 17:22:59 +0000115 assert(Callee && "Callee must be valid.");
Justin Lebar179bdce2016-10-13 18:45:08 +0000116 CUDAFunctionTarget CallerTarget = IdentifyCUDATarget(Caller);
Artem Belevich94a55e82015-09-22 17:22:59 +0000117 CUDAFunctionTarget CalleeTarget = IdentifyCUDATarget(Callee);
Artem Belevich94a55e82015-09-22 17:22:59 +0000118
119 // If one of the targets is invalid, the check always fails, no matter what
120 // the other target is.
121 if (CallerTarget == CFT_InvalidTarget || CalleeTarget == CFT_InvalidTarget)
122 return CFP_Never;
123
124 // (a) Can't call global from some contexts until we support CUDA's
125 // dynamic parallelism.
126 if (CalleeTarget == CFT_Global &&
Justin Lebar0254c462016-10-12 01:30:08 +0000127 (CallerTarget == CFT_Global || CallerTarget == CFT_Device))
Artem Belevich94a55e82015-09-22 17:22:59 +0000128 return CFP_Never;
129
Artem Belevich18609102016-02-12 18:29:18 +0000130 // (b) Calling HostDevice is OK for everyone.
131 if (CalleeTarget == CFT_HostDevice)
132 return CFP_HostDevice;
133
134 // (c) Best case scenarios
Artem Belevich94a55e82015-09-22 17:22:59 +0000135 if (CalleeTarget == CallerTarget ||
136 (CallerTarget == CFT_Host && CalleeTarget == CFT_Global) ||
137 (CallerTarget == CFT_Global && CalleeTarget == CFT_Device))
Artem Belevich18609102016-02-12 18:29:18 +0000138 return CFP_Native;
Artem Belevich94a55e82015-09-22 17:22:59 +0000139
140 // (d) HostDevice behavior depends on compilation mode.
141 if (CallerTarget == CFT_HostDevice) {
Artem Belevich18609102016-02-12 18:29:18 +0000142 // It's OK to call a compilation-mode matching function from an HD one.
143 if ((getLangOpts().CUDAIsDevice && CalleeTarget == CFT_Device) ||
144 (!getLangOpts().CUDAIsDevice &&
145 (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global)))
146 return CFP_SameSide;
147
Justin Lebar25c4a812016-03-29 16:24:16 +0000148 // Calls from HD to non-mode-matching functions (i.e., to host functions
149 // when compiling in device mode or to device functions when compiling in
150 // host mode) are allowed at the sema level, but eventually rejected if
151 // they're ever codegened. TODO: Reject said calls earlier.
152 return CFP_WrongSide;
Artem Belevich94a55e82015-09-22 17:22:59 +0000153 }
154
155 // (e) Calling across device/host boundary is not something you should do.
156 if ((CallerTarget == CFT_Host && CalleeTarget == CFT_Device) ||
157 (CallerTarget == CFT_Device && CalleeTarget == CFT_Host) ||
158 (CallerTarget == CFT_Global && CalleeTarget == CFT_Host))
Artem Belevich18609102016-02-12 18:29:18 +0000159 return CFP_Never;
Artem Belevich94a55e82015-09-22 17:22:59 +0000160
161 llvm_unreachable("All cases should've been handled by now.");
162}
163
Richard Smithf75dcbe2016-10-11 00:21:10 +0000164void Sema::EraseUnwantedCUDAMatches(
165 const FunctionDecl *Caller,
166 SmallVectorImpl<std::pair<DeclAccessPair, FunctionDecl *>> &Matches) {
Artem Belevich94a55e82015-09-22 17:22:59 +0000167 if (Matches.size() <= 1)
168 return;
169
Richard Smithf75dcbe2016-10-11 00:21:10 +0000170 using Pair = std::pair<DeclAccessPair, FunctionDecl*>;
171
Justin Lebare6a2cc12016-03-22 00:09:25 +0000172 // Gets the CUDA function preference for a call from Caller to Match.
Richard Smithf75dcbe2016-10-11 00:21:10 +0000173 auto GetCFP = [&](const Pair &Match) {
174 return IdentifyCUDAPreference(Caller, Match.second);
Justin Lebare6a2cc12016-03-22 00:09:25 +0000175 };
176
Artem Belevich94a55e82015-09-22 17:22:59 +0000177 // Find the best call preference among the functions in Matches.
Richard Smithf75dcbe2016-10-11 00:21:10 +0000178 CUDAFunctionPreference BestCFP = GetCFP(*std::max_element(
Justin Lebare6a2cc12016-03-22 00:09:25 +0000179 Matches.begin(), Matches.end(),
Richard Smithf75dcbe2016-10-11 00:21:10 +0000180 [&](const Pair &M1, const Pair &M2) { return GetCFP(M1) < GetCFP(M2); }));
Artem Belevich94a55e82015-09-22 17:22:59 +0000181
182 // Erase all functions with lower priority.
Justin Lebare71c08f2016-07-12 23:23:13 +0000183 Matches.erase(
Richard Smithf75dcbe2016-10-11 00:21:10 +0000184 llvm::remove_if(
185 Matches, [&](const Pair &Match) { return GetCFP(Match) < BestCFP; }),
Justin Lebare71c08f2016-07-12 23:23:13 +0000186 Matches.end());
Artem Belevich94a55e82015-09-22 17:22:59 +0000187}
188
Eli Bendersky9a220fc2014-09-29 20:38:29 +0000189/// When an implicitly-declared special member has to invoke more than one
190/// base/field special member, conflicts may occur in the targets of these
191/// members. For example, if one base's member __host__ and another's is
192/// __device__, it's a conflict.
193/// This function figures out if the given targets \param Target1 and
194/// \param Target2 conflict, and if they do not it fills in
195/// \param ResolvedTarget with a target that resolves for both calls.
196/// \return true if there's a conflict, false otherwise.
197static bool
198resolveCalleeCUDATargetConflict(Sema::CUDAFunctionTarget Target1,
199 Sema::CUDAFunctionTarget Target2,
200 Sema::CUDAFunctionTarget *ResolvedTarget) {
Justin Lebarc66a1062016-01-20 00:26:57 +0000201 // Only free functions and static member functions may be global.
202 assert(Target1 != Sema::CFT_Global);
203 assert(Target2 != Sema::CFT_Global);
Eli Bendersky9a220fc2014-09-29 20:38:29 +0000204
205 if (Target1 == Sema::CFT_HostDevice) {
206 *ResolvedTarget = Target2;
207 } else if (Target2 == Sema::CFT_HostDevice) {
208 *ResolvedTarget = Target1;
209 } else if (Target1 != Target2) {
210 return true;
211 } else {
212 *ResolvedTarget = Target1;
213 }
214
215 return false;
216}
217
218bool Sema::inferCUDATargetForImplicitSpecialMember(CXXRecordDecl *ClassDecl,
219 CXXSpecialMember CSM,
220 CXXMethodDecl *MemberDecl,
221 bool ConstRHS,
222 bool Diagnose) {
223 llvm::Optional<CUDAFunctionTarget> InferredTarget;
224
225 // We're going to invoke special member lookup; mark that these special
226 // members are called from this one, and not from its caller.
227 ContextRAII MethodContext(*this, MemberDecl);
228
229 // Look for special members in base classes that should be invoked from here.
230 // Infer the target of this member base on the ones it should call.
231 // Skip direct and indirect virtual bases for abstract classes.
232 llvm::SmallVector<const CXXBaseSpecifier *, 16> Bases;
233 for (const auto &B : ClassDecl->bases()) {
234 if (!B.isVirtual()) {
235 Bases.push_back(&B);
236 }
237 }
238
239 if (!ClassDecl->isAbstract()) {
240 for (const auto &VB : ClassDecl->vbases()) {
241 Bases.push_back(&VB);
242 }
243 }
244
245 for (const auto *B : Bases) {
246 const RecordType *BaseType = B->getType()->getAs<RecordType>();
247 if (!BaseType) {
248 continue;
249 }
250
251 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
252 Sema::SpecialMemberOverloadResult *SMOR =
253 LookupSpecialMember(BaseClassDecl, CSM,
254 /* ConstArg */ ConstRHS,
255 /* VolatileArg */ false,
256 /* RValueThis */ false,
257 /* ConstThis */ false,
258 /* VolatileThis */ false);
259
260 if (!SMOR || !SMOR->getMethod()) {
261 continue;
262 }
263
264 CUDAFunctionTarget BaseMethodTarget = IdentifyCUDATarget(SMOR->getMethod());
265 if (!InferredTarget.hasValue()) {
266 InferredTarget = BaseMethodTarget;
267 } else {
268 bool ResolutionError = resolveCalleeCUDATargetConflict(
269 InferredTarget.getValue(), BaseMethodTarget,
270 InferredTarget.getPointer());
271 if (ResolutionError) {
272 if (Diagnose) {
273 Diag(ClassDecl->getLocation(),
274 diag::note_implicit_member_target_infer_collision)
275 << (unsigned)CSM << InferredTarget.getValue() << BaseMethodTarget;
276 }
277 MemberDecl->addAttr(CUDAInvalidTargetAttr::CreateImplicit(Context));
278 return true;
279 }
280 }
281 }
282
283 // Same as for bases, but now for special members of fields.
284 for (const auto *F : ClassDecl->fields()) {
285 if (F->isInvalidDecl()) {
286 continue;
287 }
288
289 const RecordType *FieldType =
290 Context.getBaseElementType(F->getType())->getAs<RecordType>();
291 if (!FieldType) {
292 continue;
293 }
294
295 CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(FieldType->getDecl());
296 Sema::SpecialMemberOverloadResult *SMOR =
297 LookupSpecialMember(FieldRecDecl, CSM,
298 /* ConstArg */ ConstRHS && !F->isMutable(),
299 /* VolatileArg */ false,
300 /* RValueThis */ false,
301 /* ConstThis */ false,
302 /* VolatileThis */ false);
303
304 if (!SMOR || !SMOR->getMethod()) {
305 continue;
306 }
307
308 CUDAFunctionTarget FieldMethodTarget =
309 IdentifyCUDATarget(SMOR->getMethod());
310 if (!InferredTarget.hasValue()) {
311 InferredTarget = FieldMethodTarget;
312 } else {
313 bool ResolutionError = resolveCalleeCUDATargetConflict(
314 InferredTarget.getValue(), FieldMethodTarget,
315 InferredTarget.getPointer());
316 if (ResolutionError) {
317 if (Diagnose) {
318 Diag(ClassDecl->getLocation(),
319 diag::note_implicit_member_target_infer_collision)
320 << (unsigned)CSM << InferredTarget.getValue()
321 << FieldMethodTarget;
322 }
323 MemberDecl->addAttr(CUDAInvalidTargetAttr::CreateImplicit(Context));
324 return true;
325 }
326 }
327 }
328
329 if (InferredTarget.hasValue()) {
330 if (InferredTarget.getValue() == CFT_Device) {
331 MemberDecl->addAttr(CUDADeviceAttr::CreateImplicit(Context));
332 } else if (InferredTarget.getValue() == CFT_Host) {
333 MemberDecl->addAttr(CUDAHostAttr::CreateImplicit(Context));
334 } else {
335 MemberDecl->addAttr(CUDADeviceAttr::CreateImplicit(Context));
336 MemberDecl->addAttr(CUDAHostAttr::CreateImplicit(Context));
337 }
338 } else {
339 // If no target was inferred, mark this member as __host__ __device__;
340 // it's the least restrictive option that can be invoked from any target.
341 MemberDecl->addAttr(CUDADeviceAttr::CreateImplicit(Context));
342 MemberDecl->addAttr(CUDAHostAttr::CreateImplicit(Context));
343 }
344
345 return false;
346}
Artem Belevich97c01c32016-02-02 22:29:48 +0000347
348bool Sema::isEmptyCudaConstructor(SourceLocation Loc, CXXConstructorDecl *CD) {
349 if (!CD->isDefined() && CD->isTemplateInstantiation())
350 InstantiateFunctionDefinition(Loc, CD->getFirstDecl());
351
352 // (E.2.3.1, CUDA 7.5) A constructor for a class type is considered
353 // empty at a point in the translation unit, if it is either a
354 // trivial constructor
355 if (CD->isTrivial())
356 return true;
357
358 // ... or it satisfies all of the following conditions:
359 // The constructor function has been defined.
360 // The constructor function has no parameters,
361 // and the function body is an empty compound statement.
362 if (!(CD->hasTrivialBody() && CD->getNumParams() == 0))
363 return false;
364
365 // Its class has no virtual functions and no virtual base classes.
366 if (CD->getParent()->isDynamicClass())
367 return false;
368
369 // The only form of initializer allowed is an empty constructor.
Artem Belevich3650bbe2016-05-19 20:13:53 +0000370 // This will recursively check all base classes and member initializers
Artem Belevich97c01c32016-02-02 22:29:48 +0000371 if (!llvm::all_of(CD->inits(), [&](const CXXCtorInitializer *CI) {
372 if (const CXXConstructExpr *CE =
373 dyn_cast<CXXConstructExpr>(CI->getInit()))
374 return isEmptyCudaConstructor(Loc, CE->getConstructor());
375 return false;
376 }))
377 return false;
378
379 return true;
380}
Justin Lebarba122ab2016-03-30 23:30:21 +0000381
Artem Belevich3650bbe2016-05-19 20:13:53 +0000382bool Sema::isEmptyCudaDestructor(SourceLocation Loc, CXXDestructorDecl *DD) {
383 // No destructor -> no problem.
384 if (!DD)
385 return true;
386
387 if (!DD->isDefined() && DD->isTemplateInstantiation())
388 InstantiateFunctionDefinition(Loc, DD->getFirstDecl());
389
390 // (E.2.3.1, CUDA 7.5) A destructor for a class type is considered
391 // empty at a point in the translation unit, if it is either a
392 // trivial constructor
393 if (DD->isTrivial())
394 return true;
395
396 // ... or it satisfies all of the following conditions:
397 // The destructor function has been defined.
398 // and the function body is an empty compound statement.
399 if (!DD->hasTrivialBody())
400 return false;
401
402 const CXXRecordDecl *ClassDecl = DD->getParent();
403
404 // Its class has no virtual functions and no virtual base classes.
405 if (ClassDecl->isDynamicClass())
406 return false;
407
408 // Only empty destructors are allowed. This will recursively check
409 // destructors for all base classes...
410 if (!llvm::all_of(ClassDecl->bases(), [&](const CXXBaseSpecifier &BS) {
411 if (CXXRecordDecl *RD = BS.getType()->getAsCXXRecordDecl())
412 return isEmptyCudaDestructor(Loc, RD->getDestructor());
413 return true;
414 }))
415 return false;
416
417 // ... and member fields.
418 if (!llvm::all_of(ClassDecl->fields(), [&](const FieldDecl *Field) {
419 if (CXXRecordDecl *RD = Field->getType()
420 ->getBaseElementTypeUnsafe()
421 ->getAsCXXRecordDecl())
422 return isEmptyCudaDestructor(Loc, RD->getDestructor());
423 return true;
424 }))
425 return false;
426
427 return true;
428}
429
Justin Lebarba122ab2016-03-30 23:30:21 +0000430// With -fcuda-host-device-constexpr, an unattributed constexpr function is
431// treated as implicitly __host__ __device__, unless:
432// * it is a variadic function (device-side variadic functions are not
433// allowed), or
434// * a __device__ function with this signature was already declared, in which
435// case in which case we output an error, unless the __device__ decl is in a
436// system header, in which case we leave the constexpr function unattributed.
Justin Lebar67a78a62016-10-08 22:15:58 +0000437//
438// In addition, all function decls are treated as __host__ __device__ when
439// ForceCUDAHostDeviceDepth > 0 (corresponding to code within a
440// #pragma clang force_cuda_host_device_begin/end
441// pair).
Justin Lebarba122ab2016-03-30 23:30:21 +0000442void Sema::maybeAddCUDAHostDeviceAttrs(Scope *S, FunctionDecl *NewD,
443 const LookupResult &Previous) {
Justin Lebar9d4ed262016-09-30 23:57:38 +0000444 assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
Justin Lebar67a78a62016-10-08 22:15:58 +0000445
446 if (ForceCUDAHostDeviceDepth > 0) {
447 if (!NewD->hasAttr<CUDAHostAttr>())
448 NewD->addAttr(CUDAHostAttr::CreateImplicit(Context));
449 if (!NewD->hasAttr<CUDADeviceAttr>())
450 NewD->addAttr(CUDADeviceAttr::CreateImplicit(Context));
451 return;
452 }
453
Justin Lebarba122ab2016-03-30 23:30:21 +0000454 if (!getLangOpts().CUDAHostDeviceConstexpr || !NewD->isConstexpr() ||
455 NewD->isVariadic() || NewD->hasAttr<CUDAHostAttr>() ||
456 NewD->hasAttr<CUDADeviceAttr>() || NewD->hasAttr<CUDAGlobalAttr>())
457 return;
458
459 // Is D a __device__ function with the same signature as NewD, ignoring CUDA
460 // attributes?
461 auto IsMatchingDeviceFn = [&](NamedDecl *D) {
462 if (UsingShadowDecl *Using = dyn_cast<UsingShadowDecl>(D))
463 D = Using->getTargetDecl();
464 FunctionDecl *OldD = D->getAsFunction();
465 return OldD && OldD->hasAttr<CUDADeviceAttr>() &&
466 !OldD->hasAttr<CUDAHostAttr>() &&
467 !IsOverload(NewD, OldD, /* UseMemberUsingDeclRules = */ false,
468 /* ConsiderCudaAttrs = */ false);
469 };
470 auto It = llvm::find_if(Previous, IsMatchingDeviceFn);
471 if (It != Previous.end()) {
472 // We found a __device__ function with the same name and signature as NewD
473 // (ignoring CUDA attrs). This is an error unless that function is defined
474 // in a system header, in which case we simply return without making NewD
475 // host+device.
476 NamedDecl *Match = *It;
477 if (!getSourceManager().isInSystemHeader(Match->getLocation())) {
478 Diag(NewD->getLocation(),
479 diag::err_cuda_unattributed_constexpr_cannot_overload_device)
480 << NewD->getName();
481 Diag(Match->getLocation(),
482 diag::note_cuda_conflicting_device_function_declared_here);
483 }
484 return;
485 }
486
487 NewD->addAttr(CUDAHostAttr::CreateImplicit(Context));
488 NewD->addAttr(CUDADeviceAttr::CreateImplicit(Context));
489}
Justin Lebar18e2d822016-08-15 23:00:49 +0000490
Justin Lebar179bdce2016-10-13 18:45:08 +0000491Sema::CUDADiagBuilder::CUDADiagBuilder(Kind K, SourceLocation Loc,
492 unsigned DiagID, FunctionDecl *Fn,
493 Sema &S) {
494 switch (K) {
495 case K_Nop:
496 break;
497 case K_Immediate:
498 ImmediateDiagBuilder.emplace(S.Diag(Loc, DiagID));
499 break;
500 case K_Deferred:
501 assert(Fn && "Must have a function to attach the deferred diag to.");
Justin Lebar23d95422016-10-13 20:52:12 +0000502 PartialDiagInfo.emplace(S, Loc, S.PDiag(DiagID), Fn);
Justin Lebar179bdce2016-10-13 18:45:08 +0000503 break;
504 }
505}
506
Justin Lebar23d95422016-10-13 20:52:12 +0000507// In CUDA, there are some constructs which may appear in semantically-valid
508// code, but trigger errors if we ever generate code for the function in which
509// they appear. Essentially every construct you're not allowed to use on the
510// device falls into this category, because you are allowed to use these
511// constructs in a __host__ __device__ function, but only if that function is
512// never codegen'ed on the device.
513//
514// To handle semantic checking for these constructs, we keep track of the set of
515// functions we know will be emitted, either because we could tell a priori that
516// they would be emitted, or because they were transitively called by a
517// known-emitted function.
518//
519// We also keep a partial call graph of which not-known-emitted functions call
520// which other not-known-emitted functions.
521//
522// When we see something which is illegal if the current function is emitted
523// (usually by way of CUDADiagIfDeviceCode, CUDADiagIfHostCode, or
524// CheckCUDACall), we first check if the current function is known-emitted. If
525// so, we immediately output the diagnostic.
526//
527// Otherwise, we "defer" the diagnostic. It sits in Sema::CUDADeferredDiags
528// until we discover that the function is known-emitted, at which point we take
529// it out of this map and emit the diagnostic.
530
531// Do we know that we will eventually codegen the given function?
532static bool IsKnownEmitted(Sema &S, FunctionDecl *FD) {
533 // Templates are emitted when they're instantiated.
534 if (FD->isDependentContext())
535 return false;
536
537 // When compiling for device, host functions are never emitted. Similarly,
538 // when compiling for host, device and global functions are never emitted.
539 // (Technically, we do emit a host-side stub for global functions, but this
540 // doesn't count for our purposes here.)
541 Sema::CUDAFunctionTarget T = S.IdentifyCUDATarget(FD);
542 if (S.getLangOpts().CUDAIsDevice && T == Sema::CFT_Host)
543 return false;
544 if (!S.getLangOpts().CUDAIsDevice &&
545 (T == Sema::CFT_Device || T == Sema::CFT_Global))
546 return false;
547
548 // Externally-visible and similar functions are always emitted.
Justin Lebar606f01f2016-10-13 20:52:17 +0000549 if (!isDiscardableGVALinkage(S.getASTContext().GetGVALinkageForFunction(FD)))
Justin Lebar23d95422016-10-13 20:52:12 +0000550 return true;
551
552 // Otherwise, the function is known-emitted if it's in our set of
553 // known-emitted functions.
554 return S.CUDAKnownEmittedFns.count(FD) > 0;
555}
556
Justin Lebar179bdce2016-10-13 18:45:08 +0000557Sema::CUDADiagBuilder Sema::CUDADiagIfDeviceCode(SourceLocation Loc,
558 unsigned DiagID) {
559 assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
Justin Lebar23d95422016-10-13 20:52:12 +0000560 CUDADiagBuilder::Kind DiagKind = [&] {
561 switch (CurrentCUDATarget()) {
562 case CFT_Global:
563 case CFT_Device:
564 return CUDADiagBuilder::K_Immediate;
565 case CFT_HostDevice:
566 // An HD function counts as host code if we're compiling for host, and
567 // device code if we're compiling for device. Defer any errors in device
568 // mode until the function is known-emitted.
569 if (getLangOpts().CUDAIsDevice) {
570 return IsKnownEmitted(*this, dyn_cast<FunctionDecl>(CurContext))
571 ? CUDADiagBuilder::K_Immediate
572 : CUDADiagBuilder::K_Deferred;
573 }
574 return CUDADiagBuilder::K_Nop;
575
576 default:
577 return CUDADiagBuilder::K_Nop;
578 }
579 }();
Justin Lebar179bdce2016-10-13 18:45:08 +0000580 return CUDADiagBuilder(DiagKind, Loc, DiagID,
581 dyn_cast<FunctionDecl>(CurContext), *this);
582}
583
584Sema::CUDADiagBuilder Sema::CUDADiagIfHostCode(SourceLocation Loc,
585 unsigned DiagID) {
586 assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
Justin Lebar23d95422016-10-13 20:52:12 +0000587 CUDADiagBuilder::Kind DiagKind = [&] {
588 switch (CurrentCUDATarget()) {
589 case CFT_Host:
590 return CUDADiagBuilder::K_Immediate;
591 case CFT_HostDevice:
592 // An HD function counts as host code if we're compiling for host, and
593 // device code if we're compiling for device. Defer any errors in device
594 // mode until the function is known-emitted.
595 if (getLangOpts().CUDAIsDevice)
596 return CUDADiagBuilder::K_Nop;
597
598 return IsKnownEmitted(*this, dyn_cast<FunctionDecl>(CurContext))
599 ? CUDADiagBuilder::K_Immediate
600 : CUDADiagBuilder::K_Deferred;
601 default:
602 return CUDADiagBuilder::K_Nop;
603 }
604 }();
Justin Lebar179bdce2016-10-13 18:45:08 +0000605 return CUDADiagBuilder(DiagKind, Loc, DiagID,
606 dyn_cast<FunctionDecl>(CurContext), *this);
607}
608
Justin Lebar23d95422016-10-13 20:52:12 +0000609// Emit any deferred diagnostics for FD and erase them from the map in which
610// they're stored.
611static void EmitDeferredDiags(Sema &S, FunctionDecl *FD) {
612 auto It = S.CUDADeferredDiags.find(FD);
613 if (It == S.CUDADeferredDiags.end())
614 return;
615 for (PartialDiagnosticAt &PDAt : It->second) {
616 const SourceLocation &Loc = PDAt.first;
617 const PartialDiagnostic &PD = PDAt.second;
618 DiagnosticBuilder Builder(S.Diags.Report(Loc, PD.getDiagID()));
619 Builder.setForceEmit();
620 PD.Emit(Builder);
621 }
622 S.CUDADeferredDiags.erase(It);
623}
624
625// Indicate that this function (and thus everything it transtively calls) will
626// be codegen'ed, and emit any deferred diagnostics on this function and its
627// (transitive) callees.
628static void MarkKnownEmitted(Sema &S, FunctionDecl *FD) {
629 // Nothing to do if we already know that FD is emitted.
630 if (IsKnownEmitted(S, FD)) {
631 assert(!S.CUDACallGraph.count(FD));
632 return;
633 }
634
635 // We've just discovered that FD is known-emitted. Walk our call graph to see
636 // what else we can now discover also must be emitted.
637 llvm::SmallVector<FunctionDecl *, 4> Worklist = {FD};
638 llvm::SmallSet<FunctionDecl *, 4> Seen;
639 Seen.insert(FD);
640 while (!Worklist.empty()) {
641 FunctionDecl *Caller = Worklist.pop_back_val();
642 assert(!IsKnownEmitted(S, Caller) &&
643 "Worklist should not contain known-emitted functions.");
644 S.CUDAKnownEmittedFns.insert(Caller);
645 EmitDeferredDiags(S, Caller);
646
647 // Deferred diags are often emitted on the template itself, so emit those as
648 // well.
649 if (auto *Templ = Caller->getPrimaryTemplate())
650 EmitDeferredDiags(S, Templ->getAsFunction());
651
652 // Add all functions called by Caller to our worklist.
653 auto CGIt = S.CUDACallGraph.find(Caller);
654 if (CGIt == S.CUDACallGraph.end())
655 continue;
656
657 for (FunctionDecl *Callee : CGIt->second) {
658 if (Seen.count(Callee) || IsKnownEmitted(S, Callee))
659 continue;
660 Seen.insert(Callee);
661 Worklist.push_back(Callee);
662 }
663
664 // Caller is now known-emitted, so we no longer need to maintain its list of
665 // callees in CUDACallGraph.
666 S.CUDACallGraph.erase(CGIt);
667 }
668}
669
Justin Lebar18e2d822016-08-15 23:00:49 +0000670bool Sema::CheckCUDACall(SourceLocation Loc, FunctionDecl *Callee) {
Justin Lebar9d4ed262016-09-30 23:57:38 +0000671 assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
Justin Lebar18e2d822016-08-15 23:00:49 +0000672 assert(Callee && "Callee may not be null.");
Justin Lebar23d95422016-10-13 20:52:12 +0000673 // FIXME: Is bailing out early correct here? Should we instead assume that
674 // the caller is a global initializer?
Justin Lebar18e2d822016-08-15 23:00:49 +0000675 FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext);
676 if (!Caller)
677 return true;
678
Justin Lebar23d95422016-10-13 20:52:12 +0000679 bool CallerKnownEmitted = IsKnownEmitted(*this, Caller);
680 if (CallerKnownEmitted)
681 MarkKnownEmitted(*this, Callee);
682 else
683 CUDACallGraph[Caller].insert(Callee);
684
685 CUDADiagBuilder::Kind DiagKind = [&] {
686 switch (IdentifyCUDAPreference(Caller, Callee)) {
687 case CFP_Never:
688 return CUDADiagBuilder::K_Immediate;
689 case CFP_WrongSide:
690 assert(Caller && "WrongSide calls require a non-null caller");
691 // If we know the caller will be emitted, we know this wrong-side call
692 // will be emitted, so it's an immediate error. Otherwise, defer the
693 // error until we know the caller is emitted.
694 return CallerKnownEmitted ? CUDADiagBuilder::K_Immediate
695 : CUDADiagBuilder::K_Deferred;
696 default:
697 return CUDADiagBuilder::K_Nop;
698 }
699 }();
Justin Lebar9fdb46e2016-10-08 01:07:11 +0000700
Justin Lebar179bdce2016-10-13 18:45:08 +0000701 // Avoid emitting this error twice for the same location. Using a hashtable
702 // like this is unfortunate, but because we must continue parsing as normal
703 // after encountering a deferred error, it's otherwise very tricky for us to
704 // ensure that we only emit this deferred error once.
705 if (!LocsWithCUDACallDiags.insert(Loc.getRawEncoding()).second)
Justin Lebar18e2d822016-08-15 23:00:49 +0000706 return true;
Justin Lebar2a8db342016-09-28 22:45:54 +0000707
Justin Lebar179bdce2016-10-13 18:45:08 +0000708 bool IsImmediateErr =
709 CUDADiagBuilder(DiagKind, Loc, diag::err_ref_bad_target, Caller, *this)
710 << IdentifyCUDATarget(Callee) << Callee << IdentifyCUDATarget(Caller);
711 CUDADiagBuilder(DiagKind, Callee->getLocation(), diag::note_previous_decl,
712 Caller, *this)
713 << Callee;
714 return !IsImmediateErr;
Justin Lebarb17840d2016-09-28 22:45:58 +0000715}
Justin Lebar7ca116c2016-09-30 17:14:53 +0000716
717void Sema::CUDASetLambdaAttrs(CXXMethodDecl *Method) {
Justin Lebar9d4ed262016-09-30 23:57:38 +0000718 assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
Justin Lebar7ca116c2016-09-30 17:14:53 +0000719 if (Method->hasAttr<CUDAHostAttr>() || Method->hasAttr<CUDADeviceAttr>())
720 return;
721 FunctionDecl *CurFn = dyn_cast<FunctionDecl>(CurContext);
722 if (!CurFn)
723 return;
724 CUDAFunctionTarget Target = IdentifyCUDATarget(CurFn);
725 if (Target == CFT_Global || Target == CFT_Device) {
726 Method->addAttr(CUDADeviceAttr::CreateImplicit(Context));
727 } else if (Target == CFT_HostDevice) {
728 Method->addAttr(CUDADeviceAttr::CreateImplicit(Context));
729 Method->addAttr(CUDAHostAttr::CreateImplicit(Context));
730 }
Justin Lebar7ca116c2016-09-30 17:14:53 +0000731}